
Example Programs for ARKode v4.7.0
SUNDIALS v5.7.0

Daniel R. Reynolds
Department of Mathematics

Southern Methodist University

January 29, 2021

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Nei-
ther the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees
makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, complete-
ness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommen-
dation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown, George Byrne,
Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld,
Daniel McGreer, Slaven Peles, Cosmin Petra, H. Hunter Schwartz, Jean M. Sexton, Dan Shumaker, Steve G. Smith,
Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M. Yang.

Contents

1 Serial C example problems 3
1.1 ark_analytic . 3
1.2 ark_analytic_nonlin . 4
1.3 ark_brusselator . 5
1.4 ark_brusselator_fp . 7
1.5 ark_brusselator_mri . 7
1.6 ark_robertson . 8
1.7 ark_robertson_root . 9
1.8 ark_brusselator1D . 10
1.9 ark_brusselator1D_klu . 12
1.10 ark_brusselator1D_FEM_slu . 12
1.11 ark_heat1D . 13
1.12 ark_heat1D_adapt . 15
1.13 ark_KrylovDemo_prec . 15
1.14 ark_onewaycouple_mri . 16
1.15 ark_twowaycouple_mri . 17

2 OpenMP C example problems 19
2.1 ark_brusselator1D_omp . 19

3 Parallel C example problems 21
3.1 ark_diurnal_kry_bbd_p . 21
3.2 ark_diurnal_kry_p . 22

4 Parallel Hypre example problems 25
4.1 ark_diurnal_kry_ph . 25

5 Serial C++ example problems 27
5.1 ark_analytic_sys . 27

6 Parallel C++ example problems 29
6.1 ark_heat2D . 29

7 Serial Fortran 77 example problems 33
7.1 fark_diurnal_kry_bp . 33
7.2 fark_roberts_dnsL . 34

8 Parallel Fortran 77 example problems 35
8.1 fark_diag_kry_bbd_p . 35
8.2 fark_diag_non_p . 35

9 Serial Fortran 90 example problems 37
9.1 ark_bruss . 37

i

9.2 ark_bruss1D_FEM_klu . 38

10 Parallel Fortran 90 example problems 39
10.1 fark_heat2D . 39

Bibliography 41

ii

Example Programs for ARKode, v4.7.0

This is the documentation for the ARKode examples. ARKode is an adaptive step time integration package for stiff,
nonstiff and multi-rate systems of ordinary differential equations (ODEs). The ARKode solver is a component of the
SUNDIALS suite of nonlinear and differential/algebraic equation solvers. It is designed to have a similar user ex-
perience to the CVODE solver, with user modes to allow adaptive integration to specified output times, return after
each internal step and root-finding capabilities, for calculations both in serial and parallel (via MPI). The default inte-
gration and solver options should apply to most users, though complete control over all internal parameters and time
adaptivity algorithms is enabled through optional interface routines.

ARKode is developed by Southern Methodist University, with support by the US Department of Energy through the
FASTMath SciDAC Institute, under subcontract B598130 from Lawrence Livermore National Laboratory.

Along with the ARKode solver, we have created a suite of example problems demonstrating its usage on applications
written in C, C++ and Fortran 77 and Fortran 90. These examples demonstrate a large variety of ARKode solver op-
tions, including explicit, implicit and ImEx solvers, root-finding, Newton and fixed-point nonlinear solvers, direct
and iterative linear solvers, adaptive resize capabilities, and the Fortran solver interface. While these examples are
not an exhaustive set of all possible usage scenarios, they are designed to show a variety of exemplars, and can be
used as templates for new problems using ARKode’s solvers. Further information on the ARKode package itself may
be found in the accompanying ARKode user guide [R2018].

The following tables summarize the salient features of each of the example problems in this document. Each exam-
ple is designed to be relatively self-contained, so that you need only study and/or emulate the problem that is most
closely related to your own. We group these examples according to programming language (C, C++, Fortran 77, For-
tran 90).

ARKode example problems written in C are summarized in the table below, and are further described in the chapters
Serial C example problems, OpenMP C example problems, Parallel C example problems and Parallel Hypre example
problems.

Problem Integra-
tor

Nonlin-
ear

Linear Size Extras

ark_analytic DIRK Newton Dense 1
ark_analytic_nonlin ERK N.A. N.A. 1 ERKStep timestepping module
ark_brusselator DIRK Newton Dense 3
ark_brusselator_fp ARK Fixed-

point
N.A. 3

ark_robertson DIRK Newton Dense 3
ark_robertson_root DIRK Newton Dense 3 rootfinding
ark_brusselator1D DIRK Newton Band 3N
ark_brusselator1D_omp DIRK Newton Band 3N OpenMP-enabled
ark_brusselator1D_klu DIRK Newton KLU 3N sparse matrices
ark_brusselator1D_FEM_sluDIRK Newton Su-

perLU_MT
3N finite-element, 𝑀 ̸= 𝐼 , sparse

matrices
ark_heat1D DIRK Newton PCG N
ark_heat1D_adapt DIRK Newton PCG (dy-

namic)
adaptive vector resizing

ark_KrylovDemo_prec DIRK Newton SPGMR 216 multiple preconditioners
ark_diurnal_kry_bbd_p DIRK Newton SPGMR 200 parallel, BBD preconditioner
ark_diurnal_kry_p DIRK Newton SPGMR 200 parallel, block-diagonal precond.
ark_diurnal_kry_ph DIRK Newton SPGMR 200 HYPRE parallel vector

ARKode example problems written in C++ are summarized in the table below, and are further described in the chap-
ters Serial C++ example problems and Parallel C++ example problems.

Contents 1

https://computing.llnl.gov/casc/sundials/main.html
https://computing.llnl.gov/casc/sundials/description/description.html#descr_cvode
http://www.smu.edu
http://www.doe.gov
http://www.fastmath-scidac.org/
http://www.llnl.gov

Example Programs for ARKode, v4.7.0

Problem Integrator Nonlinear Linear Size Extras
ark_analytic_sys DIRK Newton Dense 3
ark_heat2D DIRK Newton PCG 𝑛𝑥 * 𝑛𝑦 parallel

ARKode example problems written in Fortran 77 are summarized in the table below, and are further described in the
chapters Serial Fortran 77 example problems and Parallel Fortran 77 example problems.

Problem Integrator Nonlinear Linear Size Extras
fark_diurnal_kry_bp DIRK Newton SPGMR 10 banded preconditioner
fark_roberts_dnsL DIRK Newton Dense 3 LAPACK dense solver, rootfinding
fark_diag_kry_bbd_p DIRK Newton SPGMR 10*NProcs parallel BBD preconditioner
fark_diag_non_p ERK N.A. N.A. 10*NProcs parallel

ARKode example problems written in Fortran 90 are summarized in the table below, and are further described in the
chapters Serial Fortran 90 example problems and Parallel Fortran 90 example problems.

Problem Integra-
tor

Nonlin-
ear

Lin-
ear

Size Extras

ark_bruss ARK Newton Dense 3
ark_bruss1D_FEM_klu DIRK Newton KLU 3N finite-element, 𝑀 ̸= 𝐼 , sparse matri-

ces
fark_heat2D DIRK Newton PCG 𝑛𝑥 * 𝑛𝑦 parallel

2 Contents

Chapter 1

Serial C example problems

1.1 ark_analytic

This is a very simple C example showing how to use the ARKode solver interface.

The problem is that of a scalar-valued initial value problem (IVP) that is linear in the dependent variable 𝑦, but non-
linear in the independent variable 𝑡:

𝑑𝑦

𝑑𝑡
= 𝜆𝑦 +

1

1 + 𝑡2
− 𝜆 arctan(𝑡),

where 0 ≤ 𝑡 ≤ 10 and 𝑦(0) = 0. The stiffness of the problem may be tuned via the parameter 𝜆. The value of 𝜆 must
be negative to result in a well-posed problem; for values with magnitude larger than 100 or so the problem becomes
quite stiff. Here, we choose 𝜆 = −100. After each unit time interval, the solution is output to the screen.

1.1.1 Numerical method

The example routine solves this problem using a diagonally-implicit Runge-Kutta method. Each stage is solved us-
ing the built-in modified Newton iteration, but since the ODE is linear in 𝑦 these should only require a single itera-
tion per stage. Internally, Newton will use the SUNLINSOL_DENSE linear solver via the ARKDLS interface, which
in the case of this scalar-valued problem is just division. The example file contains functions to evaluate both 𝑓(𝑡, 𝑦)
and 𝐽(𝑡, 𝑦) = 𝜆.

We specify the relative and absolute tolerances, 𝑟𝑡𝑜𝑙 = 10−6 and 𝑎𝑡𝑜𝑙 = 10−10, respectively. Aside from these
choices, this problem uses only the default ARKode solver parameters.

1.1.2 Solutions

This problem is included both as a simple example, but also because it has an analytical solution, 𝑦(𝑡) = arctan(𝑡).
As seen in the plots below, the computed solution tracks the analytical solution quite well (left), and results in errors
below those specified by the input error tolerances (right).

