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ABSTRACT

Texture features have long been used in remote sensing applications to represent and retrieve image regions
similar to a query region. Various representations of texture have been proposed based on the Fourier power
spectrum, spatial co-occurrence, wavelets, Gabor filters, etc. These representations vary in their computational
complexity and their suitability for representing different region types. Much of the work done thus far has
focused on panchromatic imagery at low to moderate spatial resolutions, such as images from Landsat 1-7 which
have a resolution of 15-30 m/pixel, and from SPOT 1-5 which have a resolution of 2.5-20 m/pixel. However, it
is not clear which texture representation works best for the new classes of high resolution panchromatic (60-100
cm/pixel) and multi-spectral (4 bands for red, green, blue, and near infra-red at 2.4-4 m/pixel) imagery. It is
also not clear how the different spectral bands should be combined. In this paper, we investigate the retrieval
performance of several different texture representations using multi-spectral satellite images from IKONOS. A
query-by-example framework, along with a manually chosen ground truth dataset, allows different combinations
of texture representations and spectral bands to be compared. We focus on the specific problem of retrieving
inhabited regions from images of urban and rural scenes. Preliminary results show that 1) the use of all spectral
bands improves the retrieval performance, and 2) co-occurrence, wavelet and Gabor texture features perform
comparably.

Keywords: Image texture, similarity retrieval, high resolution remote sensed imagery

1. INTRODUCTION

Remote sensed imagery continues to accumulate at increased rates due to advances in sensors, storage, and other
technologies. The full value of this data is not being realized, however, since similar progress has not been made
in providing effective management solutions for the sizable image repositories. In particular need are content-
based representations that can be extracted from the data in an automated fashion. Such representations are
significant since they can provide the annotation required to support meaningful access to the image data.

Pixel level representations of remote sensed imagery have been successfully derived using spectral informa-
tion. Such approaches are limited, however, since many land cover types appear similar through such a small
aperture. Spatial context must be incorporated, and spatial context at the pixel scale can be considered as image
texture. While there has been extensive research over the last few decades into creating quantitative texture
representations, little progress has been made in applying these representations to remote sensed imagery, es-
pecially to the new classes of high resolution panchromatic (60-100 cm/pixel) and multi-spectral (4 bands for
red, green, blue, and near infra-red at 2.4-4 m/pixel) imagery. This paper investigates the use of several popular
texture representations for this new imagery. We focus on the specific problem of retrieving inhabited regions
from IKONOS images of urban and rural scenes. A query-by-example framework, along with a manually chosen
ground truth dataset, allow different combinations of texture representations and spectral bands to be compared.

The rest of the paper is organized as follows. Section 2 describes the four texture features that are compared;
Section 3 describes the extension of the representations to multi-spectral imagery; Section 4 describes the sim-
ilarity retrieval framework used in the comparisons; Section 5 presents the experimental results; and Section 6
concludes with a discussion.
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2. TEXTURE FEATURES

This section describes the four texture features compared in this paper, namely, features based on 1) gray level
co-occurrence matrices, 2) the Fourier power spectrum, 3) wavelets, and 4) Gabor filters.

2.1. Gray Level Co-occurrence Matrices

Texture features based on the spatial co-occurrence of pixel values are probably the most widely used in the
analysis of remote sensed imagery. First proposed by Haralick1 in 1973, they characterize texture using a variety
of quantities derived from second order image statistics. Co-occurrence texture features are extracted from an
image in two steps. First, the pairwise spatial co-occurrences of pixels separated by a particular angle and/or
distance are tabulated using a gray level co-occurrence matrix (GLCM). Second, the GLCM is used to compute
a set of scalar quantities that characterize different aspects of the underlying texture. While these quantities
can be interpreted using intuitive notions of texture, their main benefit is providing a quantitative description
that can be used for image analysis, such as forming a high-dimensional feature vector to support content based
retrieval.

A GLCM is computed for an image as follows. Let f(x, y) be an Nx by Ny image whose pixels take one of L
levels, and let ~r be a specified spatial offset. A GLCM entry, GLCM~r(i, j), is then simply a count of the number
of times a pixel with value j ∈ 1, . . . , L occurs at offset ~r with respect to a pixel with value i ∈ 1, . . . , L:

GLCM~r(i, j) = #{(x1, y1), (x2, y2) ∈ (Nx, Ny)× (Nx, Ny)|f(x1, y1) = i ∧ f(x2, y2) = j (1)

∧ ~r = −−−−−−−−−−−−→
(x2 − x1, y2 − y1)} .

