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1 Introduction

Code validation, or comparing the output of computer simulations to experiments, is necessary to
determine which simulation is a better approximation to an experiment. It can also be used to determine
how the input parameters in a simulation can be modified to yield output that is closer to the experiment.
In this report, we discuss our experiences in the use of image processing techniques for extracting

features from 2-D simulations and experiments. These features can be used in comparing the output of
simulations to experiments, or to other simulations. We first describe the problem domain and the data.
We next explain the need for cleaning or denoising the experimental data and discuss the performance of
different techniques. Finally, we discuss the features of interest and describe how they can be extracted
from the data.
The focus in this report is on extracting features from experimental and simulation data for the

purpose of code validation; the actual interpretation of these features and their use in code validation
is left to the domain experts.

2 Problem Description

We conducted our study in the use of image processing for code validation using a fluid mix problem.
We consider the case of Richtmyer-Meshkov instability which results when an impulsive acceleration
is applied to the interface separating two fluids of different densities, for example, as a result of a
shock wave striking the interface perpendicularly. Such instabilities arise in diverse situations such as
supernovas, oceans, and supersonic combustion, and are therefore the subject of much research.
The experimental data used in this study were obtained from Jeff Jacobs at the Experimental Fluid

Dynamics and Instability Laboratory, Department of Aerospace and Mechanical Engineering, at the
University of Arizona. They were generated using a shock-tube containing a column of acetone/air
mixture on the top and a column of sulphur hexachloride mixture at the bottom, as described in [1].
The data discussed in this report are the re-shock experiments obtained when the original shock wave
at Mach 1.3 is reflected off the lower wall of the shock tube. The images from the experiment are given
in Fig. (1), which shows the mixing of the two fluids at various time steps.
The simulation data used in this study were obtained from the Raptor code, which is a multi-material

Eulerian adaptive mesh refinement code by Jeff Greenough, from AX Division at LLNL. Fig. (2) shows
the images from the simulation as it evolves over time. Some of the images have been cropped at the
top and bottom as they are larger than other images (see Table 1). The filenames of the experimental
and simulation data, as well as the sizes of the images is given in Table 1.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1: The experimental images.
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Figure 2: The simulation images.
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File name image size File name image size
(experiment) (simulation)

T1 12 469 × 469 1325 1280 × 1536
T2 27 461 × 461 1335 1280 × 1280
T3 17 464 × 463 1345 1280 × 1536
T4 18 462 × 462 1350 1280 × 1344
T5 19 467 × 467 1360 1280 × 1728
T6 20 467 × 467 1365 1280 × 1664
T7 21 465 × 465 1380 1280 × 2176
T8 22 467 × 467 1395 1280 × 1984
T9 23 468 × 468 1405 1280 × 2048
T10 24 468 × 468 1420 1280 × 1408
T11 25 468 × 468 1435 1280 × 1472
T12 26 469 × 469 1450 1280 × 1536

Table 1: Image sizes for the experimental and simulation data. Note the variation in the size of the
simulation data.

The goal of this study is to extract features from the experimental and simulation data that will
enable us to compare the two. To accomplish this, we chose two different approaches, one for the
early time steps, where the mushroom-shaped “objects” can be clearly identified in the images, and the
second approach for the later time steps, where the fluid mixing is at an advanced stage and no clear
objects can be identified in the images.
For the early time steps, we can characterize the mushroom using features such as the height of the

mushroom, the width of the cap, the height of the cap, and the width of the stem, as shown in Fig.
(3). However, we note that the experimental images are noisy, with structured noise in the form of
vertical lines. If these vertical “noise edges” are weaker than the edges of interest in the mushroom, it
is possible to use a simple edge detector with a suitable threshold to separate the mushroom from the
background, Fig. (4a). However, when the noise edges are of the same strength as the mushroom edges,
the edge detector also picks up the lines, making feature extraction from the edge image difficult, Fig.
(4b). Hence, our first step was to denoise the experimental images.