3

Example Programs for ARKode, v4.7.0

1.2 ark_analytic_nonlin

This example problem is only marginally more difficult than the preceding problem, in that the ODE right-hand side
function is nonlinear in the solution 𝑦. While the implicit solver from the preceding problem would also work on this
example, because it is not stiff we use this to demonstrate how to use ARKode’s explicit solver interface. Although
both the ARKStep and ERKStep time stepping modules are appropriate in this scenario, we use the ERKStep mod-
ule here.

The ODE problem is

𝑑𝑦

𝑑𝑡
= (𝑡 + 1)𝑒−𝑦,

for the interval 𝑡 ∈ [0.0, 10.0], with initial condition 𝑦(0) = 0. This has analytical solution 𝑦(𝑡) = log
(︁

𝑡2

2 + 𝑡 + 1
)︁

.

1.2.1 Numerical method

This program solves the problem with the default ERK method. Output is printed every 1.0 units of time (10 total).
Run statistics (optional outputs) are printed at the end.

1.2.2 Solutions

As seen in the plots below, the computed solution tracks the analytical solution quite well (left), and results in errors
comparable with those specified by the requested error tolerances (right).

4 Chapter 1. Serial C example problems

Example Programs for ARKode, v4.7.0

1.3 ark_brusselator

We now wish to exercise the ARKode solvers on more challenging nonlinear ODE systems. The following test sim-
ulates a brusselator problem from chemical kinetics, and is widely used as a standard benchmark problem for new
solvers. The ODE system has 3 components, 𝑌 = [𝑢, 𝑣, 𝑤], satisfying the equations,

𝑑𝑢

𝑑𝑡
= 𝑎− (𝑤 + 1)𝑢 + 𝑣𝑢2,

𝑑𝑣

𝑑𝑡
= 𝑤𝑢− 𝑣𝑢2,

𝑑𝑤

𝑑𝑡
=

𝑏− 𝑤

𝜀
− 𝑤𝑢.

We integrate over the interval 0 ≤ 𝑡 ≤ 10, with the initial conditions 𝑢(0) = 𝑢0, 𝑣(0) = 𝑣0, 𝑤(0) = 𝑤0. After each
unit time interval, the solution is output to the screen.

The problem implements 3 different testing scenarios:

Test 1: 𝑢0 = 3.9, 𝑣0 = 1.1, 𝑤0 = 2.8, 𝑎 = 1.2, 𝑏 = 2.5, and 𝜀 = 10−5

Test 2: 𝑢0 = 1.2, 𝑣0 = 3.1, 𝑤0 = 3, 𝑎 = 1, 𝑏 = 3.5, and 𝜀 = 5 · 10−6

Test 3: 𝑢0 = 3, 𝑣0 = 3, 𝑤0 = 3.5, 𝑎 = 0.5, 𝑏 = 3, and 𝜀 = 5 · 10−4

The example problem currently selects test 2, though that value may be easily adjusted to explore different testing
scenarios.

1.3. ark_brusselator 5

Example Programs for ARKode, v4.7.0

1.3.1 Numerical method

This program solves the problem with the DIRK method, using a Newton iteration with the SUNLINSOL_DENSE
linear solver module via the ARKDLS interface. Additionally, this example provides a routine to ARKDLS to com-
pute the dense Jacobian.

The problem is run using scalar relative and absolute tolerances of 𝑟𝑡𝑜𝑙 = 10−6 and 𝑎𝑡𝑜𝑙 = 10−10, respectively.

10 outputs are printed at equal intervals, and run statistics are printed at the end.

1.3.2 Solutions

The computed solutions will of course depend on which test is performed:

Test 1: Here, all three components exhibit a rapid transient change during the first 0.2 time units, followed by a slow
and smooth evolution.

Test 2: Here, 𝑤 experiences a fast initial transient, jumping 0.5 within a few steps. All values proceed smoothly un-
til around 𝑡 = 6.5, when both 𝑢 and 𝑣 undergo a sharp transition, with 𝑢 increaseing from around 0.5 to 5 and 𝑣
decreasing from around 6 to 1 in less than 0.5 time units. After this transition, both 𝑢 and 𝑣 continue to evolve some-
what rapidly for another 1.4 time units, and finish off smoothly.

Test 3: Here, all components undergo very rapid initial transients during the first 0.3 time units, and all then proceed
very smoothly for the remainder of the simulation.

Unfortunately, there are no known analytical solutions to the Brusselator problem, but the following results have
been verified in code comparisons against both CVODE and the built-in ODE solver ode15s from Matlab:

6 Chapter 1. Serial C example problems

Example Programs for ARKode, v4.7.0

Brusselator solution plots: left is test 1, center is test 2, right is test 3.

1.4 ark_brusselator_fp

This test problem is a duplicate of the ark_brusselator problem above, but with a few key changes in the meth-
ods used for time integration and nonlinear solver. As with the previous test, this problem has 3 dependent variables
𝑢, 𝑣 and 𝑤, that depend on the independent variable 𝑡 via the IVP system

𝑑𝑢

𝑑𝑡
= 𝑎− (𝑤 + 1)𝑢 + 𝑣𝑢2,

𝑑𝑣

𝑑𝑡
= 𝑤𝑢− 𝑣𝑢2,

𝑑𝑤

𝑑𝑡
=

𝑏− 𝑤

𝜀
− 𝑤𝑢.

We integrate over the interval 0 ≤ 𝑡 ≤ 10, with the initial conditions 𝑢(0) = 𝑢0, 𝑣(0) = 𝑣0, 𝑤(0) = 𝑤0. After each
unit time interval, the solution is output to the screen.

Again, we have 3 different testing scenarios,

Test 1: 𝑢0 = 3.9, 𝑣0 = 1.1, 𝑤0 = 2.8, 𝑎 = 1.2, 𝑏 = 2.5, and 𝜀 = 10−5

Test 2: 𝑢0 = 1.2, 𝑣0 = 3.1, 𝑤0 = 3, 𝑎 = 1, 𝑏 = 3.5, and 𝜀 = 5 · 10−6

Test 3: 𝑢0 = 3, 𝑣0 = 3, 𝑤0 = 3.5, 𝑎 = 0.5, 𝑏 = 3, and 𝜀 = 5 · 10−4

with test 2 selected within in the example file.

1.4.1 Numerical method

This program solves the problem with the ARK method, in which we have split the right-hand side into stiff
(𝑓𝑖(𝑡, 𝑦)) and non-stiff (𝑓𝑒(𝑡, 𝑦)) components,

𝑓𝑖(𝑡, 𝑦) =

⎡⎣ 0
0

𝑏−𝑤
𝜀

⎤⎦ 𝑓𝑒(𝑡, 𝑦) =

⎡⎣ 𝑎− (𝑤 + 1)𝑢 + 𝑣𝑢2

𝑤𝑢− 𝑣𝑢2

−𝑤𝑢

⎤⎦ .

Also unlike the previous test problem, we solve the resulting implicit stages using the available accelerated fixed-
point solver, enabled through a call to ARKodeSetFixedPoint, with an acceleration subspace of dimension 3.

10 outputs are printed at equal intervals, and run statistics are printed at the end.

1.5 ark_brusselator_mri

This test problem is a duplicate of the ark_brusselator problem above, but using MRIStep with different pa-
rameters. As with the previous test, this problem has 3 dependent variables 𝑢, 𝑣 and 𝑤, that depend on the indepen-
dent variable 𝑡 via the IVP system

𝑑𝑢

𝑑𝑡
= 𝑎− (𝑤 + 1)𝑢 + 𝑣𝑢2,

𝑑𝑣

𝑑𝑡
= 𝑤𝑢− 𝑣𝑢2,

𝑑𝑤

𝑑𝑡
=

𝑏− 𝑤

𝜀
− 𝑤𝑢.

1.4. ark_brusselator_fp 7

Example Programs for ARKode, v4.7.0

We integrate over the interval 0 ≤ 𝑡 ≤ 2, with the initial conditions 𝑢(0) = 𝑢0, 𝑣(0) = 𝑣0, 𝑤(0) = 𝑤0. The solution
is output to the screen at equal intervals of 0.1 time units.

The problem implements the following testing scenario: 𝑢0 = 1.2, 𝑣0 = 3.1, 𝑤0 = 3, 𝑎 = 1, 𝑏 = 3.5, and 𝜀 = 10−2

1.5.1 Numerical method

This program solves the problem with the default thrid order method.

The problem is run using a fixed slow step size ℎ𝑠 = 0.025 and fast step size 0.001.

20 outputs are printed at equal intervals, and run statistics are printed at the end.

1.6 ark_robertson

Our next two tests simulate the Robertson problem, corresponding to the kinetics of an autocatalytic reaction, corre-
sponding to the CVODE example of the same name. This is an ODE system with 3 components, 𝑌 = [𝑢, 𝑣, 𝑤]𝑇 ,
satisfying the equations,

𝑑𝑢

𝑑𝑡
= −0.04𝑢 + 104𝑣𝑤,

𝑑𝑣

𝑑𝑡
= 0.04𝑢− 104𝑣𝑤 − 3 · 107𝑣2,

𝑑𝑤

𝑑𝑡
= 3 · 107𝑣2.

