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This is the documentation for ARKode, an adaptive step time integration package for stiff, nonstiff and mixed
stiff/nonstiff systems of ordinary differential equations (ODEs) using Runge-Kutta (i.e. one-step, multi-stage) meth-
ods. The ARKode solver is a component of the SUNDIALS suite of nonlinear and differential/algebraic equation
solvers. It is designed to have a similar user experience to the CVODE solver, including user modes to allow adaptive
integration to specified output times, return after each internal step and root-finding capabilities, and for calculations
in serial, using shared-memory parallelism (via OpenMP, Pthreads, CUDA, Raja) or distributed-memory parallelism
(via MPI). The default integration and solver options should apply to most users, though control over nearly all inter-
nal parameters and time adaptivity algorithms is enabled through optional interface routines.

ARKode is written in C, with C++ and Fortran interfaces.

ARKode is developed by Southern Methodist University, with support by the US Department of Energy through the
FASTMath SciDAC Institute, under subcontract B598130 from Lawrence Livermore National Laboratory.
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Chapter 1

Introduction

The ARKode infrastructure provides adaptive-step time integration modules for stiff, nonstiff and mixed stiff/nonstiff
systems of ordinary differential equations (ODEs). ARKode itself is structured to support a wide range of one-step
(but multi-stage) methods, allowing for rapid development of parallel implementations of state-of-the-art time inte-
gration methods. At present, ARKode is packaged with two time-stepping modules, ARKStep and ERKStep.

ARKStep supports ODE systems posed in split, linearly-implicit form,

𝑀�̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓 𝐼(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0, (1.1)

where 𝑡 is the independent variable, 𝑦 is the set of dependent variables (in R𝑁 ), 𝑀 is a user-specified, nonsingular
operator from R𝑁 to R𝑁 , and the right-hand side function is partitioned into up to two components:

• 𝑓𝐸(𝑡, 𝑦) contains the “nonstiff” time scale components to be integrated explicitly, and

• 𝑓 𝐼(𝑡, 𝑦) contains the “stiff” time scale components to be integrated implicitly.

Either of these operators may be disabled, allowing for fully explicit, fully implicit, or combination implicit-explicit
(ImEx) time integration.

The algorithms used in ARKStep are adaptive- and fixed-step additive Runge Kutta methods. Such methods are de-
fined through combining two complementary Runge-Kutta methods: one explicit (ERK) and the other diagonally
implicit (DIRK). Through appropriately partitioning the ODE right-hand side into explicit and implicit components
(1.1), such methods have the potential to enable accurate and efficient time integration of stiff, nonstiff, and mixed
stiff/nonstiff systems of ordinary differential equations. A key feature allowing for high efficiency of these methods
is that only the components in 𝑓 𝐼(𝑡, 𝑦) must be solved implicitly, allowing for splittings tuned for use with optimal
implicit solver algorithms.

This framework allows for significant freedom over the constitutive methods used for each component, and ARKode
is packaged with a wide array of built-in methods for use. These built-in Butcher tables include adaptive explicit
methods of orders 2-8, adaptive implicit methods of orders 2-5, and adaptive ImEx methods of orders 3-5.

ERKStep focuses specifically on problems posed in explicit form,

�̇� = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. (1.2)

allowing for increased computational efficiency and memory savings. The algorithms used in ERKStep are adaptive-
and fixed-step explicit Runge Kutta methods. As with ARKStep, the ERKStep module is packaged with adaptive
explicit methods of orders 2-8.

3
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For problems that include nonzero implicit term 𝑓 𝐼(𝑡, 𝑦), the resulting implicit system (assumed nonlinear, unless
specified otherwise) is solved approximately at each integration step, using a modified Newton method, inexact New-
ton method, or an accelerated fixed-point solver. For the Newton-based methods and the serial or threaded NVEC-
TOR modules in SUNDIALS, ARKode may use a variety of linear solvers provided with SUNDIALS, including
both direct (dense, band, or sparse) and preconditioned Krylov iterative (GMRES [SS1986], BiCGStab [V1992],
TFQMR [F1993], FGMRES [S1993], or PCG [HS1952]) linear solvers. When used with the MPI-based parallel,
PETSc, hypre, CUDA, HIP, and Raja NVECTOR modules, or a user-provided vector data structure, only the Krylov
solvers are available, although a user may supply their own linear solver for any data structures if desired. For the
serial or threaded vector structures, we provide a banded preconditioner module called ARKBANDPRE that may
be used with the Krylov solvers, while for the MPI-based parallel vector structure there is a preconditioner module
called ARKBBDPRE which provides a band-block-diagonal preconditioner. Additionally, a user may supply more
optimal, problem-specific preconditioner routines.

1.1 Changes from previous versions

1.1.1 Changes in 4.7.0

A new NVECTOR implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At
present the only SYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See The NVECTOR_SYCL Mod-
ule for more details. This module is considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See The SUNLinSol_MagmaDense Module for more
details.

1.1.2 Changes in 4.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and SUNDI-
ALS_RAJA_BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

1.1.3 Changes in 4.6.0

A new NVECTOR implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See The NVECTOR_HIP Module for more details. This module is considered experimental
and is subject to change from version to version.

The RAJA NVECTOR implementation has been updated to support the HIP backend in addition to the CUDA back-
end. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS
CMake variable. This module remains experimental and is subject to change from version to version.

A new optional operation, N_VGetDeviceArrayPointer(), was added to the N_Vector API. This operation is
useful for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR implemen-
tations no longer require the SUNDIALS CUDA N_Vector. Instead, they require that the vector uti-
lized provides the N_VGetDeviceArrayPointer() operation, and that the pointer returned by
N_VGetDeviceArrayPointer() is a valid CUDA device pointer.

4 Chapter 1. Introduction
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1.1.4 Changes in v4.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

1.1.5 Changes in v4.4.0

Added full support for time-dependent mass matrices in ARKStep, and expanded existing non-identity mass matrix
infrastructure to support use of the fixed point nonlinear solver. Fixed bug for ERK method integration with static
mass matrices.

An interface between ARKStep and the XBraid multigrid reduction in time (MGRIT) library [XBraid] has been
added to enable parallel-in-time integration. See the Multigrid Reduction in Time with XBraid section for more in-
formation and the example codes in examples/arkode/CXX_xbraid. This interface required the addition
of three new N_Vector operations to exchange vector data between computational nodes, see N_VBufSize(),
N_VBufPack(), and N_VBufUnpack(). These N_Vector operations are only used within the XBraid interface
and need not be implemented for any other context.

Updated the MRIStep time-stepping module in ARKode to support higher-order MRI-GARK methods [S2019], in-
cluding methods that involve solve-decoupled, diagonally-implicit treatment of the slow time scale.

Added the functions ARKStepSetLSNormFactor(), ARKStepSetMassLSNormFactor(), and
MRIStepSetLSNormFactor() to specify the factor for converting between integrator tolerances (WRMS norm)
and linear solver tolerances (L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS.

Added new reset functions ARKStepReset(), ERKStepReset(), and MRIStepReset() to reset the
stepper time and state vector to user-provided values for continuing the integration from that point while re-
taining the integration history. These function complement the reinitialization functions ARKStepReInit(),
ERKStepReInit(), and MRIStepReInit() which reinitialize the stepper so that the problem integration
should resume as if started from scratch.

Added new functions ARKStepComputeState(), ARKStepGetNonlinearSystemData(),
MRIStepComputeState(), and MRIStepGetNonlinearSystemData() which advanced users might find
useful if providing a custom SUNNonlinSolSysFn().

The expected behavior of SUNNonlinSolGetNumIters() and SUNNonlinSolGetNumConvFails() in
the SUNNonlinearSolver API have been updated to specify that they should return the number of nonlinear solver
iterations and convergence failures in the most recent solve respectively rather than the cumulative number of itera-
tions and failures across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinear-
Solver implementations have been updated accordingly. As before, the cumulative number of nonlinear iterations
may be retrieved by calling ARKStepGetNumNonlinSolvIters(), the cumulative number of failures with
ARKStepGetNumNonlinSolvConvFails(), or both with ARKStepGetNonlinSolvStats().

A minor bug in checking the Jacobian evaluation frequency has been fixed. As a result codes using using a non-
default Jacobian update frequency through a call to ARKStepSetMaxStepsBetweenJac() will need to in-
crease the provided value by 1 to achieve the same behavior as before. Additionally, for greater clarity the functions
ARKStepSetMaxStepsBetweenLSet() and ARKStepSetMaxStepsBetweenJac() have been depre-
cated and replaced with ARKStepSetLSetupFrequency() and ARKStepSetJacEvalFrequency() re-
spectively.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the update adds
managed memory support to the NVECTOR_RAJA module. Users of the module will need to update any calls to the
N_VMake_Raja function because that signature was changed. This module remains experimental and is subject to
change from version to version.
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The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update changes the local
ordinal type to always be an int.

Added support for CUDA v11.

1.1.6 Changes in v4.3.0

Fixed a bug in ARKode where the prototypes for ERKStepSetMinReduction() and
ARKStepSetMinReduction() were not included in arkode_erkstep.h and arkode_arkstep.h
respectively.

Fixed a bug where inequality constraint checking would need to be disabled and then re-enabled to update the in-
equality constraint values after resizing a problem. Resizing a problem will now disable constraints and a call to
ARKStepSetConstraints() or ERKStepSetConstraints() is required to re-enable constraint check-
ing for the new problem size.

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function is NULL or, if
preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and
SUNMATRIX_CUSPARSE modules. These modules remain experimental and are subject to change from ver-
sion to version. In addition, the NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see
equivalent performance or some improvement, but a select few may observe minor performance degradation with
the default settings. Users are encouraged to contact the SUNDIALS team about any perfomance changes that they
notice.

Added the optional function ARKStepSetJacTimesRhsFn() to specify an alternative implicit right-hand side
function for computing Jacobian-vector products with the internal difference quotient approximation.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and
SUNNONLINSOL_FIXEDPOINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS
must be built with the CMake option SUNDIALS_BUILD_WITH_MONITORING to use these capabilties.

1.1.7 Changes in v4.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building the
Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to f2003,
xlf2003, or xlf2003_r.

Fixed a bug in how ARKode interfaces with a user-supplied, iterative, unscaled linear solver. In this case, ARKode
adjusts the linear solver tolerance in an attempt to account for the lack of support for left/right scaling matrices. Pre-
viously, ARKode computed this scaling factor using the error weight vector, ewt; this fix changes that to the residual
weight vector, rwt, that can differ from ewt when solving problems with non-identity mass matrix.

Fixed a similar bug in how ARKode interfaces with scaled linear solvers when solving problems with non-identity
mass matrices. Here, the left scaling matrix should correspond with rwt and the right scaling matrix with ewt;
these were reversed but are now correct.

Fixed a bug where a non-default value for the maximum allowed growth factor after the first step would be ignored.

The function ARKStepSetLinearSolutionScaling() was added to enable or disable the scaling applied to
linear system solutions with matrix-based linear solvers to account for a lagged value of 𝛾 in the linear system matrix
e.g., 𝑀 − 𝛾𝐽 or 𝐼 − 𝛾𝐽 . Scaling is enabled by default when using a matrix-based linear solver.

Added two new functions, ARKStepSetMinReduction() and ERKStepSetMinReduction(), to change
the minimum allowed step size reduction factor after an error test failure.
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Added a new SUNMatrix implementation, The SUNMATRIX_CUSPARSE Module, that interfaces to the sparse
matrix implementation from the NVIDIA cuSPARSE library. In addition, the The SUNLinSol_cuSolverSp_batchQR
Module SUNLinearSolver has been updated to use this matrix, as such, users of this module will need to update
their code. These modules are still considered to be experimental, thus they are subject to breaking changes even in
minor releases.

Added a new “stiff” interpolation module, based on Lagrange polynomial interpolation, that is accessible to each of
the ARKStep, ERKStep and MRIStep time-stepping modules. This module is designed to provide increased interpo-
lation accuracy when integrating stiff problems, as opposed to the ARKode-standard Hermite interpolation module
that can suffer when the IVP right-hand side has large Lipschitz constant. While the Hermite module remains the de-
fault, the new Lagrange module may be enabled using one of the routines ARKStepSetInterpolantType(),
ERKStepSetInterpolantType(), or MRIStepSetInterpolantType(). The serial example prob-
lem ark_brusselator.c has been converted to use this Lagrange interpolation module. Created accom-
panying routines ARKStepSetInterpolantDegree(), ARKStepSetInterpolantDegree() and
ARKStepSetInterpolantDegree() to provide user control over these interpolating polynomials. While the
routines ARKStepSetDenseOrder(), ARKStepSetDenseOrder() and ARKStepSetDenseOrder()
still exist, these have been deprecated and will be removed in a future release.

1.1.8 Changes in v4.1.0

Fixed a build system bug related to finding LAPACK/BLAS.

Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and
PETSC_LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Fixed a bug in the Fortran 2003 interfaces to the ARKode Butcher table routines and structure. This includes chang-
ing the ARKodeButcherTable type to be a type(c_ptr) in Fortran.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying file point-
ers that are useful when using the Fortran 2003 interfaces.

Added support for a user-supplied function to update the prediction for each implicit stage solution in ARKStep. If
supplied, this routine will be called after any existing ARKStep predictor algorithm completes, so that the predictor
may be modified by the user as desired. The new user-supplied routine has type ARKStepStagePredictFn, and
may be set by calling ARKStepSetStagePredictFn().

The MRIStep module has been updated to support attaching different user data pointers to the inner and outer in-
tegrators. If applicable, user codes will need to add a call to ARKStepSetUserData() to attach their user data
pointer to the inner integrator memory as MRIStepSetUserData() will not set the pointer for both the inner and
outer integrators. The MRIStep examples have been updated to reflect this change.

Added support for constant damping to the SUNNonlinearSolver_FixedPoint mod-
ule when using Anderson acceleration. See SUNNonlinearSolver_FixedPoint description and the
SUNNonlinSolSetDamping_FixedPoint() for more details.

1.1.9 Changes in v4.0.0

Build system changes

Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when CUDA
or OpenMP with device offloading are enabled.

The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds
as SUNDIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS,
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the path to the BLAS library should be included in the _LIBRARIES variable for the third party library e.g.,
SUPERLUDIST_LIBRARIES when enabling SuperLU_DIST.

Fixed a bug in the build system that prevented the PThreads NVECTOR module from being built.

NVECTOR module changes

Two new functions were added to aid in creating custom NVECTOR objects. The constructor N_VNewEmpty()
allocates an “empty” generic NVECTOR with the object’s content pointer and the function pointers in the operations
structure initialized to NULL. When used in the constructor for custom objects this function will ease the introduction
of any new optional operations to the NVECTOR API by ensuring only required operations need to be set. Addition-
ally, the function N_VCopyOps() has been added to copy the operation function pointers between vector objects.
When used in clone routines for custom vector objects these functions also will ease the introduction of any new op-
tional operations to the NVECTOR API by ensuring all operations are copied when cloning objects.

Two new NVECTOR implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANYVECTOR, have
been created to support flexible partitioning of solution data among different processing elements (e.g., CPU + GPU)
or for multi-physics problems that couple distinct MPI-based simulations together. This implementation is accompa-
nied by additions to user documentation and SUNDIALS examples.

One new required vector operation and ten new optional vector operations have been added to the NVEC-
TOR API. The new required operation, N_VGetLength(), returns the global length of an N_Vector. The
optional operations have been added to support the new NVECTOR_MPIMANYVECTOR implementation.
The operation N_VGetCommunicator() must be implemented by subvectors that are combined to cre-
ate an NVECTOR_MPIMANYVECTOR, but is not used outside of this context. The remaining nine opera-
tions are optional local reduction operations intended to eliminate unnecessary latency when performing vec-
tor reduction operations (norms, etc.) on distributed memory systems. The optional local reduction vector op-
erations are N_VDotProdLocal(), N_VMaxNormLocal(), N_VMinLocal(), N_VL1NormLocal(),
N_VWSqrSumLocal(), N_VWSqrSumMaskLocal(), N_VInvTestLocal(), N_VConstrMaskLocal(),
and N_VMinQuotientLocal(). If an NVECTOR implementation defines any of the local operations as NULL,
then the NVECTOR_MPIMANYVECTOR will call standard NVECTOR operations to complete the computation.

An additional NVECTOR implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X
paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied by
additions to user documentation and SUNDIALS examples.

The *_MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and NVEC-
TOR_RAJA implementations respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h,
libsundials_nvecmpicuda.lib, and libsundials_nvecmpicudaraja.lib files have been re-
moved. Users should use the NVECTOR_MPIPLUSX module coupled in conjunction with the NVECTOR_CUDA
or NVECTOR_RAJA modules to replace the functionality. The necessary changes are minimal and should require
few code modifications. See the programs in examples/ida/mpicuda and examples/ida/mpiraja for
examples of how to use the NVECTOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA
modules respectively.

Fixed a memory leak in the NVECTOR_PETSC module clone function.

Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream should
no longer see default stream synchronizations after memory transfers.

Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer.

Added new Fortran 2003 interfaces for most NVECTOR modules. See the Using ARKode for Fortran Applications
section for more details.

Added three new NVECTOR utility functions, N_VGetVecAtIndexVectorArray()
N_VSetVecAtIndexVectorArray(), and N_VNewVectorArray(), for working with N_Vector
arrays when using the Fortran 2003 interfaces.
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SUNMatrix module changes

Two new functions were added to aid in creating custom SUNMATRIX objects. The constructor
SUNMatNewEmpty() allocates an “empty” generic SUNMATRIX with the object’s content pointer and the func-
tion pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this
function will ease the introduction of any new optional operations to the SUNMATRIX API by ensuring only re-
quired operations need to be set. Additionally, the function SUNMatCopyOps() has been added to copy the opera-
tion function pointers between matrix objects. When used in clone routines for custom matrix objects these functions
also will ease the introduction of any new optional operations to the SUNMATRIX API by ensuring all operations
are copied when cloning objects.

A new operation, SUNMatMatvecSetup(), was added to the SUNMATRIX API. Users who have implemented
custom SUNMATRIX modules will need to at least update their code to set the corresponding ops structure mem-
ber, matvecsetup, to NULL.

A new operation, SUNMatMatvecSetup(), was added to the SUNMATRIX API to perform any setup necessary
for computing a matrix-vector product. This operation is useful for SUNMATRIX implementations which need to
prepare the matrix itself, or communication structures before performing the matrix-vector product. Users who have
implemented custom SUNMATRIX modules will need to at least update their code to set the corresponding ops
structure member, matvecsetup, to NULL.

The generic SUNMATRIX API now defines error codes to be returned by SUNMATRIX operations. Operations
which return an integer flag indiciating success/failure may return different values than previously.

A new SUNMATRIX (and SUNLINEARSOLVER) implementation was added to facilitate the use of the Su-
perLU_DIST library with SUNDIALS.

Added new Fortran 2003 interfaces for most SUNMATRIX modules. See the Using ARKode for Fortran Applica-
tions section for more details.

SUNLinearSolver module changes

A new function was added to aid in creating custom SUNLINEARSOLVER objects. The constructor
SUNLinSolNewEmpty() allocates an “empty” generic SUNLINEARSOLVER with the object’s content pointer
and the function pointers in the operations structure initialized to NULL. When used in the constructor for custom
objects this function will ease the introduction of any new optional operations to the SUNLINEARSOLVER API by
ensuring only required operations need to be set.

The return type of the SUNLINEARSOLVER API function SUNLinSolLastFlag() has changed from long
int to sunindextype to be consistent with the type used to store row indices in dense and banded linear solver
modules.

Added a new optional operation to the SUNLINEARSOLVER API, SUNLinSolGetID(), that returns a
SUNLinearSolver_ID for identifying the linear solver module.

The SUNLINEARSOLVER API has been updated to make the initialize and setup functions optional.

A new SUNLINEARSOLVER (and SUNMATRIX) implementation was added to facilitate the use of the Su-
perLU_DIST library with SUNDIALS.

Added a new SUNLinearSolver implementation, SUNLinearSolver_cuSolverSp_batchQR, which lever-
ages the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems on
NVIDIA GPUs.

Added three new accessor functions to the SUNLinSol_KLU module, SUNLinSol_KLUGetSymbolic(),
SUNLinSol_KLUGetNumeric(), and SUNLinSol_KLUGetCommon(), to provide user access to the under-
lying KLU solver structures.

Added new Fortran 2003 interfaces for most SUNLINEARSOLVER modules. See the Using ARKode for Fortran
Applications section for more details.

SUNNonlinearSolver module changes
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A new function was added to aid in creating custom SUNNONLINEARSOLVER objects. The constructor
SUNNonlinSolNewEmpty() allocates an “empty” generic SUNNONLINEARSOLVER with the object’s con-
tent pointer and the function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the SUNNONLINEAR-
SOLVER API by ensuring only required operations need to be set.

To facilitate the use of user supplied nonlinear solver convergence test functions the
SUNNonlinSolSetConvTestFn() function in the SUNNONLINEARSOLVER API has been updated to
take a void* data pointer as input. The supplied data pointer will be passed to the nonlinear solver convergence test
function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve() function in the SUNNONLIN-
EARSOLVER have been changed to be the predicted state and the initial guess for the correction to that state. Ad-
ditionally, the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn in the SUNNONLIN-
EARSOLVER API have been updated to remove unused input parameters.

Added a new SUNNonlinearSolver implementation, SUNNonlinsol_PetscSNES, which interfaces to the
PETSc SNES nonlinear solver API.

Added new Fortran 2003 interfaces for most SUNNONLINEARSOLVER modules. See the Using ARKode for For-
tran Applications section for more details.

ARKode changes

The MRIStep module has been updated to support explicit, implicit, or IMEX methods as the fast integrator using
the ARKStep module. As a result some function signatures have been changed including MRIStepCreate()
which now takes an ARKStep memory structure for the fast integration as an input.

Fixed a bug in the ARKStep time-stepping module that would result in an infinite loop if the nonlinear solver failed
to converge more than the maximum allowed times during a single step.

Fixed a bug that would result in a “too much accuracy requested” error when using fixed time step sizes with explicit
methods in some cases.

Fixed a bug in ARKStep where the mass matrix linear solver setup function was not called in the Matrix-free case.

Fixed a minor bug in ARKStep where an incorrect flag is reported when an error occurs in the mass matrix setup or
Jacobian-vector product setup functions.

Fixed a memeory leak in FARKODE when not using the default nonlinear solver.

The reinitialization functions ERKStepReInit(), ARKStepReInit(), and MRIStepReInit() have been
updated to retain the minimum and maxiumum step size values from before reinitialization rather than resetting them
to the default values.

Removed extraneous calls to N_VMin() for simulations where the scalar valued absolute tolerance, or all entries
of the vector-valued absolute tolerance array, are strictly positive. In this scenario, ARKode will remove at least one
global reduction per time step.

The ARKLS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian
evaluation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

A new linear solver interface function ARKLsLinSysFn() was added as an alternative method for evaluating the
linear system 𝐴 = 𝑀 − 𝛾𝐽 .

Added two new embedded ARK methods of orders 4 and 5 to ARKode (from [KC2019]).

Support for optional inequality constraints on individual components of the solution vector has been added
the ARKode ERKStep and ARKStep modules. See the descriptions of ERKStepSetConstraints() and
ARKStepSetConstraints() for more details. Note that enabling constraint handling requires the NVECTOR
operations N_VMinQuotient(), N_VConstrMask(), and N_VCompare() that were not previously required
by ARKode.
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Added two new ‘Get’ functions to ARKStep, ARKStepGetCurrentGamma(), and
ARKStepGetCurrentState(), that may be useful to users who choose to provide their own nonlinear
solver implementation.

Add two new ‘Set’ functions to MRIStep, MRIStepSetPreInnerFn() and MRIStepSetPostInnerFn()
for performing communication or memory transfers needed before or after the inner integration.

A new Fortran 2003 interface to ARKode was added. This includes Fortran 2003 interfaces to the ARKStep, ERK-
Step, and MRIStep time-stepping modules. See the Using ARKode for Fortran Applications section for more details.

1.1.10 Changes in v3.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library to facilitate in-
teroperability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user documen-
tation and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA en-
ables all examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA NVECTOR is
enabled).

The implementation header file arkode_impl.h is no longer installed. This means users who are directly manipulating
the ARKodeMem structure will need to update their code to use ARKode’s public API.

Python is no longer required to run make test and make test_install.

Fixed a bug in ARKodeButcherTable_Write when printing a Butcher table without an embedding.

1.1.11 Changes in v3.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

1.1.12 Changes in v3.0.1

A bug in ARKode where single precision builds would fail to compile has been fixed.

1.1.13 Changes in v3.0.0

The ARKode library has been entirely rewritten to support a modular approach to one-step methods, which should
allow rapid research and development of novel integration methods without affecting existing solver functionality.
To support this, the existing ARK-based methods have been encapsulated inside the new ARKStep time-stepping
module. Two new time-stepping modules have been added:

• The ERKStep module provides an optimized implementation for explicit Runge-Kutta methods with reduced
storage and number of calls to the ODE right-hand side function.

• The MRIStep module implements two-rate explicit-explicit multirate infinitesimal step methods utilizing
different step sizes for slow and fast processes in an additive splitting.

This restructure has resulted in numerous small changes to the user interface, particularly the suite of “Set” rou-
tines for user-provided solver parameters and “Get” routines to access solver statistics, that are now prefixed with the
name of time-stepping module (e.g., ARKStep or ERKStep) instead of ARKode. Aside from affecting the names
of these routines, user-level changes have been kept to a minimum. However, we recommend that users consult both
this documentation and the ARKode example programs for further details on the updated infrastructure.
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As part of the ARKode restructuring an ARKodeButcherTable structure has been added for storing Butcher ta-
bles. Functions for creating new Butcher tables and checking their analytic order are provided along with other util-
ity routines. For more details see Butcher Table Data Structure.

Two changes were made in the initial step size algorithm:

• Fixed an efficiency bug where an extra call to the right hand side function was made.

• Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.

ARKode’s dense output infrastructure has been improved to support higher-degree Hermite polynomial interpolants
(up to degree 5) over the last successful time step.

ARKode’s previous direct and iterative linear solver interfaces, ARKDLS and ARKSPILS, have been merged into
a single unified linear solver interface, ARKLS, to support any valid SUNLINSOL module. This includes DIRECT
and ITERATIVE types as well as the new MATRIX_ITERATIVE type. Details regarding how ARKLS utilizes lin-
ear solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinSol implemen-
tations are included in the chapter Description of the SUNLinearSolver module. All ARKode examples programs and
the standalone linear solver examples have been updated to use the unified linear solver interface.

The user interface for the new ARKLS module is very similar to the previous ARKDLS and ARKSPILS interfaces.
Additionally, we note that Fortran users will need to enlarge their iout array of optional integer outputs, and update
the indices that they query for certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLinSol implementations have been up-
dated to follow the naming convention SUNLinSol_* where * is the name of the linear solver. The new
names are SUNLinSol_Band, SUNLinSol_Dense, SUNLinSol_KLU, SUNLinSol_LapackBand,
SUNLinSol_LapackDense, SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR,
SUNLinSol_SPGMR, SUNLinSol_SPTFQMR, and SUNLinSol_SuperLUMT. Solver-specific “set” routine
names have been similarly standardized. To minimize challenges in user migration to the new names, the previous
routine names may still be used; these will be deprecated in future releases, so we recommend that users migrate to
the new names soon. All ARKode example programs and the standalone linear solver examples have been updated to
use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through the SUN-
NONLINSOL API. This API will ease the addition of new nonlinear solver options and allow for external or user-
supplied nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules are described in De-
scription of the SUNNonlinearSolver Module and follow the same object oriented design and implementation used
by the NVector, SUNMatrix, and SUNLinSol modules. Currently two SUNNONLINSOL implementations are pro-
vided, SUNNonlinSol_Newton and SUNNonlinSol_FixedPoint. These replicate the previous integrator specific im-
plementations of a Newton iteration and an accelerated fixed-point iteration, respectively. Example programs using
each of these nonlinear solver modules in a standalone manner have been added and all ARKode example programs
have been updated to use generic SUNNonlinSol modules.

As with previous versions, ARKode will use the Newton solver (now provided by SUNNonlinSol_Newton) by de-
fault. Use of the ARKStepSetLinear() routine (previously named ARKodeSetLinear) will indicate that
the problem is linearly-implicit, using only a single Newton iteration per implicit stage. Users wishing to switch
to the accelerated fixed-point solver are now required to create a SUNNonlinSol_FixedPoint object and attach that
to ARKode, instead of calling the previous ARKodeSetFixedPoint routine. See the documentation sections A
skeleton of the user’s main program, Nonlinear solver interface functions, and The SUNNonlinearSolver_FixedPoint
implementation for further details, or the serial C example program ark_brusselator_fp.c for an example.

Three fused vector operations and seven vector array operations have been added to the NVECTOR API.
These optional operations are disabled by default and may be activated by calling vector specific routines af-
ter creating an NVector (see Description of the NVECTOR Modules for more details). The new operations
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are intended to increase data reuse in vector operations, reduce parallel communication on distributed mem-
ory systems, and lower the number of kernel launches on systems with accelerators. The fused operations are
N_VLinearCombination, N_VScaleAddMulti, and N_VDotProdMulti, and the vector array opera-
tions are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorArray,
N_VWrmsNormVectorArray, N_VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray,
and N_VLinearCombinationVectorArray. If an NVector implementation defines any of these operations as
NULL, then standard NVector operations will automatically be called as necessary to complete the computation.

Multiple changes to the CUDA NVECTOR were made:

• Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead of an
N_VectorContent_Cuda object.

• Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.

• Added N_VGetLocalLength_Cuda to return the local vector length.

• Added N_VGetMPIComm_Cuda to return the MPI communicator used.

• Removed the accessor functions in the namespace suncudavec.

• Added the ability to set the cudaStream_t used for execution of the CUDA NVECTOR kernels. See the
function N_VSetCudaStreams_Cuda.

• Added N_VNewManaged_Cuda, N_VMakeManaged_Cuda, and N_VIsManagedMemory_Cuda func-
tions to accommodate using managed memory with the CUDA NVECTOR.

Multiple changes to the RAJA NVECTOR were made:

• Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.

• Added N_VGetLocalLength_Raja to return the local vector length.

• Added N_VGetMPIComm_Raja to return the MPI communicator used.

• Removed the accessor functions in the namespace sunrajavec.

A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added, NVEC-
TOR_OpenMPDEV. See The NVECTOR_OPENMPDEV Module for more details.

1.1.14 Changes in v2.2.1

Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the allocated vector
data.

Fixed library installation path for multiarch systems. This fix changes the default library installation path
to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/lib.
CMAKE_INSTALL_LIBDIR is automatically set, but is available as a CMAKE option that can modified.

1.1.15 Changes in v2.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when using a GPU sys-
tem. The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to libsundials_nveccudaraja.lib from
libsundials_nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA currently.

Several changes were made to the build system:
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• CMake 3.1.3 is now the minimum required CMake version.

• Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the
SUNDIALS_INDEX_SIZE CMake option to select the sunindextype integer size.

• The native CMake FindMPI module is now used to locate an MPI installation.

• If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE_<language>_COMPILER can compile MPI programs before trying to locate and use an MPI
installation.

• The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER, MPI_CXX_COMPILER, MPI_Fortran_COMPILER, and MPIEXEC_EXECUTABLE.

• When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the inferred
or default scheme needs to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and
SUNDIALS_F77_FUNC_UNDERSCORES can be used to manually set the name-mangling scheme and by-
pass trying to infer the scheme.

• Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make
the CMake configuration file structure more modular.

1.1.16 Changes in v2.1.2

Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared li-
braries on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for the
SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in the
full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architectures.

Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module to more optimally han-
dle the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity pattern. The
sum now occurs in-place, by performing the sum backwards in the existing storage. However, it is still more efficient
if the user-supplied Jacobian routine allocates storage for the sum 𝐼 + 𝛾𝐽 or 𝑀 + 𝛾𝐽 manually (with zero entries if
needed).

Changed LICENSE install path to instdir/include/sundials.

1.1.17 Changes in v2.1.1

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was called multiple times
then the solver memory was reallocated (without being freed).

Fixed a minor bug in the ARKReInit routine, where a flag was incorrectly set to indicate that the problem had been
resized (instead of just re-initialized).

Fixed C++11 compiler errors/warnings about incompatible use of string literals.

Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function to be used (to
avoid compiler warnings).

Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).
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Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.

Added missing #include <stdio.h> in NVECTOR and SUNMATRIX header files.

Added missing prototype for ARKSpilsGetNumMTSetups.

Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWrmsNormMask and revised the RAJA
NVECTOR implementation of N_VWrmsNormMask to work with mask arrays using values other than zero or one.
Replaced double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinearSolver
module (e.g. iterative linear solvers, explicit methods, fixed point solver, etc.).

1.1.18 Changes in v2.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g. N_VPrintFile_Serial).

Added make test and make test_install options to the build system for testing SUNDIALS after building
with make and installing with make install respectively.

1.1.19 Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been up-
dated. The goal of the redesign of these interfaces was to provide more encapsulation and ease in interfacing custom
linear solvers and interoperability with linear solver libraries.

Specific changes include:

• Added generic SUNMATRIX module with three provided implementations: dense, banded and sparse. These
replicate previous SUNDIALS Dls and Sls matrix structures in a single object-oriented API.

• Added example problems demonstrating use of generic SUNMATRIX modules.

• Added generic SUNLINEARSOLVER module with eleven provided implementations: dense, banded, LA-
PACK dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These
replicate previous SUNDIALS generic linear solvers in a single object-oriented API.

• Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

• Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear
solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER objects.

• Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU,
ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces and SUNLIN-
EARSOLVER/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate Jacobian solver
available to CVODE and CVODES.

• Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLINEAR-
SOLVER objects, along with updated Dls and Spils linear solver interfaces.

• Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow specification of a
user-provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-
provided Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton itera-
tion can be amortized between multiple JTimes calls.

Two additional NVECTOR implementations were added – one for CUDA and one for RAJA vectors. These vectors
are supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors
both move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts
the right-hand-side function evaluation on the device. In addition, these vectors assume the problem fits on one GPU.
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Further information about RAJA, users are referred to the web site, https://software.llnl.gov/RAJA/. These additions
are accompanied by additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit
integer data index type. sunindextype is defined to be int32_t or int64_t when portable types are sup-
ported, otherwise it is defined as int or long int. The Fortran interfaces continue to use long int for indices,
except for their sparse matrix interface that now uses the new sunindextype. This new flexible capability for
index types includes interfaces to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities de-
pending how the user configures SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been
changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data struc-
tures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use
in Fortran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release version in-
formation at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scien-
tific software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of separate
BLAS_ENABLE and BLAS_LIBRARIES CMake variables, additional error checking during CMake config-
uration, minor bug fixes, and renaming CMake options to enable/disable examples for greater clarity and an
added option to enable/disable Fortran 77 examples. These changes included changing ENABLE_EXAMPLES to
ENABLE_EXAMPLES_C, changing CXX_ENABLE to EXAMPLES_ENABLE_CXX, changing F90_ENABLE to
EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F77 option.

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

1.1.20 Changes in v1.1.0

We have included numerous bugfixes and enhancements since the v1.0.2 release.

The bugfixes include:

• For each linear solver, the various solver performance counters are now initialized to 0 in both the solver spec-
ification function and in the solver’s linit function. This ensures that these solver counters are initialized
upon linear solver instantiation as well as at the beginning of the problem solution.

• The choice of the method vs embedding the Billington and TRBDF2 explicit Runge-Kutta methods were
swapped, since in those the lower-order coefficients result in an A-stable method, while the higher-order co-
efficients do not. This change results in significantly improved robustness when using those methods.

• A bug was fixed for the situation where a user supplies a vector of absolute tolerances, and also uses the vector
Resize() functionality.

• A bug was fixed wherein a user-supplied Butcher table without an embedding is supplied, and the user is run-
ning with either fixed time steps (or they do adaptivity manually); previously this had resulted in an error since
the embedding order was below 1.

• Numerous aspects of the documentation were fixed and/or clarified.

The feature changes/enhancements include:
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• Two additional NVECTOR implementations were added – one for Hypre (parallel) ParVector vectors, and one
for PETSc vectors. These additions are accompanied by additions to various interface functions and to user
documentation.

• Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR module
name.

• A memory leak was fixed in the banded preconditioner and banded-block-diagonal preconditioner interfaces.
In addition, updates were done to return integers from linear solver and preconditioner ‘free’ routines.

• The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions
and corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for
CSR format when using KLU.

• The ARKode implicit predictor algorithms were updated: methods 2 and 3 were improved slightly, a new pre-
dictor approach was added, and the default choice was modified.

• The underlying sparse matrix structure was enhanced to allow both CSR and CSC matrices, with CSR sup-
ported by the KLU linear solver interface. ARKode interfaces to the KLU solver from both C and Fortran were
updated to enable selection of sparse matrix type, and a Fortran-90 CSR example program was added.

• The missing ARKSpilsGetNumMtimesEvals() function was added – this had been included in the previ-
ous documentation but had not been implemented.

• The handling of integer codes for specifying built-in ARKode Butcher tables was enhanced. While a global
numbering system is still used, methods now have #defined names to simplify the user interface and to stream-
line incorporation of new Butcher tables into ARKode.

• The maximum number of Butcher table stages was increased from 8 to 15 to accommodate very high order
methods, and an 8th-order adaptive ERK method was added.

• Support was added for the explicit and implicit methods in an additive Runge-Kutta method to utilize different
stage times, solution and embedding coefficients, to support new SSP-ARK methods.

• The FARKODE interface was extended to include a routine to set scalar/array-valued residual tolerances, to
support Fortran applications with non-identity mass-matrices.

1.2 Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We expect that some
readers will want to concentrate on the general instructions, while others will refer mostly to the examples, and the
organization is intended to accommodate both styles.

The structure of this document is as follows:

• In the next section we provide a thorough presentation of the underlying mathematics used within the ARKode
family of solvers.

• We follow this with an overview of how the source code for ARKode is organized.

• The largest section follows, providing a full account of the ARKStep module user interface, including a de-
scription of all user-accessible functions and outlines for usage in serial and parallel applications. Since
ARKode is written in C, we first present a section on using ARKStep for C and C++ applications, followed
with a separate section on using ARKode within Fortran applications.

• The much smaller section describing the ERKStep time-stepping module, using ERKStep for C and C++ ap-
plications, follows.

• Subsequent sections discuss shared features between ARKode and the rest of the SUNDIALS library: vector
data structures, matrix data structures, linear solver data structures, and the installation procedure.
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• The final sections catalog the full set of ARKode constants, that are used for both input specifications and re-
turn codes, and the full set of Butcher tables that are packaged with ARKode.

1.3 SUNDIALS Release License

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an addi-
tional notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUN-
DIALS packages.

PLEASE NOTE If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, Su-
perLU_MT, PETSc, or hypre), be sure to review the respective license of the package as that license may have more
restrictive terms than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked
KLU, the build is subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not
the SUNDIALS BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2021, Lawrence Livermore National Security and Southern Methodist University.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.
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Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorse-
ment purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)

UCRL-CODE-155951 (CVODE)

UCRL-CODE-155950 (CVODES)

UCRL-CODE-155952 (IDA)

UCRL-CODE-237203 (IDAS)

LLNL-CODE-665877 (KINSOL)
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Chapter 2

Mathematical Considerations

ARKode solves ODE initial value problems (IVP) in R𝑁 posed in the form

𝑀(𝑡) �̇� = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. (2.1)

Here, 𝑡 is the independent variable (e.g. time), and the dependent variables are given by 𝑦 ∈ R𝑁 , where we use the
notation �̇� to denote 𝑑𝑦/𝑑𝑡.

For each value of 𝑡, 𝑀(𝑡) is a user-specified linear operator from R𝑁 → R𝑁 . This operator is assumed to be non-
singular and independent of 𝑦. For standard systems of ordinary differential equations and for problems arising from
the spatial semi-discretization of partial differential equations using finite difference, finite volume, or spectral fi-
nite element methods, 𝑀 is typically the identity matrix, 𝐼 . For PDEs using standard finite-element spatial semi-
discretizations, 𝑀 is typically a well-conditioned mass matrix that is fixed throughout a simulation (or at least fixed
between spatial rediscretization events).

The ODE right-hand side is given by the function 𝑓(𝑡, 𝑦) – in general we make no assumption that the problem (2.1)
is autonomous (i.e., 𝑓 = 𝑓(𝑦)) or linear (𝑓 = 𝐴𝑦). In general, the time integration methods within ARKode sup-
port additive splittings of this right-hand side function, as described in the subsections that follow. Through these
splittings, the time-stepping methods currently supplied with ARKode are designed to solve stiff, nonstiff, mixed
stiff/nonstiff, and multirate problems. As per Ascher and Petzold [AP1998], a problem is “stiff” if the stepsize
needed to maintain stability of the forward Euler method is much smaller than that required to represent the solution
accurately.

In the sub-sections that follow, we elaborate on the numerical methods utilized in ARKode. We first discuss the
“single-step” nature of the ARKode infrastructure, including its usage modes and approaches for interpolated so-
lution output. We then discuss the current suite of time-stepping modules supplied with ARKode, including the
ARKStep module for additive Runge-Kutta methods, the ERKStep module that is optimized for explicit Runge-Kutta
methods, and the MRIStep module for multirate infinitesimal step (MIS) based methods. We then discuss the adap-
tive temporal error controllers shared by the time-stepping modules, including discussion of our choice of norms for
measuring errors within various components of the solver.

We then discuss the nonlinear and linear solver strategies used by ARKode’s time-stepping modules for solving im-
plicit algebraic systems that arise in computing each stage and/or step: nonlinear solvers, linear solvers, precondi-
tioners, error control within iterative nonlinear and linear solvers, algorithms for initial predictors for implicit stage
solutions, and approaches for handling non-identity mass-matrices.

We conclude with a section describing ARKode’s rootfinding capabilities, that may be used to stop integration of a
problem prematurely based on traversal of roots in user-specified functions.
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2.1 Adaptive single-step methods

The ARKode infrastructure is designed to support single-step, IVP integration methods, i.e.

𝑦𝑛 = 𝜙(𝑦𝑛−1, ℎ𝑛)

where 𝑦𝑛−1 is an approximation to the solution 𝑦(𝑡𝑛−1), 𝑦𝑛 is an approximation to the solution 𝑦(𝑡𝑛), 𝑡𝑛 = 𝑡𝑛−1 +
ℎ𝑛, and the approximation method is represented by the function 𝜙.

The choice of step size ℎ𝑛 is determined by the time-stepping method (based on user-provided inputs, typically accu-
racy requirements). However, users may place minimum/maximum bounds on ℎ𝑛 if desired.

ARKode’s time stepping modules may be run in a variety of “modes”:

• NORMAL – The solver will take internal steps until it has just overtaken a user-specified output time, 𝑡out, in
the direction of integration, i.e. 𝑡𝑛−1 < 𝑡out ≤ 𝑡𝑛 for forward integration, or 𝑡𝑛 ≤ 𝑡out < 𝑡𝑛−1 for backward
integration. It will then compute an approximation to the solution 𝑦(𝑡out) by interpolation (using one of the
dense output routines described in the section Interpolation).

• ONE-STEP – The solver will only take a single internal step 𝑦𝑛−1 → 𝑦𝑛 and then return control back to the
calling program. If this step will overtake 𝑡out then the solver will again return an interpolated result; otherwise
it will return a copy of the internal solution 𝑦𝑛.

• NORMAL-TSTOP – The solver will take internal steps until the next step will overtake 𝑡out. It will then limit
this next step so that 𝑡𝑛 = 𝑡𝑛−1 + ℎ𝑛 = 𝑡out, and once the step completes it will return a copy of the internal
solution 𝑦𝑛.

• ONE-STEP-TSTOP – The solver will check whether the next step will overtake 𝑡out – if not then this mode is
identical to “one-step” above; otherwise it will limit this next step so that 𝑡𝑛 = 𝑡𝑛−1+ℎ𝑛 = 𝑡out. In either case,
once the step completes it will return a copy of the internal solution 𝑦𝑛.

We note that interpolated solutions may be slightly less accurate than the internal solutions produced by the solver.
Hence, to ensure that the returned value has full method accuracy one of the “tstop” modes may be used.

2.2 Interpolation

As mentioned above, the time-stepping modules in ARKode support interpolation of solutions 𝑦(𝑡out) and derivatives
𝑦(𝑑)(𝑡out), where 𝑡out occurs within a completed time step from 𝑡𝑛−1 → 𝑡𝑛. Additionally, this module supports ex-
trapolation of solutions and derivatives for 𝑡 outside this interval (e.g. to construct predictors for iterative nonlinear
and linear solvers). To this end, ARKode currently supports construction of polynomial interpolants 𝑝𝑞(𝑡) of polyno-
mial degree up to 𝑞 = 5, although users may select interpolants of lower degree.

ARKode provides two complementary interpolation approaches, both of which are accessible from any of the time-
stepping modules: “Hermite” and “Lagrange”. The former approach has been included with ARKode since its in-
ception, and is more suitable for non-stiff problems; the latter is a new approach that is designed to provide increased
accuracy when integrating stiff problems. Both are described in detail below.

2.2.1 Hermite interpolation module

For non-stiff problems, polynomial interpolants of Hermite form are provided. Rewriting the IVP (2.1) in standard
form,

�̇� = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0.
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we typically construct temporal interpolants using the data
{︁
𝑦𝑛−1, 𝑓𝑛−1, 𝑦𝑛, 𝑓𝑛

}︁
, where here we use the simplified

notation 𝑓𝑘 to denote 𝑓(𝑡𝑘, 𝑦𝑘). Defining a normalized “time” variable, 𝜏 , for the most-recently-computed solution
interval 𝑡𝑛−1 → 𝑡𝑛 as

𝜏(𝑡) =
𝑡− 𝑡𝑛
ℎ𝑛

,

we then construct the interpolants 𝑝𝑞(𝑡) as follows:

• 𝑞 = 0: constant interpolant

𝑝0(𝜏) =
𝑦𝑛−1 + 𝑦𝑛

2
.

• 𝑞 = 1: linear Lagrange interpolant

𝑝1(𝜏) = −𝜏 𝑦𝑛−1 + (1 + 𝜏) 𝑦𝑛.

• 𝑞 = 2: quadratic Hermite interpolant

𝑝2(𝜏) = 𝜏2 𝑦𝑛−1 + (1− 𝜏2) 𝑦𝑛 + ℎ𝑛(𝜏 + 𝜏2) 𝑓𝑛.

• 𝑞 = 3: cubic Hermite interpolant

𝑝3(𝜏) = (3𝜏2 + 2𝜏3) 𝑦𝑛−1 + (1− 3𝜏2 − 2𝜏3) 𝑦𝑛 + ℎ𝑛(𝜏2 + 𝜏3) 𝑓𝑛−1 + ℎ𝑛(𝜏 + 2𝜏2 + 𝜏3) 𝑓𝑛.

• 𝑞 = 4: quartic Hermite interpolant

𝑝4(𝜏) = (−6𝜏2 − 16𝜏3 − 9𝜏4) 𝑦𝑛−1 + (1 + 6𝜏2 + 16𝜏3 + 9𝜏4) 𝑦𝑛 +
ℎ𝑛

4
(−5𝜏2 − 14𝜏3 − 9𝜏4) 𝑓𝑛−1

+ ℎ𝑛(𝜏 + 2𝜏2 + 𝜏3) 𝑓𝑛 +
27ℎ𝑛

4
(−𝜏4 − 2𝜏3 − 𝜏2) 𝑓𝑎,

where 𝑓𝑎 = 𝑓

(︂
𝑡𝑛 −

ℎ𝑛

3
, 𝑝3

(︂
−1

3

)︂)︂
. We point out that interpolation at this degree requires an additional

evaluation of the full right-hand side function 𝑓(𝑡, 𝑦), thereby increasing its cost in comparison with 𝑝3(𝑡).

• 𝑞 = 5: quintic Hermite interpolant

𝑝5(𝜏) = (54𝜏5 + 135𝜏4 + 110𝜏3 + 30𝜏2) 𝑦𝑛−1 + (1− 54𝜏5 − 135𝜏4 − 110𝜏3 − 30𝜏2) 𝑦𝑛

+
ℎ𝑛

4
(27𝜏5 + 63𝜏4 + 49𝜏3 + 13𝜏2) 𝑓𝑛−1 +

ℎ𝑛

4
(27𝜏5 + 72𝜏4 + 67𝜏3 + 26𝜏2 + 𝜏) 𝑓𝑛

+
ℎ𝑛

4
(81𝜏5 + 189𝜏4 + 135𝜏3 + 27𝜏2) 𝑓𝑎 +

ℎ𝑛

4
(81𝜏5 + 216𝜏4 + 189𝜏3 + 54𝜏2) 𝑓𝑏,

where 𝑓𝑎 = 𝑓

(︂
𝑡𝑛 −

ℎ𝑛

3
, 𝑝4

(︂
−1

3

)︂)︂
and 𝑓𝑏 = 𝑓

(︂
𝑡𝑛 −

2ℎ𝑛

3
, 𝑝4

(︂
−2

3

)︂)︂
. We point out that interpolation at

this degree requires four additional evaluations of the full right-hand side function 𝑓(𝑡, 𝑦), thereby significantly
increasing its cost over 𝑝4(𝑡).

We note that although interpolants of order 𝑞 > 5 are possible, these are not currently implemented due to their
increased computing and storage costs.
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2.2.2 Lagrange interpolation module

For stiff problems where 𝑓 may have large Lipschitz constant, polynomial interpolants of Lagrange form are pro-
vided. These interpolants are constructed using the data {𝑦𝑛, 𝑦𝑛−1, . . . , 𝑦𝑛−𝜈} where 0 ≤ 𝜈 ≤ 5. These polynomials
have the form

𝑝(𝑡) =

𝜈∑︁
𝑗=0

𝑦𝑛−𝑗𝑝𝑗(𝑡), where

𝑝𝑗(𝑡) =

𝜈∏︁
𝑙=0,𝑙 ̸=𝑗

(︂
𝑡− 𝑡𝑙
𝑡𝑗 − 𝑡𝑙

)︂
, 𝑗 = 0, . . . , 𝜈.

Since we assume that the solutions 𝑦𝑛−𝑗 have length much larger than 𝜈 ≤ 5 in ARKode-based simulations, we
evaluate 𝑝 at any desired 𝑡 ∈ R by first evaluating the Lagrange polynomial basis functions at the input value for
𝑡, and then performing a simple linear combination of the vectors {𝑦𝑘}𝜈𝑘=0. Derivatives 𝑝(𝑑)(𝑡) may be evaluated
similarly as

𝑝(𝑑)(𝑡) =

𝜈∑︁
𝑗=0

𝑦𝑛−𝑗 𝑝
(𝑑)
𝑗 (𝑡),

however since the algorithmic complexity involved in evaluating derivatives of the Lagrange basis functions in-
creases dramatically as the derivative order grows, our Lagrange interpolation module currently only provides deriva-
tives up to 𝑑 = 3.

We note that when using this interpolation module, during the first (𝜈 − 1) steps of integration we do not have suffi-
cient solution history to construct the full 𝜈-degree interpolant. Therefore during these initial steps, we construct the
highest-degree interpolants that are currently available at the moment, achieving the full 𝜈-degree interpolant once
these initial steps have completed.

2.3 ARKStep – Additive Runge-Kutta methods

The ARKStep time-stepping module in ARKode is designed for IVPs of the form

𝑀(𝑡) �̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓 𝐼(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0, (2.2)

i.e. the right-hand side function is additively split into two components:

• 𝑓𝐸(𝑡, 𝑦) contains the “nonstiff” components of the system (this will be integrated using an explicit method);

• 𝑓 𝐼(𝑡, 𝑦) contains the “stiff” components of the system (this will be integrated using an implicit method);

and the left-hand side may include a nonsingular, possibly time-dependent, matrix 𝑀(𝑡).