3 Denoising experimental images

General image denoising techniques have been well explored for many years. Most of these techniques,
however, are designed to remove random noise such as Gaussian noise or salt and pepper noise and are
therefore less effective when the noise does not appear randomly in either pixel value or location. The
noise in the experimental images, being structured, does not lend itself to the more traditional denoising
techniques. Consider for example, one of the experimental images, Figure (5a). To remove the vertical
noise lines, we first applied two horizontal median filters of two different sizes to this image. Figure (5b)
shows the resulting image using median filter of size 1x5. Note that the lines are still visible. Using a
filter size of 1x10, the lines are removed; however, other details of the image are also removed as shown
in Figure (5c). For this image, the small-size median filter is ineffective for removing the lines since the
width of these lines is too large for a small-size filter to find the right median pixel value. On the other
hand, when a large-size median filter is used, the resulting image is blurred significantly. Similarly,
using a Wiener filter with large enough size, e.g. 1x10, results in a blurred image as shown in Figure
(5d).
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Figure 3: The features used to represent the mushroom include (A): the height of the mushroom, (B):
the width of the cap, (C): the width of the stem, and (D): the height of the cap.

(a) (b)

Figure 4: The need for denoising experimental images: The vertical noise lines in the experimental
images can be removed by suitable thresholding in the edge detector if they are weak (Panel (a)). But,
if the edges of the noise lines are the same strength as the edges of the mushroom, a simple setting
of the threshold in the edge detector cannot remove these lines (Panel (b)). Edges in the images are
obtained using the Canny edge detector, and superposed in red on the original image.
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(a) (b)

(c) (d)

Figure 5: Application of traditional denoising techniques. (a) The original experimental image with
structured noise as black and white lines. Images resulting from the application of (b) median filter of
size one pixel down and five pixel across (1x5); (c) median filter of size one pixel down and ten pixels
across (1x10); (d) Wiener filter of size 1x10.
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3.1 Technical Approach for Denoising

We next describe an approach which removes structured noise in the form of lines in an image by
exploiting the characteristics of a line to reduce the blurring side effect. As discussed previously, tradi-
tional denoising techniques fail to remove the lines in the original image. These lines have substantial
width, and are structured enough to be considered as features rather than noise by most of the denoising
algorithms. To remove these lines properly, an algorithm should be able to differentiate between the
unwanted lines and the rest of the image.
To accomplish this, we use a two-step approach: In the first step, we segment the image to identify

the regions occupied by the unwanted lines. We use an edge detector to find the edges in the image,
followed by a bounding ratio test (which will be discussed shortly) to differentiate between the unwanted
lines and other features in the image. In the second step, we apply appropriate techniques to remove
these lines locally. We focus only on the segmented regions found in the first step and thus avoid the
adverse affect of smoothing the entire image.
To implement this approach, we first need to select a segmentation algorithm that can detect lines

of different widths and intensities. In our proposed approach, we use the Canny edge detector for
extracting the edges and additional heuristic methods for capturing the width of the unwanted lines.
Next, we need to select the line removal algorithm, which determines how to fill the line regions with
the appropriate pixel values such that the resulting image appears as natural as possible. In this case,
a median filter with an appropriate width proved to be an effective method.

3.2 Algorithm

We next present the details of the algorithm, along with an explanation for each step. We show how
the original image with the unwanted vertical lines representing the noise, Figure (6a), is modified after
the application of each step in our approach.

A: Segmentation steps

• Step 1 - Enhance the image using the following sharpening filter:

-0.6667 -1.6667 -0.6667
-1.6667 +4.3333 -0.6667
-0.6667 -1.6667 -0.6667

to produce the sharp image. The sharpening filter enhances the image so that the edge detector
can differentiate the edges more effectively. Further, it can enhance the contrast, resulting in an
image that is visually better as shown in Figure (6b).

• Step 2 - Apply the Canny edge detector with the lower and upper thresholds of 0.001 and 0.015,
respectively, to the sharp image to produce a binary mask. These are the two thresholds used
by the Matlab implementation of the Canny edge detector to implement hysteresis thresholding.
This step locates all the edge pixels in the image, as shown in Figure (6c).

• Step 3 - Segment the binary image into multiple objects. We use 8-connectivity of the edge pixels,
that is, two pixels are considered to belong to the same object if they are adjacent to each other
either horizontally, vertically, or diagonally. These objects include both the unwanted lines and
other features in the image as shown in Figure (6d).