The offset ~r can be an angle and/or distance. Intuitively, the diagonal and near-diagonal entries of a GLCM
will be larger for images composed of patches with the same or similar pixel values, at least with respect to the
offset. The off-diagonal entries will be larger for images in which the pixel values vary locally. Particular spatial
patterns, or textures, manifest themselves differently in the distribution of entries both within and between
GLCMs computed for a variety of offsets.

The GLCM values are typically normalized to sum to one to remove dependence on the image size. Other
practical considerations include choosing the number of quantization levels L for images with large dynamic
ranges, and whether the quantization should be uniform or incorporate a transformation such as histogram
equalization. These choices are typically dataset dependent.

GLCMs are typically computed for a number of different offsets unless a priori information is available about
the underlying texture. A common choice is to compute GLCMs for a distance of one–i.e., adjacency–and four
directions, 0, 45, 90, and 135 degrees.

While GLCMs provide a quantitative description of a spatial pattern, they are too unwieldy for practical
image analysis. Haralick thus proposed a set of scalar quantities for summarizing the information contained in a
GLCM. He originally proposed a total of 14 quantities, or features; however, typically only a subset of these are
used. The following five GLCM derived features are now described: angular second moment (ASM), contrast,
inverse different moment (IDM), entropy, and correlation. The ASM is computed as

ASM =

L
∑

i=1

L
∑

j=1

(GLCM (i, j))
2
. (2)

It will have a larger value when the co-occurrence frequencies g(i, j) are concentrated in a few places in the
GLCM. This often occurs along the diagonal for a constant image or off diagonal for structured images. A near
random or noisy image will have an evenly distributed GLCM with a low ASM. The contrast is computed as

CON =

L−1
∑

n=0

n2







∑

|i−j|=n

GLCM (i, j)







. (3)



The contrast is larger for a GLCM with larger off-diagonal values. Thus, contrast is larger for images with
quickly varying intensities which agrees with the intuitive notion of contrast. The IDM is computed as

IDM =

L
∑

i=1

L
∑

j=1

GLCM (i, j)

1 + (i− j)
2 . (4)

The IDM will be larger for a GLCM with large diagonal values. Thus, the IDM will be large for images with
constant or near-constant patches. The entropy is computed as

ENT = −
L
∑

i=1

L
∑

j=1

GLCM (i, j) logGLCM (i, j) . (5)

The entropy is larger for an image with an evenly distributed GLCM. Thus, a near random or noisy image will
have a larger entropy. Finally, the correlation is computed as

COR =

L
∑

i=1

L
∑

j=1

(ij)GLCM(i, j)− µi′µj′

σi′σj′
, (6)

where

µi′ =

L
∑

i=1

L
∑

j=1

iGLCM(i, j) , (7)

µj′ =

L
∑

i=1

L
∑

j=1

jGLCM(i, j) , (8)

σ2
i′ =

L
∑

i=1

L
∑

j=1

GLCM(i, j)(i− µi′)
2
, and (9)

σ2
j′ =

L
∑

i=1

L
∑

j=1

GLCM(i, j)(j − µj′)
2
. (10)

A texture feature vector for an image can be formed from the scalar features derived from GLCMs computed
for different offsets. For example, a feature vector composed of the above five features computed at four offsets
could be formed as

hGLCM = [ASM1,CON1, IDM1,ENT1,CORR1, . . . ,ASM4,CON4, IDM4,ENT4,CORR4] . (11)

2.2. Power Spectrum

Texture is often thought of as being related to periodic image patterns. Since Fourier analysis provides a
mathematical framework for the frequency based analysis of images, the Fourier power spectrum has been
proposed for characterizing texture in remote sensed imagery. The two dimensional Fourier transform of a
continuous image f(x, y) is defined as



F (u, v) =

∞
∫

−∞

∞
∫

−∞

f (x, y) e−2πi(ux+vy)dxdy , (12)

where i =
√
−1. The Fourier power spectrum is |F |2 = FF ∗, where ∗ denotes the complex conjugate.

