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High-Order Simulations

Abstract Preliminary Results Potential Impact
We present a framework for adaptive optimization of . . .
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description of the simulation feature to which to adapt - 5550 available to a wide range of DOE apps and beyond.
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practical applicability of the algorithms we propose and order mesh T
.dlstmgu§hes us from approaches that require analytical CE-like mesh + In further future, the knowledge obtained through
information. optimized by ETHOS can guide new research directions, e.g., space-
Motivation various ETHOS time meshing, combining r- h- and p-adaptivity,
High-order methods are increasingly important for HPC methods optimization through machine learning methods.
simulations. Utilizing curved high-order meshes has S T P ST TS TR
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shown numerous advantages, including high-order gﬁf”gﬁﬁiif R y gy
convergence, accurate representation of curved IR L * = Our team is committed to working closely with DOE

domains with less elements, symmetry preservation.
However, high-order meshes are difficult to control due
to their rich sub-zonal properties [3]. Furthermore,
many high-order applications require the ability to
adapt the mesh to certain simulation features such as
moving material interfaces or shocks.

applications to help them adopt our technology.
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* Our methods are tailored to the specific application
needs: custom targets, quality metrics, adaptation.
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* Freely available, general (any order, mesh geometry),
parallel open source algorithms [4].

Approach * We are challenged by the optimization solve for the
We extend Variation Minimization and the Target- _ . global problem: help is welcomed for derivative-free,
Matrix Optimization Paradigm [1, 2] to HO meshes. ALE simulation of a shaped charge. Newton-like, constrained (valid Jacobians) solvers
* Application-specific with high parallel efficiency.
target elements, W'. :
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