In solving the IVP (2.2), we first consider the corresponding problem in standard form,

�̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓 𝐼(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0, (2.3)

where 𝑓𝐸(𝑡, 𝑦) = 𝑀(𝑡)−1 𝑓𝐸(𝑡, 𝑦) and 𝑓 𝐼(𝑡, 𝑦) = 𝑀(𝑡)−1 𝑓 𝐼(𝑡, 𝑦). ARKStep then utilizes variable-step, embed-
ded, additive Runge-Kutta methods (ARK), corresponding to algorithms of the form
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𝑧𝑖 = 𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

𝐴𝐸
𝑖,𝑗𝑓

𝐸(𝑡𝐸𝑛,𝑗 , 𝑧𝑗) + ℎ𝑛

𝑖∑︁
𝑗=1

𝐴𝐼
𝑖,𝑗𝑓

𝐼(𝑡𝐼𝑛,𝑗 , 𝑧𝑗), 𝑖 = 1, . . . , 𝑠,

𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑛

𝑠∑︁
𝑖=1

(︁
𝑏𝐸𝑖 𝑓

𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) + 𝑏𝐼𝑖 𝑓
𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

)︁
,

𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑛

𝑠∑︁
𝑖=1

(︁
�̃�𝐸𝑖 𝑓

𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) + �̃�𝐼𝑖 𝑓
𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

)︁
.

(2.4)

Here 𝑦𝑛 are embedded solutions that approximate 𝑦(𝑡𝑛) and are used for error estimation; these typically have
slightly lower accuracy than the computed solutions 𝑦𝑛. The internal stage times are abbreviated using the notation
𝑡𝐸𝑛,𝑗 = 𝑡𝑛−1 + 𝑐𝐸𝑗 ℎ𝑛 and 𝑡𝐼𝑛,𝑗 = 𝑡𝑛−1 + 𝑐𝐼𝑗ℎ𝑛. The ARK method is primarily defined through the coefficients
𝐴𝐸 ∈ R𝑠×𝑠, 𝐴𝐼 ∈ R𝑠×𝑠, 𝑏𝐸 ∈ R𝑠, 𝑏𝐼 ∈ R𝑠, 𝑐𝐸 ∈ R𝑠 and 𝑐𝐼 ∈ R𝑠, that correspond with the explicit and implicit
Butcher tables. Additional coefficients �̃�𝐸 ∈ R𝑠 and �̃�𝐼 ∈ R𝑠 are used to construct the embedding 𝑦𝑛. We note that
ARKStep currently enforces the constraint that the explicit and implicit methods in an ARK pair must share the same
number of stages, 𝑠. We note that when the problem has a time-independent mass matrix 𝑀 , ARKStep allows the
possibility for different explicit and implicit abcissae, i.e. 𝑐𝐸 need not equal 𝑐𝐼 .

The user of ARKStep must choose appropriately between one of three classes of methods: ImEx, explicit, and im-
plicit. All of the built-in Butcher tables encoding the coefficients 𝑐𝐸 , 𝑐𝐼 , 𝐴𝐸 , 𝐴𝐼 , 𝑏𝐸 , 𝑏𝐼 , �̃�𝐸 and �̃�𝐼 are further de-
scribed in the Appendix: Butcher tables.

For mixed stiff/nonstiff problems, a user should provide both of the functions 𝑓𝐸 and 𝑓 𝐼 that define the IVP system.
For such problems, ARKStep currently implements the ARK methods proposed in [KC2003], allowing for methods
having order of accuracy 𝑞 = {3, 4, 5}; the tables for these methods are given in the section Additive Butcher tables.
Additionally, user-defined ARK tables are supported.

For nonstiff problems, a user may specify that 𝑓 𝐼 = 0, i.e. the equation (2.2) reduces to the non-split IVP

𝑀(𝑡) �̇� = 𝑓𝐸(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. (2.5)

In this scenario, the coefficients 𝐴𝐼 = 0, 𝑐𝐼 = 0, 𝑏𝐼 = 0 and �̃�𝐼 = 0 in (2.4), and the ARK methods reduce to clas-
sical explicit Runge-Kutta methods (ERK). For these classes of methods, ARKode provides coefficients with orders
of accuracy 𝑞 = {2, 3, 4, 5, 6, 8}, with embeddings of orders 𝑝 = {1, 2, 3, 4, 5, 7}. These default to the Heun-Euler-
2-1-2, Bogacki-Shampine-4-2-3, Zonneveld-5-3-4, Cash-Karp-6-4-5, Verner-8-5-6 and Fehlberg-13-7-8 methods,
respectively. As with ARK methods, user-defined ERK tables are supported.

Alternately, for stiff problems the user may specify that 𝑓𝐸 = 0, so the equation (2.2) reduces to the non-split IVP

𝑀(𝑡) �̇� = 𝑓 𝐼(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. (2.6)

Similarly to ERK methods, in this scenario the coefficients 𝐴𝐸 = 0, 𝑐𝐸 = 0, 𝑏𝐸 = 0 and �̃�𝐸 = 0 in (2.4), and
the ARK methods reduce to classical diagonally-implicit Runge-Kutta methods (DIRK). For these classes of meth-
ods, ARKode provides tables with orders of accuracy 𝑞 = {2, 3, 4, 5}, with embeddings of orders 𝑝 = {1, 2, 3, 4}.
These default to the SDIRK-2-1-2, ARK-4-2-3 (implicit), SDIRK-5-3-4 and ARK-8-4-5 (implicit) methods, respec-
tively. Again, user-defined DIRK tables are supported.

2.4 ERKStep – Explicit Runge-Kutta methods

The ERKStep time-stepping module in ARKode is designed for IVP of the form
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�̇� = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0, (2.7)

i.e., unlike the more general problem form (2.2), ERKStep requires that problems have an identity mass matrix (i.e.,
𝑀(𝑡) = 𝐼) and that the right-hand side function is not split into separate components.

For such problems, ERKStep provides variable-step, embedded, explicit Runge-Kutta methods (ERK), correspond-
ing to algorithms of the form

𝑧𝑖 = 𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

𝐴𝑖,𝑗𝑓(𝑡𝑛,𝑗 , 𝑧𝑗), 𝑖 = 1, . . . , 𝑠,

𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑛

𝑠∑︁
𝑖=1

𝑏𝑖𝑓(𝑡𝑛,𝑖, 𝑧𝑖),

𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑛

𝑠∑︁
𝑖=1

�̃�𝑖𝑓(𝑡𝑛,𝑖, 𝑧𝑖),

(2.8)

where the variables have the same meanings as in the previous section.

Clearly, the problem (2.7) is fully encapsulated in the more general problem (2.5), and the algorithm (2.8) is simi-
larly encapsulated in the more general algorithm (2.4). While it therefore follows that ARKStep can be used to solve
every problem solvable by ERKStep, using the same set of methods, we include ERKStep as a distinct time-stepping
module since this simplified form admits a more efficient and memory-friendly solution process than when consider-
ing the more general form (2.7).

2.5 MRIStep – Multirate infinitesimal step methods

The MRIStep time-stepping module in ARKode is designed for IVPs of the form

�̇� = 𝑓𝑆(𝑡, 𝑦) + 𝑓𝐹 (𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. (2.9)

i.e. the right-hand side function is additively split into two components:

• 𝑓𝑆(𝑡, 𝑦) contains the “slow” components of the system (this will be integrated using a large time step ℎ𝑆),

• 𝑓𝐹 (𝑡, 𝑦) contains the “fast” components of the system (this will be integrated using small time steps ℎ𝐹 ≪
ℎ𝑆).

As with ERKStep, MRIStep currently requires that problems be posed with an identity mass matrix, 𝑀(𝑡) = 𝐼 .

For such problems, MRIStep provides fixed-step slow step multirate infinitesimal step and multirate infinitesimal
GARK methods (see [SKAW2009], [SKAW2012a], [SKAW2012b], and [S2019]) that combine two Runge-Kutta
methods. The outer (slow) method derives from an 𝑠 stage Runge-Kutta method where the stage values and the new
solution are computed by solving an auxiliary ODE with an inner (fast) Runge-Kutta method. This corresponds to
the following algorithm for a single step:

1. Set 𝑧1 = 𝑦𝑛−1

2. For 𝑖 = 2, . . . , 𝑠 + 1

(a) Let 𝑣(0) = 𝑧𝑖−1, 𝑡𝑆𝑛,𝑖−1 = 𝑡𝑛−1 + 𝑐𝑆𝑖−1ℎ
𝑆 , and ∆𝑐𝑆𝑖 =

(︀
𝑐𝑆𝑖 − 𝑐𝑆𝑖−1

)︀
.

(b) Let 𝑟(𝜏) =
𝑖∑︀

𝑗=1

𝛾𝑖,𝑗
(︀
𝜏/ℎ𝑆

)︀
𝑓𝑆(𝑡𝑆𝑛,𝑗 , 𝑧𝑗)
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(c) For 𝜏 ∈ [0, ℎ𝑆 ], solve �̇�(𝜏) = ∆𝑐𝑆𝑖 𝑓
𝐹 (𝑡𝑆𝑛,𝑖−1 + ∆𝑐𝑆𝑖 𝜏, 𝑣) + 𝑟(𝜏)

(d) Set 𝑧𝑖 = 𝑣(ℎ𝑆),

3. Set 𝑦𝑛 = 𝑧𝑠+1.

where 𝑐𝑆𝑠+1 = 1 and the coefficients 𝛾𝑖,𝑗 are polynomials in time that dictate the couplings from the slow to the fast
time scale; these can be expressed as in [S2019]:

𝛾𝑖,𝑗(𝜃) =
∑︁
𝑘≥0

𝛾
{𝑘}
𝑖,𝑗 𝜃𝑘, (2.10)

and where the tables Γ{𝑘} ∈ R(𝑠+1)×(𝑠+1) define the slow-to-fast coupling. For traditional MIS methods (as in
[SKAW2009], [SKAW2012a], and [SKAW2012b]), these coefficients are uniquely defined based on a slow Butcher
table (𝐴𝑆 , 𝑏𝑆 , 𝑐𝑆) having explicit first stage (i.e., 𝑐𝑆1 = 0 and 𝐴𝑆

1,𝑗 = 0 for 1 ≤ 𝑗 ≤ 𝑠), sorted abcissae (i.e.,
𝑐𝑆𝑖 ≥ 𝑐𝑆𝑖−1 for 2 ≤ 𝑖 ≤ 𝑠), and final abcissa 𝑐𝑆𝑠 ≤ 1 as:

𝛾
{0}
𝑖,𝑗 =

⎧⎪⎨⎪⎩
0, if 𝑖 = 1,

𝐴𝑆
𝑖,𝑗 −𝐴𝑆

𝑖−1,𝑗 , if 2 ≤ 𝑖 ≤ 𝑠,

𝑏𝑆𝑗 −𝐴𝑆
𝑠,𝑗 , if 𝑖 = 𝑠 + 1.

(2.11)

For general slow tables (𝐴𝑆 , 𝑏𝑆 , 𝑐𝑆) with at least second-order accuracy, the corresponding MIS method will be sec-
ond order. However, if this slow table is at least third order and satisfies the additional condition

𝑠∑︁
𝑖=2

(︀
𝑐𝑆𝑖 − 𝑐𝑆𝑖−1

)︀
(e𝑖 + e𝑖−1)

𝑇
𝐴𝑆𝑐𝑆 +

(︀
1− 𝑐𝑆𝑠

)︀(︂1

2
+ e𝑇𝑠 𝐴

𝑆𝑐𝑆
)︂

=
1

3
, (2.12)

where e𝑗 corresponds to the 𝑗-th column from the identity matrix, then the overall MIS method will be third order.

As with standard Runge–Kutta methods, implicitness at the slow time scale is characterized by nonzero values on or
above the diagonal of the matrices Γ{𝑘}. Typically, MRI methods are at most diagonally-implicit (i.e., 𝛾{𝑘}

𝑖,𝑗 = 0 for
all 𝑗 > 𝑖). Additionally, an implicit stage 𝑖 may be characterized as being “solve-decoupled,” wherein 𝑐𝑆𝑖 − 𝑐𝑆𝑖−1 = 0
and thus the ‘fast’ IVP for 𝑣 over 𝜏 ∈ [0, ℎ𝑆 ] may be solved analytically,

𝑧𝑖 = 𝑧𝑖−1 +

∫︁ ℎ𝑆

0

𝑟(𝜏) d𝜏

⇔

𝑧𝑖 = 𝑧𝑖−1 + ℎ𝑆
𝑖∑︁

𝑗=1

⎛⎝∑︁
𝑘≥0

𝛾
{𝑘}
𝑖,𝑗

𝑘 + 1

⎞⎠ 𝑓𝑆(𝑡𝑆𝑛,𝑗 , 𝑧𝑗),

(2.13)

corresponding to a standard diagonally-implicit Runge–Kutta stage. Alternately, an implicit MRI stage 𝑖 is consid-

ered “solve-coupled” if both 𝑐𝑆𝑖 − 𝑐𝑆𝑖−1 ̸= 0 and
∑︀
𝑘≥0

𝛾
{𝑘}
𝑖,𝑗

𝑘 + 1
̸= 0, in which case the stage solution 𝑧𝑖 is both an input

to 𝑟(𝜏) and the result of time-evolution of the fast IVP, necessitating an implicit solve that is coupled to the ‘fast’
solver.

The default method supported by the MRIStep module is the explicit, third-order MIS method defined by the slow
Butcher table (Knoth-Wolke-3-3); however, other slow Butcher tables (𝐴𝑆 , 𝑏𝑆 , 𝑐𝑆) or coupling tables Γ{𝑘} ∈
R(𝑠+1)×(𝑠+1) may be provided. At present, only ‘solve-decoupled’ implicit MRI methods are supported.

At present, the inner ODEs for step 2c of the MRI algorithm must be solved using the ARKStep module. As such,
this can be evolved using either an explicit, implicit, or IMEX method with adaptive or fixed time steps.
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2.6 Error norms

In the process of controlling errors at various levels (time integration, nonlinear solution, linear solution), the meth-
ods in ARKode use a weighted root-mean-square norm, denoted ‖ · ‖WRMS, for all error-like quantities,

‖𝑣‖WRMS =

(︃
1

𝑁

𝑁∑︁
𝑖=1

(𝑣𝑖 𝑤𝑖)
2

)︃1/2

. (2.14)

The utility of this norm arises in the specification of the weighting vector 𝑤, that combines the units of the problem
with user-supplied values that specify an “acceptable” level of error. To this end, we construct an error weight vector
using the most-recent step solution and user-supplied relative and absolute tolerances, namely

𝑤𝑖 =
(︀
𝑅𝑇𝑂𝐿 · |𝑦𝑛−1,𝑖|+ 𝐴𝑇𝑂𝐿𝑖

)︀−1
. (2.15)

Since 1/𝑤𝑖 represents a tolerance in the 𝑖-th component of the solution vector 𝑦, a vector whose WRMS norm is 1
is regarded as “small.” For brevity, unless specified otherwise we will drop the subscript WRMS on norms in the re-
mainder of this section.

Additionally, for problems involving a non-identity mass matrix, 𝑀 ̸= 𝐼 , the units of equation (2.2) may differ from
the units of the solution 𝑦. In this case, we may additionally construct a residual weight vector,

𝑤𝑖 =
(︁
𝑅𝑇𝑂𝐿 ·

⃒⃒(︀
𝑀(𝑡𝑛−1) 𝑦𝑛−1

)︀
𝑖

⃒⃒
+ 𝐴𝑇𝑂𝐿′

𝑖

)︁−1

, (2.16)

where the user may specify a separate absolute residual tolerance value or array, 𝐴𝑇𝑂𝐿′. The choice of weighting
vector used in any given norm is determined by the quantity being measured: values having “solution” units use
(2.15), whereas values having “equation” units use (2.16). Obviously, for problems with 𝑀 = 𝐼 , the solution and
equation units are identical, so the solvers in ARKode will use (2.15) when computing all error norms.

2.7 Time step adaptivity

A critical component of IVP “solvers” (rather than just time-steppers) is their adaptive control of local truncation
error (LTE). At every step, we estimate the local error, and ensure that it satisfies tolerance conditions. If this local
error test fails, then the step is recomputed with a reduced step size. To this end, the Runge-Kutta methods packaged
within both the ARKStep and ERKStep modules admit an embedded solution 𝑦𝑛, as shown in equations (2.4) and
(2.8). Generally, these embedded solutions attain a slightly lower order of accuracy than the computed solution 𝑦𝑛.
Denoting the order of accuracy for 𝑦𝑛 as 𝑞 and for 𝑦𝑛 as 𝑝, most of these embedded methods satisfy 𝑝 = 𝑞− 1. These
values of 𝑞 and 𝑝 correspond to the global orders of accuracy for the method and embedding, hence each admit local
truncation errors satisfying [HW1993]

‖𝑦𝑛 − 𝑦(𝑡𝑛)‖ = 𝐶ℎ𝑞+1
𝑛 +𝒪(ℎ𝑞+2

𝑛 ),

‖𝑦𝑛 − 𝑦(𝑡𝑛)‖ = 𝐷ℎ𝑝+1
𝑛 +𝒪(ℎ𝑝+2

𝑛 ),
(2.17)

where 𝐶 and 𝐷 are constants independent of ℎ𝑛, and where we have assumed exact initial conditions for the step,
i.e. 𝑦𝑛−1 = 𝑦(𝑡𝑛−1). Combining these estimates, we have

‖𝑦𝑛 − 𝑦𝑛‖ = ‖𝑦𝑛 − 𝑦(𝑡𝑛)− 𝑦𝑛 + 𝑦(𝑡𝑛)‖ ≤ ‖𝑦𝑛 − 𝑦(𝑡𝑛)‖+ ‖𝑦𝑛 − 𝑦(𝑡𝑛)‖ ≤ 𝐷ℎ𝑝+1
𝑛 +𝒪(ℎ𝑝+2

𝑛 ).
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We therefore use the norm of the difference between 𝑦𝑛 and 𝑦𝑛 as an estimate for the LTE at the step 𝑛

𝑇𝑛 = 𝛽 (𝑦𝑛 − 𝑦𝑛) = 𝛽ℎ𝑛

𝑠∑︁
𝑖=1

[︁(︁
𝑏𝐸𝑖 − �̃�𝐸𝑖

)︁
𝑓𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) +

(︁
𝑏𝐼𝑖 − �̃�𝐼𝑖

)︁
𝑓 𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

]︁
(2.18)

for ARK methods, and similarly for ERK methods. Here, 𝛽 > 0 is an error bias to help account for the error constant
𝐷; the default value of this constant is 𝛽 = 1.5, which may be modified by the user.

With this LTE estimate, the local error test is simply ‖𝑇𝑛‖ < 1 since this norm includes the user-specified toler-
ances. If this error test passes, the step is considered successful, and the estimate is subsequently used to estimate the
next step size, the algorithms used for this purpose are described below in the section Asymptotic error control. If the
error test fails, the step is rejected and a new step size ℎ′ is then computed using the same error controller as for suc-
cessful steps. A new attempt at the step is made, and the error test is repeated. If the error test fails twice, then ℎ′/ℎ
is limited above to 0.3, and limited below to 0.1 after an additional step failure. After seven error test failures, con-
trol is returned to the user with a failure message. We note that all of the constants listed above are only the default
values; each may be modified by the user.

We define the step size ratio between a prospective step ℎ′ and a completed step ℎ as 𝜂, i.e. 𝜂 = ℎ′/ℎ. This value is
subsequently bounded from above by 𝜂max to ensure that step size adjustments are not overly aggressive. This upper
bound changes according to the step and history,

𝜂max =

⎧⎪⎨⎪⎩
etamx1, on the first step (default is 10000),
growth, on general steps (default is 20),
1, if the previous step had an error test failure.

A flowchart detailing how the time steps are modified at each iteration to ensure solver convergence and successful
steps is given in the figure below. Here, all norms correspond to the WRMS norm, and the error adaptivity function
arkAdapt is supplied by one of the error control algorithms discussed in the subsections below.

For some problems it may be preferable to avoid small step size adjustments. This can be especially true for prob-
lems that construct a Newton Jacobian matrix or a preconditioner for a nonlinear or an iterative linear solve, where
this construction is computationally expensive, and where convergence can be seriously hindered through use of an
inaccurate matrix. To accommodate these scenarios, the step is left unchanged when 𝜂 ∈ [𝜂𝐿, 𝜂𝑈 ]. The default values
for this interval are 𝜂𝐿 = 1 and 𝜂𝑈 = 1.5, and may be modified by the user.

We note that any choices for 𝜂 (or equivalently, ℎ′) are subsequently constrained by the optional user-supplied
bounds ℎmin and ℎmax. Additionally, the time-stepping algorithms in ARKode may similarly limit ℎ′ to adhere to a
user-provided “TSTOP” stopping point, 𝑡stop.

2.7.1 Asymptotic error control

As mentioned above, the time-stepping modules in ARKode adapt the step size in order to attain local errors within
desired tolerances of the true solution. These adaptivity algorithms estimate the prospective step size ℎ′ based on the
asymptotic local error estimates (2.17). We define the values 𝜀𝑛, 𝜀𝑛−1 and 𝜀𝑛−2 as

𝜀𝑘 ≡ ‖𝑇𝑘‖ = 𝛽‖𝑦𝑘 − 𝑦𝑘‖,

corresponding to the local error estimates for three consecutive steps, 𝑡𝑛−3 → 𝑡𝑛−2 → 𝑡𝑛−1 → 𝑡𝑛. These local
error history values are all initialized to 1 upon program initialization, to accommodate the few initial time steps of a
calculation where some of these error estimates have not yet been computed. With these estimates, ARKode supports
a variety of error control algorithms, as specified in the subsections below.
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2.7.1.1 PID controller

This is the default time adaptivity controller used by the ARKStep and ERKStep modules. It derives from those
found in [KC2003], [S1998], [S2003] and [S2006], and uses all three of the local error estimates 𝜀𝑛, 𝜀𝑛−1 and 𝜀𝑛−2

in determination of a prospective step size,

ℎ′ = ℎ𝑛 𝜀−𝑘1/𝑝
𝑛 𝜀

𝑘2/𝑝
𝑛−1 𝜀

−𝑘3/𝑝
𝑛−2 ,

where the constants 𝑘1, 𝑘2 and 𝑘3 default to 0.58, 0.21 and 0.1, respectively, and may be modied by the user. In this
estimate, a floor of 𝜀 > 10−10 is enforced to avoid division-by-zero errors.

2.7.1.2 PI controller

Like with the previous method, the PI controller derives from those found in [KC2003], [S1998], [S2003] and
[S2006], but it differs in that it only uses the two most recent step sizes in its adaptivity algorithm,

ℎ′ = ℎ𝑛 𝜀−𝑘1/𝑝
𝑛 𝜀

𝑘2/𝑝
𝑛−1 .

Here, the default values of 𝑘1 and 𝑘2 default to 0.8 and 0.31, respectively, though they may be changed by the user.

2.7.1.3 I controller

This is the standard time adaptivity control algorithm in use by most publicly-available ODE solver codes. It bases
the prospective time step estimate entirely off of the current local error estimate,

ℎ′ = ℎ𝑛 𝜀−𝑘1/𝑝
𝑛 .

By default, 𝑘1 = 1, but that may be modified by the user.

2.7.1.4 Explicit Gustafsson controller

This step adaptivity algorithm was proposed in [G1991], and is primarily useful with explicit Runge-Kutta methods.
In the notation of our earlier controllers, it has the form

ℎ′ =

{︃
ℎ1 𝜀

−1/𝑝
1 , on the first step,

ℎ𝑛 𝜀
−𝑘1/𝑝
𝑛 (𝜀𝑛/𝜀𝑛−1)

𝑘2/𝑝 , on subsequent steps.
(2.19)

The default values of 𝑘1 and 𝑘2 are 0.367 and 0.268, respectively, and may be modified by the user.

2.7.1.5 Implicit Gustafsson controller

A version of the above controller suitable for implicit Runge-Kutta methods was introduced in [G1994], and has the
form

ℎ′ =

{︃
ℎ1𝜀

−1/𝑝
1 , on the first step,

ℎ𝑛 (ℎ𝑛/ℎ𝑛−1) 𝜀
−𝑘1/𝑝
𝑛 (𝜀𝑛/𝜀𝑛−1)

−𝑘2/𝑝 , on subsequent steps.
(2.20)

The algorithm parameters default to 𝑘1 = 0.98 and 𝑘2 = 0.95, but may be modified by the user.
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2.7.1.6 ImEx Gustafsson controller

An ImEx version of these two preceding controllers is also available. This approach computes the estimates ℎ′
1 aris-

ing from equation (2.19) and the estimate ℎ′
2 arising from equation (2.20), and selects

ℎ′ =
ℎ

|ℎ|
min {|ℎ′

1|, |ℎ′
2|} .

Here, equation (2.19) uses 𝑘1 and 𝑘2 with default values of 0.367 and 0.268, while equation (2.20) sets both parame-
ters to the input 𝑘3 that defaults to 0.95. All of these values may be modified by the user.

2.7.1.7 User-supplied controller

Finally, ARKode’s time-stepping modules allow the user to define their own time step adaptivity function,

ℎ′ = 𝐻(𝑦, 𝑡, ℎ𝑛, ℎ𝑛−1, ℎ𝑛−2, 𝜀𝑛, 𝜀𝑛−1, 𝜀𝑛−2, 𝑞, 𝑝),

to allow for problem-specific choices, or for continued experimentation with temporal error controllers.

2.8 Explicit stability

For problems that involve a nonzero explicit component, i.e. 𝑓𝐸(𝑡, 𝑦) ̸= 0 in ARKStep or for any problem in ERK-
Step, explicit and ImEx Runge-Kutta methods may benefit from additional user-supplied information regarding the
explicit stability region. All ARKode adaptivity methods utilize estimates of the local error, and it is often the case
that such local error control will be sufficient for method stability, since unstable steps will typically exceed the error
control tolerances. However, for problems in which 𝑓𝐸(𝑡, 𝑦) includes even moderately stiff components, and espe-
cially for higher-order integration methods, it may occur that a significant number of attempted steps will exceed the
error tolerances. While these steps will automatically be recomputed, such trial-and-error can result in an unreason-
able number of failed steps, increasing the cost of the computation. In these scenarios, a stability-based time step
controller may also be useful.

Since the maximum stable explicit step for any method depends on the problem under consideration, in that the value
(ℎ𝑛𝜆) must reside within a bounded stability region, where 𝜆 are the eigenvalues of the linearized operator 𝜕𝑓𝐸/𝜕𝑦,
information on the maximum stable step size is not readily available to ARKode’s time-stepping modules. How-
ever, for many problems such information may be easily obtained through analysis of the problem itself, e.g. in an
advection-diffusion calculation 𝑓 𝐼 may contain the stiff diffusive components and 𝑓𝐸 may contain the compara-
bly nonstiff advection terms. In this scenario, an explicitly stable step ℎexp would be predicted as one satisfying the
Courant-Friedrichs-Lewy (CFL) stability condition for the advective portion of the problem,

|ℎexp| <
∆𝑥

|𝜆|

where ∆𝑥 is the spatial mesh size and 𝜆 is the fastest advective wave speed.

In these scenarios, a user may supply a routine to predict this maximum explicitly stable step size, |ℎexp|. If a value
for |ℎexp| is supplied, it is compared against the value resulting from the local error controller, |ℎacc|, and the eventual
time step used will be limited accordingly,

ℎ′ =
ℎ

|ℎ|
min{𝑐 |ℎexp|, |ℎacc|}.

Here the explicit stability step factor 𝑐 > 0 (often called the “CFL number”) defaults to 1/2 but may be modified by
the user.
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2.8.1 Fixed time stepping

While both the ARKStep and ERKStep time-stepping modules are designed for tolerance-based time step adaptiv-
ity, they additionally support a “fixed-step” mode (note: fixed-step mode is currently required for the slow time scale
in the MRIStep module). This mode is typically used for debugging purposes, for verification against hand-coded
Runge-Kutta methods, or for problems where the time steps should be chosen based on other problem-specific infor-
mation. In this mode, all internal time step adaptivity is disabled:

• temporal error control is disabled,

• nonlinear or linear solver non-convergence will result in an error (instead of a step size adjustment),

• no check against an explicit stability condition is performed.

Additional information on this mode is provided in the sections ARKStep Optional Inputs, ERKStep Optional Inputs,
and MRIStep Optional Inputs.

2.9 Algebraic solvers

When solving a problem involving either an implicit component (e.g., in ARKStep with 𝑓 𝐼(𝑡, 𝑦) ̸= 0, or in MRIStep
with a solve-decoupled implicit slow stage), or a non-identity mass matrix (𝑀(𝑡) ̸= 𝐼 in ARKStep), systems of
linear or nonlinear algebraic equations must be solved at each stage and/or step of the method. This section therefore
focuses on the variety of mathematical methods provided in the ARKode infrastructure for such problems, including
nonlinear solvers, linear solvers, preconditioners, iterative solver error control, implicit predictors, and techniques
used for simplifying the above solves when using different classes of mass-matrices.

2.9.1 Nonlinear solver methods

For the DIRK and ARK methods corresponding to (2.2) and (2.6) in ARKStep, and the solve-decoupled implicit
slow stages (2.13) in MRIStep, an implicit system

𝐺(𝑧𝑖) = 0 (2.21)

must be solved for each stage 𝑧𝑖, 𝑖 = 1, . . . , 𝑠. In order to maximize solver efficiency, we define this root-finding
problem differently based on the type of mass-matrix supplied by the user.

• In the case that 𝑀 = 𝐼 within ARKStep, we define the residual as

𝐺(𝑧𝑖) ≡ 𝑧𝑖 − ℎ𝑛𝐴
𝐼
𝑖,𝑖𝑓

𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)− 𝑎𝑖, (2.22)

where we have the data

𝑎𝑖 ≡ 𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

[︀
𝐴𝐸

𝑖,𝑗𝑓
𝐸(𝑡𝐸𝑛,𝑗 , 𝑧𝑗) + 𝐴𝐼

𝑖,𝑗𝑓
𝐼(𝑡𝐼𝑛,𝑗 , 𝑧𝑗)

]︀
.

• In the case of non-identity mass matrix 𝑀 ̸= 𝐼 within ARKStep, but where 𝑀 is independent of 𝑡, we define
the residual as

𝐺(𝑧𝑖) ≡𝑀𝑧𝑖 − ℎ𝑛𝐴
𝐼
𝑖,𝑖𝑓

𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)− 𝑎𝑖, (2.23)
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where we have the data

𝑎𝑖 ≡𝑀𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

[︀
𝐴𝐸

𝑖,𝑗𝑓
𝐸(𝑡𝐸𝑛,𝑗 , 𝑧𝑗) + 𝐴𝐼

𝑖,𝑗𝑓
𝐼(𝑡𝐼𝑛,𝑗 , 𝑧𝑗)

]︀
.

Note: This form of residual, as opposed to 𝐺(𝑧𝑖) = 𝑧𝑖 − ℎ𝑛𝐴
𝐼
𝑖,𝑖𝑓

𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖) − 𝑎𝑖 (with 𝑎𝑖 defined appropri-
ately), removes the need to perform the nonlinear solve with right-hand side function 𝑓 𝐼 = 𝑀−1 𝑓 𝐼 , as that
would require a linear solve with 𝑀 at every evaluation of the implicit right-hand side routine.

• In the case of ARKStep with 𝑀 dependent on 𝑡, we define the residual as

𝐺(𝑧𝑖) ≡𝑀(𝑡𝐼𝑛,𝑖)(𝑧𝑖 − 𝑎𝑖)− ℎ𝑛𝐴
𝐼
𝑖,𝑖𝑓

𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖) (2.24)

where we have the data

𝑎𝑖 ≡ 𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

[︁
𝐴𝐸

𝑖,𝑗𝑓
𝐸(𝑡𝐸𝑛,𝑗 , 𝑧𝑗) + 𝐴𝐼

𝑖,𝑗𝑓
𝐼(𝑡𝐼𝑛,𝑗 , 𝑧𝑗)

]︁
.

Note: As above, this form of the residual is chosen to remove excessive mass-matrix solves from the nonlin-
ear solve process.

• Similarly, in MRIStep (that always assumes 𝑀 = 𝐼), we have the residual

𝐺(𝑧𝑖) ≡ 𝑧𝑖 − ℎ𝑆

⎛⎝∑︁
𝑘≥0

𝛾
{𝑘}
𝑖,𝑖

𝑘 + 1

⎞⎠ 𝑓𝑆(𝑡𝑆𝑛,𝑖, 𝑧𝑖)− 𝑎𝑖 = 0 (2.25)

where

𝑎𝑖 ≡ 𝑧𝑖−1 + ℎ𝑆
𝑖−1∑︁
𝑗=1

⎛⎝∑︁
𝑘≥0

𝛾
{𝑘}
𝑖,𝑗

𝑘 + 1

⎞⎠ 𝑓𝑆(𝑡𝑆𝑛,𝑗 , 𝑧𝑗).

In each of the above nonlinear residual functions, if 𝑓 𝐼(𝑡, 𝑦) or 𝑓𝑆(𝑡, 𝑦) depends nonlinearly on 𝑦 then (2.21) corre-
sponds to a nonlinear system of equations; if instead 𝑓 𝐼(𝑡, 𝑦) or 𝑓𝑆(𝑡, 𝑦) depends linearly on 𝑦 then this is a linear
system of equations.

To solve each of the above root-finding problems ARKode provides a choice of strategies, with the default being a
variant of Newton’s method,

𝑧
(𝑚+1)
𝑖 = 𝑧

(𝑚)
𝑖 + 𝛿(𝑚+1), (2.26)

where 𝑚 is the Newton iteration index, and the Newton update 𝛿(𝑚+1) in turn requires the solution of the Newton
linear system

𝒜
(︁
𝑡𝐼𝑛,𝑖, 𝑧

(𝑚)
𝑖

)︁
𝛿(𝑚+1) = −𝐺

(︁
𝑧
(𝑚)
𝑖

)︁
, (2.27)
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in which

𝒜(𝑡, 𝑧) ≈𝑀(𝑡)− 𝛾𝐽(𝑡, 𝑧), 𝐽(𝑡, 𝑧) =
𝜕𝑓 𝐼(𝑡, 𝑧)

𝜕𝑧
, and 𝛾 = ℎ𝑛𝐴

𝐼
𝑖,𝑖

(2.28)

within ARKStep, or

𝒜(𝑡, 𝑧) ≈ 𝐼 − 𝛾𝐽(𝑡, 𝑧), 𝐽(𝑡, 𝑧) =
𝜕𝑓𝑆(𝑡, 𝑧)

𝜕𝑧
, and 𝛾 = ℎ𝑆

∑︁
𝑘≥0

𝛾
{𝑘}
𝑖,𝑖

𝑘 + 1
(2.29)

within MRIStep.

As an alternative to Newton’s method, ARKode provides a fixed point iteration for solving the stages 𝑧𝑖, 𝑖 =
1, . . . , 𝑠,

𝑧
(𝑚+1)
𝑖 = Φ

(︁
𝑧
(𝑚)
𝑖

)︁
≡ 𝑧

(𝑚)
𝑖 −𝑀(𝑡𝐼𝑛,𝑖)

−1 𝐺
(︁
𝑧
(𝑚)
𝑖

)︁
, 𝑚 = 0, 1, . . . . (2.30)

This iteration may additionally be improved using a technique called “Anderson acceleration” [WN2011]. Unlike
with Newton’s method, these methods do not require the solution of a linear system involving the Jacobian of 𝑓 at
each iteration, instead opting for solution of a low-dimensional least-squares solution to construct the nonlinear up-
date.

Finally, if the user specifies that 𝑓 𝐼(𝑡, 𝑦) or 𝑓𝑆(𝑡, 𝑦) depend linearly on 𝑦 in ARKStep or MRIStep, respectively, and
if the Newton-based nonlinear solver is chosen, then the problem (2.21) will be solved using only a single Newton
iteration. In this case, an additional user-supplied argument indicates whether this Jacobian is time-dependent or not,
signaling whether the Jacobian or preconditioner needs to be recomputed at each stage or time step, or if it can be
reused throughout the full simulation.

The optimal choice of solver (Newton vs fixed-point) is highly problem dependent. Since fixed-point solvers do not
require the solution of linear systems involving the Jacobian of 𝑓 , each iteration may be significantly less costly than
their Newton counterparts. However, this can come at the cost of slower convergence (or even divergence) in com-
parison with Newton-like methods. On the other hand, these fixed-point solvers do allow for user specification of
the Anderson-accelerated subspace size, 𝑚𝑘. While the required amount of solver memory for acceleration grows
proportionately to 𝑚𝑘𝑁 , larger values of 𝑚𝑘 may result in faster convergence. In our experience, this improvement
is most significant for relatively modest values, e.g. 1 ≤ 𝑚𝑘 ≤ 5, and that larger values of 𝑚𝑘 may not result in
improved convergence.

While a Newton-based iteration is the default solver in ARKode due to its increased robustness on very stiff prob-
lems, we strongly recommend that users also consider the fixed-point solver when attempting a new problem.

For either the Newton or fixed-point solvers, it is well-known that both the efficiency and robustness of the algorithm
intimately depend on the choice of a good initial guess. The initial guess for these solvers is a prediction 𝑧

(0)
𝑖 that is

computed explicitly from previously-computed data (e.g. 𝑦𝑛−2, 𝑦𝑛−1, and 𝑧𝑗 where 𝑗 < 𝑖). Additional information
on the specific predictor algorithms is provided in the following section, Implicit predictors.

2.9.2 Linear solver methods

When a Newton-based method is chosen for solving each nonlinear system, a linear system of equations must be
solved at each nonlinear iteration. For this solve ARKode provides several choices, including the option of a user-
supplied linear solver module. The linear solver modules distributed with SUNDIALS are organized into two fam-
ilies: a direct family comprising direct linear solvers for dense, banded or sparse matrices, and a spils family com-
prising scaled, preconditioned, iterative (Krylov) linear solvers. The methods offered through these modules are as
follows:
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• dense direct solvers, using either an internal SUNDIALS implementation or a BLAS/LAPACK implementa-
tion (serial version only),

• band direct solvers, using either an internal SUNDIALS implementation or a BLAS/LAPACK implementation
(serial version only),

• sparse direct solvers, using either the KLU sparse matrix library [KLU], or the OpenMP or PThreads-enabled
SuperLU_MT sparse matrix library [SuperLUMT] [Note that users will need to download and install the KLU
or SuperLU_MT packages independent of ARKode],

• SPGMR, a scaled, preconditioned GMRES (Generalized Minimal Residual) solver,

• SPFGMR, a scaled, preconditioned FGMRES (Flexible Generalized Minimal Residual) solver,

• SPBCGS, a scaled, preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable) solver,

• SPTFQMR, a scaled, preconditioned TFQMR (Transpose-free Quasi-Minimal Residual) solver, or

• PCG, a preconditioned CG (Conjugate Gradient method) solver for symmetric linear systems.

For large stiff systems where direct methods are often infeasible, the combination of an implicit integrator and a pre-
conditioned Krylov method can yield a powerful tool because it combines established methods for stiff integration,
nonlinear solver iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant sources of
stiffness, in the form of a user-supplied preconditioner matrix [BH1989]. We note that the direct linear solver mod-
ules currently provided by SUNDIALS are only designed to be used with the serial and threaded vector representa-
tions.

2.9.2.1 Matrix-based linear solvers

In the case that a matrix-based linear solver is used, a modified Newton iteration is utilized. In a modified newton it-
eration, the matrix 𝒜 is held fixed for multiple Newton iterations. More precisely, each Newton iteration is computed
from the modified equation

𝒜
(︀
𝑡, 𝑧
)︀
𝛿(𝑚+1) = −𝐺

(︁
𝑧
(𝑚)
𝑖

)︁
, (2.31)

in which

𝒜(𝑡, 𝑧) ≈𝑀(𝑡)− 𝛾𝐽(𝑡, 𝑧), and 𝛾 = ℎ̃𝐴𝐼
𝑖,𝑖 (ARKStep) (2.32)

or

𝒜(𝑡, 𝑧) ≈ 𝐼 − 𝛾𝐽(𝑡, 𝑧), and 𝛾 = ℎ̃
∑︁
𝑘≥0

𝛾
{𝑘}
𝑖,𝑖

𝑘 + 1
(MRIStep). (2.33)

Here, the solution 𝑧, time 𝑡, and step size ℎ̃ upon which the modified equation rely, are merely values of these quan-
tities from a previous iteration. In other words, the matrix 𝒜 is only computed rarely, and reused for repeated solves.
The frequency at which 𝒜 is recomputed defaults to 20 time steps, but may be modified by the user.

When using the dense and band SUNMatrix objects for the linear systems (2.31), the Jacobian 𝐽 may be supplied
by a user routine, or approximated internally by finite-differences. In the case of differencing, we use the standard
approximation

𝐽𝑖,𝑗(𝑡, 𝑧) ≈ 𝑓*
𝑖 (𝑡, 𝑧 + 𝜎𝑗𝑒𝑗)− 𝑓*

𝑖 (𝑡, 𝑧)

𝜎𝑗
,
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where 𝑓* is either 𝑓 𝐼 for ARKStep or 𝑓𝑆 for MRIStep, 𝑒𝑗 is the 𝑗-th unit vector, and the increments 𝜎𝑗 are given by

𝜎𝑗 = max

{︂√
𝑈 |𝑧𝑗 |,

𝜎0

𝑤𝑗

}︂
.

Here 𝑈 is the unit roundoff, 𝜎0 is a small dimensionless value, and 𝑤𝑗 is the error weight defined in (2.15). In the
dense case, this approach requires 𝑁 evaluations of 𝑓*, one for each column of 𝐽 . In the band case, the columns of
𝐽 are computed in groups, using the Curtis-Powell-Reid algorithm, with the number of 𝑓* evaluations equal to the
matrix bandwidth.

We note that with sparse and user-supplied SUNMatrix objects, the Jacobian must be supplied by a user routine.

2.9.2.2 Matrix-free iterative linear solvers

In the case that a matrix-free iterative linear solver is chosen, an inexact Newton iteration is utilized. Here, the matrix
𝒜 is not itself constructed since the algorithms only require the product of this matrix with a given vector. Addition-
ally, each Newton system (2.27) is not solved completely, since these linear solvers are iterative (hence the “inexact”
in the name). As a result. for these linear solvers 𝒜 is applied in a matrix-free manner,

𝒜(𝑡, 𝑧) 𝑣 = 𝑀(𝑡) 𝑣 − 𝛾 𝐽(𝑡, 𝑧) 𝑣.

The mass matrix-vector products 𝑀𝑣 must be provided through a user-supplied routine; the Jacobian matrix-vector
products 𝐽𝑣 are obtained by either calling an optional user-supplied routine, or through a finite difference approxi-
mation to the directional derivative:

𝐽(𝑡, 𝑧) 𝑣 ≈ 𝑓*(𝑡, 𝑧 + 𝜎𝑣)− 𝑓*(𝑡, 𝑧)

𝜎
,

where again 𝑓* is either 𝑓 𝐼 for ARKStep or 𝑓𝑆 for MRIStep, and we use the increment 𝜎 = 1/‖𝑣‖ to ensure that
‖𝜎𝑣‖ = 1.

As with the modified Newton method that reused 𝒜 between solves, the inexact Newton iteration may also recom-
pute the preconditioner 𝑃 infrequently to balance the high costs of matrix construction and factorization against the
reduced convergence rate that may result from a stale preconditioner.

2.9.2.3 Updating the linear solver

In cases where recomputation of the Newton matrix 𝒜 or preconditioner 𝑃 is lagged, these structures will be recom-
puted only in the following circumstances:

• when starting the problem,

• when more than 20 steps have been taken since the last update (this value may be modified by the user),

• when the value 𝛾 of 𝛾 at the last update satisfies |𝛾/𝛾 − 1| > 0.2 (this value may be modified by the user),

• when a non-fatal convergence failure just occurred,

• when an error test failure just occurred, or

• if the problem is linearly implicit and 𝛾 has changed by a factor larger than 100 times machine epsilon.

When an update is forced due to a convergence failure, an update of 𝒜 or 𝑃 may or may not involve a re-evaluation
of 𝐽 (in 𝒜) or of Jacobian data (in 𝑃 ), depending on whether errors in the Jacobian were the likely cause of the fail-
ure. More generally, the decision is made to re-evaluate 𝐽 (or instruct the user to update 𝑃 ) when:

• starting the problem,

• more than 50 steps have been taken since the last evaluation,
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• a convergence failure occurred with an outdated matrix, and the value 𝛾 of 𝛾 at the last update satisfies
|𝛾/𝛾 − 1| > 0.2,

• a convergence failure occurred that forced a step size reduction, or

• if the problem is linearly implicit and 𝛾 has changed by a factor larger than 100 times machine epsilon.

However, for linear solvers and preconditioners that do not rely on costly matrix construction and factorization op-
erations (e.g. when using a geometric multigrid method as preconditioner), it may be more efficient to update these
structures more frequently than the above heuristics specify, since the increased rate of linear/nonlinear solver con-
vergence may more than account for the additional cost of Jacobian/preconditioner construction. To this end, a user
may specify that the system matrix 𝒜 and/or preconditioner 𝑃 should be recomputed more frequently.

As will be further discussed in the section Preconditioning, in the case of most Krylov methods, preconditioning may
be applied on the left, right, or on both sides of 𝒜, with user-supplied routines for the preconditioner setup and solve
operations.

2.9.3 Iteration Error Control

2.9.3.1 Nonlinear iteration error control

The stopping test for all of the nonlinear solver algorithms is related to the temporal local error test, with the goal of
keeping the nonlinear iteration errors from interfering with local error control. Denoting the final computed value of
each stage solution as 𝑧(𝑚)

𝑖 , and the true stage solution solving (2.21) as 𝑧𝑖, we want to ensure that the iteration error
𝑧𝑖 − 𝑧

(𝑚)
𝑖 is “small” (recall that a norm less than 1 is already considered within an acceptable tolerance).

To this end, we first estimate the linear convergence rate 𝑅𝑖 of the nonlinear iteration. We initialize 𝑅𝑖 = 1, and reset
it to this value whenever 𝒜 or 𝑃 are updated. After computing a nonlinear correction 𝛿(𝑚) = 𝑧

(𝑚)
𝑖 − 𝑧

(𝑚−1)
𝑖 , if

𝑚 > 0 we update 𝑅𝑖 as

𝑅𝑖 ← max
{︁

0.3𝑅𝑖,
⃦⃦⃦
𝛿(𝑚)

⃦⃦⃦
/
⃦⃦⃦
𝛿(𝑚−1)

⃦⃦⃦}︁
.

where the factor 0.3 is user-modifiable.

Let 𝑦(𝑚)
𝑛 denote the time-evolved solution constructed using our approximate nonlinear stage solutions, 𝑧(𝑚)

𝑖 , and let
𝑦
(∞)
𝑛 denote the time-evolved solution constructed using exact nonlinear stage solutions. We then use the estimate⃦⃦⃦

𝑦(∞)
𝑛 − 𝑦(𝑚)

𝑛

⃦⃦⃦
≈ max

𝑖

⃦⃦⃦
𝑧
(𝑚+1)
𝑖 − 𝑧

(𝑚)
𝑖

⃦⃦⃦
≈ max

𝑖
𝑅𝑖

⃦⃦⃦
𝑧
(𝑚)
𝑖 − 𝑧

(𝑚−1)
𝑖

⃦⃦⃦
= max

𝑖
𝑅𝑖

⃦⃦⃦
𝛿(𝑚)

⃦⃦⃦
.

Therefore our convergence (stopping) test for the nonlinear iteration for each stage is

𝑅𝑖

⃦⃦⃦
𝛿(𝑚)

⃦⃦⃦
< 𝜖, (2.34)

where the factor 𝜖 has default value 0.1. We default to a maximum of 3 nonlinear iterations. We also declare the non-
linear iteration to be divergent if any of the ratios ‖𝛿(𝑚)‖/‖𝛿(𝑚−1)‖ > 2.3 with 𝑚 > 0. If convergence fails in the
fixed point iteration, or in the Newton iteration with 𝐽 or 𝒜 current, we reduce the step size ℎ𝑛 by a factor of 0.25.
The integration will be halted after 10 convergence failures, or if a convergence failure occurs with ℎ𝑛 = ℎmin. How-
ever, since the nonlinearity of (2.21) may vary significantly based on the problem under consideration, these default
constants may all be modified by the user.

2.9.3.2 Linear iteration error control

When a Krylov method is used to solve the linear Newton systems (2.27), its errors must also be controlled. To this
end, we approximate the linear iteration error in the solution vector 𝛿(𝑚) using the preconditioned residual vector,
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e.g. 𝑟 = 𝑃𝒜𝛿(𝑚) + 𝑃𝐺 for the case of left preconditioning (the role of the preconditioner is further elaborated in the
next section). In an attempt to ensure that the linear iteration errors do not interfere with the nonlinear solution error
and local time integration error controls, we require that the norm of the preconditioned linear residual satisfies

‖𝑟‖ ≤ 𝜖𝐿𝜖

10
. (2.35)

Here 𝜖 is the same value as that is used above for the nonlinear error control. The factor of 10 is used to ensure that
the linear solver error does not adversely affect the nonlinear solver convergence. Smaller values for the parameter
𝜖𝐿 are typically useful for strongly nonlinear or very stiff ODE systems, while easier ODE systems may benefit from
a value closer to 1. The default value is 𝜖𝐿 = 0.05, which may be modified by the user. We note that for linearly
implicit problems the tolerance (2.35) is similarly used for the single Newton iteration.

2.9.4 Preconditioning

When using an inexact Newton method to solve the nonlinear system (2.21), an iterative method is used repeatedly
to solve linear systems of the form 𝒜𝑥 = 𝑏, where 𝑥 is a correction vector and 𝑏 is a residual vector. If this iterative
method is one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, their efficiency may
benefit tremendously from preconditioning. A system 𝒜𝑥 = 𝑏 can be preconditioned using any one of:

(𝑃−1𝒜)𝑥 = 𝑃−1𝑏 [left preconditioning],

(𝒜𝑃−1)𝑃𝑥 = 𝑏 [right preconditioning],

(𝑃−1
𝐿 𝒜𝑃

−1
𝑅 )𝑃𝑅𝑥 = 𝑃−1

𝐿 𝑏 [left and right preconditioning].

These Krylov iterative methods are then applied to a system with the matrix 𝑃−1𝒜, 𝒜𝑃−1, or 𝑃−1
𝐿 𝒜𝑃

−1
𝑅 , instead of

𝒜. In order to improve the convergence of the Krylov iteration, the preconditioner matrix 𝑃 , or the product 𝑃𝐿𝑃𝑅 in
the third case, should in some sense approximate the system matrix 𝒜. Simultaneously, in order to be cost-effective
the matrix 𝑃 (or matrices 𝑃𝐿 and 𝑃𝑅) should be reasonably efficient to evaluate and solve. Finding an optimal point
in this trade-off between rapid convergence and low cost can be quite challenging. Good choices are often problem-
dependent (for example, see [BH1989] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for all three types of preconditioning (left, right
or both), although for non-symmetric matrices 𝒜 we know of few situations where preconditioning on both sides is
superior to preconditioning on one side only (with the product 𝑃 = 𝑃𝐿𝑃𝑅). Moreover, for a given preconditioner
matrix, the merits of left vs. right preconditioning are unclear in general, so we recommend that the user experiment
with both choices. Performance can differ between these since the inverse of the left preconditioner is included in the
linear system residual whose norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner
is the product of two matrices, we recommend that preconditioning be done either on the left only or the right only,
rather than using one factor on each side. An exception to this rule is the PCG solver, that itself assumes a symmetric
matrix 𝒜, since the PCG algorithm in fact applies the single preconditioner matrix 𝑃 in both left/right fashion as
𝑃−1/2𝒜𝑃−1/2.