We integrate over the interval 0 ≤ 𝑡 ≤ 1011, with initial conditions 𝑌 (0) = [1, 0, 0]𝑇 .

1.6.1 Numerical method

This program is constructed to solve the problem with the DIRK solver. Implicit subsystems are solved using a New-
ton iteration with the SUNLINSOL_DENSE dense linear solver module via the ARKDLS interface; a routine is pro-
vided to ARKDLS to supply the Jacobian matrix.

The problem is run using scalar relative and absolute tolerances of 𝑟𝑡𝑜𝑙 = 10−4 and 𝑎𝑡𝑜𝑙 = 10−11, respectively.

100 outputs are printed at equal intervals, and run statistics are printed at the end.

1.6.2 Solutions

Due to the linearly-spaced requested output times in this example, and since we plot in a log-log scale, by the first
output at 𝑡 = 109, the solutions have already undergone a sharp transition from their initial values of (𝑢, 𝑣, 𝑤) =
(1, 0, 0). For additional detail on the early evolution of this problem, see the following example, that requests
logarithmically-spaced output times.

From the plot here, it is somewhat difficult to see the solution values for 𝑤, which here all have a value of 1 ± 10−5.
Additionally, we see that near the end of the evolution, the values for 𝑣 begin to exhibit oscillations; this is due to the
fact that by this point those values have fallen below their specified absolute tolerance. A smoother behavior (with an
increase in time steps) may be obtained by reducing the absolute tolerance for that variable.

8 Chapter 1. Serial C example problems

Example Programs for ARKode, v4.7.0

1.7 ark_robertson_root

We again test the Robertson problem, but in this example we will utilize both a logarithmically-spaced set of output
times (to properly show the solution behavior), as well as ARKode’s root-finding capabilities. Again, the Robertson
problem consists of an ODE system with 3 components, 𝑌 = [𝑢, 𝑣, 𝑤]𝑇 , satisfying the equations,

𝑑𝑢

𝑑𝑡
= −0.04𝑢 + 104𝑣𝑤,

𝑑𝑣

𝑑𝑡
= 0.04𝑢− 104𝑣𝑤 − 3 · 107𝑣2,

𝑑𝑤

𝑑𝑡
= 3 · 107𝑣2.

We integrate over the interval 0 ≤ 𝑡 ≤ 1011, with initial conditions 𝑌 (0) = [1, 0, 0]𝑇 .

Additionally, we supply the following two root-finding equations:

𝑔1(𝑢) = 𝑢− 10−4,

𝑔2(𝑤) = 𝑤 − 10−2.

While these are not inherently difficult nonlinear equations, they easily serve the purpose of determining the times at
which our solutions attain desired target values.

1.7.1 Numerical method

This program solves the problem with the DIRK solver. Implicit subsystems are solved using a Newton iteration
with the SUNLINSOL_DENSE linear solver module via the ARKDLS interface; a routine is supplied to provide
the dense Jacobian matrix.

1.7. ark_robertson_root 9

Example Programs for ARKode, v4.7.0

The problem is run using scalar relative and vector absolute tolerances. Here, we choose relative tolerance 𝑟𝑡𝑜𝑙 =
10−4, and set absolute tolerances on 𝑢, 𝑣 and 𝑤 of 10−8, 10−11 and 10−8, respectively.

100 outputs are printed at equal intervals, and run statistics are printed at the end.

However, unlike in the previous problem, while integrating the system, we use the rootfinding feature of ARKode to
find the times at which either 𝑢 = 10−4 or 𝑤 = 10−2.

1.7.2 Solutions

In the solutions below, we now see the early-time evolution of the solution components for the Robertson ODE sys-
tem.

We note that when running this example, the root-finding capabilities of ARKode report outside of the typical
logarithmically-spaced output times to declare that at time 𝑡 = 0.264019 the variable 𝑤 attains the value 10−2, and
that at time 𝑡 = 2.07951 · 107 the variable 𝑢 attains the value 10−4; both of our thresholds specified by the root-
finding function g().

1.8 ark_brusselator1D

We now investigate a time-dependent system of partial differential equations. We adapt the previously-described
brusselator test problem by adding diffusion into the chemical reaction network. We again have a system with 3

10 Chapter 1. Serial C example problems

Example Programs for ARKode, v4.7.0

components, 𝑌 = [𝑢, 𝑣, 𝑤]𝑇 that satisfy the equations,

𝜕𝑢

𝜕𝑡
= 𝑑𝑢

𝜕2𝑢

𝜕𝑥2
+ 𝑎− (𝑤 + 1)𝑢 + 𝑣𝑢2,

𝜕𝑣

𝜕𝑡
= 𝑑𝑣

𝜕2𝑣

𝜕𝑥2
+ 𝑤𝑢− 𝑣𝑢2,

𝜕𝑤

𝜕𝑡
= 𝑑𝑤

𝜕2𝑤

𝜕𝑥2
+

𝑏− 𝑤

𝜀
− 𝑤𝑢.

However, now these solutions are also spatially dependent. We integrate for 𝑡 ∈ [0, 10], and 𝑥 ∈ [0, 1], with initial
conditions

𝑢(0, 𝑥) = 𝑎 +
1

10
sin(𝜋𝑥),

𝑣(0, 𝑥) =
𝑏

𝑎
+

1

10
sin(𝜋𝑥),

𝑤(0, 𝑥) = 𝑏 +
1

10
sin(𝜋𝑥),

and with stationary boundary conditions, i.e.

𝜕𝑢

𝜕𝑡
(𝑡, 0) =

𝜕𝑢

𝜕𝑡
(𝑡, 1) = 0,

𝜕𝑣

𝜕𝑡
(𝑡, 0) =

𝜕𝑣

𝜕𝑡
(𝑡, 1) = 0,

𝜕𝑤

𝜕𝑡
(𝑡, 0) =

𝜕𝑤

𝜕𝑡
(𝑡, 1) = 0.

We note that these can also be implemented as Dirichlet boundary conditions with values identical to the initial con-
ditions.

1.8.1 Numerical method

We employ a method of lines approach, wherein we first semi-discretize in space to convert the system of 3 PDEs
into a larger system of ODEs. To this end, the spatial derivatives are computed using second-order centered differ-
ences, with the data distributed over 𝑁 points on a uniform spatial grid. As a result, ARKode approaches the prob-
lem as one involving 3𝑁 coupled ODEs.

The problem is run using 𝑁 = 201 spatial points, with parameters 𝑎 = 0.6, 𝑏 = 2.0, 𝑑𝑢 = 0.025, 𝑑𝑣 = 0.025, 𝑑𝑤 =
0.025 and 𝜀 = 10−5. We specify scalar relative and absolute solver tolerances of 𝑟𝑡𝑜𝑙 = 10−6 and 𝑎𝑡𝑜𝑙 = 10−10,
respectively.

This program solves the problem with a DIRK method, using a Newton iteration with the SUNLINSOL_BAND lin-
ear solver module via the ARKDLS interface; a routine is supplied to fill the banded Jacobian matrix.

100 outputs are printed at equal intervals, and run statistics are printed at the end.

1.8.2 Solutions

1.8. ark_brusselator1D 11

Example Programs for ARKode, v4.7.0

Brusselator PDE solution snapshots: left is at time 𝑡 = 0, center is at time 𝑡 = 2.9, right is at time 𝑡 = 8.8.

1.9 ark_brusselator1D_klu

This problem is mathematically identical to the preceding problem, ark_brusselator1D, but instead of using the
SUNMATRIX_BAND banded matrix module and SUNLINSOL_BAND linear solver module, it uses the SUNMA-
TRIX_SPARSE sparse matrix module with the SUNLINSOL_KLU linear solver module. These are still provided to
ARKode using the ARKDLS direct linear solver interface, and again a routine is provided to supply a compressed-
sparse-column version of the Jacobian matrix. Additionally, the solution is only output 10 times instead of 100.

1.10 ark_brusselator1D_FEM_slu

This problem is mathematically identical to the preceding problems, ark_brusselator1D and ark_brusselator1D_klu,
but utilizes a different set of numerical methods.

1.10.1 Numerical method

As with the preceding problems, we employ a method of lines approach, wherein we first semi-discretize in space to
convert the system of 3 PDEs into a larger system of ODEs. However, in this example we discretize in space using a
standard piecewise linear, Galerkin finite element method, over a non-uniform discretization of the interval [0, 1] into
100 subintervals. To this end, we must integrate each term in each equation, multiplied by test functions, over each
subinterval, e.g. ∫︁ 𝑥𝑖+1

𝑥𝑖

(︀
𝑎− (𝑤 + 1)𝑢 + 𝑣𝑢2

)︀
𝜙d𝑥.

Since we employ piecewise linear basis and trial functions, the highest nonlinearity in the model is a quartic polyno-
mial. We therefore approximate these integrals using a three-node Gaussian quadrature, exact for polynomials up to
degree six.

After this spatial semi-discretization, the system of three PDEs is passed to ARKode as a system of 3𝑁 coupled
ODEs, as with the preceding problem.