The radial distribution of values in |F |2 are related to the coarseness of the texture in f . A coarse texture
will have high values of |F |2 concentrated near the origin, while a fine texture will have values of |F |2 that are
more spread out. Therefore, a useful way to characterize the coarseness of a texture is to take the average of
|F |2 over ring-shaped regions centered at the origin

φr =

2π
∫

0

|F (r, θ)|2 dθ (13)

for various values of r, the radius of the ring. F (r, θ) is the polar form of the Fourier transform. Similarly, the
angular distribution of the values of |F |2 are related to the direction of the texture in f . A texture with features
at a given direction θ will have high values of |F |2 concentrated around the perpendicular direction θ + (π/2),
while a non-directional texture will have a |F |2 that is also non-directional. A useful way to characterize the
orientation of a texture is to take the average of |F |2 over wedge-shaped regions centered at the origin

φθ =

∞
∫

0

|F (r, θ)|2 dr (14)

for various values of θ, the angle of the wedge.

The discrete Fourier transform (DFT) is used instead of the continuous Fourier transform for digital images.
The DFT of an Nx by Ny pixel digital image f(x, y) is

F (u, v) =
1

NxNy

Nx−1
∑

x=0

Ny−1
∑

y=0

f (x, y) e
−2πi

(

ux
Nx

+ vy

Ny

)

. (15)

F is also discrete and the same size as f . The ring-shaped averages are now computed as

φr1r2 =
∑

r2
1
≤u2+v2<r2

2

0≤u≤Nx−1
0≤v≤Ny−1

|F (u, v)|2 (16)

for various values of the inner and outer ring radii r1 and r2. Similarly, the wedge-shaped averages are computed
as

φθ1θ2 =
∑

θ1≤tan−1(v/u)<θ2
0≤u≤Nx−1
0≤v≤Ny−1

|F (u, v)|2 (17)

for various values of the two angles θ1 and θ2 that delimit the wedge.

The averages of the Fourier power spectrum over the ring and wedge shaped regions, φr1r2 and φθ1θ2 , can
be used as features characterizing the scale or the orientation of a texture, but not both. Scale and orientation
sensitive features can be computed by averaging the Fourier power spectrum over intersections of ring and wedge
shaped regions.
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Figure 1. Three level decomposition using the discrete wavelet transform.

A convenient way to approximate the intersections of the wedge and ring shaped regions is to divide the
frequency space into a grid of tiles. The averages of the Fourier power spectrum computed over these tiles can
then be used as the texture features. If the u and v dimensions are divided into Tu and Tv tiles respectively
(assume Nx and Ny are divisible by Tu and Tv respectively) then the power spectrum texture features can be
computed as

PS(i, j) =
NxNy

TuTv

(i+1) Nx
Tu
−1

∑

u=iNx
Tu

(j+1)
Ny

Tv
−1

∑

v=j
Ny

Tv

|F (u, v)|2 . (18)

We supplement these tile averages with four additional quantities computed over the entire frequency space.
These are the maximum (MAX), the average (AVG), the energy (ENG), and the variance (VAR) of the magnitude
of F (u, v) (see Augusteijn et al.2 for more details). The final power spectrum texture feature vector is then formed
as

hPSD = [PS(0, 0), . . . ,PS(I, J),MAX,AVE,ENG,VAR] , (19)

where I = Nx/Tu and J = Ny/Tv.

A major limitation of using texture features based on the Fourier power spectrum is that the Fourier transform
is only localized in the frequency domain. It only contains global information about the image in the spatial
domain. This constraint has resulted in techniques that provide localization in both space and frequency to
be favored over Fourier transform based approaches. Examples of such techniques include those based on the
wavelet and Gabor transforms, which are described in the following sections.