Typical preconditioners are based on approximations to the system Jacobian, 𝐽 = 𝜕𝑓 𝐼/𝜕𝑦. Since the Newton itera-
tion matrix involved is 𝒜 = 𝑀 − 𝛾𝐽 , any approximation 𝐽 to 𝐽 yields a matrix that is of potential use as a precondi-
tioner, namely 𝑃 = 𝑀 − 𝛾𝐽 . Because the Krylov iteration occurs within a Newton iteration and further also within
a time integration, and since each of these iterations has its own test for convergence, the preconditioner may use a
very crude approximation, as long as it captures the dominant numerical features of the system. We have found that
the combination of a preconditioner with the Newton-Krylov iteration, using even a relatively poor approximation
to the Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified
Newton iteration), as well as to using the Newton-Krylov method with no preconditioning.
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2.9.5 Implicit predictors

For problems with implicit components, a prediction algorithm is employed for constructing the initial guesses
for each implicit Runge-Kutta stage, 𝑧(0)𝑖 . As is well-known with nonlinear solvers, the selection of a good initial
guess can have dramatic effects on both the speed and robustness of the solve, making the difference between rapid
quadratic convergence versus divergence of the iteration. To this end, a variety of prediction algorithms are provided.
In each case, the stage guesses 𝑧(0)𝑖 are constructed explicitly using readily-available information, including the pre-
vious step solutions 𝑦𝑛−1 and 𝑦𝑛−2, as well as any previous stage solutions 𝑧𝑗 , 𝑗 < 𝑖. In most cases, prediction
is performed by constructing an interpolating polynomial through existing data, which is then evaluated at the de-
sired stage time to provide an inexpensive but (hopefully) reasonable prediction of the stage solution. Specifically,
for most Runge-Kutta methods each stage solution satisfies

𝑧𝑖 ≈ 𝑦(𝑡𝐼𝑛,𝑖),

(similarly for MRI methods 𝑧𝑖 ≈ 𝑦(𝑡𝑆𝑛,𝑖)), so by constructing an interpolating polynomial 𝑝𝑞(𝑡) through a set of
existing data, the initial guess at stage solutions may be approximated as

𝑧
(0)
𝑖 = 𝑝𝑞(𝑡𝐼𝑛,𝑖). (2.36)

As the stage times for MRI stages and implicit ARK and DIRK stages usually have non-negative abcissae (i.e., 𝑐𝐼𝑗 >

0), it is typically the case that 𝑡𝐼𝑛,𝑗 (resp., 𝑡𝑆𝑛,𝑗) is outside of the time interval containing the data used to construct
𝑝𝑞(𝑡), hence (2.36) will correspond to an extrapolant instead of an interpolant. The dangers of using a polynomial
interpolant to extrapolate values outside the interpolation interval are well-known, with higher-order polynomials and
predictions further outside the interval resulting in the greatest potential inaccuracies.

The prediction algorithms available in ARKode therefore construct a variety of interpolants 𝑝𝑞(𝑡), having different
polynomial order and using different interpolation data, to support ‘optimal’ choices for different types of problems,
as described below. We note that due to the structural similarities between implicit ARK and DIRK stages in ARK-
Step, and solve-decoupled implicit stages in MRIStep, we use the ARKStep notation throughout the remainder of
this section, but each statement equally applies to MRIStep (unless otherwise noted).

2.9.5.1 Trivial predictor

The so-called “trivial predictor” is given by the formula

𝑝0(𝑡) = 𝑦𝑛−1.

While this piecewise-constant interpolant is clearly not a highly accurate candidate for problems with time-varying
solutions, it is often the most robust approach for highly stiff problems, or for problems with implicit constraints
whose violation may cause illegal solution values (e.g. a negative density or temperature).

2.9.5.2 Maximum order predictor

At the opposite end of the spectrum, ARKode’s interpolation module can be used to construct a higher-order poly-
nomial interpolant, 𝑝𝑞(𝑡). The implicit stage predictor is computed through evaulating this interpolant at each stage
time 𝑡𝐼𝑛,𝑖.

2.9.5.3 Variable order predictor

This predictor attempts to use higher-order polynomials 𝑝𝑞(𝑡) for predicting earlier stages, and lower-order inter-
polants for later stages. It uses the same interpolation module as described above, but chooses the polynomial de-
gree adaptively based on the stage index 𝑖, under the assumption that the stage times are increasing, i.e. 𝑐𝐼𝑗 < 𝑐𝐼𝑘 for
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𝑗 < 𝑘:

𝑞𝑖 = max{𝑞max − 𝑖 + 1, 1}, 𝑖 = 1, . . . , 𝑠.

2.9.5.4 Cutoff order predictor

This predictor follows a similar idea as the previous algorithm, but monitors the actual stage times to determine the

polynomial interpolant to use for prediction. Denoting 𝜏 = 𝑐𝐼𝑖
ℎ𝑛

ℎ𝑛−1
, the polynomial degree 𝑞𝑖 is chosen as:

𝑞𝑖 =

{︃
𝑞max, if 𝜏 < 1

2 ,

1, otherwise.

2.9.5.5 Bootstrap predictor (𝑀 = 𝐼 only)

This predictor does not use any information from the preceding step, instead using information only within the cur-
rent step [𝑡𝑛−1, 𝑡𝑛]. In addition to using the solution and ODE right-hand side function, 𝑦𝑛−1 and 𝑓(𝑡𝑛−1, 𝑦𝑛−1), this
approach uses the right-hand side from a previously computed stage solution in the same step, 𝑓(𝑡𝑛−1 + 𝑐𝐼𝑗ℎ, 𝑧𝑗) to
construct a quadratic Hermite interpolant for the prediction. If we define the constants ℎ̃ = 𝑐𝐼𝑗ℎ and 𝜏 = 𝑐𝐼𝑖 ℎ, the
predictor is given by

𝑧
(0)
𝑖 = 𝑦𝑛−1 +

(︂
𝜏 − 𝜏2

2ℎ̃

)︂
𝑓(𝑡𝑛−1, 𝑦𝑛−1) +

𝜏2

2ℎ̃
𝑓(𝑡𝑛−1 + ℎ̃, 𝑧𝑗).

For stages without a nonzero preceding stage time, i.e. 𝑐𝐼𝑗 ̸= 0 for 𝑗 < 𝑖, this method reduces to using the trivial

predictor 𝑧(0)𝑖 = 𝑦𝑛−1. For stages having multiple preceding nonzero 𝑐𝐼𝑗 , we choose the stage having largest 𝑐𝐼𝑗 value,
to minimize the level of extrapolation used in the prediction.

We note that in general, each stage solution 𝑧𝑗 has significantly worse accuracy than the time step solutions 𝑦𝑛−1,
due to the difference between the stage order and the method order in Runge-Kutta methods. As a result, the accu-
racy of this predictor will generally be rather limited, but it is provided for problems in which this increased stage
error is better than the effects of extrapolation far outside of the previous time step interval [𝑡𝑛−2, 𝑡𝑛−1].

Although this approach could be used with non-identity mass matrix, support for that mode is not currently imple-
mented, so selection of this predictor in the case of a non-identity mass matrix will result in use of the trivial predic-
tor.

2.9.5.6 Minimum correction predictor (ARKStep, 𝑀 = 𝐼 only)

The final predictor is not interpolation based; instead it utilizes all existing stage information from the current step
to create a predictor containing all but the current stage solution. Specifically, as discussed in equations (2.4) and
(2.21), each stage solves a nonlinear equation

𝑧𝑖 = 𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

𝐴𝐸
𝑖,𝑗𝑓

𝐸(𝑡𝐸𝑛,𝑗 , 𝑧𝑗) + ℎ𝑛

𝑖∑︁
𝑗=1

𝐴𝐼
𝑖,𝑗𝑓

𝐼(𝑡𝐼𝑛,𝑗 , 𝑧𝑗),

⇔
𝐺(𝑧𝑖) ≡ 𝑧𝑖 − ℎ𝑛𝐴

𝐼
𝑖,𝑖𝑓

𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)− 𝑎𝑖 = 0.
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This prediction method merely computes the predictor 𝑧𝑖 as

𝑧𝑖 = 𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

𝐴𝐸
𝑖,𝑗𝑓

𝐸(𝑡𝐸𝑛,𝑗 , 𝑧𝑗) + ℎ𝑛

𝑖−1∑︁
𝑗=1

𝐴𝐼
𝑖,𝑗𝑓

𝐼(𝑡𝐼𝑛,𝑗 , 𝑧𝑗),

⇔
𝑧𝑖 = 𝑎𝑖.

Again, although this approach could be used with non-identity mass matrix, support for that mode is not currently
implemented, so selection of this predictor in the case of a non-identity mass matrix will result in use of the trivial
predictor.

2.9.6 Mass matrix solver (ARKStep only)

Within the ARKStep algorithms described above, there are multiple locations where a matrix-vector product

𝑏 = 𝑀𝑣 (2.37)

or a linear solve

𝑥 = 𝑀−1𝑏 (2.38)

is required.

Of course, for problems in which 𝑀 = 𝐼 both of these operators are trivial. However for problems with non-identity
mass matrix, these linear solves (2.38) may be handled using any valid linear solver module, in the same manner as
described in the section Linear solver methods for solving the linear Newton systems.

For ERK methods involving non-identity mass matrix, even though calculation of individual stages does not require
an algebraic solve, both of the above operations (matrix-vector product, and mass matrix solve) may be required
within each time step. Therefore, for these users we recommend reading the rest of this section as it pertains to ARK
methods, with the obvious simplification that since 𝑓𝐸 = 𝑓 and 𝑓 𝐼 = 0 no Newton or fixed-point nonlinear solve,
and no overall system linear solve, is involved in the solution process.

At present, for DIRK and ARK problems using a matrix-based solver for the Newton nonlinear iterations, the type of
matrix (dense, band, sparse, or custom) for the Jacobian matrix 𝐽 must match the type of mass matrix 𝑀 , since these
are combined to form the Newton system matrix 𝒜. When matrix-based methods are employed, the user must supply
a routine to compute 𝑀(𝑡) in the appropriate form to match the structure of 𝒜, with a user-supplied routine of type
ARKLsMassFn(). This matrix structure is used internally to perform any requisite mass matrix-vector products
(2.37).

When matrix-free methods are selected, a routine must be supplied to perform the mass-matrix-vector product, 𝑀𝑣.
As with iterative solvers for the Newton systems, preconditioning may be applied to aid in solution of the mass ma-
trix systems (2.38). When using an iterative mass matrix linear solver, we require that the norm of the preconditioned
linear residual satisfies

‖𝑟‖ ≤ 𝜖𝐿𝜖, (2.39)

where again, 𝜖 is the nonlinear solver tolerance parameter from (2.34). When using iterative system and mass matrix
linear solvers, 𝜖𝐿 may be specified separately for both tolerances (2.35) and (2.39).

In the above algorithmic description there are five locations where a linear solve of the form (2.38) is required: (a)
at each iteration of a fixed-point nonlinear solve, (b) in computing the Runge–Kutta right-hand side vectors 𝑓𝐸

𝑖 and
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𝑓 𝐼
𝑖 , (c) in constructing the time-evolved solution 𝑦𝑛, (d) in estimating the local temporal truncation error, and (e) in

constructing predictors for the implicit solver iteration (see section Maximum order predictor). We note that different
nonlinear solver approaches (i.e., Newton vs fixed-point) and different types of mass matrices (i.e., time-dependent
versus fixed) result in different subsets of the above operations. We discuss each of these in the bullets below.

• When using a fixed-point nonlinear solver, at each fixed-point iteration we must solve

𝑀(𝑡𝐼𝑛,𝑖) 𝑧
(𝑚+1)
𝑖 = 𝐺

(︁
𝑧
(𝑚)
𝑖

)︁
, 𝑚 = 0, 1, . . .

for the new fixed-point iterate, 𝑧(𝑚+1)
𝑖 .

• In the case of a time-dependent mass matrix, to construct the Runge–Kutta right-hand side vectors we must
solve

𝑀(𝑡𝐸𝑛,𝑖)𝑓
𝐸
𝑖 = 𝑓𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) and 𝑀(𝑡𝐼𝑛,𝑖)𝑓

𝐼
𝑗 = 𝑓 𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

for the vectors 𝑓𝐸
𝑖 and 𝑓 𝐼

𝑖 .

• For fixed mass matrices, we construct the time-evolved solution 𝑦𝑛 from equation (2.4) by solving

𝑀𝑦𝑛 = 𝑀𝑦𝑛−1 + ℎ𝑛

𝑠∑︁
𝑖=1

(︀
𝑏𝐸𝑖 𝑓

𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) + 𝑏𝐼𝑖 𝑓
𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

)︀
,

⇔

𝑀(𝑦𝑛 − 𝑦𝑛−1) = ℎ𝑛

𝑠∑︁
𝑖=1

(︀
𝑏𝐸𝑖 𝑓

𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) + 𝑏𝐼𝑖 𝑓
𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

)︀
,

⇔

𝑀𝜈 = ℎ𝑛

𝑠∑︁
𝑖=1

(︀
𝑏𝐸𝑖 𝑓

𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) + 𝑏𝐼𝑖 𝑓
𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

)︀
,

for the update 𝜈 = 𝑦𝑛 − 𝑦𝑛−1.

Similarly, we compute the local temporal error estimate 𝑇𝑛 from equation (2.18) by solving systems of the
form

𝑀 𝑇𝑛 = ℎ

𝑠∑︁
𝑖=1

[︁(︁
𝑏𝐸𝑖 − �̃�𝐸𝑖

)︁
𝑓𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) +

(︁
𝑏𝐼𝑖 − �̃�𝐼𝑖

)︁
𝑓 𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

]︁
. (2.40)

• For problems with either form of non-identity mass matrix, in constructing dense output and implicit predic-
tors of order 2 or higher (see the section Maximum order predictor above), we compute the derivative informa-
tion 𝑓𝑘 from the equation

𝑀(𝑡𝑛)𝑓𝑛 = 𝑓𝐸(𝑡𝑛, 𝑦𝑛) + 𝑓 𝐼(𝑡𝑛, 𝑦𝑛).

In total, for problems with time-independent mass matrix, we require only two mass-matrix linear solves (2.38) per
attempted time step, with one more upon completion of a time step that meets the solution accuracy requirements.
When fixed time-stepping is used (ℎ𝑛 = ℎ), the solve (2.40) is not performed at each attempted step.

Similarly, for problems with time-dependent mass matrix, we require 2𝑠 mass-matrix linear solves (2.38) per at-
tempted step, where 𝑠 is the number of stages in the ARK method (only half of these are required for purely explicit
or purely implicit problems, (2.5) or (2.6)), with one more upon completion of a time step that meets the solution
accuracy requirements.

In addition to the above totals, when using a fixed-point nonlinear solver (assumed to require 𝑚 iterations), we will
need an additional 𝑚𝑠 mass-matrix linear solves (2.38) per attempted time step (but zero linear solves with the sys-
tem Jacobian).
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2.10 Rootfinding

All of the time-stepping modules in ARKode also support a rootfinding feature. This means that, while integrating
the IVP (2.1), these can also find the roots of a set of user-defined functions 𝑔𝑖(𝑡, 𝑦) that depend on 𝑡 and the solution
vector 𝑦 = 𝑦(𝑡). The number of these root functions is arbitrary, and if more than one 𝑔𝑖 is found to have a root in
any given interval, the various root locations are found and reported in the order that they occur on the 𝑡 axis, in the
direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of
𝑔𝑖(𝑡, 𝑦(𝑡)), denoted 𝑔𝑖(𝑡) for short. If a user root function has a root of even multiplicity (no sign change), it will
almost certainly be missed due to the realities of floating-point arithmetic. If such a root is desired, the user should
reformulate the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any 𝑔𝑖(𝑡) over each time step taken, and then (when a sign
change is found) to home in on the root (or roots) with a modified secant method [HS1980]. In addition, each time 𝑔
is evaluated, ARKode checks to see if 𝑔𝑖(𝑡) = 0 exactly, and if so it reports this as a root. However, if an exact zero
of any 𝑔𝑖 is found at a point 𝑡, ARKode computes 𝑔(𝑡 + 𝛿) for a small increment 𝛿, slightly further in the direction of
integration, and if any 𝑔𝑖(𝑡 + 𝛿) = 0 also, ARKode stops and reports an error. This way, each time ARKode takes
a time step, it is guaranteed that the values of all 𝑔𝑖 are nonzero at some past value of 𝑡, beyond which a search for
roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, ARKode
has an interval (𝑡lo, 𝑡hi] in which roots of the 𝑔𝑖(𝑡) are to be sought, such that 𝑡hi is further ahead in the direction of
integration, and all 𝑔𝑖(𝑡lo) ̸= 0. The endpoint 𝑡hi is either 𝑡𝑛, the end of the time step last taken, or the next requested
output time 𝑡out if this comes sooner. The endpoint 𝑡lo is either 𝑡𝑛−1, or the last output time 𝑡out (if this occurred
within the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly to-
ward 𝑡𝑛 if an exact zero was found. The algorithm checks 𝑔(𝑡hi) for zeros, and it checks for sign changes in (𝑡lo, 𝑡hi).
If no sign changes are found, then either a root is reported (if some 𝑔𝑖(𝑡hi) = 0) or we proceed to the next time inter-
val (starting at 𝑡hi). If one or more sign changes were found, then a loop is entered to locate the root to within a rather
tight tolerance, given by

𝜏 = 100𝑈 (|𝑡𝑛|+ |ℎ|) (where 𝑈 = unit roundoff).

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur
first is the one with the largest value of |𝑔𝑖(𝑡hi)| / |𝑔𝑖(𝑡hi)− 𝑔𝑖(𝑡lo)|, corresponding to the closest to 𝑡lo of the secant
method values. At each pass through the loop, a new value 𝑡mid is set, strictly within the search interval, and the val-
ues of 𝑔𝑖(𝑡mid) are checked. Then either 𝑡lo or 𝑡hi is reset to 𝑡mid according to which subinterval is found to have the
sign change. If there is none in (𝑡lo, 𝑡mid) but some 𝑔𝑖(𝑡mid) = 0, then that root is reported. The loop continues until
|𝑡hi − 𝑡lo| < 𝜏 , and then the reported root location is 𝑡hi. In the loop to locate the root of 𝑔𝑖(𝑡), the formula for 𝑡mid is

𝑡mid = 𝑡hi −
𝑔𝑖(𝑡hi)(𝑡hi − 𝑡lo)

𝑔𝑖(𝑡hi)− 𝛼𝑔𝑖(𝑡lo)
,

where 𝛼 is a weight parameter. On the first two passes through the loop, 𝛼 is set to 1, making 𝑡mid the secant method
value. Thereafter, 𝛼 is reset according to the side of the subinterval (low vs high, i.e. toward 𝑡lo vs toward 𝑡hi) in
which the sign change was found in the previous two passes. If the two sides were opposite, 𝛼 is set to 1. If the two
sides were the same, 𝛼 is halved (if on the low side) or doubled (if on the high side). The value of 𝑡mid is closer to 𝑡lo
when 𝛼 < 1 and closer to 𝑡hi when 𝛼 > 1. If the above value of 𝑡mid is within 𝜏/2 of 𝑡lo or 𝑡hi, it is adjusted inward,
such that its fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (with 0.5 being
the midpoint), and the actual distance from the endpoint is at least 𝜏/2.

Finally, we note that when running in parallel, ARKode’s rootfinding module assumes that the entire set of root
defining functions 𝑔𝑖(𝑡, 𝑦) is replicated on every MPI task. Since in these cases the vector 𝑦 is distributed across
tasks, it is the user’s responsibility to perform any necessary inter-task communication to ensure that 𝑔𝑖(𝑡, 𝑦) is iden-
tical on each task.
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2.11 Inequality Constraints

The ARKStep and ERKStep modules in ARKode permit the user to impose optional inequality constraints on indi-
vidual components of the solution vector 𝑦. Any of the following four constraints can be imposed: 𝑦𝑖 > 0, 𝑦𝑖 < 0,
𝑦𝑖 ≥ 0, or 𝑦𝑖 ≤ 0. The constraint satisfaction is tested after a successful step and before the error test. If any con-
straint fails, the step size is reduced and a flag is set to update the Jacobian or preconditioner if applicable. Rather
than cutting the step size by some arbitrary factor, ARKode estimates a new step size ℎ′ using a linear approxima-
tion of the components in 𝑦 that failed the constraint test (including a safety factor of 0.9 to cover the strict inequality
case). If a step fails to satisfy the constraints 10 times (a value which may be modified by the user) within a step at-
tempt or fails with the minimum step size then the integration is halted and an error is returned. In this case the user
may need to employ other strategies as discussed in ARKStep tolerance specification functions and ERKStep toler-
ance specification functions to satisfy the inequality constraints.
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Chapter 3

Code Organization

The family of solvers referred to as SUNDIALS consists of the solvers CVODE and ARKode (for ODE systems),
KINSOL (for nonlinear algebraic systems), and IDA (for differential-algebraic systems). In addition, SUNDIALS
also includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint
methods), called CVODES and IDAS, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized as a family, with
a directory structure that exploits that sharing (see the following Figures SUNDIALS organization and SUNDIALS
tree). The following is a list of the solver packages presently available, and the basic functionality of each:

• CVODE, a linear multistep solver for stiff and nonstiff ODE systems �̇� = 𝑓(𝑡, 𝑦) based on Adams and BDF
methods;

• CVODES, a linear multistep solver for stiff and nonstiff ODEs with sensitivity analysis capabilities;

• ARKode, a Runge-Kutta based solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems;

• IDA, a linear multistep solver for differential-algebraic systems 𝐹 (𝑡, 𝑦, �̇�) = 0 based on BDF methods;

• IDAS, a linear multistep solver for differential-algebraic systems with sensitivity analysis capabilities;

• KINSOL, a solver for nonlinear algebraic systems 𝐹 (𝑢) = 0.

Note for modules that provide interfaces to third-party libraries (i.e., LAPACK, KLU, SuperLU_MT, Su-
perLU_DIST, hypre, PETSc, Trilinos, and RAJA users will need to download and compile those packages indepen-
dently.

3.1 ARKode organization

The ARKode package is written in the ANSI C language. The following summarizes the basic structure of the pack-
age, although knowledge of this structure is not necessary for its use.

The overall organization of the ARKode package is shown in Figure ARKode organization. The central integra-
tion modules, implemented in the files arkode.h, arkode_impl.h, arkode_butcher.h, arkode.c,
arkode_arkstep.c , arkode_erkstep.c, arkode_mristep.h, and arkode_butcher.c, deal with
the evaluation of integration stages, the nonlinear solvers, estimation of the local truncation error, selection of step
size, and interpolation to user output points, among other issues. ARKode currently supports modified Newton, in-
exact Newton, and accelerated fixed-point solvers for these nonlinearly implicit problems. However, when using the
Newton-based iterations, or when using a non-identity mass matrix 𝑀 ̸= 𝐼 , ARKode has flexibility in the choice of
method used to solve the linear sub-systems that arise. Therefore, for any user problem invoking the Newton solvers,
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Fig. 3.1: SUNDIALS organization: High-level diagram of the SUNDIALS structure
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Fig. 3.2: SUNDIALS tree: Directory structure of the source tree.

Fig. 3.3: ARKode organization: Overall structure of the ARKode package. Modules specific to ARKode are the
timesteppers (ARKODE), linear solver interfaces (ARKLS), nonlinear solver interfaces (ARKNLS), and precondi-
tioners (ARKBANDPRE and ARKBBDPRE); all other items correspond to generic SUNDIALS vector, matrix, and
solver modules.
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or any user problem with 𝑀 ̸= 𝐼 , one (or more) of the linear system solver modules should be specified by the user,
which is then invoked as needed during the integration process.

For solving these linear systems, ARKode’s linear solver interface supports both direct and iterative linear solvers
built using the generic SUNLINSOL API (see Description of the SUNLinearSolver module). These solvers may uti-
lize a SUNMATRIX object for storing Jacobian information, or they may be matrix-free. Since ARKode can operate
on any valid SUNLINSOL implementation, the set of linear solver modules available to ARKode will expand as new
SUNLINSOL modules are developed.

For users employing dense or banded Jacobians, ARKode includes algorithms for their approximation through differ-
ence quotients, although the user also has the option of supplying a routine to compute the Jacobian (or an approxi-
mation to it) directly. This user-supplied routine is required when using sparse or user-supplied Jacobian matrices.

For users employing iterative linear solvers, ARKode includes an algorithm for the approximation by difference quo-
tients of the product 𝐴𝑣. Again, the user has the option of providing routines for this operation, in two phases: setup
(preprocessing of Jacobian data) and multiplication.

When solve problems with non-identity mass matrices, corresponding user-supplied routines for computing either
the mass matrix 𝑀 or the product 𝑀𝑣 are required. Additionally, the type of linear solver module (iterative, dense-
direct, band-direct, sparse-direct) used for both the IVP system and mass matrix must match.

For preconditioned iterative methods for either the system or mass matrix solves, the preconditioning must be sup-
plied by the user, again in two phases: setup and solve. While there is no default choice of preconditioner analogous
to the difference-quotient approximation in the direct case, the references [BH1989] and [B1992], together with the
example and demonstration programs included with ARKode and CVODE, offer considerable assistance in building
simple preconditioners.

ARKode’s linear solver interface consists of four primary phases, devoted to

1. memory allocation and initialization,

2. setup of the matrix/preconditioner data involved,

3. solution of the system, and

4. freeing of memory.

The setup and solution phases are separate because the evaluation of Jacobians and preconditioners is done only peri-
odically during the integration process, and only as required to achieve convergence.

ARKode also provides two rudimentary preconditioner modules, for use with any of the Krylov iterative lin-
ear solvers. The first, ARKBANDPRE is intended to be used with the serial or threaded vector data structures
(NVECTOR_SERIAL, NVECTOR_OPENMP and NVECTOR_PTHREADS), and provides a banded difference-
quotient approximation to the Jacobian as the preconditioner, with corresponding setup and solve routines. The
second preconditioner module, ARKBBDPRE, is intended to work with the parallel vector data structure, NVEC-
TOR_PARALLEL, and generates a preconditioner that is a block-diagonal matrix with each block being a band ma-
trix owned by a single processor.

All state information used by ARKode to solve a given problem is saved in a single opaque memory structure, and
a pointer to that structure is returned to the user. For C and C++ applications there is no global data in the ARKode
package, and so in this respect it is reentrant. State information specific to the linear solver interface is saved in a
separate data structure, a pointer to which resides in the ARKode memory structure. State information specific to the
linear solver implementation (and matrix implementation, if applicable) are stored in their own data structures, that
are returned to the user upon construction, and subsequently provided to ARKode for use. We note that the ARKode
Fortran interface, however, currently uses global variables, so at most one of each of these objects may be created per
memory space (i.e. one per MPI task in distributed memory computations).
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Using ARKStep for C and C++ Applications

This chapter is concerned with the use of the ARKStep time-stepping module for the solution of initial value prob-
lems (IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the
user’s main program, and provide descriptions of the ARKStep user-callable functions and user-supplied functions.

The example programs described in the companion document [R2018] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKode package examples subdirectory.

Users with applications written in Fortran should see the chapter FARKODE, an Interface Module for FORTRAN
Applications, which describes the Fortran/C interface module for ARKStep, and may look to the Fortran example
programs also described in the companion document [R2018]. These codes are also located in the ARKode package
examples directory.

The user should be aware that not all SUNLINSOL, SUNMATRIX, and preconditioning modules are compatible
with all NVECTOR implementations. Details on compatibility are given in the documentation for each SUNMA-
TRIX (see Matrix Data Structures) and each SUNLINSOL module (see Description of the SUNLinearSolver mod-
ule). For example, NVECTOR_PARALLEL is not compatible with the dense, banded, or sparse SUNMATRIX
types, or with the corresponding dense, banded, or sparse SUNLINSOL modules. Please check the sections Matrix
Data Structures and Description of the SUNLinearSolver module to verify compatibility between these modules. In
addition to that documentation, we note that the ARKBANDPRE preconditioning module is only compatible with
the NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS vector implementations, and the pre-
conditioner module ARKBBDPRE can only be used with NVECTOR_PARALLEL.

ARKStep uses various input and output constants from the shared ARKode infrastructure. These are defined as
needed in this chapter, but for convenience the full list is provided separately in the section Appendix: ARKode Con-
stants.

The relevant information on using ARKStep’s C and C++ interfaces is detailed in the following sub-sections.

4.1 Access to library and header files

At this point, it is assumed that the installation of ARKode, following the procedure described in the section ARKode
Installation Procedure, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must
make reference to the appropriate locations for the library and header files required by ARKode. The relevant library
files are

• libdir/libsundials_arkode.lib,

• libdir/libsundials_nvec*.lib,
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where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant header
files are located in the subdirectories

• incdir/include/arkode

• incdir/include/sundials

• incdir/include/nvector

• incdir/include/sunmatrix

• incdir/include/sunlinsol

• incdir/include/sunnonlinsol

The directories libdir and incdir are the installation library and include directories, respectively. For a default
installation, these are instdir/lib and instdir/include, respectively, where instdir is the directory
where SUNDIALS was installed (see the section ARKode Installation Procedure for further details).

4.2 Data Types

The sundials_types.h file contains the definition of the variable type realtype, which is used by the SUN-
DIALS solvers for all floating-point data, the definition of the integer type sunindextype, which is used for vec-
tor and matrix indices, and booleantype, which is used for certain logic operations within SUNDIALS.

4.2.1 Floating point types

The type “realtype” can be set to float, double, or long double, depending on how SUNDIALS was in-
stalled (with the default being double). The user can change the precision of the SUNDIALS solvers’ floating-
point arithmetic at the configuration stage (see the section Configuration options (Unix/Linux)).

Additionally, based on the current precision, sundials_types.h defines the values BIG_REAL to be the
largest value representable as a realtype, SMALL_REAL to be the smallest positive value representable as a
realtype, and UNIT_ROUNDOFF to be the smallest realtype number, 𝜀, such that 1.0 + 𝜀 ̸= 1.0.

Within SUNDIALS, real constants may be set to have the appropriate precision by way of a macro called RCONST.
It is this macro that needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant
with no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a float,
whereas using the suffix “L” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long
double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is
double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the
RCONST macro internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g.}, fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on
the realtype. For example, the macro SUNRabs expands to the C function fabs when realtype is double,
fabsf when realtype is float, and fabsl when realtype is long double.

A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical function
macros is precision-independent except for any calls to precision-specific library functions. Our example programs
use realtype, RCONST, and the SUNR macros. Users can, however, use the type double, float, or long
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double in their code (assuming that this usage is consistent with the typedef for realtype) and call the appro-
priate math library functions directly. Thus, a previously existing piece of ANSI C code can use SUNDIALS without
modifying the code to use realtype, RCONST, or the SUNR macros so long as the SUNDIALS libraries use the
correct precision (for details see ARKode Installation Procedure).

4.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable int64_t type,
and the user can change it to int32_t at the configuration stage. The configuration system will detect if the com-
piler does not support portable types, and will replace int32_t and int64_t with int, long int, or long
long int as appropriate, to ensure use of the desired sizes on Linux, Mac OS X, and Windows platforms. SUNDI-
ALS currently does not support unsigned integer types for vector and matrix indices, although these could be added
in the future if there is sufficient demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both index stor-
age types except for any calls to index storage-specific external libraries. (Our C and C++ example programs use
sunindextype.) Users can, however, use any one of int, long int, int32_t, int64_t or long long
int in their code, assuming that this usage is consistent with the typedef for sunindextype on their architec-
ture. Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying the code to use
sunindextype, so long as the SUNDIALS libraries use the appropriate index storage type (for details see the sec-
tion ARKode Installation Procedure).

4.3 Header Files

When using ARKStep, the calling program must include several header files so that various macros and data types
can be used. The header file that is always required is:

• arkode/arkode_arkstep.h, the main header file for the ARKStep time-stepping module, which de-
fines the several types and various constants, includes function prototypes, and includes the shared arkode/
arkode.h and arkode/arkode_ls.h header files.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype,
sunindextype and booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not
need to include sundials_types.h directly.

Additionally, the calling program must also include a NVECTOR implementation header file, of the form
nvector/nvector_***.h, corresponding to the user’s preferred data layout and form of parallelism. See
the section Vector Data Structures for details for the appropriate name. This file in turn includes the header file
sundials_nvector.h which defines the abstract N_Vector data type.

If the user wishes to manually select between any of the pre-defined ERK or DIRK Butcher tables, these are de-
fined through a set of constants that are enumerated in the header files arkode/arkode_butcher_erk.h and
arkode/arkode_butcher_dirk.h, or if a user wishes to manually specify one or more Butcher tables, the
corresponding ARKodeButcherTable structure is defined in arkode/arkode_butcher.h.

If the user includes a non-trivial implicit component to their ODE system, then each implicit stage will require a non-
linear solver for the resulting system of algebraic equations – the default for this is a modified or inexact Newton
iteration, depending on the user’s choice of linear solver. If using a non-default nonlinear solver module, or when
interacting with a SUNNONLINSOL module directly, the calling program must also include a SUNNONLINSOL
header file, of the form sunnonlinsol/sunnonlinsol_***.h where *** is the name of the nonlinear solver
module (see the section Description of the SUNNonlinearSolver Module for more information). This file in turn in-
cludes the header file sundials_nonlinearsolver.h which defines the abstract SUNNonlinearSolver
data type.
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If using a nonlinear solver that requires the solution of a linear system of the form 𝒜𝑥 = 𝑏 (e.g., the default Newton
iteration), then a linear solver module header file will also be required. Similarly, if the ODE system involves a non-
identity mass matrix 𝑀 ̸= 𝐼 , then each time step will require a linear solver for systems of the form 𝑀𝑥 = 𝑏. The
header files corresponding to the SUNDIALS-provided linear solver modules available for use with ARKode are:

• Direct linear solvers:

– sunlinsol/sunlinsol_dense.h, which is used with the dense linear solver module, SUNLIN-
SOL_DENSE;

– sunlinsol/sunlinsol_band.h, which is used with the banded linear solver module, SUNLIN-
SOL_BAND;

– sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver
module, SUNLINSOL_LAPACKDENSE;

– sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear solver
module, SUNLINSOL_LAPACKBAND;

– sunlinsol/sunlinsol_klu.h, which is used with the KLU sparse linear solver module, SUN-
LINSOL_KLU;

– sunlinsol/sunlinsol_superlumt.h, which is used with the SuperLU_MT sparse linear solver
module, SUNLINSOL_SUPERLUMT;

– sunlinsol/sunlinsol_superludist.h, which is used with the SuperLU_DIST parallel sparse
linear solver module, SUNLINSOL_SUPERLUDIST;

– sunlinsol/sunlinsol_cusolversp_batchqr.h, which is used with the batched
sparse QR factorization method provided by the NVDIA cuSOLVER library, SUNLIN-
SOL_CUSOLVERSP_BATCHQR;

• Iterative linear solvers:

– sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES Krylov
linear solver module, SUNLINSOL_SPGMR;

– sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, SUNLINSOL_SPFGMR;

– sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, SUNLINSOL_SPBCGS;

– sunlinsol/sunlinsol_sptfqmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, SUNLINSOL_SPTFQMR;

– sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov linear
solver module, SUNLINSOL_PCG;

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules include
the file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_DENSE matrix module, as well
as various functions and macros for acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules include
the file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as well as
various functions and macros for acting on such matrices.

The header files for the SUNLINSOL_KLU and SUNLINSOL_SUPERLUMT linear solver modules include the
file sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as well as
various functions and macros for acting on such matrices.
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The header file for the SUNLINSOL_CUSOLVERSP_BATCHQR linear solver module includes the file
sunmatrix/sunmatrix_cusparse.h, which defines the SUNMATRIX_CUSPARSE matrix module, as well
as various functions for acting on such matrices.

The header file for the SUNLINSOL_SUPERLUDIST linear solver module includes the file sunmatrix/
sunmatrix_slunrloc.h, which defines the SUNMATRIX_SLUNRLOC matrix module, as well as various
functions for acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h, which
enumerates the preconditioning type and (for the SPGMR and SPFGMR solvers) the choices for the Gram-Schmidt
orthogonalization process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, if preconditioning for an
iterative linear solver were performed using the ARKBBDPRE module, the header arkode/arkode_bbdpre.h
is needed to access the preconditioner initialization routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the ARKStep module. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL and SUN-
NONLINSOL implementations used. For the steps that are not, refer to the sections Vector Data Structures, Matrix
Data Structures, Description of the SUNLinearSolver module, and Description of the SUNNonlinearSolver Module
for the specific name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use
within the threaded vector functions, if used.

2. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the
form

y0 = N_VMake_***(..., ydata);

if the realtype array ydata containing the initial values of 𝑦 already exists. Otherwise, create a new vector
by making a call of the form

y0 = N_VNew_***(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_***(y0);

See the sections The NVECTOR_SERIAL Module through The NVECTOR_PTHREADS Module for details.
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For the HYPRE and PETSc vector wrappers, first create and initialize the underlying vector, and then create
the NVECTOR wrapper with a call of the form

y0 = N_VMake_***(yvec);

where yvec is a HYPRE or PETSc vector. Note that calls like N_VNew_***(...) and
N_VGetArrayPointer_***(...) are not available for these vector wrappers. See the sections The
NVECTOR_PARHYP Module and The NVECTOR_PETSC Module for details.

If using either the CUDA- or RAJA-based vector implementations use calls to the module-specific routines

y0 = N_VMake_***(...);

as applicable. See the sections The NVECTOR_CUDA Module and The NVECTOR_RAJA Module for details.

4. Create ARKStep object

Call arkode_mem = ARKStepCreate(...) to create the ARKStep memory block.
ARKStepCreate() returns a void* pointer to this memory structure. See the section ARKStep initializa-
tion and deallocation functions for details.

5. Specify integration tolerances

Call ARKStepSStolerances() or ARKStepSVtolerances() to specify either a scalar relative tol-
erance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respec-
tively. Alternatively, call ARKStepWFtolerances() to specify a function which sets directly the weights
used in evaluating WRMS vector norms. See the section ARKStep tolerance specification functions for details.

If a problem with non-identity mass matrix is used, and the solution units differ considerably from
the equation units, absolute tolerances for the equation residuals (nonlinear and linear) may be speci-
fied separately through calls to ARKStepResStolerance(), ARKStepResVtolerance(), or
ARKStepResFtolerance().

6. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration) and the linear solver will
be a matrix-based linear solver, then a template Jacobian matrix must be created by using the appropriate func-
tions defined by the particular SUNMATRIX implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using a call of
the form

SUNMatrix A = SUNBandMatrix(...);

or

SUNMatrix A = SUNDenseMatrix(...);

or

SUNMatrix A = SUNSparseMatrix(...);

or similarly for the CUDA and SuperLU_DIST matrix modules (see the sections The SUNMA-
TRIX_CUSPARSE Module or The SUNMATRIX_SLUNRLOC Module for further information).

Similarly, if the problem involves a non-identity mass matrix, and the mass-matrix linear systems will be
solved using a direct linear solver, then a template mass matrix must be created by using the appropriate func-
tions defined by the particular SUNMATRIX implementation.

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded environment.
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7. Create linear solver object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration), or if the problem involves
a non-identity mass matrix, then the desired linear solver object(s) must be created by using the appropriate
functions defined by the particular SUNLINSOL implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be created
using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in the sections Linear solver
interface functions and Description of the SUNLinearSolver module.

8. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the documentation for each SUNLINSOL module in the section Description of the SUNLinear-
Solver module for details.

9. Attach linear solver module

If a linear solver was created above for implicit stage solves, initialize the ARKLS linear solver interface by
attaching the linear solver object (and Jacobian matrix object, if applicable) with the call (for details see the
section Linear solver interface functions):

ier = ARKStepSetLinearSolver(...);

Similarly, if the problem involves a non-identity mass matrix, initialize the ARKLS mass matrix linear solver
interface by attaching the mass linear solver object (and mass matrix object, if applicable) with the call (for
details see the section Linear solver interface functions):

ier = ARKStepSetMassLinearSolver(...);

10. Create nonlinear solver object

If the problem involves an implicit component, and if a non-default nonlinear solver object will be used for
implicit stage solves (see the section Nonlinear solver interface functions), then the desired nonlinear solver
object must be created by using the appropriate functions defined by the particular SUNNONLINSOL imple-
mentation (e.g., NLS = SUNNonlinSol_***(...); where *** is the name of the nonlinear solver (see
the section Description of the SUNNonlinearSolver Module for details).

For the SUNDIALS-supplied SUNNONLINSOL implementations, the nonlinear solver object may be created
using a call of the form

SUNNonlinearSolver NLS = SUNNonlinSol_*(...);

where * can be replaced with “Newton”, “FixedPoint”, or other options, as discussed in the sections Nonlinear
solver interface functions and Description of the SUNNonlinearSolver Module.

11. Attach nonlinear solver module

If a nonlinear solver object was created above, then it must be attached to ARKStep using the call (for details
see the section Nonlinear solver interface functions):

ier = ARKStepSetNonlinearSolver(...);

12. Set nonlinear solver optional inputs

Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific to
that nonlinear solver. These must be called after attaching the nonlinear solver to ARKStep, otherwise the op-
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tional inputs will be overridden by ARKStep defaults. See the section Description of the SUNNonlinearSolver
Module for more information on optional inputs.

13. Set optional inputs

Call ARKStepSet* functions to change any optional inputs that control the behavior of ARKStep from their
default values. See the section Optional input functions for details.

14. Specify rootfinding problem

Optionally, call ARKStepRootInit() to initialize a rootfinding problem to be solved during the integra-
tion of the ODE system. See the section Rootfinding initialization function for general details, and the section
Optional input functions for relevant optional input calls.

15. Advance solution in time

For each point at which output is desired, call

ier = ARKStepEvolve(arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y0 above) will
contain 𝑦(𝑡out). See the section ARKStep solver function for details.

16. Get optional outputs

Call ARKStepGet* functions to obtain optional output. See the section Optional output functions for details.

17. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the destructor
function:

N_VDestroy(y);

18. Free solver memory

Call ARKStepFree(&arkode_mem) to free the memory allocated for the ARKStep module (and any non-
linear solver module).

19. Free linear solver and matrix memory

Call SUNLinSolFree() and (possibly) SUNMatDestroy() to free any memory allocated for the linear
solver and matrix objects created above.

20. Free nonlinear solver memory

If a user-supplied SUNNonlinearSolver was provided to ARKStep, then call SUNNonlinSolFree()
to free any memory allocated for the nonlinear solver object created above.

21. Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

SUNDIALS provides some linear solvers only as a means for users to get problems running and not as highly effi-
cient solvers. For example, if solving a dense system, we suggest using the LAPACK solvers if the size of the linear
system is > 50, 000 (thanks to A. Nicolai for his testing and recommendation). The table below shows the linear
solver interfaces available as SUNLinearSolver modules and the vector implementations required for use. As
an example, one cannot use the dense direct solver interfaces with the MPI-based vector implementation. However,
as discussed in section Description of the SUNLinearSolver module the SUNDIALS packages operate on generic
SUNLinearSolver objects, allowing a user to develop their own solvers should they so desire.
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4.4.1 SUNDIALS linear solver interfaces and vector implementations that can be used for
each

Linear Solver
Interface

Se-
rial

Parallel
(MPI)

OpenMP pThreadshypre
Vec.

PETSc
Vec.

CUDA RAJA User
Suppl.

Dense X X X X
Band X X X X
LapackDense X X X X
LapackBand X X X X
KLU X X X X
SuperLU_DIST X X X X X X X
SuperLU_MT X X X X
SPGMR X X X X X X X X X
SPFGMR X X X X X X X X X
SPBCGS X X X X X X X X X
SPTFQMR X X X X X X X X X
PCG X X X X X X X X X
User supplied X X X X X X X X X

4.5 ARKStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the ARKStep
time-stepping module. Some of these are required; however, starting with the section Optional input functions, the
functions listed involve optional inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of
ARKode’s ARKStep module. In any case, refer to the preceding section, A skeleton of the user’s main program, for
the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to stderr by default. However, the user can
set a file as error output or can provide her own error handler function (see the section Optional input functions for
details).

4.5.1 ARKStep initialization and deallocation functions

void* ARKStepCreate(ARKRhsFn fe, ARKRhsFn fi, realtype t0, N_Vector y0)
This function creates an internal memory block for a problem to be solved using the ARKStep time-stepping
module in ARKode.

Arguments:

• fe – the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-
hand side function in 𝑀 �̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓 𝐼(𝑡, 𝑦).

• fi – the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-
hand side function in 𝑀 �̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓 𝐼(𝑡, 𝑦).

• t0 – the initial value of 𝑡.

• y0 – the initial condition vector 𝑦(𝑡0).

Return value: If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing ARKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.
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void ARKStepFree(void** arkode_mem)
This function frees the problem memory arkode_mem created by ARKStepCreate().

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value: None

4.5.2 ARKStep tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to
ARKStepEvolve(); otherwise default values of reltol = 1e-4 and abstol = 1e-9 will be used, which
may be entirely incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of
ARKStepSStolerances(), this vector has components

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol);

whereas in the case of ARKStepSVtolerances() the vector components are given by

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol[i]);

This vector is used in all error and convergence tests, which use a weighted RMS norm on all error-like vectors 𝑣:

‖𝑣‖𝑊𝑅𝑀𝑆 =

(︃
1

𝑁

𝑁∑︁
𝑖=1

(𝑣𝑖 𝑒𝑤𝑡𝑖)
2

)︃1/2

,

where 𝑁 is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to
ARKStepWFtolerances().

int ARKStepSStolerances(void* arkode_mem, realtype reltol, realtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• reltol – scalar relative tolerance.

• abstol – scalar absolute tolerance.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepSVtolerances(void* arkode_mem, realtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different abso-
lute tolerance for each vector component).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.
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• reltol – scalar relative tolerance.

• abstol – vector containing the absolute tolerances for each solution component.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepWFtolerances(void* arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• efun – the name of the function (of type ARKEwtFn()) that implements the error weight vector
computation.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

Moreover, for problems involving a non-identity mass matrix 𝑀 ̸= 𝐼 , the units of the solution vector 𝑦 may
differ from the units of the IVP, posed for the vector 𝑀𝑦. When this occurs, iterative solvers for the Newton lin-
ear systems and the mass matrix linear systems may require a different set of tolerances. Since the relative tol-
erance is dimensionless, but the absolute tolerance encodes a measure of what is “small” in the units of the re-
spective quantity, a user may optionally define absolute tolerances in the equation units. In this case, ARKStep
defines a vector of residual weights, rwt for measuring convergence of these iterative solvers. In the case of
ARKStepResStolerance(), this vector has components

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol);

whereas in the case of ARKStepResVtolerance() the vector components are given by

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol[i]);

This residual weight vector is used in all iterative solver convergence tests, which similarly use a weighted RMS
norm on all residual-like vectors 𝑣:

‖𝑣‖𝑊𝑅𝑀𝑆 =

(︃
1

𝑁

𝑁∑︁
𝑖=1

(𝑣𝑖 𝑟𝑤𝑡𝑖)
2

)︃1/2

,

where 𝑁 is the problem dimension.

As with the error weight vector, the user may supply a custom function to supply the rwt vector, through a call to
ARKStepResFtolerance(). Further information on all three of these functions is provided below.

int ARKStepResStolerance(void* arkode_mem, realtype abstol)
This function specifies a scalar absolute residual tolerance.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rabstol – scalar absolute residual tolerance.
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Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepResVtolerance(void* arkode_mem, N_Vector rabstol)
This function specifies a vector of absolute residual tolerances.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rabstol – vector containing the absolute residual tolerances for each solution component.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepResFtolerance(void* arkode_mem, ARKRwtFn rfun)
This function specifies a user-supplied function rfun to compute the residual weight vector rwt.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rfun – the name of the function (of type ARKRwtFn()) that implements the residual weight vector
computation.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

4.5.2.1 General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol, abstol, and rabstol are a concern.
The following pieces of advice are relevant.

1. The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10−4 means that
errors are controlled to .01%. We do not recommend using reltol larger than 10−3. On the other hand,
reltol should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally
around 10−15 for double-precision).

2. The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector 𝑦 may be so small that pure relative error control is meaningless. For exam-
ple, if 𝑦𝑖 starts at some nonzero value, but in time decays to zero, then pure relative error control on 𝑦𝑖 makes
no sense (and is overly costly) after 𝑦𝑖 is below some noise level. Then abstol (if scalar) or abstol[i]
(if a vector) needs to be set to that noise level. If the different components have different noise levels, then
abstol should be a vector. For example, see the example problem ark_robertson.c, and the discussion
of it in the ARKode Examples Documentation [R2018]. In that problem, the three components vary between
0 and 1, and have different noise levels; hence the atols vector therein. It is impossible to give any general
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advice on abstol values, because the appropriate noise levels are completely problem-dependent. The user
or modeler hopefully has some idea as to what those noise levels are.

3. The residual absolute tolerances rabstol (whether scalar or vector) follow a similar explanation as for
abstol, except that these should be set to the noise level of the equation components, i.e. the noise level of
𝑀𝑦. For problems in which 𝑀 = 𝐼 , it is recommended that rabstol be left unset, which will default to the
already-supplied abstol values.

4. Finally, it is important to pick all the tolerance values conservatively, because they control the error commit-
ted on each individual step. The final (global) errors are an accumulation of those per-step errors, where that
accumulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of
10 from the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice
for reltol is 10−5. In any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

4.5.2.2 Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

1. The best way to control the size of unwanted negative computed values is with tighter absolute tolerances.
Again this requires some knowledge of the noise level of these components, which may or may not be differ-
ent for different components. Some experimentation may be needed.

2. If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the con-
text of the output medium. Then the internal values carried by the solver are unaffected. Remember that a
small negative value in 𝑦 returned by ARKStep, with magnitude comparable to abstol or less, is equivalent
to zero as far as the computation is concerned.

3. The user’s right-hand side routines 𝑓𝐸 and 𝑓 𝐼 should never change a negative value in the solution vector 𝑦
to a non-negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the 𝑓𝐸

or 𝑓 𝐼 routines cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the of-
fending value should be changed to zero or a tiny positive number in a temporary variable (not in the input 𝑦
vector) for the purposes of computing 𝑓𝐸(𝑡, 𝑦) or 𝑓 𝐼(𝑡, 𝑦).

4. Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side functions, 𝑓𝐸 and 𝑓 𝐼 . When a recoverable error is encountered,
ARKStep will retry the step with a smaller step size, which typically alleviates the problem. However, because
this option involves some additional overhead cost, it should only be exercised if the use of absolute tolerances
to control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, the Newton iterations used in solving implicit systems within ARKStep require the solution
of linear systems of the form

𝒜
(︁
𝑧
(𝑚)
𝑖

)︁
𝛿(𝑚+1) = −𝐺

(︁
𝑧
(𝑚)
𝑖

)︁
where

𝒜 ≈𝑀 − 𝛾𝐽, 𝐽 =
𝜕𝑓 𝐼

𝜕𝑦
.

ARKode’s ARKLS linear solver interface supports all valid SUNLinearSolver modules for this task.
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Matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store the approximate Jacobian matrix
𝐽 , the Newton matrix 𝒜, the mass matrix 𝑀 , and, when using direct solvers, the factorizations used throughout the
solution process.

Matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equations,
and only require the action of the matrix on a vector, 𝒜𝑣. With most of these methods, preconditioning can be done
on the left only, on the right only, on both the left and the right, or not at all. The exceptions to this rule are SPFGMR
that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of
a preconditioner, see the iterative linear solver portions of the sections Optional input functions and User-supplied
functions.

If preconditioning is done, user-supplied functions should be used to define left and right preconditioner matrices 𝑃1

and 𝑃2 (either of which could be the identity matrix), such that the product 𝑃1𝑃2 approximates the Newton matrix
𝒜 = 𝑀 − 𝛾𝐽 .

To specify a generic linear solver for ARKStep to use for the Newton systems, after the call to ARKStepCreate()
but before any calls to ARKStepEvolve(), the user’s program must create the appropriate SUNLinearSolver
object and call the function ARKStepSetLinearSolver(), as documented below. To create the
SUNLinearSolver object, the user may call one of the SUNDIALS-packaged SUNLinSol module constructor
routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of such constructor routines includes SUNLinSol_Dense(), SUNLinSol_Band(),
SUNLinSol_LapackDense(), SUNLinSol_LapackBand(), SUNLinSol_KLU(),
SUNLinSol_SuperLUMT(), SUNLinSol_SuperLUDIST(), SUNLinSol_cuSolverSp_batchQR(),
SUNLinSol_SPGMR(), SUNLinSol_SPFGMR(), SUNLinSol_SPBCGS(), SUNLinSol_SPTFQMR(), and
SUNLinSol_PCG().