12 Chapter 1. Serial C example problems

Example Programs for ARKode, v4.7.0

As with the preceding problem ark_brusselator1D_klu, this example solves the problem with a DIRK method,
using a Newton iteration, and the SUNMATRIX_SPARSE module. However, this example uses the SUNLIN-
SOL_SUPERLUMT linear solver module, both for the Newton systems having Jacobian 𝐴 = 𝑀 − 𝛾𝐽 , as well
as for the mass-matrix-only linear systems with matrix 𝑀 . Functions implementing both 𝐽 and 𝑀 in compressed-
sparse-column format are supplied.

100 outputs are printed at equal intervals, and run statistics are printed at the end.

1.10.2 Solutions

Finite-element Brusselator PDE solution snapshots (created using the supplied Python script,
plot_brusselator1D_FEM.py): left is at time 𝑡 = 0, center is at time 𝑡 = 2.9, right is at time 𝑡 = 8.8.

1.11 ark_heat1D

As with the previous brusselator problem, this example simulates a simple one-dimensional partial differential equa-
tion; in this case we consider the heat equation,

𝜕𝑢

𝜕𝑡
= 𝑘

𝜕2𝑢

𝜕𝑥2
+ 𝑓,

for 𝑡 ∈ [0, 10], and 𝑥 ∈ [0, 1], with initial condition 𝑢(0, 𝑥) = 0, stationary boundary conditions,

𝜕𝑢

𝜕𝑡
(𝑡, 0) =

𝜕𝑢

𝜕𝑡
(𝑡, 1) = 0,

1.11. ark_heat1D 13

Example Programs for ARKode, v4.7.0

and a point-source heating term,

𝑓(𝑡, 𝑥) =

{︃
1 if 𝑥 = 1/2,

0 otherwise.

1.11.1 Numerical method

As with the ark_brusselator1D test problem, this test computes spatial derivatives using second-order centered dif-
ferences, with the data distributed over 𝑁 points on a uniform spatial grid.

In this example, we use 𝑁 = 201 spatial points, with heat conductivity parameter 𝑘 = 0.5, and discretize the equa-
tion using second-order centered finite-differences. The problem is run using scalar relative and absolute solver toler-
ances of 𝑟𝑡𝑜𝑙 = 10−6 and 𝑎𝑡𝑜𝑙 = 10−10, respectively.

This program solves the problem with a DIRK method, utilizing a Newton iteration. The primary utility in includ-
ing this example is that since the Newton linear systems are now symmetric, we solve these using the SUNLIN-
SOL_PCG iterative linear solver, through the ARKSPILS linear solver interface. A routine to perform the Jacobian-
vector product routine is supplied, in order to provide an example of its use.

1.11.2 Solutions

One-dimensional heat PDE solution snapshots: left is at time 𝑡 = 0.01, center is at time 𝑡 = 0.13, right is at time
𝑡 = 1.0.

14 Chapter 1. Serial C example problems

Example Programs for ARKode, v4.7.0

1.12 ark_heat1D_adapt

This problem is mathematically identical to the ark_heat1D test problem. However, instead of using a uniform spa-
tial grid, this test problem utilizes a dynamically-evolving spatial mesh. The PDE under consideration is a simple
one-dimensional heat equation,

𝜕𝑢

𝜕𝑡
= 𝑘

𝜕2𝑢

𝜕𝑥2
+ 𝑓,

for 𝑡 ∈ [0, 10], and 𝑥 ∈ [0, 1], with initial condition 𝑢(0, 𝑥) = 0, stationary boundary conditions,

𝜕𝑢

𝜕𝑡
(𝑡, 0) =

𝜕𝑢

𝜕𝑡
(𝑡, 1) = 0,

and a point-source heating term,

𝑓(𝑡, 𝑥) =

{︃
1 if 𝑥 = 1/2,

0 otherwise.

1.12.1 Numerical method

We again employ a method-of-lines discretization approach. The spatial derivatives are computed using a three-
point centered stencil, that is accurate to 𝑂(∆𝑥2

𝑖) if the neighboring points are equidistant from the central point, i.e.
𝑥𝑖+1 − 𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1; however, if these neighbor distances are unequal the approximation reduces to first-order ac-
curacy. The spatial mesh is initially distributed uniformly over 21 points in [0, 1], but as the simulation proceeds the
mesh is [crudely] adapted to add points to the center of subintervals bordering any node where

⃒⃒⃒
𝜕2𝑢
𝜕𝑥2

⃒⃒⃒
> 0.003. We

note that the spatial adaptivity approach employed in this example is ad-hoc, designed only to exemplify ARKode
usage on a problem with varying size (not to show optimally-adaptive spatial refinement methods).

This program solves the problem with a DIRK method, utilizing a Newton iteration and the SUNLIN-
SOL_PCG iterative linear solver. Additionally, the test problem utilizes ARKode’s spatial adaptivity support (via
ARKodeResize), allowing retention of the major ARKode data structures across vector length changes.

1.13 ark_KrylovDemo_prec

This problem is an ARKode clone of the CVODE problem, cv_KrylovDemo_prec. This is a demonstration
program using the SUNLINSOL_SPGMR linear solver module. As explained more thoroughly in [HSR2017], the
problem is a stiff ODE system that arises from a system of PDEs modeling a six-species food web population model,
with predator-prey interaction and diffusion on the unit square in two dimensions. We have a system with 6 compo-
nents, 𝐶 = [𝑐1, 𝑐2, . . . , 𝑐6]𝑇 that satisfy the equations,

𝜕𝑐𝑖

𝜕𝑡
= 𝑑𝑖

(︂
𝜕2𝑐𝑖

𝜕𝑥2
+

𝜕2𝑐𝑖

𝜕𝑦2

)︂
+ 𝑓𝑖(𝑥, 𝑦, 𝑐), 𝑖 = 1, . . . , 6.

where

𝑓𝑖(𝑥, 𝑦, 𝑐) = 𝑐𝑖

⎛⎝𝑏𝑖 +

𝑛𝑠∑︁
𝑗=1

𝑎𝑖,𝑗𝑐
𝑗

⎞⎠ .

Here, the first three species are prey and the last three are predators. The coefficients 𝑎𝑖,𝑗 , 𝑏𝑖, 𝑑𝑖 are:

𝑎𝑖,𝑗 =

⎧⎪⎨⎪⎩
−1, 𝑖 = 𝑗,

−0.5 × 10−6, 𝑖 ≤ 3, 𝑗 > 3,

104, 𝑖 > 3, 𝑗 ≤ 3

𝑏𝑖 =

{︃
(1 + 𝑥𝑦), 𝑖 ≤ 3,

−(1 + 𝑥𝑦), 𝑖 > 3
𝑑𝑖 =

{︃
1, 𝑖 ≤ 3,
1
2 , 𝑖 > 3

1.12. ark_heat1D_adapt 15

Example Programs for ARKode, v4.7.0

The spatial domain is (𝑥, 𝑦) ∈ [0, 1]2; the time domain is 𝑡 ∈ [0, 10], with initial conditions

𝑐𝑖(𝑥, 𝑦) = 10 + 𝑖
√︀

4𝑥(1 − 𝑥)
√︀

4𝑦(1 − 𝑦)

and with homogeneous Neumann boundary conditions, ∇𝑐𝑖 · 𝑛⃗ = 0.

1.13.1 Numerical method

We employ a method of lines approach, wherein we first semi-discretize in space to convert the system of 6 PDEs
into a larger system of ODEs. To this end, the spatial derivatives are computed using second-order centered differ-
ences, with the data distributed over 𝑀𝑥 *𝑀𝑦 points on a uniform spatial grid. As a result, ARKode approaches the
problem as one involving 6 *𝑀𝑥 *𝑀𝑦 coupled ODEs.

This program solves the problem with a DIRK method, using a Newton iteration with the preconditioned SUNLIN-
SOL_SPGMR iterative linear solver module, and ARKSPILS interface. The preconditioner matrix used is the prod-
uct of two matrices:

1. A matrix, only defined implicitly, based on a fixed number of Gauss-Seidel iterations using the diffusion terms
only.

2. A block-diagonal matrix based on the partial derivatives of the interaction terms 𝑓 only, using block-grouping
(computing only a subset of the 3 × 3 blocks).

Four different runs are made for this problem. The product preconditoner is applied on the left and on the
right. In each case, both the modified and classical Gram-Schmidt orthogonalization options are tested. In the
series of runs, ARKodeInit, SUNSPGMR, ARKSpilsSetLinearSolver, SUNSPGMRSetGSType,
ARKSpilsSetEpsLin and ARKSpilsSetPreconditioner are called only for the first run, whereas
ARKodeReInit, SUNSPGMRSetPrecType and SUNSPGMRSetGSType are called to re-initialize the integrator
and update linear solver parameters for each of the remaining three runs.

A problem description, performance statistics at selected output times, and final statistics are written to standard out-
put. On the first run, solution values are also printed at output times. Error and warning messages are written to stan-
dard error, but there should be no such messages.