• Step 4 - Differentiate between unwanted line objects and other objects in the image. This is done
by considering the dimensions of the bounding box of each object. An object whose bounding box
ratio of width/height is less than 0.1 is considered as a line. Since all the lines in the experimental
images are almost vertical, we expect the bounding box ratio to be small for the lines, but not
the other objects in the edge image. The threshold value of 0.1 is chosen heuristically based on
the experimental images. Next, a binary object mask is created with its pixel values set to 1 if the
pixel belongs to any line object and zero otherwise. This results in the image in Figure (6e).
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• Step 5 - Fill the region between the thin lines that are close to each other to create lines with
width greater than 1. Thus, if two lines are spatially close to each other, e.g. 4 pixels apart, then
the algorithm fills in all the pixels between the two thin lines with value 1. After this step, the
binary object mask should appear to have thick lines represented by pixel value equal to 1. This
merging step is done to account for the fact that the noise lines have a width greater than a single
pixel. Applying the Canny edge detector to a thick line in the original image results in two thin
lines representing the two edges of the original thick line. Since all the pixels between these thin
lines are considered part of the unwanted thick line, we want to merge these two thin lines back
into one thick line. Figure (6f) shows the resulting image after line merging.

The goal of steps 1 through 5 is to create an object mask containing the unwanted lines to be re-
moved. In steps 6 to 9, we describe how we can remove these lines using the object mask so that the
resulting image appears as natural as possible.

B: Line removal steps

• Step 6 - Create a smoothing mask for subsequent boundary smoothing. In the smoothing mask,
the values of pixels around the borders of the lines in the object mask are set to 2, the values of
pixels belong to the lines are set to 1, and the values of other pixels are set to zero. This smoothing

mask will be used in step 9.

• Step 7 - Apply a median filter of size 5x15 to the original image to remove all the lines and to
produce the median image. As mentioned earlier, this smooths the lines, but also blurs the rest
of the image. Figure (6g) shows the resulting image.

• Step 8 - Use the smoothing mask to remove the lines in the sharp image resulting in the output

image. The rules for setting pixel values in the output image are as follows: If the value in the
smoothing mask is 1, set the output image pixel to the value from the median image; if it is 0
or 2, set it to the value from the sharp image. This step ensures that only pixels within the
unwanted lines are affected by the median filter. Hence the output image preserves the other
features. Figure (6h). shows the image that results from this step. Since this step fills the pixel
values of the output image from either the median or sharp images, discontinuities may arise at
the borders of the lines. This problem is alleviated in step 9.

• Step 9 - Apply an average filter of size 5x5 at those pixels whose value in the smoothing mask is
2. Recall that the values of the pixels around the line borders are set to 2 in step 7. This step
smooths out the discontinuities that may arise at the borders of the lines after step 8. This results
in the image shown in Figure (6i).

3.3 Improvements to the denoised image

In Figure (6i), the lines inside the spiral regions are still visible as the Canny edge detector cannot
capture these lines. To remove these lines, we extend the lines in Figure (6e), through the spirals as
seen in Figure (7a). This is done by calculating the slope of the line using the two extreme points on
it and extending it downward. We then thicken the lines as in step 5 of the algorithm to produce an
extended line mask containing the extended lines. Using this mask, we now apply a median filter of size
1x4 to the image pixels belonging to the mask, resulting in the small median image. The reason for
using a small size median filter is to avoid destroying the small features in the spiral regions. The pixels
in the new output image are then set to equal to the corresponding pixels in the small median image if
they belong to the extended line mask only. Otherwise, they are set to the values of output image from
the above algorithm. Figure (7b) shows the final image with the lines inside the spiral regions removed.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: (a) Original image. (b) Sharp image. (c) Output of the Canny edge detector. (d) grouping
the edges into objects as indicated by the different colors. (e) Mask of thin lines. (f) Mask of thick lines
after merging. (g) Median image resulting from applying the median filter of 5x15. (h)Output image
without border smoothing. (i) Output image with border smoothing.
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(a) (b)

Figure 7: Improvements to the denoising: (a) Mask with extended lines. (b) Final output image with
the lines inside the spiral regions removed

4 Feature extraction from denoised experiments and simula-

tions

In this section, we describe the approach used to extract features from the experimental and simulation
data. As we mentioned before, the features extracted from the earlier time steps, when the objects in
the data are still clearly identifiable, are different from those in the later time steps, when the fluid
mixing is in a more advanced stage.

4.1 Feature extraction: early time steps

In Section 2, we described the features that can be used to characterize the mushroom-shaped objects
in the images from the early time steps. Using an edge image, for example, in Figure (8), we can
extract these features of interest by first identifying key points in the image as follows. We exploit the
fact that if we count the number of edge pixels in each column of the image (hereafter abbreviated as
NEPC), starting from the left edge and moving to the right, the changes in this number can be used to
determine the points of interest.