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use of each of the
generic linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed
in the user code. These are available in the corresponding header file associated with the specific SUNMatrix or
SUNLinearSolver module in question, as described in the sections Matrix Data Structures and Description of
the SUNLinearSolver module.

Once this solver object has been constructed, the user should attach it to ARKStep via a call to
ARKStepSetLinearSolver(). The first argument passed to this function is the ARKStep memory pointer
returned by ARKStepCreate(); the second argument is the SUNLinearSolver object created above. The
third argument is an optional SUNMatrix object to accompany matrix-based SUNLinearSolver inputs (for
matrix-free linear solvers, the third argument should be NULL). A call to this function initializes the ARKLS linear
solver interface, linking it to the ARKStep integrator, and allows the user to specify additional parameters and
routines pertinent to their choice of linear solver.

int ARKStepSetLinearSolver(void* arkode_mem, SUNLinearSolver LS, SUNMatrix J)
This function specifies the SUNLinearSolver object that ARKStep should use, as well as a template Jaco-
bian SUNMatrix object (if applicable).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• LS – the SUNLinearSolver object to use.

• J – the template Jacobian SUNMatrix object to use (or NULL if not applicable).

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL
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• ARKLS_MEM_FAIL if there was a memory allocation failure

• ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or J input objects, or the cur-
rent N_Vector module.

Notes: If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process, so if
additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size (see the documentation of the particular SUNMATRIX
type in the section Matrix Data Structures for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full spar-
sity pattern of the Newton system matrices 𝒜 = 𝐼 − 𝛾𝐽 (or 𝒜 = 𝑀 − 𝛾𝐽 in the case of non-identity mass ma-
trix), even if J itself has zeros in nonzero locations of 𝐼 (or 𝑀 ). The reasoning for this is that 𝒜 is constructed
in-place, on top of the user-specified values of J, so if the sparsity pattern in J is insufficient to store 𝒜 then it
will need to be resized internally by ARKStep.

4.5.4 Mass matrix solver specification functions

As discussed in section Mass matrix solver (ARKStep only), if the ODE system involves a non-identity mass matrix
𝑀 ̸= 𝐼 , then ARKStep must solve linear systems of the form

𝑀𝑥 = 𝑏.

ARKode’s ARKLS mass-matrix linear solver interface supports all valid SUNLinearSolver modules for this
task. For iterative linear solvers, user-supplied preconditioning can be applied. For the specification of a precondi-
tioner, see the iterative linear solver portions of the sections Optional input functions and User-supplied functions.
If preconditioning is to be performed, user-supplied functions should be used to define left and right preconditioner
matrices 𝑃1 and 𝑃2 (either of which could be the identity matrix), such that the product 𝑃1𝑃2 approximates the mass
matrix 𝑀 .

To specify a generic linear solver for ARKStep to use for mass matrix systems, after the call to
ARKStepCreate() but before any calls to ARKStepEvolve(), the user’s program must create the appropriate
SUNLinearSolver object and call the function ARKStepSetMassLinearSolver(), as documented below.
The first argument passed to this functions is the ARKStep memory pointer returned by ARKStepCreate(); the
second argument is the desired SUNLinearSolver object to use for solving mass matrix systems. The third object
is a template SUNMatrix to use with the provided SUNLinearSolver (if applicable). The fourth input is a flag
to indicate whether the mass matrix is time-dependent, i.e. 𝑀 = 𝑀(𝑡) or not. A call to this function initializes
the ARKLS mass matrix linear solver interface, linking this to the main ARKStep integrator, and allows the user to
specify additional parameters and routines pertinent to their choice of linear solver.

The use of each of the generic linear solvers involves certain constants and possibly some macros, that are likely
to be needed in the user code. These are available in the corresponding header file associated with the specific
SUNMatrix or SUNLinearSolver module in question, as described in the sections Matrix Data Structures and
Description of the SUNLinearSolver module.

Note: if the user program includes linear solvers for both the Newton and mass matrix systems, these must have the
same type:

• If both are matrix-based, then they must utilize the same SUNMatrix type, since these will be added when
forming the Newton system matrices 𝒜. In this case, both the Newton and mass matrix linear solver interfaces
can use the same SUNLinearSolver object, although different solver objects (e.g. with different solver
parameters) are also allowed.

• If both are matrix-free, then the Newton and mass matrix SUNLinearSolver objects must be different.
These may even use different solver algorithms (SPGMR, SPBCGS, etc.), if desired. For example, if the mass
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matrix is symmetric but the Jacobian is not, then PCG may be used for the mass matrix systems and SPGMR
for the Newton systems.

As with the Newton system solvers, the mass matrix linear system solvers listed below are all built on top of generic
SUNDIALS solver modules.

int ARKStepSetMassLinearSolver(void* arkode_mem, SUNLinearSolver LS, SUNMatrix M,
booleantype time_dep)

This function specifies the SUNLinearSolver object that ARKStep should use for mass matrix systems, as
well as a template SUNMatrix object.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• LS – the SUNLinearSolver object to use.

• M – the template mass SUNMatrix object to use.

• time_dep – flag denoting whether the mass matrix depends on the independent variable (𝑀 = 𝑀(𝑡))
or not (𝑀 ̸= 𝑀(𝑡)). SUNTRUE indicates time-dependence of the mass matrix.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_MEM_FAIL if there was a memory allocation failure

• ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or M input objects, or the cur-
rent N_Vector module.

Notes: If LS is a matrix-free linear solver, then the M argument should be NULL.

If LS is a matrix-based linear solver, then the template mass matrix M will be used in the solve process, so if
additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size.

If called with time_dep set to SUNFALSE, then the mass matrix is only computed and factored once (or when
either ARKStepReInit() or :c:func‘ARKStepResize()‘ are called), with the results reused throughout the
entire ARKStep simulation.

Unlike the system Jacobian, the system mass matrix is not approximated using finite-differences of any func-
tions provided to ARKStep. Hence, use of the a matrix-based LS requires the user to provide a mass-matrix
constructor routine (see ARKLsMassFn and ARKStepSetMassFn()).

Similarly, the system mass matrix-vector-product is not approximated using finite-differences of any functions
provided to ARKStep. Hence, use of a matrix-free LS requires the user to provide a mass-matrix-times-vector
product routine (see ARKLsMassTimesVecFn and ARKStepSetMassTimes()).

4.5.5 Nonlinear solver interface functions

When changing the nonlinear solver in ARKStep, after the call to ARKStepCreate() but before any calls
to ARKStepEvolve(), the user’s program must create the appropriate SUNNonlinSol object and call
ARKStepSetNonlinearSolver(), as documented below. If any calls to ARKStepEvolve() have been
made, then ARKStep will need to be reinitialized by calling ARKStepReInit() to ensure that the nonlinear
solver is initialized correctly before any subsequent calls to ARKStepEvolve().

The first argument passed to the routine ARKStepSetNonlinearSolver() is the ARKStep memory pointer
returned by ARKStepCreate(); the second argument passed to this function is the desired SUNNonlinSol object
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to use for solving the nonlinear system for each implicit stage. A call to this function attaches the nonlinear solver to
the main ARKStep integrator.

int ARKStepSetNonlinearSolver(void* arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that ARKStep should use for implicit stage
solves.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• NLS – the SUNNonlinearSolver object to use.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if ARKStep is incompatible with the provided NLS input object.

Notes: ARKStep will use the Newton SUNNonlinSol module by default; a call to this routine replaces that
module with the supplied NLS object.

4.5.6 Rootfinding initialization function

As described in the section Rootfinding, while solving the IVP, ARKode’s time-stepping modules have the capability
to find the roots of a set of user-defined functions. To activate the root-finding algorithm, call the following func-
tion. This is normally called only once, prior to the first call to ARKStepEvolve(), but if the rootfinding prob-
lem is to be changed during the solution, ARKStepRootInit() can also be called prior to a continuation call to
ARKStepEvolve().

int ARKStepRootInit(void* arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ARKStepCreate(), and before ARKStepEvolve().

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nrtfn – number of functions 𝑔𝑖, an integer ≥ 0.

• g – name of user-supplied function, of type ARKRootFn(), defining the functions 𝑔𝑖 whose roots
are sought.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated
with ARKStep’s rootfinding module, call ARKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ARKStepReInit(), where the new IVP has no
rootfinding problem but the prior one did, then call ARKStepRootInit with nrtfn = 0.
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4.5.7 ARKStep solver function

This is the central step in the solution process – the call to perform the integration of the IVP. The input argument
itask specifies one of two modes as to where ARKStep is to return a solution. These modes are modified if the
user has set a stop time (with a call to the optional input function ARKStepSetStopTime()) or has requested
rootfinding.

int ARKStepEvolve(void* arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in 𝑡.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tout – the next time at which a computed solution is desired.

• yout – the computed solution vector.

• tret – the time corresponding to yout (output).

• itask – a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, tout, in the direction of integration, i.e. 𝑡𝑛−1 < tout ≤ 𝑡𝑛 for forward inte-
gration, or 𝑡𝑛 ≤ tout < 𝑡𝑛−1 for backward integration. It will then compute an approximation to
the solution 𝑦(𝑡𝑜𝑢𝑡) by interpolation (using one of the dense output routines described in the section
Interpolation).

The ARK_ONE_STEP option tells the solver to only take a single internal step 𝑦𝑛−1 → 𝑦𝑛 and then
return control back to the calling program. If this step will overtake tout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution 𝑦𝑛 in the vector
yout

Return value:

• ARK_SUCCESS if successful.

• ARK_ROOT_RETURN if ARKStepEvolve() succeeded, and found one or more roots. If the
number of root functions, nrtfn, is greater than 1, call ARKStepGetRootInfo() to see which
𝑔𝑖 were found to have a root at (*tret).

• ARK_TSTOP_RETURN if ARKStepEvolve() succeeded and returned at tstop.

• ARK_MEM_NULL if the arkode_mem argument was NULL.

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if one of the inputs to ARKStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

1. A component of the error weight vector became zero during internal time-stepping.

2. The linear solver initialization function (called by the user after calling ARKStepCreate())
failed to set the linear solver-specific lsolve field in arkode_mem.

3. A root of one of the root functions was found both at a point 𝑡 and also very near 𝑡.

4. The initial condition violates the inequality constraints.

• ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

• ARK_TOO_MUCH_ACC if the solver could not satisfy the accuracy demanded by the user for some
internal step.
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• ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef ) during one
internal time step or occurred with |ℎ| = ℎ𝑚𝑖𝑛.

• ARK_CONV_FAILURE if either convergence test failures occurred too many times (ark_maxncf )
during one internal time step or occurred with |ℎ| = ℎ𝑚𝑖𝑛.

• ARK_LINIT_FAIL if the linear solver’s initialization function failed.

• ARK_LSETUP_FAIL if the linear solver’s setup routine failed in an unrecoverable manner.

• ARK_LSOLVE_FAIL if the linear solver’s solve routine failed in an unrecoverable manner.

• ARK_MASSINIT_FAIL if the mass matrix solver’s initialization function failed.

• ARK_MASSSETUP_FAIL if the mass matrix solver’s setup routine failed.

• ARK_MASSSOLVE_FAIL if the mass matrix solver’s solve routine failed.

• ARK_VECTOROP_ERR a vector operation error occured.

Notes: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ARKStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale of
the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
ARKStepEvolve() failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to ARKStepSetStopTime() before the call to ARKStepEvolve() to spec-
ify a fixed stop time to end the time step and return to the user. Upon return from ARKStepEvolve(),
a copy of the internal solution 𝑦𝑛 will be returned in the vector yout. Once the integrator returns at
a tstop time, any future testing for tstop is disabled (and can be re-enabled only though a new call to
ARKStepSetStopTime()).

On any error return in which one or more internal steps were taken by ARKStepEvolve(), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

4.5.8 Optional input functions

There are numerous optional input parameters that control the behavior of the ARKStep solver, each of which may
be modified from its default value through calling an appropriate input function. The following tables list all optional
input functions, grouped by which aspect of ARKStep they control. Detailed information on the calling syntax and
arguments for each function are then provided following each table.

The optional inputs are grouped into the following categories:

• General ARKStep options (Optional inputs for ARKStep),

• IVP method solver options (Optional inputs for IVP method selection),

• Step adaptivity solver options (Optional inputs for time step adaptivity),

• Implicit stage solver options (Optional inputs for implicit stage solves),

• Linear solver interface options (Linear solver interface optional input functions), and

• Rootfinding options (Rootfinding optional input functions).

For the most casual use of ARKStep, relying on the default set of solver parameters, the reader can skip to the fol-
lowing section, User-supplied functions.
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We note that, on an error return, all of the optional input functions send an error message to the error handler func-
tion. All error return values are negative, so a test on the return arguments for negative values will catch all errors.
Finally, a call to an ARKStepSet*** function can generally be made from the user’s calling program at any time
and, if successful, takes effect immediately. ARKStepSet*** functions that cannot be called at any time note this
in the “Notes:” section of the function documentation.

4.5.8.1 Optional inputs for ARKStep

Optional input Function name Default
Return ARKStep parameters to their de-
faults

ARKStepSetDefaults() internal

Set dense output interpolation type ARKStepSetInterpolantType() ARK_INTERP_HERMITE
Set dense output polynomial degree ARKStepSetInterpolantDegree()5
Supply a pointer to a diagnostics output
file

ARKStepSetDiagnostics() NULL

Supply a pointer to an error output file ARKStepSetErrFile() stderr
Supply a custom error handler function ARKStepSetErrHandlerFn() internal fn
Disable time step adaptivity (fixed-step
mode)

ARKStepSetFixedStep() disabled

Supply an initial step size to attempt ARKStepSetInitStep() estimated
Maximum no. of warnings for 𝑡𝑛 +ℎ = 𝑡𝑛 ARKStepSetMaxHnilWarns() 10
Maximum no. of internal steps before tout ARKStepSetMaxNumSteps() 500
Maximum absolute step size ARKStepSetMaxStep() ∞
Minimum absolute step size ARKStepSetMinStep() 0.0
Set a value for 𝑡𝑠𝑡𝑜𝑝 ARKStepSetStopTime() ∞
Supply a pointer for user data ARKStepSetUserData() NULL
Maximum no. of ARKStep error test fail-
ures

ARKStepSetMaxErrTestFails() 7

Set ‘optimal’ adaptivity params. for a
method

ARKStepSetOptimalParams() internal

Set inequality constraints on solution ARKStepSetConstraints() NULL
Set max number of constraint failures ARKStepSetMaxNumConstrFails()10

int ARKStepSetDefaults(void* arkode_mem)
Resets all optional input parameters to ARKStep’s original default values.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Does not change the user_data pointer or any parameters within the specified time-stepping module.

Also leaves alone any data structures or options related to root-finding (those can be reset using
ARKStepRootInit()).

int ARKStepSetInterpolantType(void* arkode_mem, int itype)
Specifies use of the Lagrange or Hermite interpolation modules (used for dense output – interpolation of solu-
tion output values and implicit method predictors).
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Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• itype – requested interpolant type (ARK_INTERP_HERMITE or ARK_INTERP_LAGRANGE)

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_MEM_FAIL if the interpolation module cannot be allocated

• ARK_ILL_INPUT if the itype argument is not recognized or the interpolation module has already
been initialized

Notes: The Hermite interpolation module is described in the Section Hermite interpolation module, and the
Lagrange interpolation module is described in the Section Lagrange interpolation module.

This routine frees any previously-allocated interpolation module, and re-creates one according to the specified
argument. Thus any previous calls to ARKStepSetInterpolantDegree() will be nullified.

This routine may only be called after the call to ARKStepCreate(). After the first call to
ARKStepEvolve() the interpolation type may not be changed without first calling ARKStepReInit().

If this routine is not called, the Hermite interpolation module will be used.

int ARKStepSetInterpolantDegree(void* arkode_mem, int degree)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• degree – requested polynomial degree.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory or interpolation module are NULL

• ARK_INTERP_FAIL if this is called after ARKStepEvolve()

• ARK_ILL_INPUT if an argument has an illegal value or the interpolation module has already been
initialized

Notes: Allowed values are between 0 and 5.

This routine should be called after ARKStepCreate() and before ARKStepEvolve(). After the
first call to ARKStepEvolve() the interpolation degree may not be changed without first calling
ARKStepReInit().

If a user calls both this routine and ARKStepSetInterpolantType(), then
ARKStepSetInterpolantType() must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by ARKStep will be the minimum of 𝑞 − 1 and
the input degree, where 𝑞 is the order of accuracy for the time integration method.

int ARKStepSetDenseOrder(void* arkode_mem, int dord)
This function is deprecated, and will be removed in a future release. Users should transition to calling
ARKStepSetInterpolantDegree() instead.
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int ARKStepSetDiagnostics(void* arkode_mem, FILE* diagfp)
Specifies the file pointer for a diagnostics file where all ARKStep step adaptivity and solver information is
written.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• diagfp – pointer to the diagnostics output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to
a unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

int ARKStepSetErrFile(void* arkode_mem, FILE* errfp)
Specifies a pointer to the file where all ARKStep warning and error messages will be written if the default in-
ternal error handling function is used.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• errfp – pointer to the output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the ARKStep mem-
ory pointer is NULL). This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for subse-
quent error messages.

int ARKStepSetErrHandlerFn(void* arkode_mem, ARKErrHandlerFn ehfun, void* eh_data)
Specifies the optional user-defined function to be used in handling error messages.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ehfun – name of user-supplied error handler function.

• eh_data – pointer to user data passed to ehfun every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL
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• ARK_ILL_INPUT if an argument has an illegal value

Notes: Error messages indicating that the ARKStep solver memory is NULL will always be directed to
stderr.

int ARKStepSetFixedStep(void* arkode_mem, realtype hfixed)
Disabled time step adaptivity within ARKStep, and specifies the fixed time step size to use for all internal
steps.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hfixed – value of the fixed step size to use.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass 0.0 to return ARKStep to the default (adaptive-step) mode.

Use of this function is not recommended, since we it gives no assurance of the validity of the computed solu-
tions. It is primarily provided for code-to-code verification testing purposes.

When using ARKStepSetFixedStep(), any values provided to the functions
ARKStepSetInitStep(), ARKStepSetAdaptivityFn(), ARKStepSetMaxErrTestFails(),
ARKStepSetAdaptivityMethod(), ARKStepSetCFLFraction(), ARKStepSetErrorBias(),
ARKStepSetFixedStepBounds(), ARKStepSetMaxCFailGrowth(),
ARKStepSetMaxEFailGrowth(), ARKStepSetMaxFirstGrowth(),
ARKStepSetMaxGrowth(), ARKStepSetMinReduction(), ARKStepSetSafetyFactor(),
ARKStepSetSmallNumEFails() and ARKStepSetStabilityFn() will be ignored, since temporal
adaptivity is disabled.

If both ARKStepSetFixedStep() and ARKStepSetStopTime() are used, then the fixed step size will
be used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ARKStepSetFixedStep() must be made prior to call-
ing ARKStepEvolve() to resume integration.

It is not recommended that ARKStepSetFixedStep() be used in concert with
ARKStepSetMaxStep() or ARKStepSetMinStep(), since at best those latter two routines will
provide no useful information to the solver, and at worst they may interfere with the desired fixed step size.

int ARKStepSetInitStep(void* arkode_mem, realtype hin)
Specifies the initial time step size ARKStep should use after initialization, re-initialization, or resetting.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hin – value of the initial step to be attempted (̸= 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass 0.0 to use the default value.
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By default, ARKStep estimates the initial step size to be the solution ℎ of the equation
⃦⃦⃦
ℎ2𝑦
2

⃦⃦⃦
= 1, where 𝑦 is

an estimated value of the second derivative of the solution at t0.

This routine will also reset the step size and error history.

int ARKStepSetMaxHnilWarns(void* arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that 𝑡 + ℎ = 𝑡 on the next internal
step, before ARKStep will instead return with an error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mxhnil – maximum allowed number of warning messages (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

int ARKStepSetMaxNumSteps(void* arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ARKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mxsteps – maximum allowed number of internal steps.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Passing mxsteps = 0 results in ARKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int ARKStepSetMaxStep(void* arkode_mem, realtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hmax – maximum absolute value of the time step size (≥ 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass hmax ≤ 0.0 to set the default value of∞.
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int ARKStepSetMinStep(void* arkode_mem, realtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hmin – minimum absolute value of the time step size (≥ 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass hmin ≤ 0.0 to set the default value of 0.

int ARKStepSetStopTime(void* arkode_mem, realtype tstop)
Specifies the value of the independent variable 𝑡 past which the solution is not to proceed.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tstop – stopping time for the integrator.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default is that no stop time is imposed.

int ARKStepSetUserData(void* arkode_mem, void* user_data)
Specifies the user data block user_data and attaches it to the main ARKStep memory block.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• user_data – pointer to the user data.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argu-
ment; otherwise NULL is passed.

If user_data is needed in user linear solver or preconditioner functions, the call to this function must be made
before the call to specify the linear solver.

int ARKStepSetMaxErrTestFails(void* arkode_mem, int maxnef)
Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.
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• maxnef – maximum allowed number of error test failures (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 7; set maxnef ≤ 0 to specify this default.

int ARKStepSetOptimalParams(void* arkode_mem)
Sets all adaptivity and solver parameters to our ‘best guess’ values, for a given integration method (ERK,
DIRK, ARK) and a given method order.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Should only be called after the method order and integration method have been set. These values re-
sulted from repeated testing of ARKStep’s solvers on a variety of training problems. However, all problems
are different, so these values may not be optimal for all users.

int ARKStepSetConstraints(void* arkode_mem, N_Vector constraints)
Specifies a vector defining inequality constraints for each component of the solution vector 𝑦.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• constraints – vector of constraint flags. If constraints[i] is

– 0.0 then no constraint is imposed on 𝑦𝑖

– 1.0 then 𝑦𝑖 will be constrained to be 𝑦𝑖 ≥ 0.0

– -1.0 then 𝑦𝑖 will be constrained to be 𝑦𝑖 ≤ 0.0

– 2.0 then 𝑦𝑖 will be constrained to be 𝑦𝑖 > 0.0

– -2.0 then 𝑦𝑖 will be constrained to be 𝑦𝑖 < 0.0

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if the constraints vector contains illegal values

Notes: The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint
checking to be performed. However, a call with 0.0 in all components of constraints will result in an ille-
gal input return. A NULL constraints vector will disable constraint checking.

After a call to ARKStepResize() inequality constraint checking will be disabled and a call to
ARKStepSetConstraints() is required to re-enable constraint checking.

Since constraint-handling is performed through cutting time steps that would violate the constraints, it
is possible that this feature will cause some problems to fail due to an inability to enforce constraints
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even at the minimum time step size. Additionally, the features ARKStepSetConstraints() and
ARKStepSetFixedStep() are incompatible, and should not be used simultaneously.

int ARKStepSetMaxNumConstrFails(void* arkode_mem, int maxfails)
Specifies the maximum number of constraint failures in a step before ARKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• maxfails – maximum allowed number of constrain failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

Notes: Passing maxfails <= 0 results in ARKStep using the default value (10).

4.5.8.2 Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ARKStepSetOrder() 4
Specify implicit/explicit problem ARKStepSetImEx() SUNTRUE
Specify explicit problem ARKStepSetExplicit() SUNFALSE
Specify implicit problem ARKStepSetImplicit() SUNFALSE
Set additive RK tables ARKStepSetTables() internal
Specify additive RK table numbers ARKStepSetTableNum() internal

int ARKStepSetOrder(void* arkode_mem, int ord)
Specifies the order of accuracy for the ARK/DIRK/ERK integration method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ord – requested order of accuracy.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: For explicit methods, the allowed values are 2 ≤ ord ≤ 8. For implicit methods, the allowed values are
2 ≤ ord ≤ 5, and for ImEx methods the allowed values are 3 ≤ ord ≤ 5. Any illegal input will result in the
default value of 4.

Since ord affects the memory requirements for the internal ARKStep memory block, it cannot be changed af-
ter the first call to ARKStepEvolve(), unless ARKStepReInit() is called.

int ARKStepSetImEx(void* arkode_mem)
Specifies that both the implicit and explicit portions of problem are enabled, and to use an additive Runge
Kutta method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:
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• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when neither of the function pointers fe or fi passed to
ARKStepCreate() are NULL, but may be set directly by the user if desired.

int ARKStepSetExplicit(void* arkode_mem)
Specifies that the implicit portion of problem is disabled, and to use an explicit RK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when the function pointer fi passed to ARKStepCreate() is NULL,
but may be set directly by the user if desired.

If the problem is posed in explicit form, i.e. �̇� = 𝑓(𝑡, 𝑦), then we recommend that the ERKStep time-stepper
module be used instead.

int ARKStepSetImplicit(void* arkode_mem)
Specifies that the explicit portion of problem is disabled, and to use a diagonally implicit RK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when the function pointer fe passed to ARKStepCreate() is NULL,
but may be set directly by the user if desired.

int ARKStepSetTables(void* arkode_mem, int q, int p, ARKodeButcherTable Bi, ARKode-
ButcherTable Be)

Specifies a customized Butcher table (or pair) for the ERK, DIRK, or ARK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• q – global order of accuracy for the ARK method.

• p – global order of accuracy for the embedded ARK method.

• Bi – the Butcher table for the implicit RK method.

• Be – the Butcher table for the explicit RK method.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL
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• ARK_ILL_INPUT if an argument has an illegal value

Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables see
Butcher Table Data Structure.

To set an explicit table, Bi must be NULL. This automatically calls ARKStepSetExplicit(). However,
if the problem is posed in explicit form, i.e. �̇� = 𝑓(𝑡, 𝑦), then we recommend that the ERKStep time-stepper
module be used instead of ARKStep.

To set an implicit table, Be must be NULL. This automatically calls ARKStepSetImplicit().

If both Bi and Be are provided, this routine automatically calls ARKStepSetImEx().

When only one table is provided (i.e., Bi or Be is NULL) then the input values of q and p are ignored and the
global order of the method and embedding (if applicable) are obtained from the Butcher table structures. If
both Bi and Be are non-NULL (e.g, an IMEX method is provided) then the input values of q and p are used as
the order of the ARK method may be less than the orders of the individual tables. No error checking is per-
formed to ensure that either p or q correctly describe the coefficients that were input.

Error checking is performed on Bi and Be (if non-NULL) to ensure that they specify DIRK and ERK methods,
respectively.

If the inputs Bi or Be do not contain an embedding (when the corresponding explicit or implicit table is non-
NULL), the user must call ARKStepSetFixedStep() to enable fixed-step mode and set the desired time
step size.

int ARKStepSetTableNum(void* arkode_mem, int itable, int etable)
Indicates to use specific built-in Butcher tables for the ERK, DIRK or ARK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• itable – index of the DIRK Butcher table.

• etable – index of the ERK Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes:

The allowable values for both the itable and etable arguments corresponding to built-in tables may be found
Appendix: Butcher tables.

To choose an explicit table, set itable to a negative value. This automatically calls
ARKStepSetExplicit(). However, if the problem is posed in explicit form, i.e. �̇� = 𝑓(𝑡, 𝑦), then
we recommend that the ERKStep time-stepper module be used instead of ARKStep.

To select an implicit table, set etable to a negative value. This automatically calls
ARKStepSetImplicit().

If both itable and etable are non-negative, then these should match an existing implicit/explicit pair, listed in
the section Additive Butcher tables. This automatically calls ARKStepSetImEx().

In all cases, error-checking is performed to ensure that the tables exist.
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4.5.8.3 Optional inputs for time step adaptivity

The mathematical explanation of ARKode’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in the section Time step adaptivity.

Optional input Function name Default
Set a custom time step adaptivity function ARKStepSetAdaptivityFn() internal
Choose an existing time step adaptivity method ARKStepSetAdaptivityMethod() 0
Explicit stability safety factor ARKStepSetCFLFraction() 0.5
Time step error bias factor ARKStepSetErrorBias() 1.5
Bounds determining no change in step size ARKStepSetFixedStepBounds() 1.0 1.5
Maximum step growth factor on convergence fail ARKStepSetMaxCFailGrowth() 0.25
Maximum step growth factor on error test fail ARKStepSetMaxEFailGrowth() 0.3
Maximum first step growth factor ARKStepSetMaxFirstGrowth() 10000.0
Maximum allowed general step growth factor ARKStepSetMaxGrowth() 20.0
Minimum allowed step reduction factor on error test fail ARKStepSetMinReduction() 0.1
Time step safety factor ARKStepSetSafetyFactor() 0.96
Error fails before MaxEFailGrowth takes effect ARKStepSetSmallNumEFails() 2
Explicit stability function ARKStepSetStabilityFn() none

int ARKStepSetAdaptivityFn(void* arkode_mem, ARKAdaptFn hfun, void* h_data)
Sets a user-supplied time-step adaptivity function.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hfun – name of user-supplied adaptivity function.

• h_data – pointer to user data passed to hfun every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should focus on accuracy-based time step estimation; for stability based time steps the
function ARKStepSetStabilityFn() should be used instead.

int ARKStepSetAdaptivityMethod(void* arkode_mem, int imethod, int idefault, int pq, real-
type* adapt_params)

Specifies the method (and associated parameters) used for time step adaptivity.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• imethod – accuracy-based adaptivity method choice (0 ≤ imethod ≤ 5): 0 is PID, 1 is PI, 2 is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

• idefault – flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

• pq – flag denoting whether to use the embedding order of accuracy p (0) or the method order of ac-
curacy q (1) within the adaptivity algorithm. p is the default.

• adapt_params[0] – 𝑘1 parameter within accuracy-based adaptivity algorithms.

• adapt_params[1] – 𝑘2 parameter within accuracy-based adaptivity algorithms.
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• adapt_params[2] – 𝑘3 parameter within accuracy-based adaptivity algorithms.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: If custom parameters are supplied, they will be checked for validity against published stability inter-
vals. If other parameter values are desired, it is recommended to instead provide a custom function through a
call to ARKStepSetAdaptivityFn().

int ARKStepSetCFLFraction(void* arkode_mem, realtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• cfl_frac – maximum allowed fraction of explicitly stable step (default is 0.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetErrorBias(void* arkode_mem, realtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• bias – bias applied to error in accuracy-based time step estimation (default is 1.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value below 1.0 will imply a reset to the default value.

int ARKStepSetFixedStepBounds(void* arkode_mem, realtype lb, realtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lb – lower bound on window to leave step size fixed (default is 1.0).

• ub – upper bound on window to leave step size fixed (default is 1.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value
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Notes: Any interval not containing 1.0 will imply a reset to the default values.

int ARKStepSetMaxCFailGrowth(void* arkode_mem, realtype etacf)
Specifies the maximum step size growth factor upon an algebraic solver convergence failure on a stage solve
within a step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• etacf – time step reduction factor on a nonlinear solver convergence failure (default is 0.25).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

int ARKStepSetMaxEFailGrowth(void* arkode_mem, realtype etamxf)
Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• etamxf – time step reduction factor on multiple error fails (default is 0.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

int ARKStepSetMaxFirstGrowth(void* arkode_mem, realtype etamx1)
Specifies the maximum allowed growth factor in step size following the very first integration step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• etamx1 – maximum allowed growth factor after the first time step (default is 10000.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value ≤ 1.0 will imply a reset to the default value.

int ARKStepSetMaxGrowth(void* arkode_mem, realtype mx_growth)
Specifies the maximum allowed growth factor in step size between consecutive steps in the integration process.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mx_growth – maximum allowed growth factor between consecutive time steps (default is 20.0).
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Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value ≤ 1.0 will imply a reset to the default value.

int ARKStepSetMinReduction(void* arkode_mem, realtype eta_min)
Specifies the minimum allowed reduction factor in step size between step attempts, resulting from a temporal
error failure in the integration process.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• eta_min – minimum allowed reduction factor time step after an error test failure (default is 0.1).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value ≥ 1.0 or ≤ 0.0 will imply a reset to the default value.

int ARKStepSetSafetyFactor(void* arkode_mem, realtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• safety – safety factor applied to accuracy-based time step (default is 0.96).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetSmallNumEFails(void* arkode_mem, int small_nef)
Specifies the threshold for “multiple” successive error failures before the etamxf parameter from
ARKStepSetMaxEFailGrowth() is applied.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• small_nef – bound to determine ‘multiple’ for etamxf (default is 2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.
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int ARKStepSetStabilityFn(void* arkode_mem, ARKExpStabFn EStab, void* estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE sys-
tem.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• EStab – name of user-supplied stability function.

• estab_data – pointer to user data passed to EStab every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should return an estimate of the absolute value of the maximum stable time step for the
explicit portion of the ODE system. It is not required, since accuracy-based adaptivity may be sufficient for
retaining stability, but this can be quite useful for problems where the explicit right-hand side function 𝑓𝐸(𝑡, 𝑦)
may contain stiff terms.

4.5.8.4 Optional inputs for implicit stage solves

The mathematical explanation for the nonlinear solver strategies used by ARKStep, including how each of the pa-
rameters below is used within the code, is provided in the section Nonlinear solver methods.

Optional input Function name Default
Specify linearly implicit 𝑓 𝐼 ARKStepSetLinear() SUNFALSE
Specify nonlinearly implicit 𝑓 𝐼 ARKStepSetNonlinear() SUNTRUE
Implicit predictor method ARKStepSetPredictorMethod() 0
Maximum number of nonlinear iterations ARKStepSetMaxNonlinIters() 3
Coefficient in the nonlinear convergence test ARKStepSetNonlinConvCoef() 0.1
Nonlinear convergence rate constant ARKStepSetNonlinCRDown() 0.3
Nonlinear residual divergence ratio ARKStepSetNonlinRDiv() 2.3
Maximum number of convergence failures ARKStepSetMaxConvFails() 10
User-provided implicit stage predictor ARKStepSetStagePredictFn() NULL

int ARKStepSetLinear(void* arkode_mem, int timedepend)
Specifies that the implicit portion of the problem is linear.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• timedepend – flag denoting whether the Jacobian of 𝑓 𝐼(𝑡, 𝑦) is time-dependent (1) or not (0). Al-
ternately, when using a matrix-free iterative linear solver this flag denotes time dependence of the
preconditioner.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value
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Notes: Tightens the linear solver tolerances and takes only a single Newton iteration. Calls
ARKStepSetDeltaGammaMax() to enforce Jacobian recomputation when the step size ratio changes by
more than 100 times the unit roundoff (since nonlinear convergence is not tested). Only applicable when used
in combination with the modified or inexact Newton iteration (not the fixed-point solver).

The only SUNDIALS-provided SUNNonlinearSolver module that is compatible with the
MRIStepSetLinear() option is the Newton solver.

int ARKStepSetNonlinear(void* arkode_mem)
Specifies that the implicit portion of the problem is nonlinear.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is the default behavior of ARKStep, so the function is primarily useful to undo a previous call to
ARKStepSetLinear(). Calls ARKStepSetDeltaGammaMax() to reset the step size ratio threshold to
the default value.

int ARKStepSetPredictorMethod(void* arkode_mem, int method)
Specifies the method to use for predicting implicit solutions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• method – method choice (0 ≤ method ≤ 4):

– 0 is the trivial predictor,

– 1 is the maximum order (dense output) predictor,

– 2 is the variable order predictor, that decreases the polynomial degree for more distant RK
stages,

– 3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a first-order
predictor for distant RK stages,

– 4 is the bootstrap predictor, that uses a second-order predictor based on only information within
the current step.

– 5 is the minimum correction predictor, that uses all preceding stage information within the cur-
rent step for prediction.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 0. If method is set to an undefined value, this default predictor will be used.

Options 4 and 5 are currently not supported when solving a problem involving a non-identity mass matrix. In
that case, selection of method as 4 or 5 will instead default to the trivial predictor (method 0).

int ARKStepSetMaxNonlinIters(void* arkode_mem, int maxcor)
Specifies the maximum number of nonlinear solver iterations permitted per RK stage within each time step.
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Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• maxcor – maximum allowed solver iterations per stage (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value or if the SUNNONLINSOL module is NULL

• ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: The default value is 3; set maxcor ≤ 0 to specify this default.

int ARKStepSetNonlinConvCoef(void* arkode_mem, realtype nlscoef)
Specifies the safety factor used within the nonlinear solver convergence test.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nlscoef – coefficient in nonlinear solver convergence test (> 0.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 0.1; set nlscoef ≤ 0 to specify this default.

int ARKStepSetNonlinCRDown(void* arkode_mem, realtype crdown)
Specifies the constant used in estimating the nonlinear solver convergence rate.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• crdown – nonlinear convergence rate estimation constant (default is 0.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetNonlinRDiv(void* arkode_mem, realtype rdiv)
Specifies the nonlinear correction threshold beyond which the iteration will be declared divergent.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rdiv – tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL
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• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetMaxConvFails(void* arkode_mem, int maxncf)
Specifies the maximum number of nonlinear solver convergence failures permitted during one step, before
ARKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• maxncf – maximum allowed nonlinear solver convergence failures per step (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 10; set maxncf ≤ 0 to specify this default.

Upon each convergence failure, ARKStep will first call the Jacobian setup routine and try again (if a New-
ton method is used). If a convergence failure still occurs, the time step size is reduced by the factor etacf (set
within ARKStepSetMaxCFailGrowth()).

int ARKStepSetStagePredictFn(void* arkode_mem, ARKStagePredictFn PredictStage)
Sets the user-supplied function to update the implicit stage predictor prior to execution of the nonlinear or lin-
ear solver algorithms that compute the implicit stage solution.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• PredictStage – name of user-supplied predictor function. If NULL, then any previously-provided
stage prediction function will be disabled.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

Notes: See the section Implicit stage prediction function for more information on this user-supplied routine.

4.5.8.5 Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to ARKStep is provided in the section Linear
solver methods. We group the user-callable routines into four categories: general routines concerning the update
frequency for matrices and/or preconditioners, optional inputs for matrix-based linear solvers, optional inputs for
matrix-free linear solvers, and optional inputs for iterative linear solvers. We note that the matrix-based and matrix-
free groups are mutually exclusive, whereas the “iterative” tag can apply to either case.

Optional inputs for the ARKLS linear solver interface

As discussed in the section Updating the linear solver, ARKode strives to reuse matrix and preconditioner data for
as many solves as possible to amortize the high costs of matrix construction and factorization. To that end, ARKStep
provides user-callable routines to modify this behavior. Recall that the Newton system matrices that arise within an
implicit stage solve are 𝒜(𝑡, 𝑧) ≈ 𝑀 − 𝛾𝐽(𝑡, 𝑧), where the implicit right-hand side function has Jacobian matrix
𝐽(𝑡, 𝑧) = 𝜕𝑓𝐼(𝑡,𝑧)

𝜕𝑧 .
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The matrix or preconditioner for 𝒜 can only be updated within a call to the linear solver ‘setup’ routine. In gen-
eral, the frequency with which the linear solver setup routine is called may be controlled with the msbp argument
to ARKStepSetLSetupFrequency(). When this occurs, the validity of 𝒜 for successive time steps intimately
depends on whether the corresponding 𝛾 and 𝐽 inputs remain valid.

At each call to the linear solver setup routine the decision to update 𝒜 with a new value of 𝛾, and to reuse or reevalu-
ate Jacobian information, depends on several factors including:

• the success or failure of previous solve attempts,

• the success or failure of the previous time step attempts,

• the change in 𝛾 from the value used when constructing 𝒜, and

• the number of steps since Jacobian information was last evaluated.

The frequency with which to update Jacobian information can be controlled with the msbj argument to
ARKStepSetJacEvalFrequency(). We note that this is only checked within calls to the linear solver setup
routine, so values msbj < msbp do not make sense. For linear-solvers with user-supplied preconditioning the above
factors are used to determine whether to recommend updating the Jacobian information in the preconditioner (i.e.,
whether to set jok to SUNFALSE in calling the user-supplied ARKLsPrecSetupFn()). For matrix-based linear
solvers these factors determine whether the matrix 𝐽(𝑡, 𝑦) = 𝜕𝑓𝐼(𝑡,𝑦)

𝜕𝑦 should be updated (either with an internal finite
difference approximation or a call to the user-supplied ARKLsJacFn); if not then the previous value is reused and
the system matrix 𝒜(𝑡, 𝑦) ≈𝑀 − 𝛾𝐽(𝑡, 𝑦) is recomputed using the current 𝛾 value.

Optional input Function name Default
Max change in step signaling new 𝐽 ARKStepSetDeltaGammaMax() 0.2
Linear solver setup frequency ARKStepSetLSetupFrequency() 20
Jacobian / preconditioner update frequency ARKStepSetJacEvalFrequency() 51

int ARKStepSetDeltaGammaMax(void* arkode_mem, realtype dgmax)
Specifies a scaled step size ratio tolerance, beyond which the linear solver setup routine will be signaled.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• dgmax – tolerance on step size ratio change before calling linear solver setup routine (default is 0.2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetLSetupFrequency(void* arkode_mem, int msbp)
Specifies the frequency of calls to the linear solver setup routine.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• msbp – the linear solver setup frequency.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL
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Notes: Positive values of msbp specify the linear solver setup frequency. For example, an input of 1 means
the setup function will be called every time step while an input of 2 means it will be called called every other
time step. If msbp is 0, the default value of 20 will be used. A negative value forces a linear solver step at each
implicit stage.

int ARKStepSetJacEvalFrequency(void* arkode_mem, long int msbj)
Specifies the frequency for recomputing the Jacobian or recommending a preconditioner update.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• msbj – the Jacobian re-computation or preconditioner update frequency.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

Notes: The Jacobian update frequency is only checked within calls to the linear solver setup rou-
tine, as such values of msbj < msbp will result in recomputing the Jacobian every msbp steps. See
ARKStepSetLSetupFrequency() for setting the linear solver steup frequency msbp.

Passing a value msbj ≤ 0 indicates to use the default value of 51.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Optional inputs for matrix-based SUNLinearSolver modules

Optional input Function name Default
Jacobian function ARKStepSetJacFn() DQ
Linear system function ARKStepSetLinSysFn() internal
Mass matrix function ARKStepSetMassFn() none
Enable or disable linear solution scaling ARKStepSetLinearSolutionScaling() on

When using matrix-based linear solver modules, the ARKLS solver interface needs a function to compute an approx-
imation to the Jacobian matrix 𝐽(𝑡, 𝑦) or the linear system 𝒜(⊔, †) = 𝑀(𝑡)− 𝛾𝐽(𝑡, 𝑦).

For 𝐽(𝑡, 𝑦), the ARKLS interface is packaged with a routine that can approximate 𝐽 if the user has selected
either dense or banded linear algebra. Alternatively, the user can supply a custom Jacobian function of type
ARKLsJacFn() – this is required when the user selects other matrix formats. To specify a user-supplied Jacobian
function, ARKStep provides the function ARKStepSetJacFn().

Alternatively, a function of type ARKLsLinSysFn() can be provided to evaluate the matrix 𝒜(⊔, †). By default,
ARKLS uses an internal linear system function leveraging the SUNMATRIX API to form the matrix 𝒜(⊔, †) by
combining the matrices 𝑀(𝑡) and 𝐽(𝑡, 𝑦). To specify a user-supplied linear system function instead, ARKStep pro-
vides the function ARKStepSetLinSysFn().

If the ODE system involves a non-identity mass matrix, 𝑀 ̸= 𝐼 , matrix-based linear solver modules require a func-
tion to compute an approximation to the mass matrix 𝑀(𝑡). There is no default difference quotient approximation
(for any matrix type), so this routine must be supplied by the user. This function must be of type ARKLsMassFn(),
and should be set using the function ARKStepSetMassFn().
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In either case (𝐽(𝑡, 𝑦) versus 𝒜(⊔, †) is supplied) the matrix information will be updated infrequently to reduce ma-
trix construction and, with direct solvers, factorization costs. As a result the value of 𝛾 may not be current and a scal-
ing factor is applied to the solution of the linear system to account for the lagged value of 𝛾. See Lagged matrix in-
formation for more details. The function ARKStepSetLinearSolutionScaling() can be used to disable
this scaling when necessary, e.g., when providing a custom linear solver that updates the matrix using the current 𝛾
as part of the solve.

The ARKLS interface passes the user data pointer to the Jacobian, linear system, and mass matrix functions. This
allows the user to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied Jacobian, linear system or mass matrix functions, without using global data in the program. The user
data pointer may be specified through ARKStepSetUserData().

int ARKStepSetJacFn(void* arkode_mem, ARKLsJacFn jac)
Specifies the Jacobian approximation routine to be used for the matrix-based solver with the ARKLS interface.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• jac – name of user-supplied Jacobian approximation function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This routine must be called after the ARKLS linear solver interface has been initialized through a call
to ARKStepSetLinearSolver().

By default, ARKLS uses an internal difference quotient function for dense and band matrices. If NULL is
passed in for jac, this default is used. An error will occur if no jac is supplied when using other matrix types.

The function type ARKLsJacFn() is described in the section User-supplied functions.

int ARKStepSetLinSysFn(void* arkode_mem, ARKLsLinSysFn linsys)
Specifies the linear system approximation routine to be used for the matrix-based solver with the ARKLS in-
terface.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• linsys – name of user-supplied linear system approximation function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This routine must be called after the ARKLS linear solver interface has been initialized through a call
to ARKStepSetLinearSolver().

By default, ARKLS uses an internal linear system function that leverages the SUNMATRIX API to form the
system 𝑀 − 𝛾𝐽 . If NULL is passed in for linsys, this default is used.

The function type ARKLsLinSysFn() is described in the section User-supplied functions.

int ARKStepSetMassFn(void* arkode_mem, ARKLsMassFn mass)
Specifies the mass matrix approximation routine to be used for the matrix-based solver with the ARKLS inter-
face.
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Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mass – name of user-supplied mass matrix approximation function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL

• ARKLS_ILL_INPUT if an argument has an illegal value

Notes: This routine must be called after the ARKLS mass matrix solver interface has been initialized through
a call to ARKStepSetMassLinearSolver().

Since there is no default difference quotient function for mass matrices, mass must be non-NULL.

The function type ARKLsMassFn() is described in the section User-supplied functions.

int ARKStepSetLinearSolutionScaling(void* arkode_mem, booleantype onoff)
Enables or disables scaling the linear system solution to account for a change in 𝛾 in the linear system. For
more details see Lagged matrix information.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• onoff – flag to enable (SUNTRUE) or disable (SUNFALSE) scaling

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_ILL_INPUT if the attached linear solver is not matrix-based

Notes: Linear solution scaling is enabled by default when a matrix-based linear solver is attached.

Optional inputs for matrix-free SUNLinearSolver modules

Optional input Function name Default
𝐽𝑣 functions (jtimes and jtsetup) ARKStepSetJacTimes() DQ, none
𝐽𝑣 DQ rhs function (jtimesRhsFn) ARKStepSetJacTimesRhsFn() fi
𝑀𝑣 functions (mtimes and mtsetup) ARKStepSetMassTimes() none, none

As described in the section Linear solver methods, when solving the Newton linear systems with matrix-free meth-
ods, the ARKLS interface requires a jtimes function to compute an approximation to the product between the Jaco-
bian matrix 𝐽(𝑡, 𝑦) and a vector 𝑣. The user can supply a custom Jacobian-times-vector approximation function, or
use the default internal difference quotient function that comes with the ARKLS interface.

A user-defined Jacobian-vector function must be of type ARKLsJacTimesVecFn and can be specified
through a call to ARKStepSetJacTimes() (see the section User-supplied functions for specification de-
tails). As with the user-supplied preconditioner functions, the evaluation and processing of any Jacobian-
related data needed by the user’s Jacobian-times-vector function is done in the optional user-supplied func-
tion of type ARKLsJacTimesSetupFn (see the section User-supplied functions for specification details).
As with the preconditioner functions, a pointer to the user-defined data structure, user_data, specified through
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ARKStepSetUserData() (or a NULL pointer otherwise) is passed to the Jacobian-times-vector setup and prod-
uct functions each time they are called.

int ARKStepSetJacTimes(void* arkode_mem, ARKLsJacTimesSetupFn jtsetup, ARKLsJac-
TimesVecFn jtimes)

Specifies the Jacobian-times-vector setup and product functions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• jtsetup – user-defined Jacobian-vector setup function. Pass NULL if no setup is necessary.

• jtimes – user-defined Jacobian-vector product function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up the Jacobian-vector product in the
SUNLinearSolver object used by the ARKLS interface.

Notes: The default is to use an internal finite difference quotient for jtimes and to leave out jtsetup. If NULL is
passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

The function types ARKLsJacTimesSetupFn and ARKLsJacTimesVecFn are described in the section
User-supplied functions.

When using the internal difference quotient the user may optionally supply an alternative implicit right-hand side
function for use in the Jacobian-vector product approximation by calling ARKStepSetJacTimesRhsFn(). The
alternative implicit right-hand side function should compute a suitable (and differentiable) approximation to the 𝑓 𝐼

function provided to ARKStepCreate(). For example, as done in [DFWBT2010], the alternative function may
use lagged values when evaluating a nonlinearity in 𝑓 𝐼 to avoid differencing a potentially non-differentiable factor.

int ARKStepSetJacTimesRhsFn(void* arkode_mem, ARKRhsFn jtimesRhsFn)
Specifies an alternative implicit right-hand side function for use in the internal Jacobian-vector product differ-
ence quotient approximation.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• jtimesRhsFn – the name of the C function (of type ARKRhsFn()) defining the alternative right-
hand side function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

Notes: The default is to use the implicit right-hand side function provided to ARKStepCreate() in the in-
ternal difference quotient. If the input implicit right-hand side function is NULL, the default is used.
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This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Similarly, if a problem involves a non-identity mass matrix, 𝑀 ̸= 𝐼 , then matrix-free solvers require a mtimes func-
tion to compute an approximation to the product between the mass matrix 𝑀(𝑡) and a vector 𝑣. This function must
be user-supplied, since there is no default value. mtimes must be of type ARKLsMassTimesVecFn(), and can be
specified through a call to the ARKStepSetMassTimes() routine. Similarly to the user-supplied preconditioner
functions, any evaluation and processing of any mass matrix-related data needed by the user’s mass-matrix-times-
vector function may be done in an optional user-supplied function of type ARKLsMassTimesSetupFn (see the
section User-supplied functions for specification details).

int ARKStepSetMassTimes(void* arkode_mem, ARKLsMassTimesSetupFn mtsetup, ARKLs-
MassTimesVecFn mtimes, void* mtimes_data)

Specifies the mass matrix-times-vector setup and product functions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mtsetup – user-defined mass matrix-vector setup function. Pass NULL if no setup is necessary.

• mtimes – user-defined mass matrix-vector product function.

• mtimes_data – a pointer to user data, that will be supplied to both the mtsetup and mtimes functions.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up the mass-matrix-vector product in the
SUNLinearSolver object used by the ARKLS interface.

Notes: There is no default finite difference quotient for mtimes, so if using the ARKLS mass matrix solver
interface with NULL-valued 𝑀 , and this routine is called with NULL-valued mtimes, an error will occur. A
user may specify NULL for mtsetup.

This function must be called after the ARKLS mass matrix solver interface has been initialized through a call
to ARKStepSetMassLinearSolver().

The function types ARKLsMassTimesSetupFn and ARKLsMassTimesVecFn are described in the sec-
tion User-supplied functions.
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Optional inputs for iterative SUNLinearSolver modules

Optional input Function name Default
Newton preconditioning functions ARKStepSetPreconditioner() NULL,

NULL
Mass matrix preconditioning functions ARKStepSetMassPreconditioner() NULL,

NULL
Newton linear and nonlinear tolerance ratio ARKStepSetEpsLin() 0.05
Mass matrix linear and nonlinear tolerance ratio ARKStepSetMassEpsLin() 0.05
Newton linear solve tolerance conversion factor ARKStepSetLSNormFactor() vector

length
Mass matrix linear solve tolerance conversion fac-
tor

ARKStepSetMassLSNormFactor() vector
length

As described in the section Linear solver methods, when using an iterative linear solver the user may supply a pre-
conditioning operator to aid in solution of the system. This operator consists of two user-supplied functions, psetup
and psolve, that are supplied to ARKStep using either the function ARKStepSetPreconditioner() (for pre-
conditioning the Newton system), or the function ARKStepSetMassPreconditioner() (for preconditioning
the mass matrix system). The psetup function supplied to these routines should handle evaluation and preprocessing
of any Jacobian or mass-matrix data needed by the user’s preconditioner solve function, psolve. The user data pointer
received through ARKStepSetUserData() (or a pointer to NULL if user data was not specified) is passed to the
psetup and psolve functions. This allows the user to create an arbitrary structure with relevant problem data and ac-
cess it during the execution of the user-supplied preconditioner functions without using global data in the program.
If preconditioning is supplied for both the Newton and mass matrix linear systems, it is expected that the user will
supply different psetup and psolve function for each.