1.14 ark_onewaycouple_mri

This example simulates a linear system of 3 dependent variables 𝑢, 𝑣 and 𝑤, that depend on the independent variable
𝑡 via the IVP system

𝑑𝑢

𝑑𝑡
= −50𝑣,

𝑑𝑣

𝑑𝑡
= 50𝑢,

𝑑𝑤

𝑑𝑡
= −𝑤 + 𝑢 + 𝑣.

We integrate over the interval 0 ≤ 𝑡 ≤ 1, with the initial conditions 𝑢(0) = 1, 𝑣(0) = 0, 𝑤(0) = 2. The solution is
output to the screen at equal intervals of 0.1 time units.

1.14.1 Numerical method

This program solves the problem with the default third order method.

The problem is run using a fixed slow step size ℎ𝑠 = 0.001 and fast step size 0.0001.

10 outputs are printed at equal intervals, and run statistics are printed at the end.

16 Chapter 1. Serial C example problems

Example Programs for ARKode, v4.7.0

1.14.2 Solutions

This system has the analytic solution,

𝑢(𝑡) = cos(50𝑡),

𝑣(𝑡) = sin(50𝑡),

𝑤(𝑡) = 5051/2501 * exp(−𝑡) − 49/2501 * cos(50𝑡) + 51/2501 * sin(50𝑡).

1.15 ark_twowaycouple_mri

This example simulates a linear system of 3 dependent variables 𝑢, 𝑣 and 𝑤, that depend on the independent variable
𝑡 via the IVP system

𝑑𝑢

𝑑𝑡
= 100𝑣 + 𝑤,

𝑑𝑣

𝑑𝑡
= −100𝑢,

𝑑𝑤

𝑑𝑡
= −𝑤 + 𝑢.

We integrate over the interval 0 ≤ 𝑡 ≤ 2, with the initial conditions 𝑢(0) = 9001/10001, 𝑣(0) = 10−5/10001,
𝑤(0) = 1000. The solution is output to the screen at equal intervals of 0.1 time units.

1.15.1 Numerical method

This program solves the problem with the default third order method.

The problem is run using a fixed slow step size ℎ𝑠 = 0.001 and fast step size 0.00002.

20 outputs are printed at equal intervals, and run statistics are printed at the end.

1.15. ark_twowaycouple_mri 17

Example Programs for ARKode, v4.7.0

18 Chapter 1. Serial C example problems

Chapter 2

OpenMP C example problems

2.1 ark_brusselator1D_omp

This problem is mathematically identical to the one-dimensional reaction-diffusion brusselator model,
ark_brusselator1D. As before, we investigate a time-dependent system of partial differential equations with 3 com-
ponents, 𝑌 = [𝑢, 𝑣, 𝑤]𝑇 that satisfy the equations,

𝜕𝑢

𝜕𝑡
= 𝑑𝑢

𝜕2𝑢

𝜕𝑥2
+ 𝑎− (𝑤 + 1)𝑢 + 𝑣𝑢2,

𝜕𝑣

𝜕𝑡
= 𝑑𝑣

𝜕2𝑣

𝜕𝑥2
+ 𝑤𝑢− 𝑣𝑢2,

𝜕𝑤

𝜕𝑡
= 𝑑𝑤

𝜕2𝑤

𝜕𝑥2
+

𝑏− 𝑤

𝜀
− 𝑤𝑢.

We integrate for 𝑡 ∈ [0, 10], and 𝑥 ∈ [0, 1], with initial conditions

𝑢(0, 𝑥) = 𝑎 +
1

10
sin(𝜋𝑥),

𝑣(0, 𝑥) =
𝑏

𝑎
+

1

10
sin(𝜋𝑥),

𝑤(0, 𝑥) = 𝑏 +
1

10
sin(𝜋𝑥),

and with stationary boundary conditions, i.e.

𝜕𝑢

𝜕𝑡
(𝑡, 0) =

𝜕𝑢

𝜕𝑡
(𝑡, 1) = 0,

𝜕𝑣

𝜕𝑡
(𝑡, 0) =

𝜕𝑣

𝜕𝑡
(𝑡, 1) = 0,

𝜕𝑤

𝜕𝑡
(𝑡, 0) =

𝜕𝑤

𝜕𝑡
(𝑡, 1) = 0.

2.1.1 Numerical method

The numerical method is identical to the previous implementation, except that we now use SUNDIALS’ OpenMP-
enabled vector kernel module, NVECTOR_OPENMP, and have similarly threaded the supplied right-hand side and
banded Jacobian construction functions.

19

Example Programs for ARKode, v4.7.0

20 Chapter 2. OpenMP C example problems

Chapter 3

Parallel C example problems

3.1 ark_diurnal_kry_bbd_p

This problem is an ARKode clone of the CVODE problem, cv_diurnal_kry_bbd_p. As described in
[HSR2017], this problem models a two-species diurnal kinetics advection-diffusion PDE system in two spatial di-
mensions,

𝜕𝑐𝑖
𝜕𝑡

= 𝐾ℎ
𝜕2𝑐𝑖
𝜕𝑥2

+ 𝑉
𝜕𝑐𝑖
𝜕𝑥

+
𝜕

𝜕𝑦

(︂
𝐾𝑣(𝑦)

𝜕𝑐𝑖
𝜕𝑦

)︂
+ 𝑅𝑖(𝑐1, 𝑐2, 𝑡), 𝑖 = 1, 2

where

𝑅1(𝑐1, 𝑐2, 𝑡) = −𝑞1 * 𝑐1 * 𝑐3 − 𝑞2 * 𝑐1 * 𝑐2 + 2 * 𝑞3(𝑡) * 𝑐3 + 𝑞4(𝑡) * 𝑐2,
𝑅2(𝑐1, 𝑐2, 𝑡) = 𝑞1 * 𝑐1 * 𝑐3 − 𝑞2 * 𝑐1 * 𝑐2 − 𝑞4(𝑡) * 𝑐2,

𝐾𝑣(𝑦) = 𝐾𝑣0𝑒
𝑦/5.

Here 𝐾ℎ, 𝑉 , 𝐾𝑣0, 𝑞1, 𝑞2, and 𝑐3 are constants, and 𝑞3(𝑡) and 𝑞4(𝑡) vary diurnally. The problem is posed on the
square spatial domain (𝑥, 𝑦) ∈ [0, 20] × [30, 50], with homogeneous Neumann boundary conditions, and for time
interval 𝑡 ∈ [0, 86400] sec (1 day).

We enforce the initial conditions

𝑐1(𝑥, 𝑦) = 106𝜒(𝑥)𝜂(𝑦)

𝑐2(𝑥, 𝑦) = 1012𝜒(𝑥)𝜂(𝑦)

𝜒(𝑥) = 1 −
√︂

𝑥− 10

10
+

1

2
4

√︂
𝑥− 10

10

𝜂(𝑦) = 1 −
√︂

𝑦 − 40

10
+

1

2
4

√︂
𝑥− 10

10
.

3.1.1 Numerical method

We employ a method of lines approach, wherein we first semi-discretize in space to convert the system of 2 PDEs
into a larger system of ODEs. To this end, the spatial derivatives are computed using second-order centered differ-
ences, with the data distributed over 𝑀𝑥 *𝑀𝑦 points on a uniform spatial grid. As a result, ARKode approaches the
problem as one involving 2 *𝑀𝑥 *𝑀𝑦 coupled ODEs.

The problem is decomposed in parallel into uniformly-sized subdomains, with two subdomains in each direction
(four in total), and where each subdomain has five points in each direction (i.e. 𝑀𝑥 = 𝑀𝑦 = 10).

21

Example Programs for ARKode, v4.7.0

This program solves the problem with a DIRK method, using a Newton iteration with the preconditioned SUNLIN-
SOL_SPGMR iterative linear solver through the ARKSPILS interface.

The preconditioner matrix used is block-diagonal, with banded blocks, constructed using the ARKBBDPRE module.
Each block is generated using difference quotients, with half-bandwidths mudq = mldq = 10, but the retained
banded blocks have half-bandwidths mukeep = mlkeep = 2. A copy of the approximate Jacobian is saved and
conditionally reused within the preconditioner routine.

Two runs are made for this problem, first with left and then with right preconditioning.

Performance data and sampled solution values are printed at selected output times, and all performance counters are
printed on completion.

3.2 ark_diurnal_kry_p

This problem is an ARKode clone of the CVODE problem, cv_diurnal_kry_p. As described in [HSR2017],
this test problem models a two-species diurnal kinetics advection-diffusion PDE system in two spatial dimensions,

𝜕𝑐𝑖
𝜕𝑡

= 𝐾ℎ
𝜕2𝑐𝑖
𝜕𝑥2

+ 𝑉
𝜕𝑐𝑖
𝜕𝑥

+
𝜕

𝜕𝑦

(︂
𝐾𝑣(𝑦)

𝜕𝑐𝑖
𝜕𝑦

)︂
+ 𝑅𝑖(𝑐1, 𝑐2, 𝑡), 𝑖 = 1, 2

where

𝑅1(𝑐1, 𝑐2, 𝑡) = −𝑞1 * 𝑐1 * 𝑐3 − 𝑞2 * 𝑐1 * 𝑐2 + 2 * 𝑞3(𝑡) * 𝑐3 + 𝑞4(𝑡) * 𝑐2,
𝑅2(𝑐1, 𝑐2, 𝑡) = 𝑞1 * 𝑐1 * 𝑐3 − 𝑞2 * 𝑐1 * 𝑐2 − 𝑞4(𝑡) * 𝑐2,

𝐾𝑣(𝑦) = 𝐾𝑣0𝑒
𝑦/5.