2.3. Wavelets

Wavelets are not a single image analysis technique but rather a framework for a variety of related techniques.
The common appeal of the techniques is that they allow analysis that is localized in both space and frequency.
This is accomplished by decomposing an image using bases of small waves, or wavelets, that have compact,
sometimes finite, spatial support. Wavelets are used to characterize texture for the same reason as Fourier based
techniques–they provide information about the frequency content of an image which is often associated with
texture. However, wavelets, unlike Fourier based approaches, are also localized in space.3 This makes them
more suitable for analyzing texture in non-stationary or non-homogeneous images, such as in remote sensing
applications. Wavelets accomplish this not by violating signal processing’s analog of the Heisenberg uncertainty
principle, that analysis cannot be simultaneously localized in space and frequency, but through a multi-resolution
analysis (MRA)4 that successively trades-off spatial for frequency resolution.5

We use the separable discrete wavelet transform (DWT) in an MRA framework to compute the wavelet
texture features, as shown in Fig. 1. The DWT applies the Daubechies-4 wavelet to decompose the image into
low-low (LL), low-high (LH), high-low (HL), and high-high (HH) components. The MRA framework successively
reapplies the DWT to the decimated LL band, resulting in a three level decomposition. The energies and standard
deviations of the four components at three resolutions form the texture feature vector:



hWAVELET = [energy(LL1), stdev(LL1), energy(LH1), stdev(LH1), . . . , energy(HH3), stdev(HH3)] . (20)

Other authors have found that there is very little variation in retrieval performance between texture features
derived using different wavelets.6

2.4. Gabor Filters

Texture analysis using filters based on Gabor functions falls into the category of frequency-based approaches.
These approaches are based on the premise that texture is an image pattern containing a repetitive structure
that can be effectively characterized in a frequency domain, such as the Fourier domain. One of the challenges,
however, of such an approach is dealing with the tradeoff between the joint uncertainty in the space and frequency
domains. Meaningful frequency based analysis cannot be localized without bound. An attractive mathematical
property of Gabor functions is that they minimize the joint uncertainty in space and frequency.7 They achieve
the optimal tradeoff between localizing the analysis in the spatial and frequency domains.

Using Gabor filters to analyze texture appeals from a psycho-visual perspective as well. In particular, re-
searchers have found that Gabor functions can be used to model the receptive fields of simple cells in the
mammalian visual cortex.8 Such a finding suggests that Gabor-like filtering takes place early on in the early
human visual system.

The texture analysis is accomplished by applying a bank of scale and orientation selective Gabor filters to
an image. These filters are constructed as follows.9 A two-dimensional Gabor function g(x, y) and its Fourier
transform G(u, v) can be written as:

g(x, y) =

(

1

2πσxσy

)

exp

[

−1
2

(

x2

σ2
x

+
y2

σ2
y

)

+ 2πiWx

]

(21)

and

G(u, v) = exp

{

−1
2

[

(u−W )2

σ2
u

+
v2

σ2
v

]}

(22)

where i =
√
−1, σu = 1/2πσx and σv = 1/2πσy control the tradeoff between spatial and frequency resolution,

and W controls the modulation. A class of self-similar functions referred to as Gabor wavelets is now considered.
Let g(x, y) be the mother wavelet. A filter dictionary can be obtained by appropriate dilations and translations
of g(x, y) through the generating function:

grs (x, y) = a−sg (x′, y′) , a > 1, s ∈ 0, . . . , S − 1, r ∈ 1, . . . R
x′ = a−s (x cos θ + y sin θ) and (23)

y′ = a−s (−x sin θ + y cos θ)

where θ = (r − 1)π/R. The indices r and s indicate the orientation and scale of the filter respectively. R is the
total number of orientations and S is the total number of scales in the filter bank. The scale factor a−s in Eq. 23
is meant to ensure that the energy is independent of s.

While the size of the filter bank is application dependent, experimentation has shown that a bank of filters
tuned to combinations of five scales, at octave intervals, and six orientations, at 30-degree intervals, is sufficient
for the analysis of remote sensed imagery. Fig. 2 displays the real components of a bank of Gabor filters tuned
to combinations of three scales and five orientations. See Manjunath and Ma9 for more details on the filter bank
construction, including how the various parameters, such as σu, σv, a, and W , are derived.



Figure 2. A bank of Gabor filters tuned to combinations of three scales and five orientations.

A Gabor texture feature vector is formed from the filter outputs as follows.91011 Applying a bank of Gabor
filters with R orientations and S scales to an image results in a total of RxS filtered images:

f ′11 (x, y) , . . . , f
′
RS (x, y) . (24)

The feature vector is formed by computing the first and second moments of the filtered images. That is, an 2RS
dimension feature vector, hGABOR, is formed as

hGABOR = [µ11, σ11, µ12, σ12, . . . , µ1S , σ1S , . . . , µRS , σRS ] , (25)

where µrs and σrs are the mean and standard deviation, respectively, of f
′
rs (x, y).