Also, as described in the section Linear iteration error control, the ARKLS interface requires that iterative linear
solvers stop when the norm of the preconditioned residual satisfies

‖𝑟‖ ≤ 𝜖𝐿𝜖

10

where the default 𝜖𝐿 = 0.05, which may be modified by the user through the ARKStepSetEpsLin() function.

int ARKStepSetPreconditioner(void* arkode_mem, ARKLsPrecSetupFn psetup, ARKLsPrec-
SolveFn psolve)

Specifies the user-supplied preconditioner setup and solve functions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• psetup – user defined preconditioner setup function. Pass NULL if no setup is needed.

• psolve – user-defined preconditioner solve function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up preconditioning in the
SUNLinearSolver object used by the ARKLS interface.
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Notes: The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Both of the function types ARKLsPrecSetupFn() and ARKLsPrecSolveFn() are described in the sec-
tion User-supplied functions.

int ARKStepSetMassPreconditioner(void* arkode_mem, ARKLsMassPrecSetupFn psetup, ARKLs-
MassPrecSolveFn psolve)

Specifies the mass matrix preconditioner setup and solve functions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• psetup – user defined preconditioner setup function. Pass NULL if no setup is to be done.

• psolve – user-defined preconditioner solve function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up preconditioning in the
SUNLinearSolver object used by the ARKLS interface.

Notes: This function must be called after the ARKLS mass matrix solver interface has been initialized through
a call to ARKStepSetMassLinearSolver().

The default is NULL for both arguments (i.e. no preconditioning).

Both of the function types ARKLsMassPrecSetupFn() and ARKLsMassPrecSolveFn() are de-
scribed in the section User-supplied functions.

int ARKStepSetEpsLin(void* arkode_mem, realtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the lin-
ear iteration.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• eplifac – linear convergence safety factor.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

Notes: Passing a value eplifac ≤ 0 indicates to use the default value of 0.05.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().
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int ARKStepSetMassEpsLin(void* arkode_mem, realtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the
mass matrix linear iteration.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• eplifac – linear convergence safety factor.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

Notes: This function must be called after the ARKLS mass matrix solver interface has been initialized through
a call to ARKStepSetMassLinearSolver().

Passing a value eplifac ≤ 0 indicates to use the default value of 0.05.

int ARKStepSetLSNormFactor(void* arkode_mem, realtype nrmfac)
Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for Newton linear system solves e.g., tol_L2 = fac * tol_WRMS.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nrmfac – the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac =
sqrt(N_VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac =
sqrt(N_VDotProd(v,v)) where all the entries of v are one.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the ARKStep memory was NULL.

Notes: This function must be called after the ARKLS system solver interface has been initialized through a
call to ARKStepSetLinearSolver().

Prior to the introduction of N_VGetLength() in SUNDIALS v5.0.0 the value of nrmfac was computed
using the vector dot product i.e., the nrmfac < 0 case.

int ARKStepSetMassLSNormFactor(void* arkode_mem, realtype nrmfac)

Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for mass matrix linear system solves e.g., tol_L2 = fac * tol_WRMS.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nrmfac – the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.
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= 0 then the conversion factor is computed using the vector length i.e., nrmfac =
sqrt(N_VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac =
sqrt(N_VDotProd(v,v)) where all the entries of v are one.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the ARKStep memory was NULL.

Notes: This function must be called after the ARKLS mass matrix solver interface has been initialized through
a call to ARKStepSetMassLinearSolver().

Prior to the introduction of N_VGetLength() in SUNDIALS v5.0.0 (ARKODE v4.0.0) the value of
nrmfac was computed using the vector dot product i.e., the nrmfac < 0 case.

4.5.8.6 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in the section Rootfinding.

Optional input Function name Default
Direction of zero-crossings to monitor ARKStepSetRootDirection() both
Disable inactive root warnings ARKStepSetNoInactiveRootWarn() enabled

int ARKStepSetRootDirection(void* arkode_mem, int* rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rootdir – state array of length nrtfn, the number of root functions 𝑔𝑖 (the value of nrtfn was sup-
plied in the call to ARKStepRootInit()). If rootdir[i] == 0 then crossing in either di-
rection for 𝑔𝑖 should be reported. A value of +1 or -1 indicates that the solver should report only
zero-crossings where 𝑔𝑖 is increasing or decreasing, respectively.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default behavior is to monitor for both zero-crossing directions.

int ARKStepSetNoInactiveRootWarn(void* arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integra-
tion.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL
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Notes: ARKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components 𝑔𝑖 are zero at the initial time). However, if it appears that some 𝑔𝑖 is identically zero at the initial
time (i.e., 𝑔𝑖 is zero at the initial time and after the first step), ARKStep will issue a warning which can be dis-
abled with this optional input function.

4.5.9 Interpolated output function

An optional function ARKStepGetDky() is available to obtain additional values of solution-related quantities.
This function should only be called after a successful return from ARKStepEvolve(), as it provides interpolated
values either of 𝑦 or of its derivatives (up to the 5th derivative) interpolated to any value of 𝑡 in the last internal step
taken by ARKStepEvolve(). Internally, this dense output algorithm is identical to the algorithm used for the
maximum order implicit predictors, described in the section Maximum order predictor, except that derivatives of
the polynomial model may be evaluated upon request.

int ARKStepGetDky(void* arkode_mem, realtype t, int k, N_Vector dky)
Computes the k-th derivative of the function 𝑦 at the time t, i.e. 𝑑(𝑘)

𝑑𝑡(𝑘) 𝑦(𝑡), for values of the independent vari-
able satisfying 𝑡𝑛 − ℎ𝑛 ≤ 𝑡 ≤ 𝑡𝑛, with 𝑡𝑛 as current internal time reached, and ℎ𝑛 is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to ARKStepSetInterpolantDegree(). The user may request k in the
range {0,. . . ,*min(degree, kmax)*} where kmax depends on the choice of interpolation module. For Hermite
interpolants kmax = 5 and for Lagrange interpolants kmax = 3.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• t – the value of the independent variable at which the derivative is to be evaluated.

• k – the derivative order requested.

• dky – output vector (must be allocated by the user).

Return value:

• ARK_SUCCESS if successful

• ARK_BAD_K if k is not in the range {0,. . . ,*min(degree, kmax)*}.

• ARK_BAD_T if t is not in the interval [𝑡𝑛 − ℎ𝑛, 𝑡𝑛]

• ARK_BAD_DKY if the dky vector was NULL

• ARK_MEM_NULL if the ARKStep memory is NULL

Notes: It is only legal to call this function after a successful return from ARKStepEvolve().

A user may access the values 𝑡𝑛 and ℎ𝑛 via the functions ARKStepGetCurrentTime() and
ARKStepGetLastStep(), respectively.

4.5.10 Optional output functions

ARKStep provides an extensive set of functions that can be used to obtain solver performance information. We orga-
nize these into groups:

1. SUNDIALS version information accessor routines are in the subsection SUNDIALS version information,

2. General ARKStep output routines are in the subsection Main solver optional output functions,

3. ARKStep implicit solver output routines are in the subsection Implicit solver optional output functions,

4. Output routines regarding root-finding results are in the subsection Rootfinding optional output functions,

98 Chapter 4. Using ARKStep for C and C++ Applications



User Documentation for ARKode, v4.7.0

5. Linear solver output routines are in the subsection Linear solver interface optional output functions and

6. General usability routines (e.g. to print the current ARKStep parameters, or output the current Butcher ta-
ble(s)) are in the subsection General usability functions.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of var-
ious methods inside ARKStep. For example:

• The counters nsteps, nfe_evals and nfi_evals provide a rough measure of the overall cost of a given run, and
can be compared between runs with different solver options to suggest which set of options is the most effi-
cient.

• The ratio nniters/nsteps measures the performance of the nonlinear iteration in solving the nonlinear systems
at each stage, providing a measure of the degree of nonlinearity in the problem. Typical values of this for a
Newton solver on a general problem range from 1.1 to 1.8.

• When using a Newton nonlinear solver, the ratio njevals/nniters (in the case of a direct linear solver), and the
ratio npevals/nniters (in the case of an iterative linear solver) can measure the overall degree of nonlinearity in
the problem, since these are updated infrequently, unless the Newton method convergence slows.

• When using a Newton nonlinear solver, the ratio njevals/nniters (when using a direct linear solver), and the ra-
tio nliters/nniters (when using an iterative linear solver) can indicate the quality of the approximate Jacobian or
preconditioner being used. For example, if this ratio is larger for a user-supplied Jacobian or Jacobian-vector
product routine than for the difference-quotient routine, it can indicate that the user-supplied Jacobian is inac-
curate.

• The ratio expsteps/accsteps can measure the quality of the ImEx splitting used, since a higher-quality splitting
will be dominated by accuracy-limited steps.

• The ratio nsteps/step_attempts can measure the quality of the time step adaptivity algorithm, since a poor algo-
rithm will result in more failed steps, and hence a lower ratio.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

4.5.10.1 SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:

• version – character array to hold the SUNDIALS version information.

• len – allocated length of the version character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS version

Notes: An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber(int *major, int *minor, int *patch, char *label, int len)
This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with
the release label if applicable.

Arguments:
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• major – SUNDIALS release major version number.

• minor – SUNDIALS release minor version number.

• patch – SUNDIALS release patch version number.

• label – string to hold the SUNDIALS release label.

• len – allocated length of the label character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS label

Notes: An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.5.10.2 Main solver optional output functions

Optional output Function name
Size of ARKStep real and integer workspaces ARKStepGetWorkSpace()
Cumulative number of internal steps ARKStepGetNumSteps()
Actual initial time step size used ARKStepGetActualInitStep()
Step size used for the last successful step ARKStepGetLastStep()
Step size to be attempted on the next step ARKStepGetCurrentStep()
Current internal time reached by the solver ARKStepGetCurrentTime()
Current internal solution reached by the solver ARKStepGetCurrentState()
Current 𝛾 value used by the solver ARKStepGetCurrentGamma()
Suggested factor for tolerance scaling ARKStepGetTolScaleFactor()
Error weight vector for state variables ARKStepGetErrWeights()
Residual weight vector ARKStepGetResWeights()
Single accessor to many statistics at once ARKStepGetStepStats()
Name of constant associated with a return flag ARKStepGetReturnFlagName()
No. of explicit stability-limited steps ARKStepGetNumExpSteps()
No. of accuracy-limited steps ARKStepGetNumAccSteps()
No. of attempted steps ARKStepGetNumStepAttempts()
No. of calls to fe and fi functions ARKStepGetNumRhsEvals()
No. of local error test failures that have occurred ARKStepGetNumErrTestFails()
Current ERK and DIRK Butcher tables ARKStepGetCurrentButcherTables()
Estimated local truncation error vector ARKStepGetEstLocalErrors()
Single accessor to many statistics at once ARKStepGetTimestepperStats()
Number of constraint test failures ARKStepGetNumConstrFails()

int ARKStepGetWorkSpace(void* arkode_mem, long int* lenrw, long int* leniw)
Returns the ARKStep real and integer workspace sizes.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrw – the number of realtype values in the ARKStep workspace.

• leniw – the number of integer values in the ARKStep workspace.

Return value:

• ARK_SUCCESS if successful
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• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumSteps(void* arkode_mem, long int* nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nsteps – number of steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetActualInitStep(void* arkode_mem, realtype* hinused)
Returns the value of the integration step size used on the first step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hinused – actual value of initial step size.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: Even if the value of the initial integration step was specified by the user through a call to
ARKStepSetInitStep(), this value may have been changed by ARKStep to ensure that the step size fell
within the prescribed bounds (ℎ𝑚𝑖𝑛 ≤ ℎ0 ≤ ℎ𝑚𝑎𝑥), or to satisfy the local error test condition, or to ensure
convergence of the nonlinear solver.

int ARKStepGetLastStep(void* arkode_mem, realtype* hlast)
Returns the integration step size taken on the last successful internal step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hlast – step size taken on the last internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentStep(void* arkode_mem, realtype* hcur)
Returns the integration step size to be attempted on the next internal step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hcur – step size to be attempted on the next internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentTime(void* arkode_mem, realtype* tcur)
Returns the current internal time reached by the solver.
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Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentState(void *arkode_mem, N_Vector *ycur)
Returns the current internal solution reached by the solver.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ycur – current internal solution.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: Users should exercise extreme caution when using this function, as altering values of ycur may lead to
undesirable behavior, depending on the particular use case and on when this routine is called.

int ARKStepGetCurrentGamma(void *arkode_mem, realtype *gamma)
Returns the current internal value of 𝛾 used in the implicit solver Newton matrix (see equation (2.28)).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• gamma – current step size scaling factor in the Newton system.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetTolScaleFactor(void* arkode_mem, realtype* tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tolsfac – suggested scaling factor for user-supplied tolerances.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetErrWeights(void* arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• eweight – solution error weights at the current time.
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Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The user must allocate space for eweight, that will be filled in by this function.

int ARKStepGetResWeights(void* arkode_mem, N_Vector rweight)
Returns the current residual weight vector.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rweight – residual error weights at the current time.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The user must allocate space for rweight, that will be filled in by this function.

int ARKStepGetStepStats(void* arkode_mem, long int* nsteps, realtype* hinused, realtype* hlast, real-
type* hcur, realtype* tcur)

Returns many of the most useful optional outputs in a single call.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nsteps – number of steps taken in the solver.

• hinused – actual value of initial step size.

• hlast – step size taken on the last internal step.

• hcur – step size to be attempted on the next internal step.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

char *ARKStepGetReturnFlagName(long int flag)
Returns the name of the ARKStep constant corresponding to flag.

Arguments:

• flag – a return flag from an ARKStep function.

Return value: The return value is a string containing the name of the corresponding constant.

int ARKStepGetNumExpSteps(void* arkode_mem, long int* expsteps)
Returns the cumulative number of stability-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• expsteps – number of stability-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful
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• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumAccSteps(void* arkode_mem, long int* accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• accsteps – number of accuracy-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumStepAttempts(void* arkode_mem, long int* step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• step_attempts – number of steps attempted by solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumRhsEvals(void* arkode_mem, long int* nfe_evals, long int* nfi_evals)
Returns the number of calls to the user’s right-hand side functions, 𝑓𝐸 and 𝑓 𝐼 (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nfe_evals – number of calls to the user’s 𝑓𝐸(𝑡, 𝑦) function.

• nfi_evals – number of calls to the user’s 𝑓 𝐼(𝑡, 𝑦) function.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The nfi_evals value does not account for calls made to 𝑓 𝐼 by a linear solver or preconditioner module.

int ARKStepGetNumErrTestFails(void* arkode_mem, long int* netfails)
Returns the number of local error test failures that have occurred (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• netfails – number of error test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentButcherTables(void* arkode_mem, ARKodeButcherTable *Bi, ARKodep-
ButcherTable *Be)

Returns the explicit and implicit Butcher tables currently in use by the solver.
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Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• Bi – pointer to implicit Butcher table structure.

• Be – pointer to explicit Butcher table structure.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The ARKodeButcherTable data structure is defined as a pointer to the following C structure:

typedef struct ARKStepButcherTableMem {

int q; /* method order of accuracy */
int p; /* embedding order of accuracy */
int stages; /* number of stages */
realtype **A; /* Butcher table coefficients */
realtype *c; /* canopy node coefficients */
realtype *b; /* root node coefficients */
realtype *d; /* embedding coefficients */

} *ARKStepButcherTable;

For more details see Butcher Table Data Structure.

int ARKStepGetEstLocalErrors(void* arkode_mem, N_Vector ele)
Returns the vector of estimated local truncation errors for the current step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ele – vector of estimated local truncation errors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ARKStepEvolve() (i.e. it returned a non-
negative value).

The ele vector, together with the eweight vector from ARKStepGetErrWeights(), can be used to deter-
mine how the various components of the system contributed to the estimated local error test. Specifically, that
error test uses the WRMS norm of a vector whose components are the products of the components of these
two vectors. Thus, for example, if there were recent error test failures, the components causing the failures are
those with largest values for the products, denoted loosely as eweight[i]*ele[i].

int ARKStepGetTimestepperStats(void* arkode_mem, long int* expsteps, long int* accsteps, long
int* step_attempts, long int* nfe_evals, long int* nfi_evals, long
int* nlinsetups, long int* netfails)

Returns many of the most useful time-stepper statistics in a single call.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• expsteps – number of stability-limited steps taken in the solver.
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• accsteps – number of accuracy-limited steps taken in the solver.

• step_attempts – number of steps attempted by the solver.

• nfe_evals – number of calls to the user’s 𝑓𝐸(𝑡, 𝑦) function.

• nfi_evals – number of calls to the user’s 𝑓 𝐼(𝑡, 𝑦) function.

• nlinsetups – number of linear solver setup calls made.

• netfails – number of error test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumConstrFails(void* arkode_mem, long int* nconstrfails)
Returns the cumulative number of constraint test failures (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nconstrfails – number of constraint test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

4.5.10.3 Implicit solver optional output functions

Optional output Function name
No. of calls to linear solver setup function ARKStepGetNumLinSolvSetups()
No. of nonlinear solver iterations ARKStepGetNumNonlinSolvIters()
No. of nonlinear solver convergence failures ARKStepGetNumNonlinSolvConvFails()
Single accessor to all nonlinear solver statistics ARKStepGetNonlinSolvStats()

int ARKStepGetNumLinSolvSetups(void* arkode_mem, long int* nlinsetups)
Returns the number of calls made to the linear solver’s setup routine (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nlinsetups – number of linear solver setup calls made.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: This is only accumulated for the ‘life’ of the nonlinear solver object; the counter is reset whenever a
new nonlinear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumNonlinSolvIters(void* arkode_mem, long int* nniters)
Returns the number of nonlinear solver iterations performed (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.
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• nniters – number of nonlinear iterations performed.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: This is only accumulated for the ‘life’ of the nonlinear solver object; the counter is reset whenever a
new nonlinear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumNonlinSolvConvFails(void* arkode_mem, long int* nncfails)
Returns the number of nonlinear solver convergence failures that have occurred (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nncfails – number of nonlinear convergence failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: This is only accumulated for the ‘life’ of the nonlinear solver object; the counter is reset whenever a
new nonlinear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNonlinSolvStats(void* arkode_mem, long int* nniters, long int* nncfails)
Returns all of the nonlinear solver statistics in a single call.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nniters – number of nonlinear iterations performed.

• nncfails – number of nonlinear convergence failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: These are only accumulated for the ‘life’ of the nonlinear solver object; the counters are reset whenever
a new nonlinear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

4.5.10.4 Rootfinding optional output functions

Optional output Function name
Array showing roots found ARKStepGetRootInfo()
No. of calls to user root function ARKStepGetNumGEvals()

int ARKStepGetRootInfo(void* arkode_mem, int* rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.
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• rootsfound – array of length nrtfn with the indices of the user functions 𝑔𝑖 found to have a root
(the value of nrtfn was supplied in the call to ARKStepRootInit()). For 𝑖 = 0 . . . nrtfn-1,
rootsfound[i] is nonzero if 𝑔𝑖 has a root, and 0 if not.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The user must allocate space for rootsfound prior to calling this function.

For the components of 𝑔𝑖 for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that 𝑔𝑖 is increasing, while a value of -1 indicates a decreasing 𝑔𝑖.

int ARKStepGetNumGEvals(void* arkode_mem, long int* ngevals)
Returns the cumulative number of calls made to the user’s root function 𝑔.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ngevals – number of calls made to 𝑔 so far.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

4.5.10.5 Linear solver interface optional output functions

The following optional outputs are available from the ARKLS modules: workspace requirements, number of calls
to the Jacobian routine, number of calls to the mass matrix routine, number of calls to the implicit right-hand side
routine for finite-difference Jacobian approximation or Jacobian-vector product approximation, number of linear iter-
ations, number of linear convergence failures, number of calls to the preconditioner setup and solve routines, number
of calls to the Jacobian-vector setup and product routines, number of calls to the mass-matrix-vector setup and prod-
uct routines, and last return value from an ARKLS function. Note that, where the name of an output would otherwise
conflict with the name of an optional output from the main solver, a suffix LS (for Linear Solver) or MLS (for Mass
Linear Solver) has been added here (e.g. lenrwLS).
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Optional output Function name
Size of real and integer workspaces ARKStepGetLinWorkSpace()
No. of Jacobian evaluations ARKStepGetNumJacEvals()
No. of preconditioner evaluations ARKStepGetNumPrecEvals()
No. of preconditioner solves ARKStepGetNumPrecSolves()
No. of linear iterations ARKStepGetNumLinIters()
No. of linear convergence failures ARKStepGetNumLinConvFails()
No. of Jacobian-vector setup evaluations ARKStepGetNumJTSetupEvals()
No. of Jacobian-vector product evaluations ARKStepGetNumJtimesEvals()
No. of fi calls for finite diff. 𝐽 or 𝐽𝑣 evals. ARKStepGetNumLinRhsEvals()
Last return from a linear solver function ARKStepGetLastLinFlag()
Name of constant associated with a return flag ARKStepGetLinReturnFlagName()
Size of real and integer mass matrix solver workspaces ARKStepGetMassWorkSpace()
No. of mass matrix solver setups (incl. 𝑀 evals.) ARKStepGetNumMassSetups()
No. of mass matrix multiply setups ARKStepGetNumMassMultSetups()
No. of mass matrix multiplies ARKStepGetNumMassMult()
No. of mass matrix solves ARKStepGetNumMassSolves()
No. of mass matrix preconditioner evaluations ARKStepGetNumMassPrecEvals()
No. of mass matrix preconditioner solves ARKStepGetNumMassPrecSolves()
No. of mass matrix linear iterations ARKStepGetNumMassIters()
No. of mass matrix solver convergence failures ARKStepGetNumMassConvFails()
No. of mass-matrix-vector setup evaluations ARKStepGetNumMTSetups()
Last return from a mass matrix solver function ARKStepGetLastMassFlag()

int ARKStepGetLinWorkSpace(void* arkode_mem, long int* lenrwLS, long int* leniwLS)
Returns the real and integer workspace used by the ARKLS linear solver interface.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrwLS – the number of realtype values in the ARKLS workspace.

• leniwLS – the number of integer values in the ARKLS workspace.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

int ARKStepGetNumJacEvals(void* arkode_mem, long int* njevals)
Returns the number of Jacobian evaluations.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• njevals – number of Jacobian evaluations.

Return value:
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• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumPrecEvals(void* arkode_mem, long int* npevals)
Returns the total number of preconditioner evaluations, i.e. the number of calls made to psetup with jok =
SUNFALSE and that returned *jcurPtr = SUNTRUE.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• npevals – the current number of calls to psetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumPrecSolves(void* arkode_mem, long int* npsolves)
Returns the number of calls made to the preconditioner solve function, psolve.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• npsolves – the number of calls to psolve.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumLinIters(void* arkode_mem, long int* nliters)
Returns the cumulative number of linear iterations.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nliters – the current number of linear iterations.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.
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int ARKStepGetNumLinConvFails(void* arkode_mem, long int* nlcfails)
Returns the cumulative number of linear convergence failures.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nlcfails – the current number of linear convergence failures.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumJTSetupEvals(void* arkode_mem, long int* njtsetup)
Returns the cumulative number of calls made to the user-supplied Jacobian-vector setup function, jtsetup.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• njtsetup – the current number of calls to jtsetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumJtimesEvals(void* arkode_mem, long int* njvevals)
Returns the cumulative number of calls made to the Jacobian-vector product function, jtimes.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• njvevals – the current number of calls to jtimes.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumLinRhsEvals(void* arkode_mem, long int* nfevalsLS)
Returns the number of calls to the user-supplied implicit right-hand side function 𝑓 𝐼 for finite difference Jaco-
bian or Jacobian-vector product approximation.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nfevalsLS – the number of calls to the user implicit right-hand side function.
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Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The value nfevalsLS is incremented only if the default internal difference quotient function is used.

This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new linear
solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetLastLinFlag(void* arkode_mem, long int* lsflag)
Returns the last return value from an ARKLS routine.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lsflag – the value of the last return flag from an ARKLS function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: If the ARKLS setup function failed when using the SUNLINSOL_DENSE or SUNLINSOL_BAND
modules, then the value of lsflag is equal to the column index (numbered from one) at which a zero diagonal
element was encountered during the LU factorization of the (dense or banded) Jacobian matrix. For all other
failures, lsflag is negative.

Otherwise, if the ARKLS setup function failed (ARKStepEvolve() returned ARK_LSETUP_FAIL),
then lsflag will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC or
SUNLS_PACKAGE_FAIL_UNREC.

If the ARKLS solve function failed (ARKStepEvolve() returned ARK_LSOLVE_FAIL), then lsflag con-
tains the error return flag from the SUNLinearSolver object, which will be one of: SUNLS_MEM_NULL,
indicating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_NULL, indicating that
a matrix-free iterative solver was provided, but is missing a routine for the matrix-vector product ap-
proximation, SUNLS_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the 𝐽𝑣 function;
SUNLS_PSOLVE_NULL, indicating that an iterative linear solver was configured to use preconditioning, but
no preconditioner solve routine was provided, SUNLS_PSOLVE_FAIL_UNREC, indicating that the precondi-
tioner solve function failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt pro-
cedure (SPGMR and SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrix 𝑅 was found to be
singular during the QR solve phase (SPGMR and SPFGMR only); or SUNLS_PACKAGE_FAIL_UNREC, indi-
cating an unrecoverable failure in an external iterative linear solver package.

char *ARKStepGetLinReturnFlagName(long int lsflag)
Returns the name of the ARKLS constant corresponding to lsflag.

Arguments:

• lsflag – a return flag from an ARKLS function.

Return value: The return value is a string containing the name of the corresponding constant. If using the
SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then if 1 ≤ lsflag ≤ 𝑛 (LU factorization failed), this
routine returns “NONE”.

int ARKStepGetMassWorkSpace(void* arkode_mem, long int* lenrwMLS, long int* leniwMLS)
Returns the real and integer workspace used by the ARKLS mass matrix linear solver interface.
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Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrwMLS – the number of realtype values in the ARKLS mass solver workspace.

• leniwMLS – the number of integer values in the ARKLS mass solver workspace.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template mass ma-
trix allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

int ARKStepGetNumMassSetups(void* arkode_mem, long int* nmsetups)
Returns the number of calls made to the ARKLS mass matrix solver ‘setup’ routine; these include all calls to
the user-supplied mass-matrix constructor function.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmsetups – number of calls to the mass matrix solver setup routine.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassMultSetups(void* arkode_mem, long int* nmvsetups)
Returns the number of calls made to the ARKLS mass matrix ‘matvec setup’ (matrix-based solvers) routine.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmvsetups – number of calls to the mass matrix matrix-times-vector setup routine.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassMult(void* arkode_mem, long int* nmmults)
Returns the number of calls made to the ARKLS mass matrix ‘matvec’ routine (matrix-based solvers) or the
user-supplied mtimes routine (matris-free solvers).

Arguments:
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• arkode_mem – pointer to the ARKStep memory block.

• nmmults – number of calls to the mass matrix solver matrix-times-vector routine.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassSolves(void* arkode_mem, long int* nmsolves)
Returns the number of calls made to the ARKLS mass matrix solver ‘solve’ routine.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmsolves – number of calls to the mass matrix solver solve routine.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassPrecEvals(void* arkode_mem, long int* nmpevals)
Returns the total number of mass matrix preconditioner evaluations, i.e. the number of calls made to psetup.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmpevals – the current number of calls to psetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassPrecSolves(void* arkode_mem, long int* nmpsolves)
Returns the number of calls made to the mass matrix preconditioner solve function, psolve.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmpsolves – the number of calls to psolve.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL
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• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassIters(void* arkode_mem, long int* nmiters)
Returns the cumulative number of mass matrix solver iterations.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmiters – the current number of mass matrix solver linear iterations.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMassConvFails(void* arkode_mem, long int* nmcfails)
Returns the cumulative number of mass matrix solver convergence failures.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmcfails – the current number of mass matrix solver convergence failures.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumMTSetups(void* arkode_mem, long int* nmtsetup)
Returns the cumulative number of calls made to the user-supplied mass-matrix-vector product setup function,
mtsetup.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmtsetup – the current number of calls to mtsetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetLastMassFlag(void* arkode_mem, long int* mlsflag)
Returns the last return value from an ARKLS mass matrix interface routine.
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Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mlsflag – the value of the last return flag from an ARKLS mass matrix solver interface function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The values of msflag for each of the various solvers will match those described above for the function
ARKStepGetLastLSFlag().

4.5.10.6 General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters or write the cur-
rent Butcher table(s). While neither of these would typically be called during the course of solving an initial value
problem, they may be useful for users wishing to better understand ARKStep and/or specific Runge-Kutta methods.

Optional routine Function name
Output all ARKStep solver parameters ARKStepWriteParameters()
Output the current Butcher table(s) ARKStepWriteButcher()

int ARKStepWriteParameters(void* arkode_mem, FILE *fp)
Outputs all ARKStep solver parameters to the provided file pointer.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• fp – pointer to use for printing the solver parameters.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

int ARKStepWriteButcher(void* arkode_mem, FILE *fp)
Outputs the current Butcher table(s) to the provided file pointer.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• fp – pointer to use for printing the Butcher table(s).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL
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Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

If ARKStep is currently configured to run in purely explicit or purely implicit mode, this will output a single
Butcher table; if configured to run an ImEx method then both tables will be output.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all pro-
cesses would be identical.

4.5.11 ARKStep re-initialization function

To reinitialize the ARKStep module for the solution of a new problem, where a prior call to ARKStepCreate()
has been made, the user must call the function ARKStepReInit(). The new problem must have the same size as
the previous one. This routine retains the current settings for all ARKstep module options and performs the same
input checking and initializations that are done in ARKStepCreate(), but it performs no memory allocation as
it assumes that the existing internal memory is sufficient for the new problem. A call to this re-initialization routine
deletes the solution history that was stored internally during the previous integration. Following a successful call to
ARKStepReInit(), call ARKStepEvolve() again for the solution of the new problem.

The use of ARKStepReInit() requires that the number of Runge Kutta stages, denoted by s, be no larger for the
new problem than for the previous problem. This condition is automatically fulfilled if the method order q and the
problem type (explicit, implicit, ImEx) are left unchanged.

When using the ARKStep time-stepping module, if there are changes to the linear solver specifications, the user
should make the appropriate calls to either the linear solver objects themselves, or to the ARKLS interface routines,
as described in the section Linear solver interface functions. Otherwise, all solver inputs set previously remain in
effect.

One important use of the ARKStepReInit() function is in the treating of jump discontinuities in the RHS func-
tions. Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and
restart the integrator with a readjusted ODE model, using a call to ARKStepReInit(). To stop when the location
of the discontinuity is known, simply make that location a value of tout. To stop when the location of the disconti-
nuity is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not
incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int ARKStepReInit(void* arkode_mem, ARKRhsFn fe, ARKRhsFn fi, realtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the ARKStep time-stepper module.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• fe – the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-
hand side function in 𝑀 �̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓 𝐼(𝑡, 𝑦).

• fi – the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-
hand side function in 𝑀 �̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓 𝐼(𝑡, 𝑦).

• t0 – the initial value of 𝑡.

• y0 – the initial condition vector 𝑦(𝑡0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

4.5. ARKStep User-callable functions 117



User Documentation for ARKode, v4.7.0

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ARKStepReInit() also sends an error message to the error handler function.

4.5.12 ARKStep reset function

To reset the ARKStep module to a particular independent variable value and dependent variable vector for the con-
tinued solution of a problem, where a prior call to ARKStepCreate() has been made, the user must call the
function ARKStepReset(). Like ARKStepReInit() this routine retains the current settings for all ARKStep
module options and performs no memory allocations but, unlike ARKStepReInit(), this routine performs only
a subset of the input checking and initializations that are done in ARKStepCreate(). In particular this routine
retains all internal counter values and the step size/error history and does not reinitialize the linear and/or nonlin-
ear solver but it does indicate that a linear solver setup is necessary in the next step. Following a successful call to
ARKStepReset(), call ARKStepEvolve() again to continue solving the problem. By default the next call to
ARKStepEvolve() will use the step size computed by ARKStep prior to calling ARKStepReset(). To set a
different step size or have ARKStep estimate a new step size use ARKStepSetInitStep().

One important use of the ARKStepReset() function is in the treating of jump discontinuities in the RHS func-
tions. Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and
restart the integrator with a readjusted ODE model, using a call to ARKStepReset(). To stop when the location
of the discontinuity is known, simply make that location a value of tout. To stop when the location of the disconti-
nuity is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not
incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int ARKStepReset(void* arkode_mem, realtype tR, N_Vector yR)
Resets the current ARKStep time-stepper module state to the provided independent variable value and depen-
dent variable vector.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tR – the value of the independent variable 𝑡.

• yR – the value of the dependent variable vector 𝑦(𝑡𝑅).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: By default the next call to ARKStepEvolve() will use the step size computed by ARKStep prior
to calling ARKStepReset(). To set a different step size or have ARKStep estimate a new step size use
ARKStepSetInitStep().

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ARKStepReset() also sends an error message to the error handler function.
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4.5.13 ARKStep system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the ARKStep integrator may be “resized”
between integration steps, through calls to the ARKStepResize() function. This function modifies ARKStep’s
internal memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics.
It is assumed that the dynamical time scales before and after the vector resize will be comparable, so that all time-
stepping heuristics prior to calling ARKStepResize() remain valid after the call. If instead the dynamics should
be recomputed from scratch, the ARKStep memory structure should be deleted with a call to ARKStepFree(),
and recreated with a calls to ARKStepCreate().

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn()) is not supplied (i.e. is set to NULL), then all existing vectors internal to ARKStep will be
destroyed and re-cloned from the new input vector.

In the case that the dynamical time scale should be modified slightly from the previous time scale, an input hscale
is allowed, that will rescale the upcoming time step by the specified factor. If a value hscale ≤ 0 is specified, the
default of 1.0 will be used.

int ARKStepResize(void* arkode_mem, N_Vector ynew, realtype hscale, realtype t0, ARKVecResizeFn re-
size, void* resize_data)

Re-initializes ARKStep with a different state vector but with comparable dynamical time scale.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ynew – the newly-sized solution vector, holding the current dependent variable values 𝑦(𝑡0).

• hscale – the desired scaling factor for the dynamical time scale (i.e. the next step will be of size
h*hscale).

• t0 – the current value of the independent variable 𝑡0 (this must be consistent with ynew).

• resize – the user-supplied vector resize function (of type ARKVecResizeFn().

• resize_data – the user-supplied data structure to be passed to resize when modifying internal ARK-
Step vectors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, ARKStepResize() also sends an error message to the error handler function.

If inequality constraint checking is enabled a call to ARKStepResize() will disable constraint checking. A
call to ARKStepSetConstraints() is required to re-enable constraint checking.

4.5.13.1 Resizing the linear solver

When using any of the SUNDIALS-provided linear solver modules, the linear solver memory structures must also
be resized. At present, none of these include a solver-specific ‘resize’ function, so the linear solver memory must be
destroyed and re-allocated following each call to ARKStepResize(). Moreover, the existing ARKLS interface
should then be deleted and recreated by attaching the updated SUNLinearSolver (and possibly SUNMatrix)
object(s) through calls to ARKStepSetLinearSolver(), and ARKStepSetMassLinearSolver().
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If any user-supplied routines are provided to aid the linear solver (e.g. Jacobian construction, Jacobian-vector prod-
uct, mass-matrix-vector product, preconditioning), then the corresponding “set” routines must be called again follow-
ing the solver re-specification.

4.5.13.2 Resizing the absolute tolerance array

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call
to ARKStepResize(), so the new absolute tolerance vector should be re-set following each call
to ARKStepResize() through a new call to ARKStepSVtolerances() (and similarly to
ARKStepResVtolerance() if that was used for the original problem).

If scalar-valued tolerances or a tolerance function was specified through either ARKStepSStolerances() or
ARKStepWFtolerances(), then these will remain valid and no further action is necessary.

Note: For an example of ARKStepResize() usage, see the supplied serial C example problem,
ark_heat1D_adapt.c.

4.6 User-supplied functions

The user-supplied functions for ARKStep consist of:

• at least one function defining the ODE (required),

• a function that handles error and warning messages (optional),

• a function that provides the error weight vector (optional),

• a function that provides the residual weight vector (optional),

• a function that handles adaptive time step error control (optional),

• a function that handles explicit time step stability (optional),

• a function that updates the implicit stage prediction (optional),

• a function that defines the root-finding problem(s) to solve (optional),

• one or two functions that provide Jacobian-related information for the linear solver, if a Newton-based nonlin-
ear iteration is chosen (optional),

• one or two functions that define the preconditioner for use in any of the Krylov iterative algorithms, if a
Newton-based nonlinear iteration and iterative linear solver are chosen (optional), and

• if the problem involves a non-identity mass matrix 𝑀 ̸= 𝐼:

– one or two functions that provide mass-matrix-related information for the linear and mass matrix solvers
(required),

– one or two functions that define the mass matrix preconditioner for use in an iterative mass matrix solver
is chosen (optional), and

• a function that handles vector resizing operations, if the underlying vector structure supports resizing (as op-
posed to deletion/recreation), and if the user plans to call ARKStepResize() (optional).
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4.6.1 ODE right-hand side

The user must supply at least one function of type ARKRhsFn to specify the explicit and/or implicit portions of the
ODE system:

typedef int (*ARKRhsFn)(realtype t, N_Vector y, N_Vector ydot, void* user_data)
These functions compute the ODE right-hand side for a given value of the independent variable 𝑡 and state
vector 𝑦.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• ydot – the output vector that forms a portion of the ODE RHS 𝑓𝐸(𝑡, 𝑦) + 𝑓 𝐼(𝑡, 𝑦).

• user_data – the user_data pointer that was passed to ARKStepSetUserData().

Return value: An ARKRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case ARKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARK_RHSFUNC_FAIL is returned).

Notes: Allocation of memory for ydot is handled within the ARKStep module.

The vector ydot may be uninitialized on input; it is the user’s responsibility to fill this entire vector with mean-
ingful values.

A recoverable failure error return from the ARKRhsFn is typically used to flag a value of the dependent vari-
able 𝑦 that is “illegal” in some way (e.g., negative where only a non-negative value is physically meaningful).
If such a return is made, ARKStep will attempt to recover (possibly repeating the nonlinear iteration, or reduc-
ing the step size) in order to avoid this recoverable error return. There are some situations in which recovery is
not possible even if the right-hand side function returns a recoverable error flag. One is when this occurs at the
very first call to the ARKRhsFn (in which case ARKStep returns ARK_FIRST_RHSFUNC_ERR). Another is
when a recoverable error is reported by ARKRhsFn after the integrator completes a successful stage, in which
case ARKStep returns ARK_UNREC_RHSFUNC_ERR).

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
ARKStepSetErrFile()), the user may provide a function of type ARKErrHandlerFn to process any such
messages.

typedef void (*ARKErrHandlerFn)(int error_code, const char* module, const char* function, char* msg,
void* user_data)

This function processes error and warning messages from ARKStep and its sub-modules.

Arguments:

• error_code – the error code.

• module – the name of the ARKStep module reporting the error.

• function – the name of the function in which the error occurred.

• msg – the error message.

• user_data – a pointer to user data, the same as the eh_data parameter that was passed to
ARKStepSetErrHandlerFn().
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Return value: An ARKErrHandlerFn function has no return value.

Notes: error_code is negative for errors and positive (ARK_WARNING) for warnings. If a function that returns
a pointer to memory encounters an error, it sets error_code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of
type ARKEwtFn to compute a vector ewt containing the weights in the WRMS norm ‖𝑣‖𝑊𝑅𝑀𝑆 =(︁

1
𝑛

∑︀𝑛
𝑖=1 (𝑒𝑤𝑡𝑖 𝑣𝑖)

2
)︁1/2

. These weights will be used in place of those defined in the section Error norms.

typedef int (*ARKEwtFn)(N_Vector y, N_Vector ewt, void* user_data)
This function computes the WRMS error weights for the vector 𝑦.

Arguments:

• y – the dependent variable vector at which the weight vector is to be computed.

• ewt – the output vector containing the error weights.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: An ARKEwtFn function must return 0 if it successfully set the error weights, and -1 otherwise.

Notes: Allocation of memory for ewt is handled within ARKStep.

The error weight vector must have all components positive. It is the user’s responsibility to perform this test
and return -1 if it is not satisfied.

4.6.4 Residual weight function

As an alternative to providing the scalar or vector absolute residual tolerances (when the IVP units differ from the
solution units), the user may provide a function of type ARKRwtFn to compute a vector rwt containing the weights

in the WRMS norm ‖𝑣‖𝑊𝑅𝑀𝑆 =
(︁

1
𝑛

∑︀𝑛
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2
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. These weights will be used in place of those defined in
the section Error norms.

typedef int (*ARKRwtFn)(N_Vector y, N_Vector rwt, void* user_data)
This function computes the WRMS residual weights for the vector 𝑦.

Arguments:

• y – the dependent variable vector at which the weight vector is to be computed.

• rwt – the output vector containing the residual weights.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: An ARKRwtFn function must return 0 if it successfully set the residual weights, and -1 other-
wise.

Notes: Allocation of memory for rwt is handled within ARKStep.

The residual weight vector must have all components positive. It is the user’s responsibility to perform this test
and return -1 if it is not satisfied.
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4.6.5 Time step adaptivity function

As an alternative to using one of the built-in time step adaptivity methods for controlling solution error, the user may
provide a function of type ARKAdaptFn to compute a target step size ℎ for the next integration step. These steps
should be chosen as the maximum value such that the error estimates remain below 1.

typedef int (*ARKAdaptFn)(N_Vector y, realtype t, realtype h1, realtype h2, realtype h3, realtype e1, real-
type e2, realtype e3, int q, int p, realtype* hnew, void* user_data)

This function implements a time step adaptivity algorithm that chooses ℎ satisfying the error tolerances.

Arguments:

• y – the current value of the dependent variable vector.

• t – the current value of the independent variable.

• h1 – the current step size, 𝑡𝑛 − 𝑡𝑛−1.

• h2 – the previous step size, 𝑡𝑛−1 − 𝑡𝑛−2.

• h3 – the step size 𝑡𝑛−2 − 𝑡𝑛−3.

• e1 – the error estimate from the current step, 𝑛.

• e2 – the error estimate from the previous step, 𝑛− 1.

• e3 – the error estimate from the step 𝑛− 2.

• q – the global order of accuracy for the method.

• p – the global order of accuracy for the embedded method.

• hnew – the output value of the next step size.

• user_data – a pointer to user data, the same as the h_data parameter that was passed to
ARKStepSetAdaptivityFn().

Return value: An ARKAdaptFn function should return 0 if it successfully set the next step size, and a non-
zero value otherwise.

4.6.6 Explicit stability function

A user may supply a function to predict the maximum stable step size for the explicit portion of the ImEx system,
𝑓𝐸(𝑡, 𝑦). While the accuracy-based time step adaptivity algorithms may be sufficient for retaining a stable solution
to the ODE system, these may be inefficient if 𝑓𝐸(𝑡, 𝑦) contains moderately stiff terms. In this scenario, a user may
provide a function of type ARKExpStabFn to provide this stability information to ARKStep. This function must
set the scalar step size satisfying the stability restriction for the upcoming time step. This value will subsequently be
bounded by the user-supplied values for the minimum and maximum allowed time step, and the accuracy-based time
step.

typedef int (*ARKExpStabFn)(N_Vector y, realtype t, realtype* hstab, void* user_data)
This function predicts the maximum stable step size for the explicit portions of the ImEx ODE system.

Arguments:

• y – the current value of the dependent variable vector.

• t – the current value of the independent variable.

• hstab – the output value with the absolute value of the maximum stable step size.

• user_data – a pointer to user data, the same as the estab_data parameter that was passed to
ARKStepSetStabilityFn().
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Return value: An ARKExpStabFn function should return 0 if it successfully set the upcoming stable step size,
and a non-zero value otherwise.

Notes: If this function is not supplied, or if it returns hstab ≤ 0.0, then ARKStep will assume that there is no
explicit stability restriction on the time step size.

4.6.7 Implicit stage prediction function

A user may supply a function to update the prediction for each implicit stage solution. If supplied, this routine will
be called after any existing ARKStep predictor algorithm completes, so that the predictor may be modified by the
user as desired. In this scenario, a user may provide a function of type ARKStagePredictFn to provide this im-
plicit predictor to ARKStep. This function takes as input the already-predicted implicit stage solution and the corre-
sponding ‘time’ for that prediction; it then updates the prediction vector as desired. If the user-supplied routine will
construct a full prediction (and thus the ARKStep prediction is irrelevant), it is recommended that the user not call
ARKStepSetPredictorMethod(), thereby leaving the default trivial predictor in place.

typedef int (*ARKStagePredictFn)(realtype t, N_Vector zpred, void* user_data)
This function updates the prediction for the implicit stage solution.

Arguments:

• t – the current value of the independent variable.

• zpred – the ARKStep-predicted stage solution on input, and the user-modified predicted stage solu-
tion on output.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: An ARKStagePredictFn function should return 0 if it successfully set the upcoming stable step
size, and a non-zero value otherwise.

Notes: This may be useful if there are bound constraints on the solution, and these should be enforced prior to
beginning the nonlinear or linear implicit solver algorithm.

This routine is incompatible with the “minimum correction predictor” – option 5 to the routine
ARKStepSetPredictorMethod(). If both are selected, then ARKStep will override its built-in implicit
predictor routine to instead use option 0 (trivial predictor).

4.6.8 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a function of
type ARKRootFn.

typedef int (*ARKRootFn)(realtype t, N_Vector y, realtype* gout, void* user_data)
This function implements a vector-valued function 𝑔(𝑡, 𝑦) such that the roots of the nrtfn components 𝑔𝑖(𝑡, 𝑦)
are sought.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• gout – the output array, of length nrtfn, with components 𝑔𝑖(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().
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Return value: An ARKRootFn function should return 0 if successful or a non-zero value if an error occurred
(in which case the integration is halted and ARKStep returns ARK_RTFUNC_FAIL).

Notes: Allocation of memory for gout is handled within ARKStep.

4.6.9 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e., a non-NULL SUNMatrix object was supplied to
ARKStepSetLinearSolver() in section A skeleton of the user’s main program), the user may provide a func-
tion of type ARKLsJacFn to provide the Jacobian approximation or ARKLsLinSysFn to provide an approxima-
tion of the linear system 𝒜(⊔, †) = 𝑀(𝑡)− 𝛾𝐽(𝑡, 𝑦).

typedef int (*ARKLsJacFn)(realtype t, N_Vector y, N_Vector fy, SUNMatrix Jac, void* user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)

This function computes the Jacobian matrix 𝐽(𝑡, 𝑦) = 𝜕𝑓𝐼

𝜕𝑦 (𝑡, 𝑦) (or an approximation to it).

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector, namely the predicted value of 𝑦(𝑡).

• fy – the current value of the vector 𝑓 𝐼(𝑡, 𝑦).

• Jac – the output Jacobian matrix.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsJacFn as temporary storage or work space.

Return value: An ARKLsJacFn function should return 0 if successful, a positive value if a recover-
able error occurred (in which case ARKStep will attempt to correct, while ARKLS sets last_flag to
ARKLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the inte-
gration is halted, ARKStepEvolve() returns ARK_LSETUP_FAIL and ARKLS sets last_flag to
ARKLS_JACFUNC_UNRECVR).

Notes: Information regarding the structure of the specific SUNMatrix structure (e.g.~number of rows, up-
per/lower bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix
interface functions (see the section Matrix Data Structures for details).

When using a linear solver of type SUNLINEARSOLVER_DIRECT, prior to calling the user-supplied Jaco-
bian function, the Jacobian matrix 𝐽(𝑡, 𝑦) is zeroed out, so only nonzero elements need to be loaded into Jac.

With the default nonlinear solver (the native SUNDIALS Netwon method), each call to the user’s
ARKLsJacFn() function is preceded by a call to the implicit ARKRhsFn() user function with the same
(𝑡, 𝑦) arguments. Thus, the Jacobian function can use any auxiliary data that is computed and saved during the
evaluation of the implicit ODE right-hand side. In the case of a user-supplied or external nonlinear solver, this
is also true if the nonlinear system function is evaluated prior to calling the linear solver setup function (see
Functions provided by SUNDIALS integrators for more information).

If the user’s ARKLsJacFn function uses difference quotient approximations, then it may need to ac-
cess quantities not in the argument list. These include the current step size, the error weights, etc. To ob-
tain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then
use the ARKStepGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

dense:
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A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an approximation to the
Jacobian matrix 𝐽(𝑡, 𝑦) at the point (𝑡, 𝑦). The accessor macros SM_ELEMENT_D and SM_COLUMN_D allow
the user to read and write dense matrix elements without making explicit references to the underlying repre-
sentation of the SUNMATRIX_DENSE type. SM_ELEMENT_D(J, i, j) references the (i,j)-th ele-
ment of the dense matrix J (for i, j between 0 and N-1). This macro is meant for small problems for which
efficiency of access is not a major concern. Thus, in terms of the indices 𝑚 and 𝑛 ranging from 1 to N, the
Jacobian element 𝐽𝑚,𝑛 can be set using the statement SM_ELEMENT_D(J, m-1, n-1) = 𝐽𝑚,𝑛. Alter-
natively, SM_COLUMN_D(J, j) returns a pointer to the first element of the j-th column of J (for j ranging
from 0 to N-1), and the elements of the j-th column can then be accessed using ordinary array indexing. Con-
sequently, 𝐽𝑚,𝑛 can be loaded using the statements col_n = SM_COLUMN_D(J, n-1); col_n[m-1]
= 𝐽𝑚,𝑛. For large problems, it is more efficient to use SM_COLUMN_D than to use SM_ELEMENT_D. Note
that both of these macros number rows and columns starting from 0. The SUNMATRIX_DENSE type and
accessor macros are documented in section The SUNMATRIX_DENSE Module.

band:

A user-supplied banded Jacobian function must load the band matrix Jac with the elements of the
Jacobian 𝐽(𝑡, 𝑦) at the point (𝑡, 𝑦). The accessor macros SM_ELEMENT_B, SM_COLUMN_B, and
SM_COLUMN_ELEMENT_B allow the user to read and write band matrix elements without making specific
references to the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT_B(J, i, j)
references the (i,j)-th element of the band matrix J, counting from 0. This macro is meant for use in small
problems for which efficiency of access is not a major concern. Thus, in terms of the indices 𝑚 and 𝑛 rang-
ing from 1 to N with (𝑚,𝑛) within the band defined by mupper and mlower, the Jacobian element 𝐽𝑚,𝑛 can
be loaded using the statement SM_ELEMENT_B(J, m-1, n-1) = 𝐽𝑚,𝑛. The elements within the band
are those with -mupper ≤ 𝑚 − 𝑛 ≤ mlower. Alternatively, SM_COLUMN_B(J, j) returns a pointer to
the diagonal element of the j-th column of J, and if we assign this address to realtype *col_j, then the
i-th element of the j-th column is given by SM_COLUMN_ELEMENT_B(col_j, i, j), counting from
0. Thus, for (𝑚,𝑛) within the band, 𝐽𝑚,𝑛 can be loaded by setting col_n = SM_COLUMN_B(J, n-1);
SM_COLUMN_ELEMENT_B(col_n, m-1, n-1) = 𝐽𝑚,𝑛 . The elements of the j-th column can also
be accessed via ordinary array indexing, but this approach requires knowledge of the underlying storage for a
band matrix of type SUNMATRIX_BAND. The array col_n can be indexed from -mupper to mlower. For
large problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_ELEMENT_B than to use the
SM_ELEMENT_B macro. As in the dense case, these macros all number rows and columns starting from 0.
The SUNMATRIX_BAND type and accessor macros are documented in section The SUNMATRIX_BAND
Module.

sparse:

A user-supplied sparse Jacobian function must load the compressed-sparse-column (CSC) or compressed-
sparse-row (CSR) matrix Jac with an approximation to the Jacobian matrix 𝐽(𝑡, 𝑦) at the point (𝑡, 𝑦). Stor-
age for Jac already exists on entry to this function, although the user should ensure that sufficient space is
allocated in Jac to hold the nonzero values to be set; if the existing space is insufficient the user may reallo-
cate the data and index arrays as needed. The amount of allocated space in a SUNMATRIX_SPARSE object
may be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ(). The SUNMA-
TRIX_SPARSE type is further documented in the section The SUNMATRIX_SPARSE Module.

typedef int (*ARKLsLinSysFn)(realtype t, N_Vector y, N_Vector fy, SUNMatrix A, SUNMatrix M,
booleantype jok, booleantype *jcur, realtype gamma, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)

This function computes the linear system matrix 𝒜(𝑡, 𝑦) = 𝑀(𝑡)− 𝛾𝐽(𝑡, 𝑦) (or an approximation to it).