Here 𝐾ℎ, 𝑉 , 𝐾𝑣0, 𝑞1, 𝑞2, and 𝑐3 are constants, and 𝑞3(𝑡) and 𝑞4(𝑡) vary diurnally. The problem is posed on the
square spatial domain (𝑥, 𝑦) ∈ [0, 20] × [30, 50], with homogeneous Neumann boundary conditions, and for time
interval 𝑡 ∈ [0, 86400] sec (1 day).

We enforce the initial conditions

𝑐1(𝑥, 𝑦) = 106𝜒(𝑥)𝜂(𝑦)

𝑐2(𝑥, 𝑦) = 1012𝜒(𝑥)𝜂(𝑦)

𝜒(𝑥) = 1 −
√︂

𝑥− 10

10
+

1

2
4

√︂
𝑥− 10

10

𝜂(𝑦) = 1 −
√︂

𝑦 − 40

10
+

1

2
4

√︂
𝑥− 10

10
.

3.2.1 Numerical method

We employ a method of lines approach, wherein we first semi-discretize in space to convert the system of 2 PDEs
into a larger system of ODEs. To this end, the spatial derivatives are computed using second-order centered differ-
ences, with the data distributed over 𝑀𝑥 *𝑀𝑦 points on a uniform spatial grid. As a result, ARKode approaches the
problem as one involving 2 *𝑀𝑥 *𝑀𝑦 coupled ODEs.

The problem is decomposed in parallel into uniformly-sized subdomains, with two subdomains in each direction
(four in total), and where each subdomain has five points in each direction (i.e. 𝑀𝑥 = 𝑀𝑦 = 10).

This program solves the problem with a DIRK method, using a Newton iteration with the preconditioned SUNLIN-
SOL_SPGMR iterative linear solver, through the ARKSPILS interface.

The preconditioner matrix used is block-diagonal, with block-diagonal portion of the Newton matrix used as a left
preconditioner. A copy of the block-diagonal portion of the Jacobian is saved and conditionally reused within the
preconditioner routine.

22 Chapter 3. Parallel C example problems

Example Programs for ARKode, v4.7.0

Performance data and sampled solution values are printed at selected output times, and all performance counters are
printed on completion.

3.2. ark_diurnal_kry_p 23

Example Programs for ARKode, v4.7.0

24 Chapter 3. Parallel C example problems

Chapter 4

Parallel Hypre example problems

4.1 ark_diurnal_kry_ph

This problem is mathematically identical to the parallel C example problem ark_diurnal_kry_p. As before, this test
problem models a two-species diurnal kinetics advection-diffusion PDE system in two spatial dimensions,

𝜕𝑐𝑖
𝜕𝑡

= 𝐾ℎ
𝜕2𝑐𝑖
𝜕𝑥2

+ 𝑉
𝜕𝑐𝑖
𝜕𝑥

+
𝜕

𝜕𝑦

(︂
𝐾𝑣(𝑦)

𝜕𝑐𝑖
𝜕𝑦

)︂
+ 𝑅𝑖(𝑐1, 𝑐2, 𝑡), 𝑖 = 1, 2

where

𝑅1(𝑐1, 𝑐2, 𝑡) = −𝑞1 * 𝑐1 * 𝑐3 − 𝑞2 * 𝑐1 * 𝑐2 + 2 * 𝑞3(𝑡) * 𝑐3 + 𝑞4(𝑡) * 𝑐2,
𝑅2(𝑐1, 𝑐2, 𝑡) = 𝑞1 * 𝑐1 * 𝑐3 − 𝑞2 * 𝑐1 * 𝑐2 − 𝑞4(𝑡) * 𝑐2,

𝐾𝑣(𝑦) = 𝐾𝑣0𝑒
𝑦/5.

Here 𝐾ℎ, 𝑉 , 𝐾𝑣0, 𝑞1, 𝑞2, and 𝑐3 are constants, and 𝑞3(𝑡) and 𝑞4(𝑡) vary diurnally. The problem is posed on the
square spatial domain (𝑥, 𝑦) ∈ [0, 20] × [30, 50], with homogeneous Neumann boundary conditions, and for time
interval 𝑡 ∈ [0, 86400] sec (1 day).

We enforce the initial conditions

𝑐1(𝑥, 𝑦) = 106𝜒(𝑥)𝜂(𝑦)

𝑐2(𝑥, 𝑦) = 1012𝜒(𝑥)𝜂(𝑦)

𝜒(𝑥) = 1 −
√︂

𝑥− 10

10
+

1

2
4

√︂
𝑥− 10

10

𝜂(𝑦) = 1 −
√︂

𝑦 − 40

10
+

1

2
4

√︂
𝑥− 10

10
.

4.1.1 Numerical method

The numerical method is identical to the previous implementation, except that we now use the HYPRE parallel vec-
tor module, NVECTOR_PARHYP. The output of these two examples is identical. Below, we discuss only the main
differences between the two implementations; familiarity with the HYPRE library is helpful.

We use the HYPRE IJ vector interface to allocate the template vector and create the parallel partitioning:

HYPRE_IJVectorCreate(comm, my_pe*local_N, (my_pe + 1)*local_N - 1, &Uij);
HYPRE_IJVectorSetObjectType(Uij, HYPRE_PARCSR);
HYPRE_IJVectorInitialize(Uij);

25

Example Programs for ARKode, v4.7.0

The initialize call means that vector elements are ready to be set using the IJ interface. We choose the initial condi-
tion vector 𝑥0 = 𝑥(𝑡0) as the template vector, and we set its values in the SetInitialProfiles(...) func-
tion. We complete assembly of the HYPRE vector with the calls:

HYPRE_IJVectorAssemble(Uij);
HYPRE_IJVectorGetObject(Uij, (void**) &Upar);

The assemble call is collective and makes the HYPRE vector ready to use. The sets the handle Upar to the actual
HYPRE vector. The handle is then passed to the N_VMake function, which creates the template N_Vector, u, as
a wrapper around the HYPRE vector. All of the other vectors used in the computation are created by cloning this
template vector.

Furthermore, since the template vector does not own the underlying HYPRE vector (it was created us-
ing the HYPRE_IJVectorCreate call above), so it is the user’s responsibility to destroy it by calling
HYPRE_IJVectorDestroy(Uij) after the template vector u has been destroyed. This function will destroy
both the HYPRE vector and its IJ interface.

To access individual elements of the solution and derivative vectors u and udot in the IVP right-hand side function,
f, the user needs to first extract the HYPRE vector by calling N_VGetVector_ParHyp, and then use HYPRE-
specific methods to access the data from that point on.

Note: Currently, interfaces to HYPRE solvers and preconditioners are not available directly through the SUNDI-
ALS interfaces, however these could be utilized directly as preconditioners for SUNDIALS’ Krylov solvers. Direct
interfaces to the HYPRE solvers will be provided in subsequent SUNDIALS releases. The current HYPRE vector
interface is included in this release mainly for testing purposes and as a preview of functionality to come.

26 Chapter 4. Parallel Hypre example problems

Chapter 5

Serial C++ example problems

5.1 ark_analytic_sys

This example demonstrates the use of ARKode’s fully implicit solver on a stiff ODE system that has a simple analyt-
ical solution. The problem is that of a linear ODE system,

𝑑𝑦

𝑑𝑡
= 𝐴𝑦

where 𝐴 = 𝑉 𝐷𝑉 −1. In this example, we use

𝑉 =

⎡⎣ 1 −1 1
−1 2 1

0 −1 2

⎤⎦ , 𝑉 −1 =
1

4

⎡⎣ 5 1 −3
2 2 −2
1 1 1

⎤⎦ , 𝐷 =

⎡⎣ −1/2 0 0
0 −1/10 0
0 0 𝜆

⎤⎦ .

where 𝜆 is a large negative number. The analytical solution to this problem may be computed using the matrix expo-
nential,

𝑌 (𝑡) = 𝑉 𝑒𝐷𝑡𝑉 −1𝑌 (0).

We evolve the problem for 𝑡 in the interval
[︀
0, 1

20

]︀
, with initial condition 𝑌 (0) = [1, 1, 1]

𝑇 .

5.1.1 Numerical method

The stiffness of the problem is directly proportional to the value of 𝜆. The value of 𝜆 should be negative to result in a
well-posed ODE; for values with magnitude larger than 100 the problem becomes quite stiff.

Here, we choose 𝜆 = −100, along with scalar relative and absolute tolerances of 𝑟𝑡𝑜𝑙 = 10−6 and 𝑎𝑡𝑜𝑙 = 10−10,
respectively.