A homogeneous texture descriptor based on Gabor filters was recently standardized by the MPEG-7 Multi-
media Content Description Interface12 with the minor modification that the mean and standard deviation of the
filter outputs are computed in the frequency domain for efficiency.

3. MULTI-SPECTRAL TEXTURE

Texture features, such as those described above, are typically applied to panchromatic images. We consider
two approaches to extending the texture features to multi-spectral images. In the first approach, we simply
append the texture vectors extracted from each of the bands to form a multi-spectral texture feature vector.
The advantage of this approach is its simplicity. The disadvantage is the increased size of the feature vector.
Furthermore, since there is often significant redundancy between spectral bands, it is likely that the texture
feature vectors from different bands are highly correlated. Some ideas of how to address this are presented as
future research directions in the conclusion.

The second approach to extending the feature vectors to multi-spectral images is to combine the bands in some
appropriate manner and then compute single band texture features. In particular, we compute the normalized
difference vegetation index (NDVI) image. Let fRED(x, y) and fNIR(x, y) be the red and near infra-red (NIR)
channels of a multi-spectral image respectively. The NDVI image fNDV I(x, y) is then computed as

fNDV I(x, y) =
fNIR(x, y)− fRED(x, y)

fNIR(x, y) + fRED(x, y)
. (26)

NDVI is a common spectral combination used to determine the amount of green vegetation present at a pixel
location since green vegetation reflects the NIR band but absorbs the visible bands. We chose it here to observe
how combining the spectral bands to emphasize specific land cover types, here green vegetation, can affect the
retrieval performance of the texture features.



4. SIMILARITY RETRIEVAL

Content-based similarity retrieval is a simple yet powerful paradigm for determining the efficacy of perceptual
image features, like the texture features described above. The underlying premise is that closeness in the feature
space corresponds to perceptual similarity. This allows the similarity between two images to be quantitatively
assessed by computing the distance between their feature vectors in the feature space using standard distance
functions such as Minkowski norms.

Let T be a collection of M images; let hm be the d dimension feature vector extracted from image m, where
m ∈ 1, . . . ,M ; let dist(·, ·) be a distance function defined on the d dimensional space; and let hquery be the
feature vector corresponding to a given query image. Then, the image in T most similar to the query image is
the one whose feature vector minimizes the distance to the query’s feature vector:

m∗ = argmin
1≤m≤M

dist(hquery, hm) . (27)

Likewise, the k most similar images are those that result in the k smallest distances when compared to the query
image. Retrieving the k most similar items is commonly referred to as a k-nearest neighbor query.

Typically, the similarity between images is computed using the L1 or L2 (Euclidean) distance measures. The
L1 distance between the d dimensional feature vectors h1 and h2 is computed as

distL1(h
1, h2) =

d
∑

i=1

|h1
i − h2

i | . (28)

5. EXPERIMENTS AND RESULTS

This section describes the experiments performed to compare the texture features described in Section 2. In
particular, we consider the problem of identifying inhabited regions in a set of IKONOS satellite images. We
divide each image into a set of tiles, and manually identify each tile as being inhabited or not inhabited. This
binary labelling provides a ground truth which can be used to evaluate the effectiveness of the different texture
features and spectral bands in retrieving inhabited regions.

5.1. The Dataset

The dataset consists of five images from two geographic regions, California and Nebraska. The images measure
384-by-384 pixels and consist of four spectral bands, near infra-red (NIR), red, green, and blue, with a spatial
resolution of four meters. Two single band versions of each image are created, an NDVI image as described in
Section 3, and a panchromatic image. The panchromatic image is formed from the luminance component of the
YCrCb (luminance-chrominance) transformed red, green, and blue bands.

Each 384-by-384 pixel image is partitioned into 36 non-overlapping tiles, each of size 64-by-64 pixels. The
total dataset thus consists of 180 tiles. Each tile is manually labelled as being inhabited or not inhabited.
Inhabited is here taken to mean a tile with residential buildings. Mixed tiles are labelled based on their majority
coverage. An image and its corresponding inhabited tiles are shown in Figs. 3(a) and 3(b). A total of 62 of the
180 tiles are labelled as inhabited.