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector, namely the predicted value of 𝑦(𝑡).

• fy – the current value of the vector 𝑓 𝐼(𝑡, 𝑦).
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• A – the output linear system matrix.

• M – the current mass matrix (this input is NULL if 𝑀 = 𝐼).

• jok – is an input flag indicating whether the Jacobian-related data needs to be updated. The jok ar-
gument provides for the reuse of Jacobian data. When jok = SUNFALSE, the Jacobian-related data
should be recomputed from scratch. When jok = SUNTRUE the Jacobian data, if saved from the
previous call to this function, can be reused (with the current value of gamma). A call with jok =
SUNTRUE can only occur after a call with jok = SUNFALSE.

• jcur – is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set
to SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

• gamma – the scalar 𝛾 appearing in the Newton matrix given by 𝒜 = 𝑀(𝑡)− 𝛾𝐽(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsLinSysFn as temporary storage or work space.

Return value: An ARKLsLinSysFn function should return 0 if successful, a positive value if a recov-
erable error occurred (in which case ARKStep will attempt to correct, while ARKLS sets last_flag
to ARKLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the in-
tegration is halted, ARKStepEvolve() returns ARK_LSETUP_FAIL and ARKLS sets last_flag to
ARKLS_JACFUNC_UNRECVR).

4.6.10 Jacobian-vector product (matrix-free linear solvers)

When using a matrix-free linear solver module for the implicit stage solves (i.e., a NULL-valued SUNMATRIX ar-
gument was supplied to ARKStepSetLinearSolver() in the section A skeleton of the user’s main program),
the user may provide a function of type ARKLsJacTimesVecFn in the following form, to compute matrix-vector
products 𝐽𝑣. If such a function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*ARKLsJacTimesVecFn)(N_Vector v, N_Vector Jv, realtype t, N_Vector y, N_Vector fy,
void* user_data, N_Vector tmp)

This function computes the product 𝐽𝑣 where 𝐽(𝑡, 𝑦) ≈ 𝜕𝑓𝐼

𝜕𝑦 (𝑡, 𝑦).

Arguments:

• v – the vector to multiply.

• Jv – the output vector computed.

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector 𝑓 𝐼(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

• tmp – pointer to memory allocated to a variable of type N_Vector which can be used as temporary
storage or work space.

Return value: The value to be returned by the Jacobian-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the generic Krylov solver, in which case the
integration is halted.

Notes: If the user’s ARKLsJacTimesVecFn function uses difference quotient approximations, it may need
to access quantities not in the argument list. These include the current step size, the error weights, etc. To
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obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then
use the ARKStepGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

4.6.11 Jacobian-vector product setup (matrix-free linear solvers)

If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type ARKLsJacTimesSetupFn, defined as follows:

typedef int (*ARKLsJacTimesSetupFn)(realtype t, N_Vector y, N_Vector fy, void* user_data)
This function preprocesses and/or evaluates any Jacobian-related data needed by the Jacobian-times-vector
routine.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector 𝑓 𝐼(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: The value to be returned by the Jacobian-vector setup function should be 0 if successful, pos-
itive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable error (in
which case the integration is halted).

Notes: Each call to the Jacobian-vector setup function is preceded by a call to the implicit ARKRhsFn user
function with the same (𝑡, 𝑦) arguments. Thus, the setup function can use any auxiliary data that is computed
and saved during the evaluation of the implicit ODE right-hand side.

If the user’s ARKLsJacTimesSetupFn function uses difference quotient approximations, it may need
to access quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then
use the ARKStepGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

4.6.12 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLinSol solver module, then the user must provide a func-
tion of type ARKLsPrecSolveFn to solve the linear system 𝑃𝑧 = 𝑟, where 𝑃 corresponds to either a left or right
preconditioning matrix. Here 𝑃 should approximate (at least crudely) the Newton matrix 𝒜(𝑡, 𝑦) = 𝑀(𝑡)− 𝛾𝐽(𝑡, 𝑦),
where 𝑀(𝑡) is the mass matrix and 𝐽(𝑡, 𝑦) = 𝜕𝑓𝐼

𝜕𝑦 (𝑡, 𝑦) If preconditioning is done on both sides, the product of the
two preconditioner matrices should approximate 𝒜.

typedef int (*ARKLsPrecSolveFn)(realtype t, N_Vector y, N_Vector fy, N_Vector r, N_Vector z, real-
type gamma, realtype delta, int lr, void* user_data)

This function solves the preconditioner system 𝑃𝑧 = 𝑟.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector 𝑓 𝐼(𝑡, 𝑦).

• r – the right-hand side vector of the linear system.
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• z – the computed output solution vector.

• gamma – the scalar 𝛾 appearing in the Newton matrix given by 𝒜 = 𝑀(𝑡)− 𝛾𝐽(𝑡, 𝑦).

• delta – an input tolerance to be used if an iterative method is employed in the solution. In that case,
the residual vector 𝑅𝑒𝑠 = 𝑟 − 𝑃𝑧 of the system should be made to be less than delta in the weighted

𝑙2 norm, i.e.
(︁∑︀𝑛

𝑖=1 (𝑅𝑒𝑠𝑖 * 𝑒𝑤𝑡𝑖)2
)︁1/2

< 𝛿, where 𝛿 = delta. To obtain the N_Vector ewt, call
ARKStepGetErrWeights().

• lr – an input flag indicating whether the preconditioner solve is to use the left preconditioner (lr = 1)
or the right preconditioner (lr = 2).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

4.6.13 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner routine requires that any data be preprocessed or evaluated, then these actions need to
occur within a user-supplied function of type ARKLsPrecSetupFn.

typedef int (*ARKLsPrecSetupFn)(realtype t, N_Vector y, N_Vector fy, booleantype jok, boolean-
type* jcurPtr, realtype gamma, void* user_data)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector 𝑓 𝐼(𝑡, 𝑦).

• jok – is an input flag indicating whether the Jacobian-related data needs to be updated. The jok ar-
gument provides for the reuse of Jacobian data in the preconditioner solve function. When jok =
SUNFALSE, the Jacobian-related data should be recomputed from scratch. When jok = SUNTRUE
the Jacobian data, if saved from the previous call to this function, can be reused (with the current
value of gamma). A call with jok = SUNTRUE can only occur after a call with jok = SUNFALSE.

• jcurPtr – is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or
set to SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

• gamma – the scalar 𝛾 appearing in the Newton matrix given by 𝒜 = 𝑀(𝑡)− 𝛾𝐽(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: The value to be returned by the preconditioner setup function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

Notes: The operations performed by this function might include forming a crude approximate Jacobian, and
performing an LU factorization of the resulting approximation to 𝒜 = 𝑀(𝑡)− 𝛾𝐽(𝑡, 𝑦).

With the default nonlinear solver (the native SUNDIALS Netwon method), each call to the preconditioner
setup function is preceded by a call to the implicit ARKRhsFn user function with the same (𝑡, 𝑦) arguments.
Thus, the preconditioner setup function can use any auxiliary data that is computed and saved during the eval-
uation of the implicit ODE right-hand side. In the case of a user-supplied or external nonlinear solver, this
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is also true if the nonlinear system function is evaluated prior to calling the linear solver setup function (see
Functions provided by SUNDIALS integrators for more information).

This function is not called in advance of every call to the preconditioner solve function, but rather is called
only as often as needed to achieve convergence in the Newton iteration.

If the user’s ARKLsPrecSetupFn function uses difference quotient approximations, it may need to ac-
cess quantities not in the call list. These include the current step size, the error weights, etc. To obtain
these, the user will need to add a pointer to the ark_mem structure to their user_data, and then use
the ARKStepGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

4.6.14 Mass matrix construction (matrix-based linear solvers)

If a matrix-based mass-matrix linear solver is used (i.e., a non-NULL SUNMATRIX was supplied to
ARKStepSetMassLinearSolver() in the section A skeleton of the user’s main program), the user must pro-
vide a function of type ARKLsMassFn to provide the mass matrix approximation.

typedef int (*ARKLsMassFn)(realtype t, SUNMatrix M, void* user_data, N_Vector tmp1, N_Vector tmp2,
N_Vector tmp3)

This function computes the mass matrix 𝑀(𝑡) (or an approximation to it).

Arguments:

• t – the current value of the independent variable.

• M – the output mass matrix.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsMassFn as temporary storage or work space.

Return value: An ARKLsMassFn function should return 0 if successful, or a negative value if it failed unre-
coverably (in which case the integration is halted, ARKStepEvolve() returns ARK_MASSSETUP_FAIL and
ARKLS sets last_flag to ARKLS_MASSFUNC_UNRECVR).

Notes: Information regarding the structure of the specific SUNMatrix structure (e.g.~number of rows, up-
per/lower bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix
interface functions (see the section Matrix Data Structures for details).

Prior to calling the user-supplied mass matrix function, the mass matrix 𝑀(𝑡) is zeroed out, so only nonzero
elements need to be loaded into M.

dense:

A user-supplied dense mass matrix function must load the N by N dense matrix M with an approximation to
the mass matrix 𝑀(𝑡). As discussed above in section Jacobian construction (matrix-based linear solvers),
the accessor macros SM_ELEMENT_D and SM_COLUMN_D allow the user to read and write dense matrix ele-
ments without making explicit references to the underlying representation of the SUNMATRIX_DENSE type.
Similarly, the SUNMATRIX_DENSE type and accessor macros SM_ELEMENT_D and SM_COLUMN_D are
documented in the section The SUNMATRIX_DENSE Module.

band:

A user-supplied banded mass matrix function must load the band matrix M with the elements of the mass ma-
trix 𝑀(𝑡). As discussed above in section Jacobian construction (matrix-based linear solvers), the accessor
macros SM_ELEMENT_B, SM_COLUMN_B, and SM_COLUMN_ELEMENT_B allow the user to read and write
band matrix elements without making specific references to the underlying representation of the SUNMA-
TRIX_BAND type. Similarly, the SUNMATRIX_BAND type and the accessor macros SM_ELEMENT_B,
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SM_COLUMN_B, and SM_COLUMN_ELEMENT_B are documented in the section The SUNMATRIX_BAND
Module.

sparse:

A user-supplied sparse mass matrix function must load the compressed-sparse-column (CSR) or compressed-
sparse-row (CSR) matrix M with an approximation to the mass matrix 𝑀(𝑡). Storage for M already ex-
ists on entry to this function, although the user should ensure that sufficient space is allocated in M to
hold the nonzero values to be set; if the existing space is insufficient the user may reallocate the data
and row index arrays as needed. The type of M is SUNMATRIX_SPARSE, and the amount of allocated
space in a SUNMATRIX_SPARSE object may be accessed using the macro SM_NNZ_S or the routine
SUNSparseMatrix_NNZ(). The SUNMATRIX_SPARSE type is further documented in the section The
SUNMATRIX_SPARSE Module.

4.6.15 Mass matrix-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used for mass-matrix linear systems (i.e., a NULL-valued SUNMATRIX ar-
gument was supplied to ARKStepSetMassLinearSolver() in the section A skeleton of the user’s main pro-
gram), the user must provide a function of type ARKLsMassTimesVecFn in the following form, to compute
matrix-vector products 𝑀(𝑡) 𝑣.

typedef int (*ARKLsMassTimesVecFn)(N_Vector v, N_Vector Mv, realtype t, void* mtimes_data)
This function computes the product 𝑀(𝑡) 𝑣 (or an approximation to it).

Arguments:

• v – the vector to multiply.

• Mv – the output vector computed.

• t – the current value of the independent variable.

• mtimes_data – a pointer to user data, the same as the mtimes_data parameter that was passed to
ARKStepSetMassTimes().

Return value: The value to be returned by the mass-matrix-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the generic Krylov solver, in which case the
integration is halted.

4.6.16 Mass matrix-vector product setup (matrix-free linear solvers)

If the user’s mass-matrix-times-vector routine requires that any mass matrix-related data be preprocessed or evalu-
ated, then this needs to be done in a user-supplied function of type ARKLsMassTimesSetupFn, defined as fol-
lows:

typedef int (*ARKLsMassTimesSetupFn)(realtype t, void* mtimes_data)
This function preprocesses and/or evaluates any mass-matrix-related data needed by the mass-matrix-times-
vector routine.

Arguments:

• t – the current value of the independent variable.

• mtimes_data – a pointer to user data, the same as the mtimes_data parameter that was passed to
ARKStepSetMassTimes().

Return value: The value to be returned by the mass-matrix-vector setup function should be 0 if successful.
Any other return value will result in an unrecoverable error of the ARKLS mass matrix solver interface, in
which case the integration is halted.
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4.6.17 Mass matrix preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLINEAR solver module for mass matrix linear systems,
then the user must provide a function of type ARKLsMassPrecSolveFn to solve the linear system 𝑃𝑧 = 𝑟, where
𝑃 may be either a left or right preconditioning matrix. Here 𝑃 should approximate (at least crudely) the mass matrix
𝑀(𝑡). If preconditioning is done on both sides, the product of the two preconditioner matrices should approximate
𝑀(𝑡).

typedef int (*ARKLsMassPrecSolveFn)(realtype t, N_Vector r, N_Vector z, realtype delta, int lr,
void* user_data)

This function solves the preconditioner system 𝑃𝑧 = 𝑟.

Arguments:

• t – the current value of the independent variable.

• r – the right-hand side vector of the linear system.

• z – the computed output solution vector.

• delta – an input tolerance to be used if an iterative method is employed in the solution. In that case,
the residual vector 𝑅𝑒𝑠 = 𝑟 − 𝑃𝑧 of the system should be made to be less than delta in the weighted

𝑙2 norm, i.e.
(︁∑︀𝑛

𝑖=1 (𝑅𝑒𝑠𝑖 * 𝑒𝑤𝑡𝑖)2
)︁1/2

< 𝛿, where 𝛿 = delta. To obtain the N_Vector ewt, call
ARKStepGetErrWeights().

• lr – an input flag indicating whether the preconditioner solve is to use the left preconditioner (lr = 1)
or the right preconditioner (lr = 2).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

4.6.18 Mass matrix preconditioner setup (iterative linear solvers)

If the user’s mass matrix preconditioner above requires that any problem data be preprocessed or evaluated, then
these actions need to occur within a user-supplied function of type ARKLsMassPrecSetupFn.

typedef int (*ARKLsMassPrecSetupFn)(realtype t, void* user_data)
This function preprocesses and/or evaluates mass-matrix-related data needed by the preconditioner.

Arguments:

• t – the current value of the independent variable.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: The value to be returned by the mass matrix preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable error (in which case
the step will be retried), or negative for an unrecoverable error (in which case the integration is halted).

Notes: The operations performed by this function might include forming a mass matrix and performing an
incomplete factorization of the result. Although such operations would typically be performed only once at the
beginning of a simulation, these may be required if the mass matrix can change as a function of time.

If both this function and a ARKLsMassTimesSetupFn are supplied, all calls to this function will be pre-
ceded by a call to the ARKLsMassTimesSetupFn, so any setup performed there may be reused.
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4.6.19 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the ARKStep integrator may be “resized” between integration steps, through
calls to the ARKStepResize() function. Typically, when performing adaptive simulations the solution is stored in
a customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory.
In these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDI-
ALS and their problem-specific data structure. If this vector kernel includes a function of type ARKVecResizeFn
to resize a given vector implementation, then this function may be supplied to ARKStepResize() so that all in-
ternal ARKStep vectors may be resized, instead of deleting and re-creating them at each call. This resize function
should have the following form:

typedef int (*ARKVecResizeFn)(N_Vector y, N_Vector ytemplate, void* user_data)
This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Arguments:

• y – the vector to resize.

• ytemplate – a vector of the desired size.

• user_data – a pointer to user data, the same as the resize_data parameter that was passed to
ARKStepResize().

Return value: An ARKVecResizeFn function should return 0 if it successfully resizes the vector y, and a non-
zero value otherwise.

Notes: If this function is not supplied, then ARKStep will instead destroy the vector y and clone a new vector
y off of ytemplate.

4.7 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, ARKode
provides two internal preconditioner modules that may be used by ARKStep: a banded preconditioner for serial and
threaded problems (ARKBANDPRE) and a band-block-diagonal preconditioner for parallel problems (ARKBBD-
PRE).

4.7.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with iterative SUNLINSOL modules through the
ARKLS linear solver interface, in a serial or threaded setting. It requires that the problem be set up using either the
NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS module, due to data access patterns. It
also currently requires that the problem involve an identity mass matrix, i.e. 𝑀 = 𝐼 .

This module uses difference quotients of the ODE right-hand side function 𝑓 𝐼 to generate a band matrix of band-
width ml + mu + 1, where the number of super-diagonals (mu, the upper half-bandwidth) and sub-diagonals (ml,
the lower half-bandwidth) are specified by the user. This band matrix is used to to form a preconditioner the Krylov
linear solver. Although this matrix is intended to approximate the Jacobian 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 , it may be a very crude ap-
proximation, since the true Jacobian may not be banded, or its true bandwidth may be larger than ml + mu + 1.
However, as long as the banded approximation generated for the preconditioner is sufficiently accurate, it may speed
convergence of the Krylov iteration.
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4.7.1.1 ARKBANDPRE usage

In order to use the ARKBANDPRE module, the user need not define any additional functions. In addition to the
header files required for the integration of the ODE problem (see the section Access to library and header files), to
use the ARKBANDPRE module, the user’s program must include the header file arkode_bandpre.h which de-
clares the needed function prototypes. The following is a summary of the usage of this module. Steps that are un-
changed from the skeleton program presented in A skeleton of the user’s main program are italicized.

1. Initialize multi-threaded environment (if appropriate)

2. Set problem dimensions

3. Set vector of initial values

4. Create ARKStep object

5. Specify integration tolerances

6. Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC_LEFT or
PREC_RIGHT) to use.

7. Set linear solver optional inputs

8. Attach linear solver module

9. Initialize the ARKBANDPRE preconditioner module

Specify the upper and lower half-bandwidths (mu and ml, respectively) and call

ier = ARKBandPrecInit(arkode_mem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.

10. Set optional inputs

Note that the user should not call ARKStepSetPreconditioner() as it will overwrite the preconditioner
setup and solve functions.

11. Create nonlinear solver object

12. Attach nonlinear solver module

13. Set nonlinear solver optional inputs

14. Specify rootfinding problem

15. Advance solution in time

16. Get optional outputs

Additional optional outputs associated with ARKBANDPRE are available by way of the two routines de-
scribed below, ARKBandPrecGetWorkSpace() and ARKBandPrecGetNumRhsEvals().

17. Deallocate memory for solution vector

18. Free solver memory

19. Free linear solver memory

4.7.1.2 ARKBANDPRE user-callable functions

The ARKBANDPRE preconditioner module is initialized and attached by calling the following function:
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int ARKBandPrecInit(void* arkode_mem, sunindextype N, sunindextype mu, sunindextype ml)
Initializes the ARKBANDPRE preconditioner and allocates required (internal) memory for it.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• N – problem dimension (size of ODE system).

• mu – upper half-bandwidth of the Jacobian approximation.

• ml – lower half-bandwidth of the Jacobian approximation.

Return value:

• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_ILL_INPUT if an input has an illegal value

• ARKLS_MEM_FAIL if a memory allocation request failed

Notes: The banded approximate Jacobian will have nonzero elements only in locations (𝑖, 𝑗) with ml ≤ 𝑗−𝑖 ≤
mu.

The following two optional output functions are available for use with the ARKBANDPRE module:

int ARKBandPrecGetWorkSpace(void* arkode_mem, long int* lenrwLS, long int* leniwLS)
Returns the sizes of the ARKBANDPRE real and integer workspaces.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrwLS – the number of realtype values in the ARKBANDPRE workspace.

• leniwLS – the number of integer values in the ARKBANDPRE workspace.

Return value:

• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within the
ARKBANDPRE module (the banded matrix approximation, banded SUNLinearSolver object, and tempo-
rary vectors).

The workspaces referred to here exist in addition to those given by the corresponding function
ARKStepGetLSWorkspace().

int ARKBandPrecGetNumRhsEvals(void* arkode_mem, long int* nfevalsBP)
Returns the number of calls made to the user-supplied right-hand side function 𝑓 𝐼 for constructing the finite-
difference banded Jacobian approximation used within the preconditioner setup function.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nfevalsBP – number of calls to 𝑓 𝐼 .

Return value:
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• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes: The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corresponding function
ARKStepGetNumLSRhsEvals() and also from nfi_evals returned by ARKStepGetNumRhsEvals().
The total number of right-hand side function evaluations is the sum of all three of these counters, plus the
nfe_evals counter for 𝑓𝐸 calls returned by ARKStepGetNumRhsEvals().

4.7.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver (such as ARKode) lies in the solution of partial differential equa-
tions (PDEs). Moreover, Krylov iterative methods are used on many such problems due to the nature of the under-
lying linear system of equations that needs to solved at each time step. For many PDEs, the linear algebraic system
is large, sparse and structured. However, if a Krylov iterative method is to be effective in this setting, then a nontriv-
ial preconditioner is required. Otherwise, the rate of convergence of the Krylov iterative method is usually slow, and
degrades as the PDE mesh is refined. Typically, an effective preconditioner must be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-based problems. It
has been successfully used with CVODE for several realistic, large-scale problems [HT1998]. It is included in a
software module within the ARKode package, and is accessible within the ARKStep time stepping module. This
preconditioning module works with the parallel vector module NVECTOR_PARALLEL and is usable with any
of the Krylov iterative linear solvers through the ARKLS interface. It generates a preconditioner that is a block-
diagonal matrix with each block being a band matrix. The blocks need not have the same number of super- and sub-
diagonals and these numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module is
called ARKBBDPRE.

One way to envision these preconditioners is to think of the computational PDE domain as being subdivided into 𝑄
non-overlapping subdomains, where each subdomain is assigned to one of the 𝑄 MPI tasks used to solve the ODE
system. The basic idea is to isolate the preconditioning so that it is local to each process, and also to use a (possibly
cheaper) approximate right-hand side function for construction of this preconditioning matrix. This requires the defi-
nition of a new function 𝑔(𝑡, 𝑦) ≈ 𝑓 𝐼(𝑡, 𝑦) that will be used to construct the BBD preconditioner matrix. At present,
we assume that the ODE be written in explicit form as

�̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓 𝐼(𝑡, 𝑦),

where 𝑓 𝐼 corresponds to the ODE components to be treated implicitly, i.e. this preconditioning module does not sup-
port problems with non-identity mass matrices. The user may set 𝑔 = 𝑓 𝐼 , if no less expensive approximation is
desired.

Corresponding to the domain decomposition, there is a decomposition of the solution vector 𝑦 into 𝑄 disjoint blocks
𝑦𝑞 , and a decomposition of 𝑔 into blocks 𝑔𝑞 . The block 𝑔𝑞 depends both on 𝑦𝑝 and on components of blocks 𝑦𝑞′ as-
sociated with neighboring subdomains (so-called ghost-cell data). If we let 𝑦𝑞 denote 𝑦𝑞 augmented with those other
components on which 𝑔𝑞 depends, then we have

𝑔(𝑡, 𝑦) = [𝑔1(𝑡, 𝑦1), 𝑔2(𝑡, 𝑦2), . . . , 𝑔𝑄(𝑡, 𝑦𝑄)]
𝑇
,

and each of the blocks 𝑔𝑞(𝑡, 𝑦𝑞) is decoupled from one another.

The preconditioner associated with this decomposition has the form

𝑃 = diag[𝑃1, 𝑃2, . . . , 𝑃𝑄]
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where

𝑃𝑞 ≈ 𝐼 − 𝛾𝐽𝑞

and where 𝐽𝑞 is a difference quotient approximation to 𝜕𝑔𝑞
𝜕𝑦𝑞

. This matrix is taken to be banded, with upper and lower
half-bandwidths mudq and mldq defined as the number of non-zero diagonals above and below the main diagonal,
respectively. The difference quotient approximation is computed using mudq + mldq + 2 evaluations of 𝑔𝑚, but only
a matrix of bandwidth mukeep + mlkeep + 1 is retained. Neither pair of parameters need be the true half-bandwidths
of the Jacobian of the local block of 𝑔, if smaller values provide a more efficient preconditioner. The solution of the
complete linear system

𝑃𝑥 = 𝑏

reduces to solving each of the distinct equations

𝑃𝑞𝑥𝑞 = 𝑏𝑞, 𝑞 = 1, . . . , 𝑄,

and this is done by banded LU factorization of 𝑃𝑞 followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatments of the blocks 𝑃𝑞 . For example,
incomplete LU factorization or an iterative method could be used instead of banded LU factorization.

4.7.2.1 ARKBBDPRE user-supplied functions

The ARKBBDPRE module calls two user-provided functions to construct 𝑃 : a required function gloc (of type
ARKLocalFn()) which approximates the right-hand side function 𝑔(𝑡, 𝑦) ≈ 𝑓 𝐼(𝑡, 𝑦) and which is com-
puted locally, and an optional function cfn (of type ARKCommFn()) which performs all inter-process com-
munication necessary to evaluate the approximate right-hand side 𝑔. These are in addition to the user-supplied
right-hand side function 𝑓 𝐼 . Both functions take as input the same pointer user_data that is passed by the user to
ARKStepSetUserData() and that was passed to the user’s function 𝑓 𝐼 . The user is responsible for providing
space (presumably within user_data) for components of 𝑦 that are communicated between processes by cfn, and that
are then used by gloc, which should not do any communication.

typedef int (*ARKLocalFn)(sunindextype Nlocal, realtype t, N_Vector y, N_Vector glocal,
void* user_data)

This gloc function computes 𝑔(𝑡, 𝑦). It fills the vector glocal as a function of t and y.

Arguments:

• Nlocal – the local vector length.

• t – the value of the independent variable.

• y – the value of the dependent variable vector on this process.

• glocal – the output vector of 𝑔(𝑡, 𝑦) on this process.

• user_data – a pointer to user data, the same as the user_data parameter passed to
ARKStepSetUserData().

Return value: An ARKLocalFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case ARKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case
the integration is halted and ARKStepEvolve() will return ARK_LSETUP_FAIL).

Notes: This function should assume that all inter-process communication of data needed to calculate glocal
has already been done, and that this data is accessible within user data.

The case where 𝑔 is mathematically identical to 𝑓 𝐼 is allowed.
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typedef int (*ARKCommFn)(sunindextype Nlocal, realtype t, N_Vector y, void* user_data)
This cfn function performs all inter-process communication necessary for the execution of the gloc function
above, using the input vector y.

Arguments:

• Nlocal – the local vector length.

• t – the value of the independent variable.

• y – the value of the dependent variable vector on this process.

• user_data – a pointer to user data, the same as the user_data parameter passed to
ARKStepSetUserData().

Return value: An ARKCommFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case ARKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case
the integration is halted and ARKStepEvolve() will return ARK_LSETUP_FAIL).

Notes: The cfn function is expected to save communicated data in space defined within the data structure
user_data.

Each call to the cfn function is preceded by a call to the right-hand side function 𝑓 𝐼 with the same (𝑡, 𝑦) argu-
ments. Thus, cfn can omit any communication done by 𝑓 𝐼 if relevant to the evaluation of glocal. If all neces-
sary communication was done in 𝑓 𝐼 , then cfn = NULL can be passed in the call to ARKBBDPrecInit() (see
below).

4.7.2.2 ARKBBDPRE usage

In addition to the header files required for the integration of the ODE problem (see the section Access to library and
header files), to use the ARKBBDPRE module, the user’s program must include the header file arkode_bbdpre.
h which declares the needed function prototypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from the skeleton program
presented in A skeleton of the user’s main program are italicized.

1. Initialize MPI

2. Set problem dimensions

3. Set vector of initial values

4. Create ARKStep object

5. Specify integration tolerances

6. Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC_LEFT or
PREC_RIGHT) to use.

7. Set linear solver optional inputs

8. Attach linear solver module

9. Initialize the ARKBBDPRE preconditioner module

Specify the upper and lower half-bandwidths for computation mudq and mldq, the upper and lower half-
bandwidths for storage mukeep and mlkeep, and call

ier = ARKBBDPrecInit(arkode_mem, Nlocal, mudq, mldq, mukeep, mlkeep,
dqrely, gloc, cfn);
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to allocate memory and initialize the internal preconditioner data. The last two arguments of
ARKBBDPrecInit() are the two user-supplied functions of type ARKLocalFn() and ARKCommFn()
described above, respectively.

10. Set optional inputs

Note that the user should not call ARKStepSetPreconditioner() as it will overwrite the preconditioner
setup and solve functions.

11. Create nonlinear solver object

12. Attach nonlinear solver module

13. Set nonlinear solver optional inputs

14. Specify rootfinding problem

15. Advance solution in time

16. Get optional outputs

Additional optional outputs associated with ARKBBDPRE are available through the routines
ARKBBDPrecGetWorkSpace() and ARKBBDPrecGetNumGfnEvals().

17. Deallocate memory for solution vector

18. Free solver memory

19. Free linear solver memory

20. Finalize MPI

4.7.2.3 ARKBBDPRE user-callable functions

The ARKBBDPRE preconditioner module is initialized (or re-initialized) and attached to the integrator by calling
the following functions:

int ARKBBDPrecInit(void* arkode_mem, sunindextype Nlocal, sunindextype mudq, sunindextype mldq,
sunindextype mukeep, sunindextype mlkeep, realtype dqrely, ARKLocalFn gloc,
ARKCommFn cfn)

Initializes and allocates (internal) memory for the ARKBBDPRE preconditioner.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• Nlocal – local vector length.

• mudq – upper half-bandwidth to be used in the difference quotient Jacobian approximation.

• mldq – lower half-bandwidth to be used in the difference quotient Jacobian approximation.

• mukeep – upper half-bandwidth of the retained banded approximate Jacobian block.

• mlkeep – lower half-bandwidth of the retained banded approximate Jacobian block.

• dqrely – the relative increment in components of y used in the difference quotient approximations.
The default is dqrely =

√
unit roundoff, which can be specified by passing dqrely = 0.0.

• gloc – the name of the C function (of type ARKLocalFn()) which computes the approximation
𝑔(𝑡, 𝑦) ≈ 𝑓 𝐼(𝑡, 𝑦).

• cfn – the name of the C function (of type ARKCommFn()) which performs all inter-process commu-
nication required for the computation of 𝑔(𝑡, 𝑦).

Return value:
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• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_ILL_INPUT if an input has an illegal value

• ARKLS_MEM_FAIL if a memory allocation request failed

Notes: If one of the half-bandwidths mudq or mldq to be used in the difference quotient calculation of the ap-
proximate Jacobian is negative or exceeds the value Nlocal-1, it is replaced by 0 or Nlocal-1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jacobian of the local block of
𝑔 when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be even
smaller than mudq and mldq, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The ARKBBDPRE module also provides a re-initialization function to allow solving a sequence of problems of the
same size, with the same linear solver choice, provided there is no change in Nlocal, mukeep, or mlkeep. After solv-
ing one problem, and after calling ARKStepReInit() to re-initialize ARKStep for a subsequent problem, a call to
ARKBBDPrecReInit() can be made to change any of the following: the half-bandwidths mudq and mldq used in
the difference-quotient Jacobian approximations, the relative increment dqrely, or one of the user-supplied functions
gloc and cfn. If there is a change in any of the linear solver inputs, an additional call to the “Set” routines provided
by the SUNLINSOL module, and/or one or more of the corresponding ARKStepSet*** functions, must also be
made (in the proper order).

int ARKBBDPrecReInit(void* arkode_mem, sunindextype mudq, sunindextype mldq, realtype dqrely)
Re-initializes the ARKBBDPRE preconditioner module.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mudq – upper half-bandwidth to be used in the difference quotient Jacobian approximation.

• mldq – lower half-bandwidth to be used in the difference quotient Jacobian approximation.

• dqrely – the relative increment in components of y used in the difference quotient approximations.
The default is dqrely =

√
unit roundoff, which can be specified by passing dqrely = 0.0.

Return value:

• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes: If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal-1, it is replaced by
0 or Nlocal-1 accordingly.

The following two optional output functions are available for use with the ARKBBDPRE module:

int ARKBBDPrecGetWorkSpace(void* arkode_mem, long int* lenrwBBDP, long int* leniwBBDP)
Returns the processor-local ARKBBDPRE real and integer workspace sizes.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrwBBDP – the number of realtype values in the ARKBBDPRE workspace.
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• leniwBBDP – the number of integer values in the ARKBBDPRE workspace.

Return value:

• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within the
ARKBBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary
vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding function
ARKStepGetLSWorkSpace().

int ARKBBDPrecGetNumGfnEvals(void* arkode_mem, long int* ngevalsBBDP)
Returns the number of calls made to the user-supplied gloc function (of type ARKLocalFn()) due to the
finite difference approximation of the Jacobian blocks used within the preconditioner setup function.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ngevalsBBDP – the number of calls made to the user-supplied gloc function.

Return value:

• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_PMEM_NULL if the preconditioner memory is NULL

In addition to the ngevalsBBDP gloc evaluations, the costs associated with ARKBBDPRE also include nlinsetups
LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and nfevalsLS right-hand side function
evaluations, where nlinsetups is an optional ARKStep output and npsolves and nfevalsLS are linear solver optional
outputs (see the table Linear solver interface optional output functions).

4.8 Multigrid Reduction in Time with XBraid

The prior sections discuss using ARKStep in a traditional sequential time integration setting i.e., the solution is ad-
vanced from one time to the next where all parallelism resides within the evaluation of a step e.g., the computation
of the right-hand side, (non)linear solves, vector operations etc. For example, when discretizing a partial differential
equation using a method of lines approach the spatially-discretized equations comprise a large set of ordinary differ-
ential equations that can be evolved with ARKStep. In this case the parallelization lies in decomposing the spatial
domain unknowns across distributed computational nodes. Considering the strong scaling case at a given spatial res-
olution, as the problem is spread across greater numbers of computational nodes scalability in the spatial dimension
is exhausted and sequential time integration becomes a bottleneck. This bottleneck is largely driven by the hardware
shift from faster clock speeds to greater concurrency to achieve performance gains. In this case, at the spatial scaling
limit and with stagnant clock speeds, more time steps will lead to an increased runtime.

An alternative approach to sequential time integration is to solve for all time values simultaneously. One such ap-
proach is multigrid reduction in time [F2014] (MGRIT) which uses a highly parallel iterative method to expose par-
allelism in the time domain in addition to the spatial parallelization. Starting with an initial temporal grid the multi-
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level algorithm constructs successively coarser time grids and uses each coarse grid solution to improve the solution
at the next finer scale. In the two level case the MGRIT algorithm is as follows:

1. Relax the solution on the fine grid (parallel-in-time)

2. Restrict the solution to the fine grid (time re-discretization).

3. Solve the residual equation on the coarse grid (serial-in-time).

4. Correct the fine grid solution (parallel-in-time).

Applying this algorithm recursively for the solve step above leads to the multilevel algorithm.

The XBraid library [XBraid] implements in the MGRIT algorithm in a non-intrusive manner, enabling the reuse of
existing software for sequential time integration. The following sections describe the ARKStep + XBraid interface
and the steps necessary to modify an existing code using ARKStep to also use XBraid.

4.8.1 SUNBraid Interface

Interfacing ARKStep with XBraid requires defining two data structures. The first is the XBraid application data
structure that contains the data necessary for carrying out a time step and is passed to every interface function (much
like the user data pointer in SUNDIALS packages). For this structure the SUNBraid interface defines the generic
SUNBraidApp structure described below that serves as the basis for creating integrator-specific or user-defined inter-
faces to XBraid. The second structure holds the problem state data at a certain time value. This structure is defined
by the SUNBraidVector structure and simply contains an N_Vector. In addition to the two data structures several
functions defined by the XBraid API are required. These functions include vector operations (e.g., computing vector
sums or norms) as well as functions to initialize the problem state, access the current solution, and take a time step.

The ARKBraid interface, built on the SUNBraidApp and SUNBraidVector structures, provides all the functionaly
needed combine ARKStep and XBraid for parallel-in-time integration. As such only a minimal number of changes
are necessary to update an exsting code that uses ARKStep to also use XBraid.

4.8.1.1 SUNBraidApp

As mentioned above the SUNBraid interface defines the SUNBraidApp structure to hold the data necessary to
compute a time step. This structure, like other SUNDIALS generic objects, is defined as a structure consisting of
an implementation specific content field and an operations structure comprised of a set of function pointers for
implmentation-defined operations on the object. Specifically the SUNBraidApp type is defined as

/* Define XBraid App structure */
struct _braid_App_struct
{

void *content;
SUNBraidOps ops;

};

/* Pointer to the interface object (same as braid_App) */
typedef struct _braid_App_struct *SUNBraidApp;

Here, the SUNBraidOps structure is defined as

/* Structure containing function pointers to operations */
struct _SUNBraidOps
{

int (*getvectmpl)(braid_App app, N_Vector *tmpl);
};
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/* Pointer to operations structure */
typedef struct _SUNBraidOps *SUNBraidOps;

The generic SUNBraidApp defines and implements the generic operations acting on a SUNBraidApp obejct. These
generic functions are nothing but wrappers to access the specific implementation through the object’s operations
structure. To illustrate this point we show below the implementation of the SUNBraidApp_GetVecTmpl() func-
tion:

/* Get a template vector from the integrator */
int SUNBraidApp_GetVecTmpl(braid_App app, N_Vector *y)
{

if (app->ops->getvectmpl == NULL) return SUNBRAID_OPNULL;
return app->ops->getvectmpl(app, y);

}

The SUNBraidApp operations are define below in SUNBraidOps.

4.8.1.2 SUNBraidOps

In this section we define the SUNBraidApp operations and, for each operation, we give the function signature, a de-
scription of the expected behavior, and an example usage of the function.

int SUNBraidApp_GetVecTmpl(braid_App app, N_Vector *y)
This function returns a vector to use as a template for creating new vectors with N_VClone().

Arguments:

• app – input, a SUNBraidApp instance (XBraid app structure).

• y – output, the template vector.

Return value:

If this function is not implemented by the SUNBraidApp implementation (i.e., the function pointer
is NULL) then this function will return SUNBRAID_OPNULL. Otherwise the return value depends
on the particular SUNBraidApp implementation. Users are encouraged to utilize the return codes
defined in sundials/sundials_xbraid.h and listed in Table: SUNBraid Return Codes.

Usage:

/* Get template vector */
flag = SUNBraidApp_GetVecTmpl(app, y_ptr);
if (flag != SUNBRAID_SUCCESS) return flag;

4.8.1.3 SUNBraidApp Utility Functions

In addition to the generic SUNBraidApp operations the following utility functions are provided to assist in creating
and destroying a SUNBraidApp instance.

int SUNBraidApp_NewEmpty(braid_App *app)
This function creates a new SUNBraidApp instance with the content and operations initialized to NULL.

Arguments:

• app – output, an empty SUNBraidApp instance (XBraid app structure).

Return value:

• SUNBRAID_SUCCESS if successful.
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• SUNBRAID_ALLOCFAIL if a memory allocation failed.

Usage:

/* Create empty XBraid interface object */
flag = SUNBraidApp_NewEmpty(app_ptr);
if (flag != SUNBRAID_SUCCESS) return flag;

int SUNBraidApp_FreeEmpty(braid_App *app)
This function destroys an empty SUNBraidApp instance.

Arguments:

• app – input, an empty SUNBraidApp instance (XBraid app structure).

Return value:

• SUNBRAID_SUCCESS if successful.

Usage:

/* Free empty XBraid interface object */
flag = SUNBraidApp_FreeEmpty(app_ptr);

Warning: This function does not free the SUNBraidApp object’s content structure. An implementa-
tion should free its content before calling SUNBraidApp_FreeEmpty() to deallocate the base SUN-
BraidApp structure.

4.8.1.4 SUNBraidVector

As mentioned above the SUNBraid interface defines the SUNBraidVector structure to store a snapshot of solution
data at a single point in time and this structure simply contains an N_Vector. Specifically, the structure is defined as
follows:

struct _braid_Vector_struct
{

N_Vector y;
};

/* Poiner to vector wrapper (same as braid_Vector) */
typedef struct _braid_Vector_struct *SUNBraidVector;

To assist in creating creating and destroying this structure the following utility functions are provided.

int SUNBraidVector_New(N_Vector y, SUNBraidVector *u)
This function creates a new SUNBraidVector wrapping the N_Vector y.

Arguments:

• y – input, the N_Vector to wrap.

• u – output, the SUNBraidVector wrapping y.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if y is NULL.

• SUNBRAID_ALLOCFAIL if a memory allocation fails.
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Usage:

/* Create new vector wrapper */
flag = SUNBraidVector_New(y, u_ptr);
if (flag != SUNBRAID_SUCCESS) return flag;

Warning: The SUNBraidVector takes ownership of the wrapped N_Vector and as such the wrapped
N_Vector is destroyed when the SUNBraidVector is freed with SUNBraidVector_Free().

int SUNBraidVector_GetNVector(SUNBraidVector u, N_Vector *y)
This function retrieves the wrapped N_Vector from the SUNBraidVector.

Arguments:

• u – input, the SUNBraidVector wrapping y.

• y – output, the wrapped N_Vector.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if u is NULL.

• SUNBRAID_MEMFAIL if y is NULL.

Usage:

/* Create new vector wrapper */
flag = SUNBraidVector_GetNVector(u, y_ptr);
if (flag != SUNBRAID_SUCCESS) return flag;

Finally, the SUNBraid interface defines the following vector operations acting on SUNBraidVectors, that consist of
then wrappers to compatible SUNDIALS N_Vector operations.

int SUNBraidVector_Clone(braid_App app, braid_Vector u, braid_Vector *v_ptr)
This function creates a clone of the input SUNBraidVector and copies the values of the input vector u into the
output vector v_ptr using N_VClone() and N_VScale().

Arguments:

• app – input, a SUNBraidApp instance (XBraid app structure).

• u – input, the SUNBraidVector to clone.

• v_ptr – output, the new SUNBraidVector.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if u is NULL.

• SUNBRAID_MEMFAIL if the N_Vector y wrapped by u is NULL.

• SUNBRAID_ALLOCFAIL if a memory allocation fails.

int SUNBraidVector_Free(braid_App app, braid_Vector u)
This function destroys the SUNBraidVector and the wrapped N_Vector using N_VDestroy().

Arguments:

• app – input, a SUNBraidApp instance (XBraid app structure).
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• u – input, the SUNBraidVector to destroy.

Return value:

• SUNBRAID_SUCCESS if successful.

int SUNBraidVector_Sum(braid_App app, braid_Real alpha, braid_Vector x, braid_Real beta,
braid_Vector y)

This function computes the vector sum 𝛼𝑥 + 𝛽𝑦 → 𝑦 using N_VLinearSum().

Arguments:

• app – input, a SUNBraidApp instance (XBraid app structure).

• alpha – input, the constant 𝛼.

• x – input, the vector 𝑥.

• beta – input, the constant 𝛽.

• y – input/output, the vector 𝑦.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if x or y is NULL.

• SUNBRAID_MEMFAIL if either of the wrapped N_Vectors are NULL.

int SUNBraidVector_SpatialNorm(braid_App, braid_Vector u, braid_Real *norm_ptr)
This function computes the 2-norm of the vector u using N_VDotProd().

Arguments:

• app – input, a SUNBraidApp instance (XBraid app structure).

• u – input, the vector u.

• norm_ptr – output, the L2 norm of u.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if u is NULL.

• SUNBRAID_MEMFAIL if the wrapped N_Vector is NULL.

int SUNBraidVector_BufSize(braid_App app, braid_Int *size_ptr, braid_BufferStatus bstatus)
This function returns the buffer size for messages to exchange vector data using
SUNBraidApp_GetVecTmpl() and N_VBufSize().

Arguments:

• app – input, a SUNBraidApp instance (XBraid app structure).

• size_ptr – output, the buffer size.

• bstatus – input, a status object to query for information on the message type.

Return value:

• SUNBRAID_SUCCESS if successful.

• An error flag from SUNBraidApp_GetVecTmpl() or N_VBufSize().
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int SUNBraidVector_BufPack(braid_App app, braid_Vector u, void *buffer, braid_BufferStatus bsta-
tus)

This function packs the message buffer for exchanging vector data using N_VBufPack().

Arguments:

• app – input, a SUNBraidApp instance (XBraid app structure).

• u – input, the vector to pack into the exchange buffer.

• buffer – output, the packed exchange buffer to pack.

• bstatus – input, a status object to query for information on the message type.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if u is NULL.

• An error flag from N_VBufPack().

int SUNBraidVector_BufUnpack(braid_App app, void *buffer, braid_Vector *u_ptr,
braid_BufferStatus bstatus)

This function unpacks the message buffer and creates a new N_Vector and SUNBraidVector with the buffer
data using N_VBufUnpack(), SUNBraidApp_GetVecTmpl(), and N_VClone().

Arguments:

• app – input, a SUNBraidApp instance (XBraid app structure).

• buffer – input, the exchange buffer to unpack.

• u_ptr – output, a new SUNBraidVector containing the buffer data.

• bstatus – input, a status object to query for information on the message type.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if buffer is NULL.

• SUNBRAID_ALLOCFAIL if a memory allocation fails.

• An error flag from SUNBraidApp_GetVecTmpl() and N_VBufUnpack().

4.8.1.5 SUNBraid Return Codes

The SUNBraid interface return values are given in Table: SUNBraid Return Codes.

Table 4.1: SUNBraid Return Codes
Return value name Value Meaning
SUNBRAID_SUCCESS 0 The call/operation was successful.
SUNBRAID_ALLOCFAIL −1 A memory allocation failed.
SUNBRAID_MEMFAIL −2 A memory access fail.
SUNBRAID_OPNULL −3 The SUNBraid operation is NULL.
SUNBRAID_ILLINPUT −4 An invalid input was provided.
SUNBRAID_BRAIDFAIL −5 An XBraid function failed.
SUNBRAID_SUNFAIL −6 A SUNDIALS function failed.
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4.8.2 ARKBraid Interface

This section describes the ARKBraid implementation of a SUNBraidApp for using the ARKStep integration module
with XBraid. The following section describes ARKBraid Initialization and Deallocation Functions for creating, ini-
tializing, and destroying the ARKStep + XBraid interface, ARKBraid Set Functions for setting optional inputs, and
ARKBraid Get Functions for retrieving data from an ARKBraid instance. As noted above, interfacing with XBraid
requires providing functions to initialize the problem state, access the current solution, and take a time step. The de-
fault ARKBraid functions for each of these actions are defined in ARKBraid Interface Functions and may be overrid-
den by user-defined if desired. A skeleton of the user’s main or calling program for using the ARKBraid interface is
given in A skeleton of the user’s main program with XBraid. Finally, for advanced users that wish to create their own
SUNBraidApp implementation using ARKStep the Advanced ARKBraid Utility Functions section describes some
helpful functions available to the user.

4.8.2.1 ARKBraid Initialization and Deallocation Functions

This section describes the functions that are called by the user to create, initialize, and destroy an ARKBraid in-
stance. Each user-callable function returns SUNBRAID_SUCCESS (i.e., 0) on a successful call and a negative value
if an error occurred. The possible return codes are given in Table: SUNBraid Return Codes.

int ARKBraid_Create(void *arkode_mem, braid_App *app)
This function creates a SUNBraidApp object, sets the content pointer to the private ARKBraid interface struc-
ture, and attaches the necessary SUNBraidOps implementations.

Arguments:

• arkode_mem – input, a pointer to an ARKStep memory structure.

• app – output, an ARKBraid instance (XBraid app structure).

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT arkode_mem is NULL.

• SUNBRAID_ALLOCFAIL if a memory allocation failed.

Warning: The ARKBraid interface is ARKStep-specific. Although one could eventually construct an
XBraid interface to either ERKStep or MRIStep, those are not supported by this implementation.

int ARKBraid_BraidInit(MPI_Comm comm_w, MPI_Comm comm_t, realtype tstart, realtype tstop,
sunindextype ntime, braid_App app, braid_Core *core)

This function wraps the XBraid braid_Init() function to create the XBraid core memory structure and
initializes XBraid with the ARKBraid and SUNBraidVector interface functions.

Arguments:

• comm_w – input, the global MPI communicator for space and time.

• comm_t – input, the MPI communicator for the time dimension.

• tstart – input, the initial time value.

• tstop – input, the final time value.

• ntime – input, the initial number of grid points in time.

• app – input, an ARKBraid instance.

• core – output, the XBraid core memory structure.

148 Chapter 4. Using ARKStep for C and C++ Applications



User Documentation for ARKode, v4.7.0

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if either MPI communicator is MPI_COMM_NULL, if ntime < 2, or if app or its
content is NULL.

• SUNBRAID_BRAIDFAIL if the braid_Init() call fails. The XBraid return value can be retrieved
with ARKBraid_GetLastBraidFlag().

Note: If desired, the default functions for vector initialization, accessing the solution, taking a time step, and
computing the spatial norm should be overridden before calling this function. See ARKBraid Set Functions for
more details.

Warning: The user is responsible for deallocating the XBraid core memory structure with the XBraid
function braid_Destroy().

int ARKBraid_Free(braid_App *app)
This function deallocates an ARKBraid instance.

Arguments:

• app – input, a pointer to an ARKBraid instance.

Return value:

• SUNBRAID_SUCCESS if successful.

4.8.2.2 ARKBraid Set Functions

This section describes the functions that are called by the user to set optional inputs to control the behavior of
an ARKBraid instance or to provide alternative XBraid interface functions. Each user-callable function returns
SUNBRAID_SUCCESS (i.e., 0) on a successful call and a negative value if an error occurred. The possible return
codes are given in Table: SUNBraid Return Codes.

int ARKBraid_SetStepFn(braid_App app, braid_PtFcnStep step)
This function sets the step function provided to XBraid (default ARKBraid_Step()).

Arguments:

• app – input, an ARKBraid instance.

• step – input, an XBraid step function. If step is NULL, the default function will be used.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if app is NULL.

• SUNBRAID_MEMFAIL if the app content is NULL.

Note: This function must be called prior to ARKBraid_BraidInit().

int ARKBraid_SetInitFn(braid_App app, braid_PtFcnInit init)
This function sets the vector initialization function provided to XBraid (default ARKBraid_Init()).
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Arguments:

• app – input, an ARKBraid instance.

• init – input, an XBraid vector initialization function. If init is NULL, the default function will be used.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if app is NULL.

• SUNBRAID_MEMFAIL if the app content is NULL.

Note: This function must be called prior to ARKBraid_BraidInit().

int ARKBraid_SetSpatialNormFn(braid_App app, braid_PtFcnSpatialNorm snorm)
This function sets the spatial norm function provided to XBraid (default SUNBraid_SpatialNorm()).

Arguments:

• app – input, an ARKBraid instance.