This program solves the problem with the DIRK method, Newton iteration with the SUNMATRIX_DENSE matrix
module and accompanying SUNLINSOL_DENSE linear solver module, ARKDLS direct linear solver interface, and
a user-supplied dense Jacobian routine. Output is printed every 0.005 units of time (10 total). Run statistics (optional
outputs) are printed at the end.

5.1.2 Solutions

This problem is included both as a simple example to test systems of ODE within ARKode on a problem having an
analytical solution, 𝑌 (𝑡) = 𝑉 𝑒𝐷𝑡𝑉 −1𝑌 (0). As seen in the plots below, the computed solution tracks the analytical

27

Example Programs for ARKode, v4.7.0

solution quite well (left), and results in errors with exactly the magnitude as specified by the requested error toler-
ances (right).

28 Chapter 5. Serial C++ example problems

Chapter 6

Parallel C++ example problems

6.1 ark_heat2D

ARKode provides one parallel C++ example problem, that extends our previous ark_heat1D test to now simulate a
two-dimensional heat equation,

𝜕𝑢

𝜕𝑡
= 𝑘𝑥

𝜕2𝑢

𝜕𝑥2
+ 𝑘𝑦

𝜕2𝑢

𝜕𝑦2
+ ℎ,

for 𝑡 ∈ [0, 0.3], and (𝑥, 𝑦) ∈ [0, 1]2, with initial condition 𝑢(0, 𝑥, 𝑦) = 0, stationary boundary conditions,

𝜕𝑢

𝜕𝑡
(𝑡, 0, 𝑦) =

𝜕𝑢

𝜕𝑡
(𝑡, 1, 𝑦) =

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥, 0) =

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥, 1) = 0,

and a periodic heat source,

ℎ(𝑥, 𝑦) = sin(𝜋𝑥) sin(2𝜋𝑦).

Under these conditions, the problem has an analytical solution of the form

𝑢(𝑡, 𝑥, 𝑦) =
1 − 𝑒−(𝑘𝑥+4𝑘𝑦)𝜋

2𝑡

(𝑘𝑥 + 4𝑘𝑦)𝜋2
sin(𝜋𝑥)𝑠𝑖𝑛(2𝜋𝑦).

6.1.1 Numerical method

The spatial derivatives are computed using second-order centered differences, with the data distributed over 𝑛𝑥× 𝑛𝑦
points on a uniform spatial grid.

The problem is set up to use spatial grid parameters 𝑛𝑥 = 60 and 𝑛𝑦 = 120, with heat conductivity parameters
𝑘𝑥 = 0.5 and 𝑘𝑦 = 0.75. The problem is run using scalar relative and absolute solver tolerances of 𝑟𝑡𝑜𝑙 = 10−5 and
𝑎𝑡𝑜𝑙 = 10−10.

As with the 1D version, this program solves the problem with a DIRK method, that itself uses a Newton iteration and
SUNLINSOL_PCG iterative linear solver through the ARKSPILS interface. However, unlike the previous example,
here the PCG solver is preconditioned using a single Jacobi iteration, and uses ARKSPILS’ built-in finite-difference
Jacobian-vector product routine. Additionally, this problem uses MPI and the NVECTOR_PARALLEL module for
parallelization.

29

Example Programs for ARKode, v4.7.0

6.1.2 Solutions

Top row: 2D heat PDE solution snapshots, the left is at time 𝑡 = 0, center is at time 𝑡 = 0.03, right is at time 𝑡 =
0.3. Bottom row, absolute error in these solutions. Note that the relative error in these results is on the order 10−4,
corresponding to the spatial accuracy of the relatively coarse finite-difference mesh. All plots are created using the
supplied Python script, plot_heat2D.py.

30 Chapter 6. Parallel C++ example problems

Example Programs for ARKode, v4.7.0

6.1. ark_heat2D 31

Example Programs for ARKode, v4.7.0

32 Chapter 6. Parallel C++ example problems

Chapter 7

Serial Fortran 77 example problems

7.1 fark_diurnal_kry_bp

This problem is an ARKode clone of the CVODE problem, fcv_diurnal_kry_bp. As described in [HSR2017],
this problem models a two-species diurnal kinetics advection-diffusion PDE system in two spatial dimensions,

𝜕𝑐𝑖
𝜕𝑡

= 𝐾ℎ
𝜕2𝑐𝑖
𝜕𝑥2

+ 𝑉
𝜕𝑐𝑖
𝜕𝑥

+
𝜕

𝜕𝑦

(︂
𝐾𝑣(𝑦)

𝜕𝑐𝑖
𝜕𝑦

)︂
+ 𝑅𝑖(𝑐1, 𝑐2, 𝑡), 𝑖 = 1, 2

where

𝑅1(𝑐1, 𝑐2, 𝑡) = −𝑞1 * 𝑐1 * 𝑐3 − 𝑞2 * 𝑐1 * 𝑐2 + 2 * 𝑞3(𝑡) * 𝑐3 + 𝑞4(𝑡) * 𝑐2,
𝑅2(𝑐1, 𝑐2, 𝑡) = 𝑞1 * 𝑐1 * 𝑐3 − 𝑞2 * 𝑐1 * 𝑐2 − 𝑞4(𝑡) * 𝑐2,

𝐾𝑣(𝑦) = 𝐾𝑣0𝑒
𝑦/5.

Here 𝐾ℎ, 𝑉 , 𝐾𝑣0, 𝑞1, 𝑞2, and 𝑐3 are constants, and 𝑞3(𝑡) and 𝑞4(𝑡) vary diurnally. The problem is posed on the
square spatial domain (𝑥, 𝑦) ∈ [0, 20] × [30, 50], with homogeneous Neumann boundary conditions, and for time
interval 𝑡 ∈ [0, 86400] sec (1 day).

We enforce the initial conditions

𝑐1(𝑥, 𝑦) = 106𝜒(𝑥)𝜂(𝑦)

𝑐2(𝑥, 𝑦) = 1012𝜒(𝑥)𝜂(𝑦)

𝜒(𝑥) = 1 −
√︂

𝑥− 10

10
+

1

2
4

√︂
𝑥− 10

10

𝜂(𝑦) = 1 −
√︂

𝑦 − 40

10
+

1

2
4

√︂
𝑥− 10

10
.

7.1.1 Numerical method

We employ a method of lines approach, wherein we first semi-discretize in space to convert the system of 2 PDEs
into a larger system of ODEs. To this end, the spatial derivatives are computed using second-order centered differ-
ences, with the data distributed over 𝑀𝑥 *𝑀𝑦 points on a uniform spatial grid. As a result, ARKode approaches the
problem as one involving 2*𝑀𝑥*𝑀𝑦 coupled ODEs. In this problem, we use a relatively coarse uniform mesh with
𝑀𝑥 = 𝑀𝑦 = 10.

This program solves the problem with a DIRK method, using a Newton iteration with the preconditioned SUNLIN-
SOL_SPGMR iterative linear solver module, and the ARKSPILS interface.

33

Example Programs for ARKode, v4.7.0

The left preconditioner used is a banded matrix, constructed using the ARKBP module. The banded preconditioner
matrix is generated using difference quotients, with half-bandwidths mu = ml = 2.

Performance data and sampled solution values are printed at selected output times, and all performance counters are
printed on completion.

7.2 fark_roberts_dnsL

This problem is an ARKode clone of the CVODE problem, fcv_roberts_dnsL. As described in [HSR2017],
this problem models the kinetics of a three-species autocatalytic reaction. This is an ODE system with 3 components,
𝑌 = [𝑦1, 𝑦2, 𝑦3]𝑇 , satisfying the equations,

𝑑𝑦1
𝑑𝑡

= −0.04𝑦1 + 104𝑦2𝑦3,

𝑑𝑦2
𝑑𝑡

= 0.04𝑦1 − 104𝑦2𝑦3 − 3 · 107𝑦22 ,

𝑑𝑦3
𝑑𝑡

= 3 · 107𝑦22 .

We integrate over the interval 0 ≤ 𝑡 ≤ 4 · 1010, with initial conditions 𝑌 (0) = [1, 0, 0]𝑇 .

Additionally, we supply the following two root-finding equations:

𝑔1(𝑢) = 𝑢− 10−4,

𝑔2(𝑤) = 𝑤 − 10−2.

While these are not inherently difficult nonlinear equations, they easily serve the purpose of determining the times at
which our solutions attain desired target values.

7.2.1 Numerical method

This program solves the problem with a DIRK method, using a Newton iteration with the SUNLIN-
SOL_LAPACKDENSE linear solver module and ARKDLS interface.

As with the ark_robertson_root problem, we enable ARKode’s rootfinding module to find the times at which either
𝑢 = 10−4 or 𝑤 = 10−2.

Performance data and solution values are printed at selected output times, along with additional output at rootfinding
events. All performance counters are printed on completion.

34 Chapter 7. Serial Fortran 77 example problems

Chapter 8

Parallel Fortran 77 example problems

8.1 fark_diag_kry_bbd_p

This problem is an ARKode clone of the CVODE problem, fcv_diag_kry_bbd_p. As described in [HSR2017],
this problem models a stiff, linear, diagonal ODE system,

𝜕𝑦𝑖
𝜕𝑡

= −𝛼𝑖𝑦𝑖, 𝑖 = 1, . . . 𝑁.