• Point A: This can be used to obtain the height of the mushroom. It can be calculated as the
point where the NEPC is 1 and the y-location of the edge pixel is minimum. Starting from the
left edge, we first find the x-location where the NEPC is 1. Then, we keep track of the y-location
of the edge pixel and identify the point where it reaches a minimum, before increasing again.

• Point B: This can be used to determine the width of the mushroom cap. When we move from
point A to the right in the image, point B can be considered to be where the NEPC increases
from 1 to a number greater than 1.

• Point C: This can be used to determine the width of the stem of the mushroom. Having identified
point B, as we continue to move to the right in the image, point C can be considered to be the X
location where the NEPC decreases from a number greater than 1 to 1.

• Point C’: This, along with C, can be used to determine the width of the stem of the mushroom.
Having identified point C, as we continue to move to the right in the image, point C’ can be
considered to be where the NEPC increases from 1 to a number greater than 1. Note that the
y-location of this point may not necessarily be the same as the y-location of point C. Also, the
width of the stem is defined as the shortest distance between lines tangential to the edge pixels
in the stem.
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Figure 8: The points on the edge image that can be used to extract the features in Figure (3).

• Point B’: This, along with B, can be used to determine the width of the mushroom cap. Having
identified point C, as we continue to move to the right in the image, point C’ can be considered
to be where the NEPC decreases from a number greater than 1 to 1.

• Point D: this gives the height of the mushroom and is defined as the highest y-location of an edge
pixel as we move to the right from B to B’.

• Points E and E’: Point E (E’) is considered to be the lowest point on the left (right) side of the
mushroom cap. It can be calculated in a manner similar to the calculation of B, except that we
now consider the number of edge pixels in a row segment of the image that stretches from the
x-location of B (B’) to the x-location of D. As this row-segment moves down, the point of interest
is the y-location where the number of edge pixels reduces from a number greater than 1 to 1.

Figures (13) through (16) show four panels each with the original image, the cleaned image using
the approach described in Section 3, the edge image, and the edge image superposed on the cleaned
image. The edge image was obtained using the Canny edge detector and the same set of parameters
was used on all four images.
The features extracted from the edge image for these four experimental images are given in Table

2, and the features for the mushroom are given in Table 3.
A similar approach to calculating the mushroom features can be used for the images from the

simulation. However, since the simulation data captures the effects of the reshock better, especially in
the region of the darker fluid, many more strong edges are obtained in the edge image. As a result, the
calculation of the interest points has to be modified. For example, the calculation of B, B’, C, and C’
cannot be done by considering the points where the number of edge pixels in a column transitions to or
from 1; instead we need to consider a larger number. This can be set either through experimentation or
by including additional tests to confirm that the correct point has been identified. Also, the calculation
of D as the highest point on the mushroom has to be done with care as the edges due to the reshock
could be higher than the top of the mushroom.
Figures (17) and (18) show three panels each with the simulation image, the edge image, and the

edge image superposed on the simulation. The edge image was obtained using the Canny edge detector
and the same set of parameters was used on all four images. The features extracted from the edge
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Data set Bx B
′

x Cx C
′

x Dy Ay Ey E
′

y

Experiment 1 233 408 306 339 384 115 264 265
Experiment 2 231 412 309 338 376 115 252 253
Experiment 3 233 409 309 325 330 147 221 215
Experiment 4 238 409 313 333 309 168 232 229

Table 2: X or Y locations of the interest points on the mushroom corresponding to Figure (8) for the
experimental images.

Data set Height Width of Width of Height of Height of
cap stem cap(L) cap (R)

Experiment 1 270 176 34 121 120
Experiment 2 262 182 30 124 124
Experiment 3 184 177 17 110 116
Experiment 4 142 172 21 78 81

Table 3: Mushroom features (in pixels) for the four experimental images.

Data set Bx B
′

x Cx C
′

x Dy Ay Ey E
′

y

Simulation 1 182 664 381 470 1171 448 845 873
Simulation 2 179 667 381 470 938 328 609 633
Simulation 3 183 667 402 448 1090 636 829 841
Simulation 4 175 673 403 446 983 596 762 777

Table 4: X or Y locations of the interest points on the mushroom corresponding to Figure (8) for the
simulation images.