Each of four texture features–GLCM, power spectrum (PS), wavelet, and Gabor–is extracted from each of
the three spectral versions of the dataset tiles–all (NIR, red, green, blue), panchromatic, and NDVI. Table 1
lists the length of each of the texture feature vectors for the four and single band tiles. This table also shows
how long it takes to extract the texture features for all 180 of the four band tiles. These times are meant for
comparison only and do not represent an optimized extraction procedure. The feature extraction is performed
on a Dell PowerEdge 650 Desktop with an Intel Pentium IV processor (2.66 GHz) and 512 MB of memory.



(a) image (b) ground truth

Figure 3. One of the IKONOS images and the corresponding ground truth (Original satellite images by Space Imaging).

Gabor GLCM wavelet PS

Feature vector length (single band) 60 20 24 20

Feature vector length (all bands) 240 80 96 80

Feature extraction time (seconds) 168 9 11 9

Table 1. Feature vector lengths and extraction times for different texture descriptors.

5.2. Retrieval Results

The texture features are evaluated based on the retrieval rates of similarity searches using the ground truth
dataset. Each inhabited tile in the ground truth dataset is used to perform k-nearest neighbor queries for k
from 1 to 180. The L1 distance is used to compute similarity. Two quantities are calculated for each query: the
true-positive ratio which is the proportion of the inhabited tiles that are in the result set, and the false-positive
ratio which is the proportion of the not-inhabited tiles that are in the result set. These values are averaged over
the 62 inhabited tile queries, and used to plot receiver operating characteristic (ROC) curves. ROC curves are
related to precision/recall curves.

Fig. 4(a) shows the ROC curves for texture descriptors extracted from all four spectral bands. Figs. 4(b) and
4(c) similarly show the ROC curves for the panchromatic and NDVI cases. The Gabor, GLCM, and wavelet
features perform comparably in the four band and panchromatic cases, and outperform the PS features. In the
NDVI case, the GLCM features are shown to perform the best.

Fig. 5(a) shows the ROC curves for the Gabor features extracted using the four band, panchromatic, and
NDVI images. Figs. 5(b), 5(c), and 5(d) similarly show the ROC curves for the GLCM, wavelet, and PS features.
In each case, the features extracted using all four spectral bands are shown to perform the best, except for a
small section of the PS ROC curves corresponding to high true/false-positive ratios.

The area under an ROC curve provides a single quantity with which to evaluate retrieval performance. Table 2
lists the areas under the ROC curves for different texture feature and spectral band combinations. A higher
value indicates better retrieval performance. The GLCM features applied to all four spectral bands is shown to
be the best combination.



6. DISCUSSION

This work represents a preliminary investigation, using only a few images, and so the following observations must
also be treated as preliminary. The results of the limited experiments indicate that:

• The GLCM, wavelet, and Gabor texture features perform comparably, and outperform the PS features, in
retrieving the inhabited regions from the sample dataset.

• The performance of the GLCM features is noteworthy considering their relative simplicity, low extraction
cost, and compact feature vector.

• Using all the spectral bands improves the performance but results in significantly larger feature vectors.
• Applying the texture features to a poorly chosen transformation of the spectral bands can reduce the
performance. This was observed for using NDVI to retrieve inhabited regions.

Future work includes extending the investigation to consider land cover classes other than just inhabited/not-
inhabited, and to include images from other geographic regions. We would also like to see if using more than
five of Haralick’s fourteen GLCM features can further improve the retrieval performance.

Since using all the spectral bands does appear to improve the retrieval performance, we would also like to
investigate ways for dealing with the larger feature vectors. Specifically, we would like to see if dimensionality
reduction techniques can be used to make the multi-spectral texture feature vectors more compact without
significantly reducing their retrieval performance.
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Figure 4. ROC curves comparing different texture descriptors.

All pan NDVI

Gabor 0.8100 0.7823 0.5942

GLCM 0.8202 0.7532 0.7509

wavelet 0.7898 0.7615 0.5581

PS 0.7155 0.6838 0.5640

Table 2. Area under ROC curves for different combinations of texture features and spectral bands. A higher value
indicates better retrieval performance.
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Figure 5. ROC curves comparing different spectral combinations.
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