• snorm – input, an XBraid spatial norm function. If snorm is NULL, the default function will be used.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if app is NULL.

• SUNBRAID_MEMFAIL if the app content is NULL.

Note: This function must be called prior to ARKBraid_BraidInit().

int ARKBraid_SetAccessFn(braid_App app, braid_PtFcnAccess access)
This function sets the user access function provided to XBraid (default ARKBraid_Access()).

Arguments:

• app – input, an ARKBraid instance.

• init – input, an XBraid user access function. If access is NULL, the default function will be used.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if app is NULL.

• SUNBRAID_MEMFAIL if the app content is NULL.

Note: This function must be called prior to ARKBraid_BraidInit().

4.8.2.3 ARKBraid Get Functions

This section describes the functions that are called by the user to retrieve data from an ARKBraid instance. Each
user-callable function returns SUNBRAID_SUCCESS (i.e., 0) on a successful call and a negative value if an error
occurred. The possible return codes are given in Table: SUNBraid Return Codes.
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int ARKBraid_GetVecTmpl(braid_App app, N_Vector *tmpl)
This function returns a vector from the ARKStep memory to use as a template for creating new vectors with
N_VClone() i.e., this is the ARKBraid implementation of SUNBraidVector_GetVecTmpl().

Arguments:

• app – input, an ARKBraid instance.

• tmpl – output, a template vector.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if app is NULL.

• SUNBRAID_MEMFAIL if the app content or ARKStep memory is NULL.

int ARKBraid_GetARKStepMem(braid_App app, void **arkode_mem)
This function returns the ARKStep memory structure pointer attached with ARKBraid_Create().

Arguments:

• app – input, an ARKBraid instance.

• arkode_mem – output, a pointer to the ARKStep memory structure.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if app is NULL.

• SUNBRAID_MEMFAIL if the app content or ARKStep memory is NULL.

int ARKBraid_GetUserData(braid_App app, void **user_data)
This function returns the user data pointer attached with ARKStepSetUserData().

Arguments:

• app – input, an ARKBraid instance.

• user_data – output, a pointer to the user data structure.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if app is NULL.

• SUNBRAID_MEMFAIL if the app content or ARKStep memory is NULL.

int ARKBraid_GetLastBraidFlag(braid_App app, int *last_flag)
This function returns the return value from the most recent XBraid function call.

Arguments:

• app – input, an ARKBraid instance.

• last_flag – output, the XBraid return value.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if app is NULL.

• SUNBRAID_MEMFAIL if the app content is NULL.
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int ARKBraid_GetLastARKStepFlag(braid_App app, int *last_flag)
This function returns the return value from the most recent ARKStep function call.

Arguments:

• app – input, an ARKBraid instance.

• last_flag – output, the ARKStep return value.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if app is NULL.

• SUNBRAID_MEMFAIL if the app content is NULL.

int ARKBraid_GetSolution(braid_App app, realtype *tout, N_Vector yout)
This function returns final time and state stored with the default access function ARKBraid_Access().

Arguments:

• app – input, an ARKBraid instance.

• last_flag – output, the ARKStep return value.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if app is NULL.

• SUNBRAID_MEMFAIL if the app content or the stored vector is NULL.

Warning: If providing a non-default access function the final time and state are not stored within
the ARKBraid structure and this function will return an error. In this case the user should al-
locate space to store any desired output within the user data pointer attached to ARKStep with
ARKStepSetUserData(). This user data pointer can be retrieved from the ARKBraid structure with
ARKBraid_GetUserData().

4.8.2.4 ARKBraid Interface Functions

This section describes the default XBraid interface functions provided by ARKBraid and called by XBraid to pre-
form certain actions. Any or all of these functions may be overridden by supplying a user-defined function through
the set functions defined in ARKBraid Set Functions. Each default interface function returns SUNBRAID_SUCCESS
(i.e., 0) on a successful call and a negative value if an error occurred. The possible return codes are given in Table:
SUNBraid Return Codes.

int ARKBraid_Step(braid_App app, braid_Vector ustop, braid_Vector fstop, braid_Vector u,
braid_StepStatus status)

This is the default step function provided to XBraid. The step function is called by XBraid to advance the vec-
tor u from one time to the next using the ARStep memory structure provided to ARKBraid_Create(). A
user-defined step function may be set with ARKBraid_SetStepFn().

Arguments:

• app – input, an ARKBraid instance.

• ustop – input, u vector at the new time tstop.

• fstop – input, the right-hand side vector at the new time tstop.
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• u - input/output, on input the vector at the start time and on return the vector at the new time.

• status – input, a status object to query for information about u and to steer XBraid e.g., for temporal re-
finement.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if app is NULL.

• SUNBRAID_MEMFAIL if the app content or ARKStep memory is NULL.

• SUNBRAID_BRAIDFAIL if an XBraid function fails. The return value can be retrieved with
ARKBraid_GetLastBraidFlag().

• SUNBRAID_SUNFAIL if a SUNDIALS function fails. The return value can be retrieved with
ARKBraid_GetLastARKStepFlag().

Note: If providing a non-default implemenation of the step function the utility function
ARKBraid_TakeStep() should be used to advance the input vector u to the new time.

int ARKBraid_Init(braid_App app, realtype t, braid_Vector *u_ptr)
This is the default vector initialization function provided to XBraid. The initialization function is called by
XBraid to create a new vector and set the initial guess for the solution at time 𝑡. When using this default
function the initial guess at all time values is the initial condition provided to ARKStepCreate(). A user-
defined init function may be set with ARKBraid_SetInitFn().

Arguments:

• app – input, an ARKBraid instance.

• t – input, the initialization time for the output vector.

• u_ptr – output, the new and initialized SUNBraidVector.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if app is NULL.

• SUNBRAID_MEMFAIL if the app content or ARKStep memory is NULL.

• SUNBRAID_ALLOCFAIL if a memory allocation failed.

Note: If providing a non-default implementation of the vector initialization function the utility functions
SUNBraidApp_GetVecTmpl() and SUNBraidVector_New() can be helpful when creating the new
vector returned by this function.

int ARKBraid_Access(braid_App app, braid_Vector u, braid_AccessStatus astatus)
This is the default access function provided to XBraid. The access function is called by XBraid to retrieve the
current solution. When using this default function the final solution time and state are stored within the ARK-
Braid structure. This information can be retrieved with ARKBraid_GetSolution(). A user-defined ac-
cess function may be set with ARKBraid_SetAccessFn().

Arguments:

• app – input, an ARKBraid instance.

• u – input, the vector to be accessed.
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• status – input, a status object to query for information about u.

Return value:

• SUNBRAID_SUCCESS if successful.

• SUNBRAID_ILLINPUT if any of the inputs are NULL.

• SUNBRAID_MEMFAIL if the app content, the wrapped N_Vector, or the ARKStep memory is NULL.

• SUNBRAID_ALLOCFAIL if allocating storage for the final solution fails.

• SUNBRAID_BRAIDFAIL if an XBraid function fails. The return value can be retrieved with
ARKBraid_GetLastBraidFlag().

4.8.3 A skeleton of the user’s main program with XBraid

In addition to the header files required for the integration of the ODE problem (see the section Access to library
and header files), to use the ARKBraid interace, the user’s program must include the header file arkode/
arkode_xbraid.h which declares the needed function prototypes.

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
ARKStep with XBraid for parallel-in-time integration. Most steps are unchanged from the skeleton program pre-
sented in A skeleton of the user’s main program. New or updated steps are bold.

1. Initialize MPI

If parallelizing in space and time split the global communicator into communicators for space and time with
braid_SplitCommworld().

2. Set problem dimensions

3. Set vector of initial values

4. Create ARKStep object

5. Specify integration tolerances

6. Create matrix object

7. Create linear solver object

8. Set linear solver optional inputs

9. Attach linear solver module

10. Create nonlinear solver object

11. Attach nonlinear solver module

12. Set nonlinear solver optional inputs

13. Set optional inputs

14. Create ARKBraid interface

Call the constructor ARKBraid_Create() to create the XBraid app structure.

15. Set optional ARKBraid inputs

See ARKBraid Set Functions for ARKBraid inputs.

16. Initialize the ARKBraid interface

Call the initialization function ARKBraid_Braid() to create the XBraid core memory structure and attach
the ARKBraid interface app and functions.
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17. Set optional XBraid inputs

See the XBraid documentation for available XBraid options.

18. Evolve the problem

Call braid_Drive() to evolve the problem with MGRIT.

19. Get optional outputs

See ARKBraid Get Functions for ARKBraid outputs.

20. Deallocate memory for solution vector

21. Free solver memory

22. Free linear solver memory

23. Free ARKBraid and XBraid memory

Call ARKBraid_Free() and braid_Destroy to deallocate the ARKBraid interface and and XBraid core
memory structures respectively.

24. Finalize MPI

4.8.4 Advanced ARKBraid Utility Functions

This section describes utility functions utilized in the ARKStep + XBraid interfacing. These functions are used
internally by the above ARKBraid interface functions but are exposed to the user to assist in advanced usage of
ARKODE and XBraid that requries defining a custom SUNBraidApp implementation.

int ARKBraid_TakeStep(void *arkode_mem, realtype tstart, realtype tstop, N_Vector y, int *ark_flag)
This function advances the vector y from tstart to tstop using a single ARKStep time step with step size h =
tstop - start.

Arguments:

• arkode_mem – input, the ARKStep memory structure pointer.

• tstart – input, the step start time.

• tstop – input, the step stop time.

• y – input/output, on input the solution a tstop and on return, the solution at time tstop if the step was suc-
cessful (ark_flag ≥ 0) or the solution at time tstart if the step failed (ark_flag < 0).

• ark_flag – output, the step status flag. If ark_flag is:

= 0 then the step succeeded and, if applicable, met the requested temporal accuracy.

> 0 then the step succeeded but failed to meet the requested temporal accuracy.

< 0 then the step failed e.g., a solver failure occurred.

Return value:

If all ARKStep function calls are successful the return value is ARK_SUCCESS, otherwise the re-
turn value is the error flag returned from the function that failed.
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Chapter 5

Using ERKStep for C and C++ Applications

This chapter is concerned with the use of the ERKStep time-stepping module for the solution of nonstiff initial value
problems (IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the
user’s main program, and provide descriptions of the ERKStep user-callable functions and user-supplied functions.

The example programs described in the companion document [R2018] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKode package examples subdirectory.

ERKStep uses the input and output constants from the shared ARKode infrastructure. These are defined as needed in
this chapter, but for convenience the full list is provided separately in the section Appendix: ARKode Constants.

The relevant information on using ERKStep’s C and C++ interfaces is detailed in the following sub-sections.

5.1 Access to library and header files

At this point, it is assumed that the installation of ARKode, following the procedure described in the section ARKode
Installation Procedure, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must
make reference to the appropriate locations for the library and header files required by ARKode. The relevant library
files are

• libdir/libsundials_arkode.lib,

• libdir/libsundials_nvec*.lib,

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant header
files are located in the subdirectories

• incdir/include/arkode

• incdir/include/sundials

• incdir/include/nvector

The directories libdir and incdir are the installation library and include directories, respectively. For a default
installation, these are instdir/lib and instdir/include, respectively, where instdir is the directory
where SUNDIALS was installed (see the section ARKode Installation Procedure for further details).
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5.2 Data Types

The sundials_types.h file contains the definition of the variable type realtype, which is used by the SUN-
DIALS solvers for all floating-point data, the definition of the integer type sunindextype, which is used for vec-
tor and matrix indices, and booleantype, which is used for certain logic operations within SUNDIALS.

5.2.1 Floating point types

The type “realtype” can be set to float, double, or long double, depending on how SUNDIALS was in-
stalled (with the default being double). The user can change the precision of the SUNDIALS solvers’ floating-
point arithmetic at the configuration stage (see the section Configuration options (Unix/Linux)).

Additionally, based on the current precision, sundials_types.h defines the values BIG_REAL to be the
largest value representable as a realtype, SMALL_REAL to be the smallest positive value representable as a
realtype, and UNIT_ROUNDOFF to be the smallest realtype number, 𝜀, such that 1.0 + 𝜀 ̸= 1.0.

Within SUNDIALS, real constants may be set to have the appropriate precision by way of a macro called RCONST.
It is this macro that needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant
with no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a float,
whereas using the suffix “L” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long
double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is
double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the
RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point constants is
precision-independent, except for any calls to precision-specific standard math library functions. Users can, how-
ever, use the types double, float, or long double in their code (assuming that this usage is consistent with
the size of realtype values that are passed to and from SUNDIALS). Thus, a previously existing piece of ANSI C
code can use SUNDIALS without modifying the code to use realtype, so long as the SUNDIALS libraries have
been compiled using the same precision (for details see the section ARKode Installation Procedure).

5.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable int64_t type,
and the user can change it to int32_t at the configuration stage. The configuration system will detect if the com-
piler does not support portable types, and will replace int32_t and int64_t with int and long int, respec-
tively, to ensure use of the desired sizes on Linux, Mac OS X, and Windows platforms. SUNDIALS currently does
not support unsigned integer types for vector and matrix indices, although these could be added in the future if there
is sufficient demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both index stor-
age types except for any calls to index storage-specific external libraries. (Our C and C++ example programs use
sunindextype.) Users can, however, use any one of int, long int, int32_t, int64_t or long long
int in their code, assuming that this usage is consistent with the typedef for sunindextype on their architec-
ture. Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying the code to use
sunindextype, so long as the SUNDIALS libraries use the appropriate index storage type (for details see the sec-
tion ARKode Installation Procedure).
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5.3 Header Files

When using ERKStep, the calling program must include several header files so that various macros and data types
can be used. The header file that is always required is:

• arkode/arkode_erkstep.h, the main header file for the ERKStep time-stepping module, which de-
fines the several types and various constants, includes function prototypes, and includes the shared arkode/
arkode.h header file.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype,
sunindextype and booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not
need to include sundials_types.h directly.

Additionally, the calling program must also include an NVECTOR implementation header file, of the form
nvector/nvector_***.h, corresponding to the user’s preferred data layout and form of parallelism. See
the section Vector Data Structures for details for the appropriate name. This file in turn includes the header file
sundials_nvector.h which defines the abstract N_Vector data type.

If the user wishes to manually select between any of the pre-defined ERK Butcher tables, these are defined through
a set of constants that are enumerated in the header file arkode/arkode_butcher_erk.h, or if a user wishes
to manually specify a Butcher table, the corresponding ARKodeButcherTable structure is defined in arkode/
arkode_butcher.h.

5.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the ERKStep module. Most of the steps are independent of the NVECTOR implementation used. For the steps that
are not, refer to the section Vector Data Structures for the specific name of the function to be called or macro to be
referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use
within the threaded vector functions, if used.

2. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the
form

y0 = N_VMake_***(..., ydata);

if the realtype array ydata containing the initial values of 𝑦 already exists. Otherwise, create a new vector
by making a call of the form

y0 = N_VNew_***(...);
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and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_***(y0);

See the sections The NVECTOR_SERIAL Module through The NVECTOR_PTHREADS Module for details.

For the HYPRE and PETSc vector wrappers, first create and initialize the underlying vector, and then create
the NVECTOR wrapper with a call of the form

y0 = N_VMake_***(yvec);

where yvec is a HYPRE or PETSc vector. Note that calls like N_VNew_***(...) and
N_VGetArrayPointer_***(...) are not available for these vector wrappers. See the sections The
NVECTOR_PARHYP Module and The NVECTOR_PETSC Module for details.

If using either the CUDA- or RAJA-based vector implementations use a call of the form

y0 = N_VMake_***(..., c);

where c is a pointer to a suncudavec or sunrajavec vector class if this class already exists. Otherwise,
create a new vector by making a call of the form

N_VGetDeviceArrayPointer_***

or

N_VGetHostArrayPointer_***

Note that the vector class will allocate memory on both the host and device when instantiated. See the sections
The NVECTOR_CUDA Module and The NVECTOR_RAJA Module for details.

4. Create ERKStep object

Call arkode_mem = ERKStepCreate(...) to create the ERKStep memory block.
ERKStepCreate() returns a void* pointer to this memory structure. See the section ERKStep initializa-
tion and deallocation functions for details.

5. Specify integration tolerances

Call ERKStepSStolerances() or ERKStepSVtolerances() to specify either a scalar relative tol-
erance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respec-
tively. Alternatively, call ERKStepWFtolerances() to specify a function which sets directly the weights
used in evaluating WRMS vector norms. See the section ERKStep tolerance specification functions for details.

6. Set optional inputs

Call ERKStepSet* functions to change any optional inputs that control the behavior of ERKStep from their
default values. See the section Optional input functions for details.

7. Specify rootfinding problem

Optionally, call ERKStepRootInit() to initialize a rootfinding problem to be solved during the integra-
tion of the ODE system. See the section Rootfinding initialization function for general details, and the section
Optional input functions for relevant optional input calls.

8. Advance solution in time

For each point at which output is desired, call

ier = ERKStepEvolve(arkode_mem, tout, yout, &tret, itask);
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Here, itask specifies the return mode. The vector yout (which can be the same as the vector y0 above) will
contain 𝑦(𝑡out). See the section ERKStep solver function for details.

9. Get optional outputs

Call ERKStepGet* functions to obtain optional output. See the section Optional output functions for details.

10. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the NVECTOR
destructor function:

N_VDestroy(y);

11. Free solver memory

Call ERKStepFree(&arkode_mem) to free the memory allocated for the ERKStep module.

12. Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

5.5 ERKStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the ERKStep
time-stepping module. Some of these are required; however, starting with the section Optional input functions, the
functions listed involve optional inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of
ARKode’s ERKStep module. In any case, refer to the preceding section, A skeleton of the user’s main program, for
the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to stderr by default. However, the user can
set a file as error output or can provide her own error handler function (see the section Optional input functions for
details).

5.5.1 ERKStep initialization and deallocation functions

void* ERKStepCreate(ARKRhsFn f, realtype t0, N_Vector y0)
This function allocates and initializes memory for a problem to be solved using the ERKStep time-stepping
module in ARKode.

Arguments:

• f – the name of the C function (of type ARKRhsFn()) defining the right-hand side function in �̇� =
𝑓(𝑡, 𝑦).

• t0 – the initial value of 𝑡.

• y0 – the initial condition vector 𝑦(𝑡0).

Return value: If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing ERKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

void ERKStepFree(void** arkode_mem)
This function frees the problem memory arkode_mem created by ERKStepCreate().

Arguments:

• arkode_mem – pointer to the ERKStep memory block.
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Return value: None

5.5.2 ERKStep tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to
ERKStepEvolve(); otherwise default values of reltol = 1e-4 and abstol = 1e-9 will be used, which
may be entirely incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of
ERKStepSStolerances(), this vector has components

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol);

whereas in the case of ERKStepSVtolerances() the vector components are given by

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol[i]);

This vector is used in all error tests, which use a weighted RMS norm on all error-like vectors v:

‖𝑣‖𝑊𝑅𝑀𝑆 =

(︃
1

𝑁

𝑁∑︁
𝑖=1

(𝑣𝑖 𝑒𝑤𝑡𝑖)
2

)︃1/2

,

where 𝑁 is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to
ERKStepWFtolerances().

int ERKStepSStolerances(void* arkode_mem, realtype reltol, realtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• reltol – scalar relative tolerance.

• abstol – scalar absolute tolerance.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ERKStepSVtolerances(void* arkode_mem, realtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different abso-
lute tolerance for each vector component).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• reltol – scalar relative tolerance.

• abstol – vector containing the absolute tolerances for each solution component.

Return value:

• ARK_SUCCESS if successful
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• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ERKStepWFtolerances(void* arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• efun – the name of the function (of type ARKEwtFn()) that implements the error weight vector
computation.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

5.5.2.1 General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol and abstol are a concern. The following
pieces of advice are relevant.

1. The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10−4 means that
errors are controlled to .01%. We do not recommend using reltol larger than 10−3. On the other hand,
reltol should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally
around 10−15 for double-precision).

2. The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector 𝑦 may be so small that pure relative error control is meaningless. For exam-
ple, if 𝑦𝑖 starts at some nonzero value, but in time decays to zero, then pure relative error control on 𝑦𝑖 makes
no sense (and is overly costly) after 𝑦𝑖 is below some noise level. Then abstol (if scalar) or abstol[i]
(if a vector) needs to be set to that noise level. If the different components have different noise levels, then
abstol should be a vector. For example, see the example problem ark_robertson.c, and the discussion
of it in the ARKode Examples Documentation [R2018]. In that problem, the three components vary between
0 and 1, and have different noise levels; hence the atols vector therein. It is impossible to give any general
advice on abstol values, because the appropriate noise levels are completely problem-dependent. The user
or modeler hopefully has some idea as to what those noise levels are.

3. Finally, it is important to pick all the tolerance values conservatively, because they control the error commit-
ted on each individual step. The final (global) errors are an accumulation of those per-step errors, where that
accumulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of
10 from the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice
for reltol is 10−5. In any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

5.5.2.2 Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.
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1. The best way to control the size of unwanted negative computed values is with tighter absolute tolerances.
Again this requires some knowledge of the noise level of these components, which may or may not be differ-
ent for different components. Some experimentation may be needed.

2. If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the con-
text of the output medium. Then the internal values carried by the solver are unaffected. Remember that a
small negative value in 𝑦 returned by ERKStep, with magnitude comparable to abstol or less, is equivalent
to zero as far as the computation is concerned.

3. The user’s right-hand side routine 𝑓 should never change a negative value in the solution vector 𝑦 to a non-
negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the 𝑓 routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending value
should be changed to zero or a tiny positive number in a temporary variable (not in the input 𝑦 vector) for the
purposes of computing 𝑓(𝑡, 𝑦).

4. Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side function, 𝑓 . When a recoverable error is encountered, ERKStep
will retry the step with a smaller step size, which typically alleviates the problem. However, because this op-
tion involves some additional overhead cost, it should only be exercised if the use of absolute tolerances to
control the computed values is unsuccessful.

5.5.3 Rootfinding initialization function

As described in the section Rootfinding, while solving the IVP, ARKode’s time-stepping modules have the capability
to find the roots of a set of user-defined functions. To activate the root-finding algorithm, call the following func-
tion. This is normally called only once, prior to the first call to ERKStepEvolve(), but if the rootfinding prob-
lem is to be changed during the solution, ERKStepRootInit() can also be called prior to a continuation call to
ERKStepEvolve().

int ERKStepRootInit(void* arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ERKStepCreate(), and before ERKStepEvolve().

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nrtfn – number of functions 𝑔𝑖, an integer ≥ 0.

• g – name of user-supplied function, of type ARKRootFn(), defining the functions 𝑔𝑖 whose roots
are sought.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated
with ERKStep’s rootfinding module, call ERKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ERKStepReInit(), where the new IVP has no
rootfinding problem but the prior one did, then call ERKStepRootInit with nrtfn = 0.
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5.5.4 ERKStep solver function

This is the central step in the solution process – the call to perform the integration of the IVP. One of the input argu-
ments (itask) specifies one of two modes as to where ERKStep is to return a solution. These modes are modified if
the user has set a stop time (with a call to the optional input function ERKStepSetStopTime()) or has requested
rootfinding.

int ERKStepEvolve(void* arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in 𝑡.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tout – the next time at which a computed solution is desired.

• yout – the computed solution vector.

• tret – the time corresponding to yout (output).

• itask – a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, tout, in the direction of integration, i.e. 𝑡𝑛−1 < tout ≤ 𝑡𝑛 for forward inte-
gration, or 𝑡𝑛 ≤ tout < 𝑡𝑛−1 for backward integration. It will then compute an approximation to
the solution 𝑦(𝑡𝑜𝑢𝑡) by interpolation (using one of the dense output routines described in the section
Interpolation).

The ARK_ONE_STEP option tells the solver to only take a single internal step 𝑦𝑛−1 → 𝑦𝑛 and then
return control back to the calling program. If this step will overtake tout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution 𝑦𝑛 in the vector
yout

Return value:

• ARK_SUCCESS if successful.

• ARK_ROOT_RETURN if ERKStepEvolve() succeeded, and found one or more roots. If the
number of root functions, nrtfn, is greater than 1, call ERKStepGetRootInfo() to see which
𝑔𝑖 were found to have a root at (*tret).

• ARK_TSTOP_RETURN if ERKStepEvolve() succeeded and returned at tstop.

• ARK_MEM_NULL if the arkode_mem argument was NULL.

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if one of the inputs to ERKStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

1. A component of the error weight vector became zero during internal time-stepping.

2. A root of one of the root functions was found both at a point 𝑡 and also very near 𝑡.

3. The initial condition violates the inequality constraints.

• ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

• ARK_TOO_MUCH_ACC if the solver could not satisfy the accuracy demanded by the user for some
internal step.

• ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef ) during one
internal time step or occurred with |ℎ| = ℎ𝑚𝑖𝑛.
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• ARK_VECTOROP_ERR a vector operation error occured.

Notes: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ERKStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale of
the independent variable. All failure return values are negative and so testing the return argument for negative
values will trap all ERKStepEvolve() failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to ERKStepSetStopTime() before the call to ERKStepEvolve() to spec-
ify a fixed stop time to end the time step and return to the user. Upon return from ERKStepEvolve(),
a copy of the internal solution 𝑦𝑛 will be returned in the vector yout. Once the integrator returns at
a tstop time, any future testing for tstop is disabled (and can be re-enabled only though a new call to
ERKStepSetStopTime()).

On any error return in which one or more internal steps were taken by ERKStepEvolve(), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

5.5.5 Optional input functions

There are numerous optional input parameters that control the behavior of the ERKStep solver, each of which may
be modified from its default value through calling an appropriate input function. The following tables list all optional
input functions, grouped by which aspect of ERKStep they control. Detailed information on the calling syntax and
arguments for each function are then provided following each table.

The optional inputs are grouped into the following categories:

• General ERKStep options (Optional inputs for ERKStep),

• IVP method solver options (Optional inputs for IVP method selection),

• Step adaptivity solver options (Optional inputs for time step adaptivity), and

• Rootfinding options (Rootfinding optional input functions).

For the most casual use of ERKStep, relying on the default set of solver parameters, the reader can skip to the fol-
lowing section, User-supplied functions.

We note that, on an error return, all of the optional input functions send an error message to the error handler func-
tion. All error return values are negative, so a test on the return arguments for negative values will catch all errors.
Finally, a call to an ERKStepSet*** function can generally be made from the user’s calling program at any time
and, if successful, takes effect immediately. ERKStepSet*** functions that cannot be called at any time note this
in the “Notes:” section of the function documentation.
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5.5.5.1 Optional inputs for ERKStep

Optional input Function name Default
Return ERKStep solver parameters to their
defaults

ERKStepSetDefaults() internal

Set dense output interpolation type ERKStepSetInterpolantType() ARK_INTERP_HERMITE
Set dense output polynomial degree ERKStepSetInterpolantDegree()5
Supply a pointer to a diagnostics output file ERKStepSetDiagnostics() NULL
Supply a pointer to an error output file ERKStepSetErrFile() stderr
Supply a custom error handler function ERKStepSetErrHandlerFn() internal fn
Disable time step adaptivity (fixed-step
mode)

ERKStepSetFixedStep() disabled

Supply an initial step size to attempt ERKStepSetInitStep() estimated
Maximum no. of warnings for 𝑡𝑛 + ℎ = 𝑡𝑛 ERKStepSetMaxHnilWarns() 10
Maximum no. of internal steps before tout ERKStepSetMaxNumSteps() 500
Maximum absolute step size ERKStepSetMaxStep() ∞
Minimum absolute step size ERKStepSetMinStep() 0.0
Set a value for 𝑡𝑠𝑡𝑜𝑝 ERKStepSetStopTime() ∞
Supply a pointer for user data ERKStepSetUserData() NULL
Maximum no. of ERKStep error test failures ERKStepSetMaxErrTestFails() 7
Set inequality constraints on solution ERKStepSetConstraints() NULL
Set max number of constraint failures ERKStepSetMaxNumConstrFails()10

int ERKStepSetDefaults(void* arkode_mem)
Resets all optional input parameters to ERKStep’s original default values.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Does not change problem-defining function pointer f or the user_data pointer.

Also leaves alone any data structures or options related to root-finding (those can be reset using
ERKStepRootInit()).

int ERKStepSetInterpolantType(void* arkode_mem, int itype)
Specifies use of the Lagrange or Hermite interpolation modules (used for dense output – interpolation of solu-
tion output values and implicit method predictors).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• itype – requested interpolant type (ARK_INTERP_HERMITE or ARK_INTERP_LAGRANGE)

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_MEM_FAIL if the interpolation module cannot be allocated
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• ARK_ILL_INPUT if the itype argument is not recognized or the interpolation module has already
been initialized

Notes: The Hermite interpolation module is described in the Section Hermite interpolation module, and the
Lagrange interpolation module is described in the Section Lagrange interpolation module.

This routine frees any previously-allocated interpolation module, and re-creates one according to the specified
argument. Thus any previous calls to ERKStepSetInterpolantDegree() will be nullified.

This routine must be called after the call to ERKStepCreate(). After the first call to ERKStepEvolve()
the interpolation type may not be changed without first calling ERKStepReInit().

If this routine is not called, the Hermite interpolation module will be used.

int ERKStepSetInterpolantDegree(void* arkode_mem, int degree)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• degree – requested polynomial degree.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory or interpolation module are NULL

• ARK_INTERP_FAIL if this is called after ERKStepEvolve()

• ARK_ILL_INPUT if an argument has an illegal value or the interpolation module has already been
initialized

Notes: Allowed values are between 0 and 5.

This routine should be called after ERKStepCreate() and before ERKStepEvolve(). After the
first call to ERKStepEvolve() the interpolation degree may not be changed without first calling
ERKStepReInit().

If a user calls both this routine and ERKStepSetInterpolantType(), then
ERKStepSetInterpolantType() must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by ERKStep will be the minimum of 𝑞 − 1 and
the input degree, where 𝑞 is the order of accuracy for the time integration method.

int ERKStepSetDenseOrder(void* arkode_mem, int dord)
This function is deprecated, and will be removed in a future release. Users should transition to calling
ERKStepSetInterpolantDegree() instead.

int ERKStepSetDiagnostics(void* arkode_mem, FILE* diagfp)
Specifies the file pointer for a diagnostics file where all ERKStep step adaptivity and solver information is
written.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• diagfp – pointer to the diagnostics output file.

Return value:

• ARK_SUCCESS if successful
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• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to
a unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

int ERKStepSetErrFile(void* arkode_mem, FILE* errfp)
Specifies a pointer to the file where all ERKStep warning and error messages will be written if the default in-
ternal error handling function is used.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• errfp – pointer to the output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the ERKStep mem-
ory pointer is NULL). This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for subse-
quent error messages.

int ERKStepSetErrHandlerFn(void* arkode_mem, ARKErrHandlerFn ehfun, void* eh_data)
Specifies the optional user-defined function to be used in handling error messages.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• ehfun – name of user-supplied error handler function.

• eh_data – pointer to user data passed to ehfun every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Error messages indicating that the ERKStep solver memory is NULL will always be directed to
stderr.

int ERKStepSetFixedStep(void* arkode_mem, realtype hfixed)
Disabled time step adaptivity within ERKStep, and specifies the fixed time step size to use for all internal
steps.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hfixed – value of the fixed step size to use.
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Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass 0.0 to return ERKStep to the default (adaptive-step) mode.

Use of this function is not recommended, since we it gives no assurance of the validity of the computed solu-
tions. It is primarily provided for code-to-code verification testing purposes.

When using ERKStepSetFixedStep(), any values provided to the functions
ERKStepSetInitStep(), ERKStepSetAdaptivityFn(), ERKStepSetMaxErrTestFails(),
ERKStepSetAdaptivityMethod(), ERKStepSetCFLFraction(), ERKStepSetErrorBias(),
ERKStepSetFixedStepBounds(), ERKStepSetMaxEFailGrowth(),
ERKStepSetMaxFirstGrowth(), ERKStepSetMaxGrowth(), ERKStepSetMinReduction(),
ERKStepSetSafetyFactor(), ERKStepSetSmallNumEFails() and
ERKStepSetStabilityFn() will be ignored, since temporal adaptivity is disabled.

If both ERKStepSetFixedStep() and ERKStepSetStopTime() are used, then the fixed step size will
be used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ERKStepSetFixedStep() must be made prior to call-
ing ERKStepEvolve() to resume integration.

It is not recommended that ERKStepSetFixedStep() be used in concert with
ERKStepSetMaxStep() or ERKStepSetMinStep(), since at best those latter two routines will
provide no useful information to the solver, and at worst they may interfere with the desired fixed step size.

int ERKStepSetInitStep(void* arkode_mem, realtype hin)
Specifies the initial time step size ERKStep should use after initialization, re-initialization, or resetting.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hin – value of the initial step to be attempted (̸= 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass 0.0 to use the default value.

By default, ERKStep estimates the initial step size to be the solution ℎ of the equation
⃦⃦⃦
ℎ2𝑦
2

⃦⃦⃦
= 1, where 𝑦 is

an estimated value of the second derivative of the solution at t0.

This routine will also reset the step size and error history.

int ERKStepSetMaxHnilWarns(void* arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that 𝑡 + ℎ = 𝑡 on the next internal
step, before ERKStep will instead return with an error.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• mxhnil – maximum allowed number of warning messages (> 0).

Return value:

170 Chapter 5. Using ERKStep for C and C++ Applications



User Documentation for ARKode, v4.7.0

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

int ERKStepSetMaxNumSteps(void* arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ERKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• mxsteps – maximum allowed number of internal steps.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Passing mxsteps = 0 results in ERKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int ERKStepSetMaxStep(void* arkode_mem, realtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hmax – maximum absolute value of the time step size (≥ 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass hmax ≤ 0.0 to set the default value of∞.

int ERKStepSetMinStep(void* arkode_mem, realtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hmin – minimum absolute value of the time step size (≥ 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass hmin ≤ 0.0 to set the default value of 0.
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int ERKStepSetStopTime(void* arkode_mem, realtype tstop)
Specifies the value of the independent variable 𝑡 past which the solution is not to proceed.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tstop – stopping time for the integrator.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default is that no stop time is imposed.

int ERKStepSetUserData(void* arkode_mem, void* user_data)
Specifies the user data block user_data and attaches it to the main ERKStep memory block.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• user_data – pointer to the user data.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argu-
ment; otherwise NULL is passed.

int ERKStepSetMaxErrTestFails(void* arkode_mem, int maxnef)
Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• maxnef – maximum allowed number of error test failures (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 7; set maxnef ≤ 0 to specify this default.

int ERKStepSetConstraints(void* arkode_mem, N_Vector constraints)
Specifies a vector defining inequality constraints for each component of the solution vector 𝑦.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• constraints – vector of constraint flags. If constraints[i] is

– 0.0 then no constraint is imposed on 𝑦𝑖
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– 1.0 then 𝑦𝑖 will be constrained to be 𝑦𝑖 ≥ 0.0

– -1.0 then 𝑦𝑖 will be constrained to be 𝑦𝑖 ≤ 0.0

– 2.0 then 𝑦𝑖 will be constrained to be 𝑦𝑖 > 0.0

– -2.0 then 𝑦𝑖 will be constrained to be 𝑦𝑖 < 0.0

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if the constraints vector contains illegal values

Notes: The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint
checking to be performed. However, a call with 0.0 in all components of constraints will result in an ille-
gal input return. A NULL constraints vector will disable constraint checking.

After a call to ERKStepResize() inequality constraint checking will be disabled and a call to
ERKStepSetConstraints() is required to re-enable constraint checking.

Since constraint-handling is performed through cutting time steps that would violate the constraints, it
is possible that this feature will cause some problems to fail due to an inability to enforce constraints
even at the minimum time step size. Additionally, the features ERKStepSetConstraints() and
ERKStepSetFixedStep() are incompatible, and should not be used simultaneously.

int ERKStepSetMaxNumConstrFails(void* arkode_mem, int maxfails)
Specifies the maximum number of constraint failures in a step before ERKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• maxfails – maximum allowed number of constrain failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

Notes: Passing maxfails <= 0 results in ERKStep using the default value (10).

5.5.5.2 Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ERKStepSetOrder() 4
Set explicit RK table ERKStepSetTable() internal
Specify explicit RK table number ERKStepSetTableNum() internal

int ERKStepSetOrder(void* arkode_mem, int ord)
Specifies the order of accuracy for the ERK integration method.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• ord – requested order of accuracy.

Return value:

• ARK_SUCCESS if successful
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• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The allowed values are 2 ≤ ord ≤ 8. Any illegal input will result in the default value of 4.

Since ord affects the memory requirements for the internal ERKStep memory block, it cannot be changed after
the first call to ERKStepEvolve(), unless ERKStepReInit() is called.

int ERKStepSetTable(void* arkode_mem, ARKodeButcherTable B)
Specifies a customized Butcher table for the ERK method.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• B – the Butcher table for the explicit RK method.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables see
Butcher Table Data Structure.

No error checking is performed to ensure that either the method order p or the embedding order q specified in
the Butcher table structure correctly describe the coefficients in the Butcher table.

Error checking is performed to ensure that the Butcher table is strictly lower-triangular (i.e. that it specifies an
ERK method).

If the Butcher table does not contain an embedding, the user must call ERKStepSetFixedStep() to en-
able fixed-step mode and set the desired time step size.

int ERKStepSetTableNum(void* arkode_mem, int etable)
Indicates to use a specific built-in Butcher table for the ERK method.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• etable – index of the Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: etable should match an existing explicit method from the section Explicit Butcher tables. Error-
checking is performed to ensure that the table exists, and is not implicit.

5.5.5.3 Optional inputs for time step adaptivity

The mathematical explanation of ARKode’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in the section Time step adaptivity.
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Optional input Function name Default
Set a custom time step adaptivity function ERKStepSetAdaptivityFn() internal
Choose an existing time step adaptivity method ERKStepSetAdaptivityMethod() 0
Explicit stability safety factor ERKStepSetCFLFraction() 0.5
Time step error bias factor ERKStepSetErrorBias() 1.5
Bounds determining no change in step size ERKStepSetFixedStepBounds() 1.0 1.5
Maximum step growth factor on error test fail ERKStepSetMaxEFailGrowth() 0.3
Maximum first step growth factor ERKStepSetMaxFirstGrowth() 10000.0
Maximum allowed general step growth factor ERKStepSetMaxGrowth() 20.0
Minimum allowed step reduction factor on error test fail ERKStepSetMinReduction() 0.1
Time step safety factor ERKStepSetSafetyFactor() 0.96
Error fails before MaxEFailGrowth takes effect ERKStepSetSmallNumEFails() 2
Explicit stability function ERKStepSetStabilityFn() none

int ERKStepSetAdaptivityFn(void* arkode_mem, ARKAdaptFn hfun, void* h_data)
Sets a user-supplied time-step adaptivity function.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hfun – name of user-supplied adaptivity function.

• h_data – pointer to user data passed to hfun every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should focus on accuracy-based time step estimation; for stability based time steps the
function ERKStepSetStabilityFn() should be used instead.

int ERKStepSetAdaptivityMethod(void* arkode_mem, int imethod, int idefault, int pq, real-
type* adapt_params)

Specifies the method (and associated parameters) used for time step adaptivity.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• imethod – accuracy-based adaptivity method choice (0 ≤ imethod ≤ 5): 0 is PID, 1 is PI, 2 is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

• idefault – flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

• pq – flag denoting whether to use the embedding order of accuracy p (0) or the method order of ac-
curacy q (1) within the adaptivity algorithm. p is the default.

• adapt_params[0] – 𝑘1 parameter within accuracy-based adaptivity algorithms.

• adapt_params[1] – 𝑘2 parameter within accuracy-based adaptivity algorithms.

• adapt_params[2] – 𝑘3 parameter within accuracy-based adaptivity algorithms.

Return value:

• ARK_SUCCESS if successful
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• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: If custom parameters are supplied, they will be checked for validity against published stability inter-
vals. If other parameter values are desired, it is recommended to instead provide a custom function through a
call to ERKStepSetAdaptivityFn().

int ERKStepSetCFLFraction(void* arkode_mem, realtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• cfl_frac – maximum allowed fraction of explicitly stable step (default is 0.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ERKStepSetErrorBias(void* arkode_mem, realtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• bias – bias applied to error in accuracy-based time step estimation (default is 1.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value below 1.0 will imply a reset to the default value.

int ERKStepSetFixedStepBounds(void* arkode_mem, realtype lb, realtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• lb – lower bound on window to leave step size fixed (default is 1.0).

• ub – upper bound on window to leave step size fixed (default is 1.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any interval not containing 1.0 will imply a reset to the default values.
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int ERKStepSetMaxEFailGrowth(void* arkode_mem, realtype etamxf)
Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• etamxf – time step reduction factor on multiple error fails (default is 0.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

int ERKStepSetMaxFirstGrowth(void* arkode_mem, realtype etamx1)
Specifies the maximum allowed growth factor in step size following the very first integration step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• etamx1 – maximum allowed growth factor after the first time step (default is 10000.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value ≤ 1.0 will imply a reset to the default value.

int ERKStepSetMaxGrowth(void* arkode_mem, realtype mx_growth)
Specifies the maximum allowed growth factor in step size between consecutive steps in the integration process.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• mx_growth – maximum allowed growth factor between consecutive time steps (default is 20.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value ≤ 1.0 will imply a reset to the default value.

int ERKStepSetMinReduction(void* arkode_mem, realtype eta_min)
Specifies the minimum allowed reduction factor in step size between step attempts, resulting from a temporal
error failure in the integration process.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• eta_min – minimum allowed reduction factor time step after an error test failure (default is 0.1).

Return value:
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• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value ≥ 1.0 or ≤ 0.0 will imply a reset to the default value.

int ERKStepSetSafetyFactor(void* arkode_mem, realtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• safety – safety factor applied to accuracy-based time step (default is 0.96).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ERKStepSetSmallNumEFails(void* arkode_mem, int small_nef)
Specifies the threshold for “multiple” successive error failures before the etamxf parameter from
ERKStepSetMaxEFailGrowth() is applied.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• small_nef – bound to determine ‘multiple’ for etamxf (default is 2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ERKStepSetStabilityFn(void* arkode_mem, ARKExpStabFn EStab, void* estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE sys-
tem.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• EStab – name of user-supplied stability function.

• estab_data – pointer to user data passed to EStab every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value
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Notes: This function should return an estimate of the absolute value of the maximum stable time step for the
the ODE system. It is not required, since accuracy-based adaptivity may be sufficient for retaining stability, but
this can be quite useful for problems where the right-hand side function 𝑓(𝑡, 𝑦) may contain stiff terms.

5.5.5.4 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in the section Rootfinding.

Optional input Function name Default
Direction of zero-crossings to monitor ERKStepSetRootDirection() both
Disable inactive root warnings ERKStepSetNoInactiveRootWarn() enabled

int ERKStepSetRootDirection(void* arkode_mem, int* rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• rootdir – state array of length nrtfn, the number of root functions 𝑔𝑖 (the value of nrtfn was sup-
plied in the call to ERKStepRootInit()). If rootdir[i] == 0 then crossing in either di-
rection for 𝑔𝑖 should be reported. A value of +1 or -1 indicates that the solver should report only
zero-crossings where 𝑔𝑖 is increasing or decreasing, respectively.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default behavior is to monitor for both zero-crossing directions.

int ERKStepSetNoInactiveRootWarn(void* arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integra-
tion.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

Notes: ERKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components 𝑔𝑖 are zero at the initial time). However, if it appears that some 𝑔𝑖 is identically zero at the initial
time (i.e., 𝑔𝑖 is zero at the initial time and after the first step), ERKStep will issue a warning which can be dis-
abled with this optional input function.

5.5.6 Interpolated output function

An optional function ERKStepGetDky() is available to obtain additional values of solution-related quantities.
This function should only be called after a successful return from ERKStepEvolve(), as it provides interpolated
values either of 𝑦 or of its derivatives (up to the 5th derivative) interpolated to any value of 𝑡 in the last internal step
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taken by ERKStepEvolve(). Internally, this dense output algorithm is identical to the algorithm used for the
maximum order implicit predictors, described in the section Maximum order predictor, except that derivatives of
the polynomial model may be evaluated upon request.

int ERKStepGetDky(void* arkode_mem, realtype t, int k, N_Vector dky)
Computes the k-th derivative of the function 𝑦 at the time t, i.e. 𝑑(𝑘)

𝑑𝑡(𝑘) 𝑦(𝑡), for values of the independent vari-
able satisfying 𝑡𝑛 − ℎ𝑛 ≤ 𝑡 ≤ 𝑡𝑛, with 𝑡𝑛 as current internal time reached, and ℎ𝑛 is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to ERKStepSetInterpolantDegree(). The user may request k in the
range {0,. . . ,*min(degree, kmax)*} where kmax depends on the choice of interpolation module. For Hermite
interpolants kmax = 5 and for Lagrange interpolants kmax = 3.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• t – the value of the independent variable at which the derivative is to be evaluated.

• k – the derivative order requested.

• dky – output vector (must be allocated by the user).

Return value:

• ARK_SUCCESS if successful

• ARK_BAD_K if k is not in the range {0,. . . ,*min(degree, kmax)*}.

• ARK_BAD_T if t is not in the interval [𝑡𝑛 − ℎ𝑛, 𝑡𝑛]

• ARK_BAD_DKY if the dky vector was NULL

• ARK_MEM_NULL if the ERKStep memory is NULL

Notes: It is only legal to call this function after a successful return from ERKStepEvolve().

A user may access the values 𝑡𝑛 and ℎ𝑛 via the functions ERKStepGetCurrentTime() and
ERKStepGetLastStep(), respectively.

5.5.7 Optional output functions

ERKStep provides an extensive set of functions that can be used to obtain solver performance information. We orga-
nize these into groups:

1. SUNDIALS version information accessor routines are in the subsection SUNDIALS version information,

2. General ERKStep output routines are in the subsection Main solver optional output functions,

3. Output routines regarding root-finding results are in the subsection Rootfinding optional output functions,

4. General usability routines (e.g. to print the current ERKStep parameters, or output the current Butcher table)
are in the subsection General usability functions.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of var-
ious methods inside ERKStep. For example:

• The counters nsteps and nf_evals provide a rough measure of the overall cost of a given run, and can be com-
pared between runs with different solver options to suggest which set of options is the most efficient.

• The ratio nsteps/step_attempts can measure the quality of the time step adaptivity algorithm, since a poor algo-
rithm will result in more failed steps, and hence a lower ratio.
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It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

5.5.7.1 SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:

• version – character array to hold the SUNDIALS version information.

• len – allocated length of the version character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS version

Notes: An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber(int *major, int *minor, int *patch, char *label, int len)
This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with
the release label if applicable.

Arguments:

• major – SUNDIALS release major version number.

• minor – SUNDIALS release minor version number.

• patch – SUNDIALS release patch version number.

• label – string to hold the SUNDIALS release label.

• len – allocated length of the label character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS label

Notes: An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.
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5.5.7.2 Main solver optional output functions

Optional output Function name
Size of ERKStep real and integer workspaces ERKStepGetWorkSpace()
Cumulative number of internal steps ERKStepGetNumSteps()
Actual initial time step size used ERKStepGetActualInitStep()
Step size used for the last successful step ERKStepGetLastStep()
Step size to be attempted on the next step ERKStepGetCurrentStep()
Current internal time reached by the solver ERKStepGetCurrentTime()
Suggested factor for tolerance scaling ERKStepGetTolScaleFactor()
Error weight vector for state variables ERKStepGetErrWeights()
Single accessor to many statistics at once ERKStepGetStepStats()
Name of constant associated with a return flag ERKStepGetReturnFlagName()
No. of explicit stability-limited steps ERKStepGetNumExpSteps()
No. of accuracy-limited steps ERKStepGetNumAccSteps()
No. of attempted steps ERKStepGetNumStepAttempts()
No. of calls to f function ERKStepGetNumRhsEvals()
No. of local error test failures that have occurred ERKStepGetNumErrTestFails()
Current ERK Butcher table ERKStepGetCurrentButcherTable()
Estimated local truncation error vector ERKStepGetEstLocalErrors()
Single accessor to many statistics at once ERKStepGetTimestepperStats()
Number of constraint test failures ERKStepGetNumConstrFails()

int ERKStepGetWorkSpace(void* arkode_mem, long int* lenrw, long int* leniw)
Returns the ERKStep real and integer workspace sizes.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• lenrw – the number of realtype values in the ERKStep workspace.

• leniw – the number of integer values in the ERKStep workspace.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumSteps(void* arkode_mem, long int* nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nsteps – number of steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetActualInitStep(void* arkode_mem, realtype* hinused)
Returns the value of the integration step size used on the first step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.
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• hinused – actual value of initial step size.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: Even if the value of the initial integration step was specified by the user through a call to
ERKStepSetInitStep(), this value may have been changed by ERKStep to ensure that the step size fell
within the prescribed bounds (ℎ𝑚𝑖𝑛 ≤ ℎ0 ≤ ℎ𝑚𝑎𝑥), or to satisfy the local error test condition.

int ERKStepGetLastStep(void* arkode_mem, realtype* hlast)
Returns the integration step size taken on the last successful internal step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hlast – step size taken on the last internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetCurrentStep(void* arkode_mem, realtype* hcur)
Returns the integration step size to be attempted on the next internal step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hcur – step size to be attempted on the next internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetCurrentTime(void* arkode_mem, realtype* tcur)
Returns the current internal time reached by the solver.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetTolScaleFactor(void* arkode_mem, realtype* tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tolsfac – suggested scaling factor for user-supplied tolerances.

Return value:
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• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetErrWeights(void* arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• eweight – solution error weights at the current time.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: The user must allocate space for eweight, that will be filled in by this function.

int ERKStepGetStepStats(void* arkode_mem, long int* nsteps, realtype* hinused, realtype* hlast, real-
type* hcur, realtype* tcur)

Returns many of the most useful optional outputs in a single call.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nsteps – number of steps taken in the solver.

• hinused – actual value of initial step size.

• hlast – step size taken on the last internal step.

• hcur – step size to be attempted on the next internal step.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

char *ERKStepGetReturnFlagName(long int flag)
Returns the name of the ERKStep constant corresponding to flag.

Arguments:

• flag – a return flag from an ERKStep function.

Return value: The return value is a string containing the name of the corresponding constant.

int ERKStepGetNumExpSteps(void* arkode_mem, long int* expsteps)
Returns the cumulative number of stability-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• expsteps – number of stability-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL
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int ERKStepGetNumAccSteps(void* arkode_mem, long int* accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• accsteps – number of accuracy-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumStepAttempts(void* arkode_mem, long int* step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• step_attempts – number of steps attempted by solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumRhsEvals(void* arkode_mem, long int* nf_evals)
Returns the number of calls to the user’s right-hand side function, 𝑓 (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nf_evals – number of calls to the user’s 𝑓(𝑡, 𝑦) function.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumErrTestFails(void* arkode_mem, long int* netfails)
Returns the number of local error test failures that have occurred (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• netfails – number of error test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetCurrentButcherTable(void* arkode_mem, ARKodeButcherTable *B)
Returns the Butcher table currently in use by the solver.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• B – pointer to Butcher table structure.

Return value:

5.5. ERKStep User-callable functions 185



User Documentation for ARKode, v4.7.0

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: The ARKodeButcherTable data structure is defined as a pointer to the following C structure:

typedef struct ARKodeButcherTableMem {

int q; /* method order of accuracy */
int p; /* embedding order of accuracy */
int stages; /* number of stages */
realtype **A; /* Butcher table coefficients */
realtype *c; /* canopy node coefficients */
realtype *b; /* root node coefficients */
realtype *d; /* embedding coefficients */

} *ARKodeButcherTable;

For more details see Butcher Table Data Structure.

int ERKStepGetEstLocalErrors(void* arkode_mem, N_Vector ele)
Returns the vector of estimated local truncation errors for the current step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• ele – vector of estimated local truncation errors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ERKStepEvolve() (i.e. it returned a non-
negative value).