Data set Height Width of Width of Height of Height of
cap stem cap (L) cap (R)

Simulation 1 724 483 90 327 299
Simulation 2 610 489 90 330 305
Simulation 3 455 485 47 262 250
Simulation 4 388 499 43 222 206

Table 5: Mushroom features (in pixels) for the four simulation images.

images for these four simulation images are given in Table 4, and the features for the mushroom are
given in Table 5.
Note that a direct comparison of the values in Tables (3) and (5) is not possible as the pixels sizes

are not the same between the experiments and the simulations. A possible option would be to consider
ratios of quantities, or, if the pixels sizes are known for both the experimental and the simulation data,
use them to calculate the mushroom features exactly.

4.2 Feature extraction: later time steps

At the later time steps, when the mushroom-shape is no longer clearly identifiable, we need to consider
alternate features to represent each image. Figure 19 shows the cleaned versions of the experimental
images at the later time steps. A feature that can be used to compare the later time steps is the
probability distribution histogram of the image. However, given the large light and dark regions at the
top and bottom of the images, using the PDF of the entire image may be misleading. A partial solution
to this is to use the PDF of the mixing layer.
In our work, we consider two definitions of the mixing layer. First, for each y, we consider the

12



average of values along the x direction. For low values of y (i.e. the bottom of the image), this average
will be nearly 0 (i.e. all black), while for the very high values of y at the top of the image, this average
will be nearly 255 (i.e. white, assuming 8-bit data). Panels (a) in Figures 20 through 35 show the plot
of the x-average for the experimental and simulation images at the later time steps. We then use a 5%
and 95% threshold on this plot to obtain the height of the mixing layer, as shown highlighted in panels
(c) of the Figures. Panels (e) are the 64-bin PDFs of the mixing layer.
The second definition considers the variance along the x-direction, as shown in panels (b) of the

figures. By thresholding on both the value of the variance (as a percentage of the difference between
the maximum and minimum variance), and the gradient of the variance (calculated using central differ-
encing), we obtain the mixing region as indicated in panels (d) of the figures. Panels (f) are the 64-bin
PDFs of the mixing layer.
The same threshold values are used for both the experimental and the simulation data. The sim-

ulation data values are scale-quantized to lie between 0 and 255 before the calculation of the average
or variance. Note that some of the experimental images have a wide black border (pixel intensity = 0)
at the bottom, which appears to have been added to make the image square. This leads to a jump in
the intensity as the darker fluid has intensity of around 20, resulting in an inaccurate delineation of the
mixing layer when it is calculated using the average.
Once the mixing region has been identified for both the experiments and the simulations, the data

values in the region are scale-quantized to lie between 0 and 255 before the PDF is obtained. Using
a 64-bin PDF, the distributions of the mixing regions in the cleaned experimental images are given in
Figures 9 and 10, where the mixing region is defined by the average and the variance, respectively. The
corresponding distributions for the simulation data are given in Figures 11 and 12.
A direct comparison of the PDFs of the experimental images and the simulation data is valid only

when the two images are of the same variable and have been processed identically prior to the extraction
of the mixing region. This is not the case for the problem considered in this report. However, it is
possible to use the approach outlined in this section to compare simulations to each other, using the
same variable from both simulations.
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Figure 9: The probability distribution histograms of the mixing regions of the cleaned experimental
images at the later time steps. These were obtained using the average along the x-direction for the
mixing layer. The number of bins in the histogram is 64. Panels (a) through (h) are time steps 5
through 12.
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Figure 10: The probability distribution histograms of the mixing regions of the cleaned experimental
images at the later time steps. These were obtained using the variance along the x-direction for the
mixing layer. The number of bins in the histogram is 64. Panels (a) through (h) are time steps 5
through 12.
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Figure 11: The probability distribution histograms of the mixing regions in the simulation images at
the later time steps. These were obtained using the average along the x-direction for the mixing layer.
The number of bins in the histogram is 64. Panels (a) through (h) are time steps 5 through 12.
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Figure 12: The probability distribution histograms of the mixing regions in the simulation images at
the later time steps. These were obtained using the variance along the x-direction for the mixing layer.
The number of bins in the histogram is 64. Panels (a) through (h) are time steps 5 through 12.
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Appendix A

Processed Images for the Early Time Steps
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(a) (b)

(c) (d)

Figure 13: Edge image for experimental data, time step 1: (a) The original noisy experimental image;
(b) The cleaned image; (c) The edge image extracted from the cleaned image; (d) The edge image
superposed on the cleaned image.
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(a) (b)