Here 𝛼 = 10 and 𝑁 = 10𝑁𝑃 , where 𝑁𝑃 is the number of MPI tasks used for the problem. The problem has initial
conditions 𝑦𝑖 = 1 and evolves for the time interval 𝑡 ∈ [0, 1].

8.1.1 Numerical method

This program solves the problem with a DIRK method, using a Newton iteration with the preconditioned SUNLIN-
SOL_SPGMR iterative linear solver module and ARKSPILS interface.

A diagonal preconditioner matrix is used, formed automatically through difference quotients within the ARKBBD-
PRE module. Since ARKBBDPRE is developed for use of a block-banded preconditioner, in this solver each block
is set to have half-bandwidths mudq = mldq = 0 to retain only the diagonal portion.

Two runs are made for this problem, first with left and then with right preconditioning (IPRE is first set to 1 and then
to 2).

Performance data is printed at selected output times, and maximum errors and final performance counters are printed
on completion.

8.2 fark_diag_non_p

This problem is an ARKode clone of the CVODE problem, fcv_diag_non_p. As described in [HSR2017], this
problem models a nonstiff, linear, diagonal ODE system,

𝜕𝑦𝑖
𝜕𝑡

= −𝛼𝑖𝑦𝑖, 𝑖 = 1, . . . 𝑁.

Here 𝛼 = 10
𝑁 and 𝑁 = 10𝑁𝑃 , where 𝑁𝑃 is the number of MPI tasks used for the problem. The problem has initial

conditions 𝑦𝑖 = 1 and evolves for the time interval 𝑡 ∈ [0, 1].

35

Example Programs for ARKode, v4.7.0

8.2.1 Numerical method

This program solves the problem with an ERK method, and hence does not require either a nonlinear or linear solver
for integration.

Performance data is printed at selected output times, and maximum errors and final performance counters are printed
on completion.

36 Chapter 8. Parallel Fortran 77 example problems

Chapter 9

Serial Fortran 90 example problems

9.1 ark_bruss

This test problem is a Fortran-90 version of the same brusselator problem as before, ark_brusselator, in which the
“test 1” parameters are hard-coded into the solver. As with the previous test, this problem has 3 dependent variables
𝑢, 𝑣 and 𝑤, that depend on the independent variable 𝑡 via the IVP system

𝑑𝑢

𝑑𝑡
= 𝑎− (𝑤 + 1)𝑢 + 𝑣𝑢2,

𝑑𝑣

𝑑𝑡
= 𝑤𝑢− 𝑣𝑢2,

𝑑𝑤

𝑑𝑡
=

𝑏− 𝑤

𝜀
− 𝑤𝑢.

We integrate over the interval 0 ≤ 𝑡 ≤ 10, with the initial conditions 𝑢(0) = 3.9, 𝑣(0) = 1.1, 𝑤(0) = 2.8, and
parameters 𝑎 = 1.2, 𝑏 = 2.5 and 𝜀 = 10−5. After each unit time interval, the solution is output to the screen.

9.1.1 Numerical method

Since this driver and utility functions are written in Fortran-90, this example demonstrates the use of the FARKODE
interface for the ARKode solver. For time integration, this example uses the fourth-order additive Runge-Kutta
IMEX method, where the right-hand sides are broken up as

𝑓𝐸(𝑡, 𝑢, 𝑣, 𝑤) =

⎛⎝ 𝑎− (𝑤 + 1)𝑢 + 𝑣𝑢2

𝑤𝑢− 𝑣𝑢2

−𝑤𝑢

⎞⎠ , and 𝑓𝐼(𝑡, 𝑢, 𝑣, 𝑤) =

⎛⎝ 0
0

𝑏−𝑤
𝜀

⎞⎠ .

The implicit systems are solved using the built-in modified Newton iteration, with the SUNMATRIX_DENSE matrix
module and accompanying SUNLINSOL_DENSE linear solver module, through the ARKDLS interface. Both the
Jacobian routine and right-hand side functions are supplied by functions provided in the example file.

The only non-default solver options are the tolerances 𝑎𝑡𝑜𝑙 = 10−10 and 𝑟𝑡𝑜𝑙 = 10−6, adaptivity method 2 (I con-
troller), a maximum of 8 Newton iterations per step, a nonlinear solver convergence coefficient 𝑛𝑙𝑠𝑐𝑜𝑒𝑓 = 10−8, and
a maximum of 1000 internal time steps.

9.1.2 Solutions

With this setup, all three solution components exhibit a rapid transient change during the first 0.2 time units, fol-
lowed by a slow and smooth evolution, as seen in the figure below. Note that these results identically match those

37

Example Programs for ARKode, v4.7.0

from the previous C example with the same equations.

9.2 ark_bruss1D_FEM_klu

This problem is mathematically identical to the C example problem ark_brusselator1D_FEM_slu, but is written in
Fortran 90, stores the sparse Jacobian and mass matrices in compressed-sparse-row format, and uses the KLU sparse-
direct linear solver.

38 Chapter 9. Serial Fortran 90 example problems

Chapter 10

Parallel Fortran 90 example problems

10.1 fark_heat2D

This test problem is a Fortran-90 version of the same two-dimensional heat equation problem as in C++,
ark_heat2D. This models a simple two-dimenaional heat equation,

𝜕𝑢

𝜕𝑡
= 𝑘𝑥

𝜕2𝑢

𝜕𝑥2
+ 𝑘𝑦

𝜕2𝑢

𝜕𝑦2
+ ℎ,

for 𝑡 ∈ [0, 0.3], and (𝑥, 𝑦) ∈ [0, 1]2, with initial condition 𝑢(0, 𝑥, 𝑦) = 0, stationary boundary conditions,

𝜕𝑢

𝜕𝑡
(𝑡, 0, 𝑦) =

𝜕𝑢

𝜕𝑡
(𝑡, 1, 𝑦) =

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥, 0) =

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥, 1) = 0,

and a periodic heat source,

ℎ(𝑥, 𝑦) = sin(𝜋𝑥) sin(2𝜋𝑦).

Under these conditions, the problem has an analytical solution of the form

𝑢(𝑡, 𝑥, 𝑦) =
1 − 𝑒−(𝑘𝑥+4𝑘𝑦)𝜋

2𝑡

(𝑘𝑥 + 4𝑘𝑦)𝜋2
sin(𝜋𝑥)𝑠𝑖𝑛(2𝜋𝑦).

10.1.1 Numerical method

The spatial derivatives are computed using second-order centered differences, with the data distributed over 𝑛𝑥× 𝑛𝑦
points on a uniform spatial grid.

The spatial grid is set to 𝑛𝑥 = 60 and 𝑛𝑦 = 120. The heat conductivity parameters are 𝑘𝑥 = 0.5 and 𝑘𝑦 = 0.75.

As with the C++ version, this program solves the problem with a DIRK method, that itself uses a Newton iteration
and SUNLINSOL_PCG iterative linear solver module through the ARKSPILS interface. Also like the C++ version,
the PCG solver is preconditioned using a single Jacobi iteration, and uses ARKSPILS’ finite-difference Jacobian-
vector product approximation routine for the PCG polver. Additionally, this problem uses MPI and the Fortran inter-
face to the NVECTOR_PARALLEL module for parallelization.

39

Example Programs for ARKode, v4.7.0

40 Chapter 10. Parallel Fortran 90 example problems

Bibliography

[HSR2017] A.C. Hindmarsh, R. Serban and D.R. Reynolds. Example Programs for CVODE v5.7.0. Technical Re-
port UCRL-SM-208110, LLNL, 2021.

[R2018] D.R. Reynolds. User Documentation for ARKode v4.7.0. Technical Report LLNL-CODE-667205, LLNL,
2021.

41

	Serial C example problems
	ark_analytic
	ark_analytic_nonlin
	ark_brusselator
	ark_brusselator_fp
	ark_brusselator_mri
	ark_robertson
	ark_robertson_root
	ark_brusselator1D
	ark_brusselator1D_klu
	ark_brusselator1D_FEM_slu
	ark_heat1D
	ark_heat1D_adapt
	ark_KrylovDemo_prec
	ark_onewaycouple_mri
	ark_twowaycouple_mri

	OpenMP C example problems
	ark_brusselator1D_omp

	Parallel C example problems
	ark_diurnal_kry_bbd_p
	ark_diurnal_kry_p

	Parallel Hypre example problems
	ark_diurnal_kry_ph

	Serial C++ example problems
	ark_analytic_sys

	Parallel C++ example problems
	ark_heat2D

	Serial Fortran 77 example problems
	fark_diurnal_kry_bp
	fark_roberts_dnsL

	Parallel Fortran 77 example problems
	fark_diag_kry_bbd_p
	fark_diag_non_p

	Serial Fortran 90 example problems
	ark_bruss
	ark_bruss1D_FEM_klu

	Parallel Fortran 90 example problems
	fark_heat2D

	Bibliography