(c) (d)

Figure 14: Edge image for experimental data, time step 2: (a) The original noisy experimental image;
(b) The cleaned image; (c) The edge image extracted from the cleaned image; (d) The edge image
superposed on the cleaned image.
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(a) (b)

(c) (d)

Figure 15: Edge image for experimental data, time step 3: (a) The original noisy experimental image;
(b) The cleaned image; (c) The edge image extracted from the cleaned image; (d) The edge image
superposed on the cleaned image.
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(a) (b)

(c) (d)

Figure 16: Edge image for experimental data, time step 4: (a) The original noisy experimental image;
(b) The cleaned image; (c) The edge image extracted from the cleaned image; (d) The edge image
superposed on the cleaned image.
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(a) (a)

(b) (b)

(c) (c)

Figure 17: Edge image for simulation data, time step 1 (left column) and time step 2 (right column):
(a) The original simulation image; (b) The edge image; (d) The edge image superposed on the original
image.
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(a) (a)

(b) (b)

(c) (c)

Figure 18: Edge image for simulation data, time step 3 (left column) and time step 4 (right column):
(a) The original simulation image; (b) The edge image; (d) The edge image superposed on the original
image.

24



Appendix B

Processed Images for the Later Time Steps
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 19: The cleaned experimental images - later time steps.
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Figure 20: Finding the mixing layer for the experimental data, time step 5, using the average-based
(left column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of
pixel intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained
using the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the
average (variance).
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Figure 21: Finding the mixing layer for the experimental data, time step 6, using the average-based
(left column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of
pixel intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained
using the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the
average (variance).
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Figure 22: Finding the mixing layer for the experimental data, time step 7, using the average-based
(left column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of
pixel intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained
using the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the
average (variance).
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Figure 23: Finding the mixing layer for the experimental data, time step 8, using the average-based
(left column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of
pixel intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained
using the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the
average (variance).
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Figure 24: Finding the mixing layer for the experimental data, time step 9, using the average-based
(left column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of
pixel intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained
using the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the
average (variance).
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Figure 25: Finding the mixing layer for the experimental data, time step 10, using the average-based
(left column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of
pixel intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained
using the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the
average (variance).
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Figure 26: Finding the mixing layer for the experimental data, time step 11, using the average-based
(left column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of
pixel intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained
using the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the
average (variance).
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Figure 27: Finding the mixing layer for the experimental data, time step 12, using the average-based
(left column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of
pixel intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained
using the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the
average (variance).
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Figure 28: Finding the mixing layer for the simulation data, time step 5, using the average-based (left
column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of pixel
intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained using
the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the average
(variance).

35



 0

 50

 100

 150

 200

 250

 300

 0  200  400  600  800  1000  1200  1400  1600  1800

"1365t_xavg.dat"

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  200  400  600  800  1000  1200  1400  1600  1800

"1365t_xvar.dat"

(a) (b)

(c) (d)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  50  100  150  200  250

"1365t_xavg_hist.dat"

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  50  100  150  200  250

"1365t_xvar_hist.dat"

(e) (f)

Figure 29: Finding the mixing layer for the simulation data, time step 6, using the average-based (left
column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of pixel
intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained using
the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the average
(variance).
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Figure 30: Finding the mixing layer for the simulation data, time step 7, using the average-based (left
column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of pixel
intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained using
the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the average
(variance).
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Figure 31: Finding the mixing layer for the simulation data, time step 8, using the average-based (left
column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of pixel
intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained using
the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the average
(variance).
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Figure 32: Finding the mixing layer for the simulation data, time step 9, using the average-based (left
column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of pixel
intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained using
the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the average
(variance).
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Figure 33: Finding the mixing layer for the simulation data, time step 10, using the average-based (left
column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of pixel
intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained using
the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the average
(variance).
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Figure 34: Finding the mixing layer for the simulation data, time step 11, using the average-based (left
column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of pixel
intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained using
the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the average
(variance).
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Figure 35: Finding the mixing layer for the simulation data, time step 12, using the average-based (left
column) and the variance-based (right column) approach. (a) (and (b)) The average (variance) of pixel
intensities in the x direction. (c) (and (d)) The height of the mixing layer (highlighted) obtained using
the average (variance). (e) (and (f)) The 64-bin PDF of the mixing layer obtained using the average
(variance).
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