The ele vector, together with the eweight vector from ERKStepGetErrWeights(), can be used to deter-
mine how the various components of the system contributed to the estimated local error test. Specifically, that
error test uses the WRMS norm of a vector whose components are the products of the components of these
two vectors. Thus, for example, if there were recent error test failures, the components causing the failures are
those with largest values for the products, denoted loosely as eweight[i]*ele[i].

int ERKStepGetTimestepperStats(void* arkode_mem, long int* expsteps, long int* accsteps, long
int* step_attempts, long int* nf_evals, long int* netfails)

Returns many of the most useful time-stepper statistics in a single call.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• expsteps – number of stability-limited steps taken in the solver.

• accsteps – number of accuracy-limited steps taken in the solver.

• step_attempts – number of steps attempted by the solver.

• nf_evals – number of calls to the user’s 𝑓(𝑡, 𝑦) function.

• netfails – number of error test failures.

Return value:
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• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumConstrFails(void* arkode_mem, long int* nconstrfails)
Returns the cumulative number of constraint test failures (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nconstrfails – number of constraint test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

5.5.7.3 Rootfinding optional output functions

Optional output Function name
Array showing roots found ERKStepGetRootInfo()
No. of calls to user root function ERKStepGetNumGEvals()

int ERKStepGetRootInfo(void* arkode_mem, int* rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• rootsfound – array of length nrtfn with the indices of the user functions 𝑔𝑖 found to have a root
(the value of nrtfn was supplied in the call to ERKStepRootInit()). For 𝑖 = 0 . . . nrtfn-1,
rootsfound[i] is nonzero if 𝑔𝑖 has a root, and 0 if not.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: The user must allocate space for rootsfound prior to calling this function.

For the components of 𝑔𝑖 for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that 𝑔𝑖 is increasing, while a value of -1 indicates a decreasing 𝑔𝑖.

int ERKStepGetNumGEvals(void* arkode_mem, long int* ngevals)
Returns the cumulative number of calls made to the user’s root function 𝑔.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• ngevals – number of calls made to 𝑔 so far.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL
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5.5.7.4 General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters, to retrieve stored
Butcher tables, write the current Butcher table, or even to test a provided Butcher table to determine its analytical or-
der of accuracy. While none of these would typically be called during the course of solving an initial value problem,
these may be useful for users wishing to better understand ERKStep and/or specific Runge-Kutta methods.

Optional routine Function name
Output all ERKStep solver parameters ERKStepWriteParameters()
Output the current Butcher table ERKStepWriteButcher()

int ERKStepWriteParameters(void* arkode_mem, FILE *fp)
Outputs all ERKStep solver parameters to the provided file pointer.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• fp – pointer to use for printing the solver parameters.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

int ERKStepWriteButcher(void* arkode_mem, FILE *fp)
Outputs the current Butcher table to the provided file pointer.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• fp – pointer to use for printing the Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all pro-
cesses would be identical.

5.5.8 ERKStep re-initialization function

To reinitialize the ERKStep module for the solution of a new problem, where a prior call to ERKStepCreate()
has been made, the user must call the function ERKStepReInit(). The new problem must have the same size
as the previous one. This routine retains the current settings for all ERKstep module options and performs the same
input checking and initializations that are done in ERKStepCreate(), but it performs no memory allocation as
is assumes that the existing internal memory is sufficient for the new problem. A call to this re-initialization routine
deletes the solution history that was stored internally during the previous integration. Following a successful call to
ERKStepReInit(), call ERKStepEvolve() again for the solution of the new problem.
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The use of ERKStepReInit() requires that the number of Runge Kutta stages, denoted by s, be no larger for the
new problem than for the previous problem. This condition is automatically fulfilled if the method order q is left un-
changed.

One important use of the ERKStepReInit() function is in the treating of jump discontinuities in the RHS func-
tion. Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and
restart the integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the
discontinuity is known, simply make that location a value of tout. To stop when the location of the discontinuity
is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS function not in-
corporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS function (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int ERKStepReInit(void* arkode_mem, ARKRhsFn f, realtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the ERKStep time-stepper module.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• f – the name of the C function (of type ARKRhsFn()) defining the right-hand side function in �̇� =
𝑓(𝑡, 𝑦).

• t0 – the initial value of 𝑡.

• y0 – the initial condition vector 𝑦(𝑡0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ERKStepReInit() also sends an error message to the error handler function.

5.5.9 ERKStep reset function

To reset the ERKStep module to a particular independent variable value and dependent variable vector for the contin-
ued solution of a problem, where a prior call to ERKStepCreate() has been made, the user must call the function
ERKStepReset(). Like ERKStepReInit() this routine retains the current settings for all ERKStep module
options and performs no memory allocations but, unlike ERKStepReInit(), this routine performs only a sub-
set of the input checking and initializations that are done in ERKStepCreate(). In particular this routine retains
all internal counter values and the step size/error history. Following a successful call to ERKStepReset(), call
ERKStepEvolve() again to continue solving the problem. By default the next call to ERKStepEvolve() will
use the step size computed by ERKStep prior to calling ERKStepReset(). To set a different step size or have
ERKStep estimate a new step size use ERKStepSetInitStep().

One important use of the ERKStepReset() function is in the treating of jump discontinuities in the RHS func-
tions. Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and
restart the integrator with a readjusted ODE model, using a call to ERKStepReset(). To stop when the location
of the discontinuity is known, simply make that location a value of tout. To stop when the location of the disconti-
nuity is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not
incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
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subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int ERKStepReset(void* arkode_mem, realtype tR, N_Vector yR)
Resets the current ERKStep time-stepper module state to the provided independent variable value and depen-
dent variable vector.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tR – the value of the independent variable 𝑡.

• yR – the value of the dependent variable vector 𝑦(𝑡𝑅).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: By default the next call to ERKStepEvolve() will use the step size computed by ERKStep prior
to calling ERKStepReset(). To set a different step size or have ERKStep estimate a new step size use
ERKStepSetInitStep().

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ERKStepReset() also sends an error message to the error handler function.

5.5.10 ERKStep system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the ERKStep integrator may be “resized”
between integration steps, through calls to the ERKStepResize() function. This function modifies ERKStep’s
internal memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics.
It is assumed that the dynamical time scales before and after the vector resize will be comparable, so that all time-
stepping heuristics prior to calling ERKStepResize() remain valid after the call. If instead the dynamics should
be recomputed from scratch, the ERKStep memory structure should be deleted with a call to ERKStepFree(), and
recreated with a call to ERKStepCreate().

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn()) is not supplied (i.e. is set to NULL), then all existing vectors internal to ERKStep will be
destroyed and re-cloned from the new input vector.

In the case that the dynamical time scale should be modified slightly from the previous time scale, an input hscale
is allowed, that will rescale the upcoming time step by the specified factor. If a value hscale ≤ 0 is specified, the
default of 1.0 will be used.

int ERKStepResize(void* arkode_mem, N_Vector ynew, realtype hscale, realtype t0, ARKVecResizeFn re-
size, void* resize_data)

Re-initializes ERKStep with a different state vector but with comparable dynamical time scale.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.
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• ynew – the newly-sized solution vector, holding the current dependent variable values 𝑦(𝑡0).

• hscale – the desired scaling factor for the dynamical time scale (i.e. the next step will be of size
h*hscale).

• t0 – the current value of the independent variable 𝑡0 (this must be consistent with ynew).

• resize – the user-supplied vector resize function (of type ARKVecResizeFn().

• resize_data – the user-supplied data structure to be passed to resize when modifying internal ERK-
Step vectors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, ERKStepResize() also sends an error message to the error handler function.

If inequality constraint checking is enabled a call to ERKStepResize() will disable constraint checking. A
call to ERKStepSetConstraints() is required to re-enable constraint checking.

5.5.10.1 Resizing the absolute tolerance array

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call to
ERKStepResize(), so the new absolute tolerance vector should be re-set following each call to
ERKStepResize() through a new call to ERKStepSVtolerances().

If scalar-valued tolerances or a tolerance function was specified through either ERKStepSStolerances() or
ERKStepWFtolerances(), then these will remain valid and no further action is necessary.

Note: For an example showing usage of the similar ARKStepResize() routine, see the supplied serial C exam-
ple problem, ark_heat1D_adapt.c.

5.6 User-supplied functions

The user-supplied functions for ERKStep consist of:

• a function that defines the ODE (required),

• a function that handles error and warning messages (optional),

• a function that provides the error weight vector (optional),

• a function that handles adaptive time step error control (optional),

• a function that handles explicit time step stability (optional),

• a function that defines the root-finding problem(s) to solve (optional),

• a function that handles vector resizing operations, if the underlying vector structure supports resizing (as op-
posed to deletion/recreation), and if the user plans to call ERKStepResize() (optional).
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5.6.1 ODE right-hand side

The user must supply a function of type ARKRhsFn to specify the right-hand side of the ODE system:

typedef int (*ARKRhsFn)(realtype t, N_Vector y, N_Vector ydot, void* user_data)
This function computes the ODE right-hand side for a given value of the independent variable 𝑡 and state vec-
tor 𝑦.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• ydot – the output vector that forms the ODE RHS 𝑓(𝑡, 𝑦).

• user_data – the user_data pointer that was passed to ERKStepSetUserData().

Return value: An ARKRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case ERKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARK_RHSFUNC_FAIL is returned).

Notes: Allocation of memory for ydot is handled within the ERKStep module.

The vector ydot may be uninitialized on input; it is the user’s responsibility to fill this entire vector with mean-
ingful values.

A recoverable failure error return from the ARKRhsFn is typically used to flag a value of the dependent vari-
able 𝑦 that is “illegal” in some way (e.g., negative where only a non-negative value is physically meaningful).
If such a return is made, ERKStep will attempt to recover by reducing the step size in order to avoid this re-
coverable error return. There are some situations in which recovery is not possible even if the right-hand side
function returns a recoverable error flag. One is when this occurs at the very first call to the ARKRhsFn (in
which case ERKStep returns ARK_FIRST_RHSFUNC_ERR).

5.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
ERKStepSetErrFile()), the user may provide a function of type ARKErrHandlerFn to process any such
messages.

typedef void (*ARKErrHandlerFn)(int error_code, const char* module, const char* function, char* msg,
void* user_data)

This function processes error and warning messages from ERKStep and its sub-modules.

Arguments:

• error_code – the error code.

• module – the name of the ERKStep module reporting the error.

• function – the name of the function in which the error occurred.

• msg – the error message.

• user_data – a pointer to user data, the same as the eh_data parameter that was passed to
ERKStepSetErrHandlerFn().

Return value: An ARKErrHandlerFn function has no return value.

Notes: error_code is negative for errors and positive (ARK_WARNING) for warnings. If a function that returns
a pointer to memory encounters an error, it sets error_code to 0.
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5.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of
type ARKEwtFn to compute a vector ewt containing the weights in the WRMS norm ‖𝑣‖𝑊𝑅𝑀𝑆 =(︁

1
𝑛

∑︀𝑛
𝑖=1 (𝑒𝑤𝑡𝑖 𝑣𝑖)

2
)︁1/2

. These weights will be used in place of those defined in the section Error norms.

typedef int (*ARKEwtFn)(N_Vector y, N_Vector ewt, void* user_data)
This function computes the WRMS error weights for the vector 𝑦.

Arguments:

• y – the dependent variable vector at which the weight vector is to be computed.

• ewt – the output vector containing the error weights.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ERKStepSetUserData().

Return value: An ARKEwtFn function must return 0 if it successfully set the error weights, and -1 otherwise.

Notes: Allocation of memory for ewt is handled within ERKStep.

The error weight vector must have all components positive. It is the user’s responsibility to perform this test
and return -1 if it is not satisfied.

5.6.4 Time step adaptivity function

As an alternative to using one of the built-in time step adaptivity methods for controlling solution error, the user may
provide a function of type ARKAdaptFn to compute a target step size ℎ for the next integration step. These steps
should be chosen as the maximum value such that the error estimates remain below 1.

typedef int (*ARKAdaptFn)(N_Vector y, realtype t, realtype h1, realtype h2, realtype h3, realtype e1, real-
type e2, realtype e3, int q, int p, realtype* hnew, void* user_data)

This function implements a time step adaptivity algorithm that chooses ℎ satisfying the error tolerances.

Arguments:

• y – the current value of the dependent variable vector.

• t – the current value of the independent variable.

• h1 – the current step size, 𝑡𝑛 − 𝑡𝑛−1.

• h2 – the previous step size, 𝑡𝑛−1 − 𝑡𝑛−2.

• h3 – the step size 𝑡𝑛−2 − 𝑡𝑛−3.

• e1 – the error estimate from the current step, 𝑛.

• e2 – the error estimate from the previous step, 𝑛− 1.

• e3 – the error estimate from the step 𝑛− 2.

• q – the global order of accuracy for the method.

• p – the global order of accuracy for the embedded method.

• hnew – the output value of the next step size.

• user_data – a pointer to user data, the same as the h_data parameter that was passed to
ERKStepSetAdaptivityFn().

Return value: An ARKAdaptFn function should return 0 if it successfully set the next step size, and a non-
zero value otherwise.

5.6. User-supplied functions 193



User Documentation for ARKode, v4.7.0

5.6.5 Explicit stability function

A user may supply a function to predict the maximum stable step size for the explicit Runge Kutta method on this
problem. While the accuracy-based time step adaptivity algorithms may be sufficient for retaining a stable solution
to the ODE system, these may be inefficient if 𝑓(𝑡, 𝑦) contains moderately stiff terms. In this scenario, a user may
provide a function of type ARKExpStabFn to provide this stability information to ERKStep. This function must
set the scalar step size satisfying the stability restriction for the upcoming time step. This value will subsequently be
bounded by the user-supplied values for the minimum and maximum allowed time step, and the accuracy-based time
step.

typedef int (*ARKExpStabFn)(N_Vector y, realtype t, realtype* hstab, void* user_data)
This function predicts the maximum stable step size for the ODE system.

Arguments:

• y – the current value of the dependent variable vector.

• t – the current value of the independent variable.

• hstab – the output value with the absolute value of the maximum stable step size.

• user_data – a pointer to user data, the same as the estab_data parameter that was passed to
ERKStepSetStabilityFn().

Return value: An ARKExpStabFn function should return 0 if it successfully set the upcoming stable step size,
and a non-zero value otherwise.

Notes: If this function is not supplied, or if it returns hstab ≤ 0.0, then ERKStep will assume that there is no
explicit stability restriction on the time step size.

5.6.6 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a function of
type ARKRootFn.

typedef int (*ARKRootFn)(realtype t, N_Vector y, realtype* gout, void* user_data)
This function implements a vector-valued function 𝑔(𝑡, 𝑦) such that the roots of the nrtfn components 𝑔𝑖(𝑡, 𝑦)
are sought.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• gout – the output array, of length nrtfn, with components 𝑔𝑖(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ERKStepSetUserData().

Return value: An ARKRootFn function should return 0 if successful or a non-zero value if an error occurred
(in which case the integration is halted and ERKStep returns ARK_RTFUNC_FAIL).

Notes: Allocation of memory for gout is handled within ERKStep.

5.6.7 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the ERKStep integrator may be “resized” between integration steps, through
calls to the ERKStepResize() function. Typically, when performing adaptive simulations the solution is stored in

194 Chapter 5. Using ERKStep for C and C++ Applications



User Documentation for ARKode, v4.7.0

a customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory.
In these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDI-
ALS and their problem-specific data structure. If this vector kernel includes a function of type ARKVecResizeFn
to resize a given vector implementation, then this function may be supplied to ERKStepResize() so that all in-
ternal ERKStep vectors may be resized, instead of deleting and re-creating them at each call. This resize function
should have the following form:

typedef int (*ARKVecResizeFn)(N_Vector y, N_Vector ytemplate, void* user_data)
This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Arguments:

• y – the vector to resize.

• ytemplate – a vector of the desired size.

• user_data – a pointer to user data, the same as the resize_data parameter that was passed to
ERKStepResize().

Return value: An ARKVecResizeFn function should return 0 if it successfully resizes the vector y, and a non-
zero value otherwise.

Notes: If this function is not supplied, then ERKStep will instead destroy the vector y and clone a new vector y
off of ytemplate.
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Chapter 6

Using MRIStep for C and C++ Applications

This chapter is concerned with the use of the MRIStep time-stepping module for the solution of two-rate initial value
problems (IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the
user’s main program, and provide descriptions of the MRIStep user-callable functions and user-supplied functions.

The example programs described in the companion document [R2018] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKode package examples subdirectory.

MRIStep uses the input and output constants from the shared ARKode infrastructure. These are defined as needed in
this chapter, but for convenience the full list is provided separately in the section Appendix: ARKode Constants.

The relevant information on using MRIStep’s C and C++ interfaces is detailed in the following sub-sections.

6.1 Access to library and header files

At this point, it is assumed that the installation of ARKode, following the procedure described in the section ARKode
Installation Procedure, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must
make reference to the appropriate locations for the library and header files required by ARKode. The relevant library
files are

• libdir/libsundials_arkode.lib,

• libdir/libsundials_nvec*.lib,

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant header
files are located in the subdirectories

• incdir/include/arkode

• incdir/include/sundials

• incdir/include/nvector

• incdir/include/sunmatrix

• incdir/include/sunlinsol

• incdir/include/sunnonlinsol

The directories libdir and incdir are the installation library and include directories, respectively. For a default
installation, these are instdir/lib and instdir/include, respectively, where instdir is the directory
where SUNDIALS was installed (see the section ARKode Installation Procedure for further details).
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6.2 Data Types

The sundials_types.h file contains the definition of the variable type realtype, which is used by the SUN-
DIALS solvers for all floating-point data, the definition of the integer type sunindextype, which is used for vec-
tor and matrix indices, and booleantype, which is used for certain logic operations within SUNDIALS.

6.2.1 Floating point types

The type “realtype” can be set to float, double, or long double, depending on how SUNDIALS was in-
stalled (with the default being double). The user can change the precision of the SUNDIALS solvers’ floating-
point arithmetic at the configuration stage (see the section Configuration options (Unix/Linux)).

Additionally, based on the current precision, sundials_types.h defines the values BIG_REAL to be the
largest value representable as a realtype, SMALL_REAL to be the smallest positive value representable as a
realtype, and UNIT_ROUNDOFF to be the smallest realtype number, 𝜀, such that 1.0 + 𝜀 ̸= 1.0.

Within SUNDIALS, real constants may be set to have the appropriate precision by way of a macro called RCONST.
It is this macro that needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant
with no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a float,
whereas using the suffix “L” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long
double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is
double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the
RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point constants is
precision-independent, except for any calls to precision-specific standard math library functions. Users can, how-
ever, use the types double, float, or long double in their code (assuming that this usage is consistent with
the size of realtype values that are passed to and from SUNDIALS). Thus, a previously existing piece of ANSI C
code can use SUNDIALS without modifying the code to use realtype, so long as the SUNDIALS libraries have
been compiled using the same precision (for details see the section ARKode Installation Procedure).

6.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable int64_t type,
and the user can change it to int32_t at the configuration stage. The configuration system will detect if the com-
piler does not support portable types, and will replace int32_t and int64_t with int, long int, or long
long int as appropriate, to ensure use of the desired sizes on Linux, Mac OS X, and Windows platforms. SUNDI-
ALS currently does not support unsigned integer types for vector and matrix indices, although these could be added
in the future if there is sufficient demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both index stor-
age types except for any calls to index storage-specific external libraries. (Our C and C++ example programs use
sunindextype.) Users can, however, use any one of int, long int, int32_t, int64_t or long long
int in their code, assuming that this usage is consistent with the typedef for sunindextype on their architec-
ture. Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying the code to use
sunindextype, so long as the SUNDIALS libraries use the appropriate index storage type (for details see the sec-
tion ARKode Installation Procedure).
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6.3 Header Files

When using MRIStep, the calling program must include several header files so that various macros and data types
can be used. The header file that is always required is:

• arkode/arkode_mristep.h, the main header file for the MRIStep time-stepping module, which de-
fines the several types and various constants, includes function prototypes, and includes the shared arkode/
arkode.h header file.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype,
sunindextype, and booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not
need to include sundials_types.h directly.

Additionally, the calling program must also include an NVECTOR implementation header file, of the form
nvector/nvector_***.h, corresponding to the user’s preferred data layout and form of parallelism. See
the section Vector Data Structures for details for the appropriate name. This file in turn includes the header file
sundials_nvector.h which defines the abstract N_Vector data type.

If the user wishes to manually select between any of the pre-defined ERK or DIRK Butcher tables as the basis
for a MIS method, these are defined through a set of constants that are enumerated in the header files arkode/
arkode_butcher_erk.h and arkode/arkode_butcher_dirk.h, or if a user wishes to manu-
ally specify a Butcher table, the corresponding ARKodeButcherTable structure is defined in arkode/
arkode_butcher.h. Alternatively, slow-to-fast coupling coefficient tables are enumerated in the header file
arkode/arkode_mristp.h, or if a user wishes to manually specify a coupling table, the corresponding
MRIStepCouplingMem structure is defined in arkode/arkode_mristep.h.

If the user specifies that the slow time scale should be treated implicitly, then each implicit stage will require a non-
linear solver for the resulting system of algebraic equations – the default for this is a modified or inexact Newton
iteration, depending on the user’s choice of linear solver. If using a non-default nonlinear solver module, or when
interacting with a SUNNONLINSOL module directly, the calling program must also include a SUNNONLINSOL
header file, of the form sunnonlinsol/sunnonlinsol_***.h where *** is the name of the nonlinear solver
module (see the section Description of the SUNNonlinearSolver Module for more information). This file in turn in-
cludes the header file sundials_nonlinearsolver.h which defines the abstract SUNNonlinearSolver
data type.

If using a nonlinear solver that requires the solution of a linear system of the form 𝒜𝑥 = 𝑏 (e.g., the default New-
ton iteration), then a linear solver module header file will also be required. The header files corresponding to the
SUNDIALS-provided linear solver modules available for use with ARKode are:

• Direct linear solvers:

– sunlinsol/sunlinsol_dense.h, which is used with the dense linear solver module, SUNLIN-
SOL_DENSE;

– sunlinsol/sunlinsol_band.h, which is used with the banded linear solver module, SUNLIN-
SOL_BAND;

– sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver
module, SUNLINSOL_LAPACKDENSE;

– sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear solver
module, SUNLINSOL_LAPACKBAND;

– sunlinsol/sunlinsol_klu.h, which is used with the KLU sparse linear solver module, SUN-
LINSOL_KLU;

– sunlinsol/sunlinsol_superlumt.h, which is used with the SuperLU_MT sparse linear solver
module, SUNLINSOL_SUPERLUMT;
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– sunlinsol/sunlinsol_superludist.h, which is used with the SuperLU_DIST parallel sparse
linear solver module, SUNLINSOL_SUPERLUDIST;

– sunlinsol/sunlinsol_cusolversp_batchqr.h, which is used with the batched
sparse QR factorization method provided by the NVDIA cuSOLVER library, SUNLIN-
SOL_CUSOLVERSP_BATCHQR;

• Iterative linear solvers:

– sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES Krylov
linear solver module, SUNLINSOL_SPGMR;

– sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, SUNLINSOL_SPFGMR;

– sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, SUNLINSOL_SPBCGS;

– sunlinsol/sunlinsol_sptfqmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, SUNLINSOL_SPTFQMR;

– sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov linear
solver module, SUNLINSOL_PCG;

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules include
the file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_DENSE matrix module, as well
as various functions and macros for acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules include
the file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as well as
various functions and macros for acting on such matrices.

The header files for the SUNLINSOL_KLU and SUNLINSOL_SUPERLUMT linear solver modules include the
file sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as well as
various functions and macros for acting on such matrices.

The header file for the SUNLINSOL_CUSOLVERSP_BATCHQR linear solver module includes the file
sunmatrix/sunmatrix_cusparse.h, which defines the SUNMATRIX_CUSPARSE matrix module, as well
as various functions for acting on such matrices.

The header file for the SUNLINSOL_SUPERLUDIST linear solver module includes the file sunmatrix/
sunmatrix_slunrloc.h, which defines the SUNMATRIX_SLUNRLOC matrix module, as well as various
functions for acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h, which
enumerates the preconditioning type and (for the SPGMR and SPFGMR solvers) the choices for the Gram-Schmidt
orthogonalization process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, if preconditioning for an
iterative linear solver were performed using the ARKBBDPRE module, the header arkode/arkode_bbdpre.h
is needed to access the preconditioner initialization routines.

6.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the MRIStep module. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL and SUN-
NONLINSOL implementations used. For the steps that are not, refer to the sections Vector Data Structures, Matrix
Data Structures, Description of the SUNLinearSolver module, and Description of the SUNNonlinearSolver Module
for the specific name of the function to be called or macro to be referenced.
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1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use
within the threaded vector functions, if used.

2. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the
form

y0 = N_VMake_***(..., ydata);

if the realtype array ydata containing the initial values of 𝑦 already exists. Otherwise, create a new vector
by making a call of the form

y0 = N_VNew_***(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_***(y0);

See the sections The NVECTOR_SERIAL Module through The NVECTOR_PTHREADS Module for details.

For the HYPRE and PETSc vector wrappers, first create and initialize the underlying vector, and then create
the NVECTOR wrapper with a call of the form

y0 = N_VMake_***(yvec);

where yvec is a HYPRE or PETSc vector. Note that calls like N_VNew_***(...) and
N_VGetArrayPointer_***(...) are not available for these vector wrappers. See the sections The
NVECTOR_PARHYP Module and The NVECTOR_PETSC Module for details.

If using either the CUDA- or RAJA-based vector implementations use calls to the module-specific routines

y0 = N_VMake_***(...);

as applicable. See the sections The NVECTOR_CUDA Module and The NVECTOR_RAJA Module for details.

4. Create an ARKStep object for the fast (inner) integration

Call inner_arkode_mem = ARKStepCreate(...) to create the ARKStep memory block.
ARKStepCreate() returns a void* pointer to this memory structure. See the section ARKStep initializa-
tion and deallocation functions for details.

5. Configure the fast (inner) integrator

Specify tolerances, create and attach matrix and/or solver objects, or call ARKStepSet* functions to con-
figure the fast integrator as desired. See sections A skeleton of the user’s main program and Optional input
functions for details on configuring ARKStep.

Notes on using ARKStep as a fast integrator:
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It is the user’s responsibility to create, configure, and attach the inner_arkode_mem to the MRIStep mod-
ule. User-specified options regarding how this fast integration should be performed (e.g., adaptive versus fixed
time step, explicit/implicit/ImEx partitioning, algebraic solvers, etc.) will be respected during integration of
the fast time scales during MRIStep integration.

If a user_data pointer needs to be passed to user functions called by the fast (inner) integrator then it should
be attached here by calling ARKStepSetUserData(). This user_data pointer will only be passed to
user-supplied functions that are attached to the fast (inner) integrator. To supply a user_data pointer to user-
supplied functions called by the slow (outer) integrator the desired pointer should be attached by calling
MRIStepSetUserData() after creating the MRIStep memory below. Note the user_data pointers attached
to the inner and outer integrators may be the same or different depending on what is required by the user code.

Specifying a rootfinding problem for the fast integration is not supported. Rootfinding problems should be
created and initialized with the slow integrator. See the steps below and MRIStepRootInit() for more
details.

We note that due to the algorithms supported in MRIStep, the ARKStep module used for the fast time scale
must be configured with an identity mass matrix.

6. Create an MRIStep object for the slow (outer) integration

Call arkode_mem = MRIStepCreate(..., inner_arkode_mem) to create the MRIStep mem-
ory block. MRIStepCreate() returns a void* pointer to this memory structure. See the section MRIStep
initialization and deallocation functions for details.

7. Set the slow step size

Call MRIStepSetFixedStep() to specify the slow time step size.

Specifically, if MRIStep is configured to use an implicit solver for the slow time scale, then the following steps
are recommended:

8. Create and configure implicit solvers

If MRIStep is configured to use an implicit solver for the slow time scale, then:

(a) Specify integration tolerances

Call MRIStepSStolerances() or MRIStepSVtolerances() to specify either a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances,
respectively. Alternatively, call MRIStepWFtolerances() to specify a function which sets directly
the weights used in evaluating WRMS vector norms. See the section MRIStep tolerance specification
functions for details.

(b) Create nonlinear solver object

If a non-default nonlinear solver object is desired for implicit MRI stage solves (see the section Non-
linear solver interface functions), then that nonlinear solver object must be created by using the
appropriate functions defined by the particular SUNNONLINSOL implementation (e.g., NLS =
SUNNonlinSol_***(...); where *** is the name of the nonlinear solver (see the section Descrip-
tion of the SUNNonlinearSolver Module for details).

For the SUNDIALS-supplied SUNNONLINSOL implementations, the nonlinear solver object may be
created using a call of the form

SUNNonlinearSolver NLS = SUNNonlinSol_*(...);

where * can be replaced with “Newton”, “FixedPoint”, or other options, as discussed in the sections
Nonlinear solver interface functions and Description of the SUNNonlinearSolver Module.

202 Chapter 6. Using MRIStep for C and C++ Applications



User Documentation for ARKode, v4.7.0

Note: by default, MRIStep will use the Newton nonlinear solver (see section The SUNNonlinear-
Solver_Newton implementation), so a custom nonlinear solver object is only needed when using a dif-
ferent solver, or for the user to exercise additional controls over the Newton solver.

(c) Attach nonlinear solver module

If a nonlinear solver object was created above, then it must be attached to MRIStep using the call (for
details see the section Nonlinear solver interface functions):

ier = MRIStepSetNonlinearSolver(...);

(d) Set nonlinear solver optional inputs

Call the appropriate set functions for the selected nonlinear solver module to change optional inputs spe-
cific to that nonlinear solver. These must be called after attaching the nonlinear solver to MRIStep, oth-
erwise the optional inputs will be overridden by MRIStep defaults. See the section Description of the
SUNNonlinearSolver Module for more information on optional inputs.

(e) Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration) and if that linear
solver will be matrix-based, then a template Jacobian matrix must be created by using the appropriate
functions defined by the particular SUNMATRIX implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using a
call of the form

SUNMatrix A = SUNBandMatrix(...);

or

SUNMatrix A = SUNDenseMatrix(...);

or

SUNMatrix A = SUNSparseMatrix(...);

or similarly for the CUDA and SuperLU_DIST matrix modules (see the sections The SUNMA-
TRIX_CUSPARSE Module or The SUNMATRIX_SLUNRLOC Module for further information).

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded environment.

(f) Create linear solver object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration), then the desired lin-
ear solver object(s) must be created by using the appropriate functions defined by the particular SUN-
LINSOL implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be cre-
ated using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in the sections Linear
solver interface functions and Description of the SUNLinearSolver module.

(g) Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to that
linear solver. See the documentation for each SUNLINSOL module in the section Description of the
SUNLinearSolver module for details.
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(h) Attach linear solver module

If a linear solver was created above for implicit MRI stage solves, initialize the ARKLS linear solver in-
terface by attaching the linear solver object (and Jacobian matrix object, if applicable) with the call (for
details see the section Linear solver interface functions):

ier = MRIStepSetLinearSolver(...);

9. Set optional inputs

Call MRIStepSet* functions to change any optional inputs that control the behavior of MRIStep from their
default values. See the section Optional input functions for details.

10. Specify rootfinding problem

Optionally, call MRIStepRootInit() to initialize a rootfinding problem to be solved during the integra-
tion of the ODE system. See the section Rootfinding initialization function for general details, and the section
Optional input functions for relevant optional input calls.

11. Advance solution in time

For each point at which output is desired, call

ier = MRIStepEvolve(arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y0 above) will
contain 𝑦(𝑡out). See the section MRIStep solver function for details.

12. Get optional outputs

Call MRIStepGet* and/or ARKStepGet* functions to obtain optional output from the slow or fast integra-
tors respectively. See the section Optional output functions and Optional output functions for details.

13. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the NVECTOR
destructor function:

N_VDestroy(y);

14. Free solver memory

Call ARKStepFree(&inner_arkode_mem) and MRIStepFree(&arkode_mem) to free
the memory allocated for fast and slow integration modules respectively.

15. Free linear solver and matrix memory

Call SUNLinSolFree() and (possibly) SUNMatDestroy() to free any memory allocated for
any linear solver and/or matrix objects created above for either the fast or slow integrators.

16. Free nonlinear solver memory

If a user-supplied SUNNonlinearSolver was provided to MRIStep, then call SUNNonlinSolFree()
to free any memory allocated for the nonlinear solver object created above.

17. Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

SUNDIALS provides some linear solvers only as a means for users to get problems running and not as highly effi-
cient solvers. For example, if solving a dense system, we suggest using the LAPACK solvers if the size of the lin-
ear system is > 50, 000 (thanks to A. Nicolai for his testing and recommendation). See the table SUNDIALS linear
solver interfaces and vector implementations that can be used for each for a listing of the linear solver interfaces
available as SUNLinearSolver modules and the vector implementations required for use.
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6.5 MRIStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the MRIStep
time-stepping module. Some of these are required; however, starting with the section Optional input functions, the
functions listed involve optional inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of
ARKode’s MRIStep module. In any case, refer to the preceding section, A skeleton of the user’s main program, for
the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to stderr by default. However, the user can
set a file as error output or can provide her own error handler function (see the section Optional input functions for
details).

6.5.1 MRIStep initialization and deallocation functions

void* MRIStepCreate(ARKRhsFn fs, realtype t0, N_Vector y0, MRISTEP_ID inner_step_id, void* in-
ner_step_mem)

This function allocates and initializes memory for a problem to be solved using the MRIStep time-stepping
module in ARKode.

Arguments:

• fs – the name of the C function (of type ARKRhsFn()) defining the slow portion of the right-hand
side function in �̇� = 𝑓𝑠(𝑡, 𝑦) + 𝑓𝑓 (𝑡, 𝑦).

• t0 – the initial value of 𝑡.

• y0 – the initial condition vector 𝑦(𝑡0).

• inner_step_id – the identifier for the inner stepper. Currently MRISTEP_ARKSTEP is the only sup-
ported option.

• inner_step_mem – a void* pointer to the ARKStep memory block for integrating the fast time
scale.

Return value: If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing MRIStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

void MRIStepFree(void** arkode_mem)
This function frees the problem memory arkode_mem created by MRIStepCreate().

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

Return value: None

6.5.2 MRIStep tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to
MRIStepEvolve(); otherwise default values of reltol = 1e-4 and abstol = 1e-9 will be used, which
may be entirely incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of
MRIStepSStolerances(), this vector has components
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ewt[i] = 1.0/(reltol*abs(y[i]) + abstol);

whereas in the case of MRIStepSVtolerances() the vector components are given by

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol[i]);

This vector is used in all error tests, which use a weighted RMS norm on all error-like vectors 𝑣:

‖𝑣‖𝑊𝑅𝑀𝑆 =

(︃
1

𝑁

𝑁∑︁
𝑖=1

(𝑣𝑖 𝑒𝑤𝑡𝑖)
2

)︃1/2

,

where 𝑁 is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to
MRIStepWFtolerances().

int MRIStepSStolerances(void* arkode_mem, realtype reltol, realtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• reltol – scalar relative tolerance.

• abstol – scalar absolute tolerance.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

• ARK_NO_MALLOC if the MRIStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int MRIStepSVtolerances(void* arkode_mem, realtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different abso-
lute tolerance for each vector component).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• reltol – scalar relative tolerance.

• abstol – vector containing the absolute tolerances for each solution component.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

• ARK_NO_MALLOC if the MRIStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int MRIStepWFtolerances(void* arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.
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• efun – the name of the function (of type ARKEwtFn()) that implements the error weight vector
computation.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

• ARK_NO_MALLOC if the MRIStep memory was not allocated by the time-stepping module

6.5.2.1 General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol and abstol are a concern. The following
pieces of advice are relevant.

1. The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10−4 means that
errors are controlled to .01%. We do not recommend using reltol larger than 10−3. On the other hand,
reltol should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally
around 10−15 for double-precision).

2. The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector 𝑦 may be so small that pure relative error control is meaningless. For exam-
ple, if 𝑦𝑖 starts at some nonzero value, but in time decays to zero, then pure relative error control on 𝑦𝑖 makes
no sense (and is overly costly) after 𝑦𝑖 is below some noise level. Then abstol (if scalar) or abstol[i]
(if a vector) needs to be set to that noise level. If the different components have different noise levels, then
abstol should be a vector. For example, see the example problem ark_robertson.c, and the discussion
of it in the ARKode Examples Documentation [R2018]. In that problem, the three components vary between
0 and 1, and have different noise levels; hence the atols vector therein. It is impossible to give any general
advice on abstol values, because the appropriate noise levels are completely problem-dependent. The user
or modeler hopefully has some idea as to what those noise levels are.

3. Finally, it is important to pick all the tolerance values conservatively, because they control the error commit-
ted on each individual step. The final (global) errors are an accumulation of those per-step errors, where that
accumulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of
10 from the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice
for reltol is 10−5. In any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

6.5.2.2 Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

1. The best way to control the size of unwanted negative computed values is with tighter absolute tolerances.
Again this requires some knowledge of the noise level of these components, which may or may not be differ-
ent for different components. Some experimentation may be needed.

2. If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the con-
text of the output medium. Then the internal values carried by the solver are unaffected. Remember that a
small negative value in 𝑦 returned by MRIStep, with magnitude comparable to abstol or less, is equivalent
to zero as far as the computation is concerned.

3. The user’s right-hand side routine 𝑓𝑆 should never change a negative value in the solution vector 𝑦 to a non-
negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the 𝑓𝑆 routine
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cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending value
should be changed to zero or a tiny positive number in a temporary variable (not in the input 𝑦 vector) for the
purposes of computing 𝑓𝑆(𝑡, 𝑦).

6.5.3 Linear solver interface functions

As previously explained, the Newton iterations used in solving implicit systems within MRIStep require the solution
of linear systems of the form

𝒜
(︁
𝑧
(𝑚)
𝑖

)︁
𝛿(𝑚+1) = −𝐺

(︁
𝑧
(𝑚)
𝑖

)︁
where

𝒜 ≈ 𝐼 − 𝛾𝐽, 𝐽 =
𝜕𝑓𝑆

𝜕𝑦
.

ARKode’s ARKLS linear solver interface supports all valid SUNLinearSolver modules for this task.

Matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store the approximate Jacobian matrix
𝐽 , the Newton matrix 𝒜, and, when using direct solvers, the factorizations used throughout the solution process.

Matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equations,
and only require the action of the matrix on a vector, 𝒜𝑣. With most of these methods, preconditioning can be done
on the left only, on the right only, on both the left and the right, or not at all. The exceptions to this rule are SPFGMR
that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of
a preconditioner, see the iterative linear solver portions of the sections Optional input functions and User-supplied
functions.

If preconditioning is done, user-supplied functions should be used to define left and right preconditioner matrices 𝑃1

and 𝑃2 (either of which could be the identity matrix), such that the product 𝑃1𝑃2 approximates the Newton matrix
𝒜 = 𝐼 − 𝛾𝐽 .

To specify a generic linear solver for MRIStep to use for the Newton systems, after the call to MRIStepCreate()
but before any calls to MRIStepEvolve(), the user’s program must create the appropriate SUNLinearSolver
object and call the function MRIStepSetLinearSolver(), as documented below. To create the
SUNLinearSolver object, the user may call one of the SUNDIALS-packaged SUNLinSol module constructor
routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of such constructor routines includes SUNLinSol_Dense(), SUNLinSol_Band(),
SUNLinSol_LapackDense(), SUNLinSol_LapackBand(), SUNLinSol_KLU(),
SUNLinSol_SuperLUMT(), SUNLinSol_SuperLUDIST(), SUNLinSol_cuSolverSp_batchQR(),
SUNLinSol_SPGMR(), SUNLinSol_SPFGMR(), SUNLinSol_SPBCGS(), SUNLinSol_SPTFQMR(), and
SUNLinSol_PCG().

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use of each of the
generic linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed
in the user code. These are available in the corresponding header file associated with the specific SUNMatrix or
SUNLinearSolver module in question, as described in the sections Matrix Data Structures and Description of
the SUNLinearSolver module.

Once this solver object has been constructed, the user should attach it to MRIStep via a call to
MRIStepSetLinearSolver(). The first argument passed to this function is the MRIStep memory pointer
returned by MRIStepCreate(); the second argument is the SUNLinearSolver object created above. The
third argument is an optional SUNMatrix object to accompany matrix-based SUNLinearSolver inputs (for
matrix-free linear solvers, the third argument should be NULL). A call to this function initializes the ARKLS linear
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solver interface, linking it to the MRIStep integrator, and allows the user to specify additional parameters and
routines pertinent to their choice of linear solver.

int MRIStepSetLinearSolver(void* arkode_mem, SUNLinearSolver LS, SUNMatrix J)
This function specifies the SUNLinearSolver object that MRIStep should use, as well as a template Jaco-
bian SUNMatrix object (if applicable).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• LS – the SUNLinearSolver object to use.

• J – the template Jacobian SUNMatrix object to use (or NULL if not applicable).

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_MEM_FAIL if there was a memory allocation failure

• ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or J input objects, or the cur-
rent N_Vector module.

Notes: If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process, so if
additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size (see the documentation of the particular SUNMATRIX
type in the section Matrix Data Structures for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full spar-
sity pattern of the Newton system matrices 𝒜 = 𝐼 − 𝛾𝐽 , even if J itself has zeros in nonzero locations of 𝐼 .
The reasoning for this is that 𝒜 is constructed in-place, on top of the user-specified values of J, so if the spar-
sity pattern in J is insufficient to store 𝒜 then it will need to be resized internally by MRIStep.

6.5.4 Nonlinear solver interface functions

When changing the nonlinear solver in MRIStep, after the call to MRIStepCreate() but before any calls
to MRIStepEvolve(), the user’s program must create the appropriate SUNNonlinSol object and call
MRIStepSetNonlinearSolver(), as documented below. If any calls to MRIStepEvolve() have been
made, then MRIStep will need to be reinitialized by calling MRIStepReInit() to ensure that the nonlinear solver
is initialized correctly before any subsequent calls to MRIStepEvolve().

The first argument passed to the routine MRIStepSetNonlinearSolver() is the MRIStep memory pointer
returned by MRIStepCreate(); the second argument passed to this function is the desired SUNNonlinSol object
to use for solving the nonlinear system for each implicit stage. A call to this function attaches the nonlinear solver to
the main MRIStep integrator.

int MRIStepSetNonlinearSolver(void* arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that MRIStep should use for implicit stage
solves.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• NLS – the SUNNonlinearSolver object to use.

Return value:
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• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if MRIStep is incompatible with the provided NLS input object.

Notes: MRIStep will use the Newton SUNNonlinSol module by default; a call to this routine replaces that
module with the supplied NLS object.

6.5.5 Rootfinding initialization function

As described in the section Rootfinding, while solving the IVP, ARKode’s time-stepping modules have the ca-
pability to find the roots of a set of user-defined functions. In the MRIStep module root finding is performed be-
tween slow solution time steps only (i.e., it is not performed within the sub-stepping a fast time scales). To activate
the root-finding algorithm, call the following function. This is normally called only once, prior to the first call to
MRIStepEvolve(), but if the rootfinding problem is to be changed during the solution, MRIStepRootInit()
can also be called prior to a continuation call to MRIStepEvolve().

int MRIStepRootInit(void* arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
MRIStepCreate(), and before MRIStepEvolve().

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nrtfn – number of functions 𝑔𝑖, an integer ≥ 0.

• g – name of user-supplied function, of type ARKRootFn(), defining the functions 𝑔𝑖 whose roots
are sought.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated
with MRIStep’s rootfinding module, call MRIStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to MRIStepReInit(), where the new IVP has no
rootfinding problem but the prior one did, then call MRIStepRootInit with nrtfn = 0.

Rootfinding is only supported for the slow (outer) integrator and should not be actived for the fast (inner) inte-
grator.

6.5.6 MRIStep solver function

This is the central step in the solution process – the call to perform the integration of the IVP. The input argument
itask specifies one of two modes as to where MRIStep is to return a solution. These modes are modified if the
user has set a stop time (with a call to the optional input function MRIStepSetStopTime()) or has requested
rootfinding.

int MRIStepEvolve(void* arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in 𝑡.
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Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• tout – the next time at which a computed solution is desired.

• yout – the computed solution vector.

• tret – the time corresponding to yout (output).

• itask – a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, tout, in the direction of integration, i.e. 𝑡𝑛−1 < tout ≤ 𝑡𝑛 for forward inte-
gration, or 𝑡𝑛 ≤ tout < 𝑡𝑛−1 for backward integration. It will then compute an approximation to
the solution 𝑦(𝑡𝑜𝑢𝑡) by interpolation (using one of the dense output routines described in the section
Interpolation).

The ARK_ONE_STEP option tells the solver to only take a single internal step 𝑦𝑛−1 → 𝑦𝑛 and then
return control back to the calling program. If this step will overtake tout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution 𝑦𝑛 in the vector
yout

Return value:

• ARK_SUCCESS if successful.

• ARK_ROOT_RETURN if MRIStepEvolve() succeeded, and found one or more roots. If the
number of root functions, nrtfn, is greater than 1, call MRIStepGetRootInfo() to see which
𝑔𝑖 were found to have a root at (*tret).

• ARK_TSTOP_RETURN if MRIStepEvolve() succeeded and returned at tstop.

• ARK_MEM_NULL if the arkode_mem argument was NULL.

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if one of the inputs to MRIStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

1. A component of the error weight vector became zero during internal time-stepping.

2. The linear solver initialization function (called by the user after calling ARKStepCreate())
failed to set the linear solver-specific lsolve field in arkode_mem.

3. A root of one of the root functions was found both at a point 𝑡 and also very near 𝑡.

• ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

• ARK_CONV_FAILURE if convergence test failures occurred too many times (ark_maxncf ) during
one internal time step.

• ARK_LINIT_FAIL if the linear solver’s initialization function failed.

• ARK_LSETUP_FAIL if the linear solver’s setup routine failed in an unrecoverable manner.

• ARK_LSOLVE_FAIL if the linear solver’s solve routine failed in an unrecoverable manner.

• ARK_VECTOROP_ERR a vector operation error occured.

• ARK_INNERSTEP_FAILED if the inner stepper returned with an unrecoverable error. The value
returned from the inner stepper can be obtained with MRIStepGetLastInnerStepFlag().

• ARK_INVALID_TABLE if an invalid coupling table was provided.
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Notes: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
MRIStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale of
the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
MRIStepEvolve() failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to MRIStepSetStopTime() before the call to MRIStepEvolve() to spec-
ify a fixed stop time to end the time step and return to the user. Upon return from MRIStepEvolve(),
a copy of the internal solution 𝑦𝑛 will be returned in the vector yout. Once the integrator returns at
a tstop time, any future testing for tstop is disabled (and can be re-enabled only though a new call to
MRIStepSetStopTime()).

On any error return in which one or more internal steps were taken by MRIStepEvolve(), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

6.5.7 Optional input functions

There are numerous optional input parameters that control the behavior of the MRIStep solver, each of which may
be modified from its default value through calling an appropriate input function. The following tables list all optional
input functions, grouped by which aspect of MRIStep they control. Detailed information on the calling syntax and
arguments for each function are then provided following each table.

The optional inputs are grouped into the following categories:

• General MRIStep options (Optional inputs for MRIStep), and

• IVP method solver options (Optional inputs for IVP method selection)

• Implicit stage solver options (Optional inputs for implicit stage solves),

• Linear solver interface options (Linear solver interface optional input functions), and

• Rootfinding options (MRIStep_CInterface.MRIStepRootfindingInputTable).

For the most casual use of MRIStep, relying on the default set of solver parameters, the reader can skip to the follow-
ing section, User-supplied functions.

We note that, on an error return, all of the optional input functions send an error message to the error handler func-
tion. All error return values are negative, so a test on the return arguments for negative values will catch all errors.
Finally, a call to an MRIStepSet*** function can generally be made from the user’s calling program at any time
and, if successful, takes effect immediately. MRIStepSet*** functions that cannot be called at any time note this
in the “Notes:” section of the function documentation.
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6.5.7.1 Optional inputs for MRIStep

Optional input Function name Default
Return MRIStep solver parameters to their de-
faults

MRIStepSetDefaults() internal

Set dense output interpolation type MRIStepSetInterpolantType()ARK_INTERP_HERMITE
Set dense output polynomial degree MRIStepSetInterpolantDegree()5
Supply a pointer to a diagnostics output file MRIStepSetDiagnostics() NULL
Supply a pointer to an error output file MRIStepSetErrFile() stderr
Supply a custom error handler function MRIStepSetErrHandlerFn() internal fn
Run with fixed-step sizes MRIStepSetFixedStep() required
Maximum no. of warnings for 𝑡𝑛 + ℎ = 𝑡𝑛 MRIStepSetMaxHnilWarns() 10
Maximum no. of internal steps before tout MRIStepSetMaxNumSteps() 500
Set a value for 𝑡𝑠𝑡𝑜𝑝 MRIStepSetStopTime() ∞
Supply a pointer for user data MRIStepSetUserData() NULL
Supply a function to be called prior to the inner
integration

MRIStepSetPreInnerFn() NULL

Supply a function to be called after the inner
integration

MRIStepSetPostInnerFn() NULL

int MRIStepSetDefaults(void* arkode_mem)

Resets all optional input parameters to MRIStep’s original default values.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This function does not change problem-defining function pointers fs and ff or the user_data pointer.
It also does not affect any data structures or options related to root-finding (those can be reset using
MRIStepRootInit()).

int MRIStepSetInterpolantType(void* arkode_mem, int itype)
Specifies use of the Lagrange or Hermite interpolation modules (used for dense output – interpolation of solu-
tion output values and implicit method predictors).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• itype – requested interpolant type (ARK_INTERP_HERMITE or ARK_INTERP_LAGRANGE)

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_MEM_FAIL if the interpolation module cannot be allocated

• ARK_ILL_INPUT if the itype argument is not recognized or the interpolation module has already
been initialized
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Notes: The Hermite interpolation module is described in the Section Hermite interpolation module, and the
Lagrange interpolation module is described in the Section Lagrange interpolation module.

This routine frees any previously-allocated interpolation module, and re-creates one according to the specified
argument. Thus any previous calls to MRIStepSetInterpolantDegree() will be nullified.

This routine must be called after the call to MRIStepCreate(). After the first call to MRIStepEvolve()
the interpolation type may not be changed without first calling MRIStepReInit().

If this routine is not called, the Hermite interpolation module will be used.

int MRIStepSetInterpolantDegree(void* arkode_mem, int degree)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• degree – requested polynomial degree.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory or interpolation module are NULL

• ARK_INTERP_FAIL if this is called after MRIStepEvolve()

• ARK_ILL_INPUT if an argument has an illegal value or the interpolation module has already been
initialized

Notes: Allowed values are between 0 and 5.

This routine should be called after MRIStepCreate() and before MRIStepEvolve(). After the
first call to MRIStepEvolve() the interpolation degree may not be changed without first calling
MRIStepReInit().

If a user calls both this routine and MRIStepSetInterpolantType(), then
MRIStepSetInterpolantType() must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by MRIStep will be the minimum of 𝑞 − 1 and
the input degree, where 𝑞 is the order of accuracy for the time integration method.

int MRIStepSetDenseOrder(void* arkode_mem, int dord)
This function is deprecated, and will be removed in a future release. Users should transition to calling
MRIStepSetInterpolantDegree() instead.

int MRIStepSetDiagnostics(void* arkode_mem, FILE* diagfp)
Specifies the file pointer for a diagnostics file where all MRIStep step adaptivity and solver information is
written.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• diagfp – pointer to the diagnostics output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value
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Notes: This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to
a unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

int MRIStepSetErrFile(void* arkode_mem, FILE* errfp)
Specifies a pointer to the file where all MRIStep warning and error messages will be written if the default in-
ternal error handling function is used.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• errfp – pointer to the output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the MRIStep mem-
ory pointer is NULL). This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for subse-
quent error messages.

int MRIStepSetErrHandlerFn(void* arkode_mem, ARKErrHandlerFn ehfun, void* eh_data)
Specifies the optional user-defined function to be used in handling error messages.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• ehfun – name of user-supplied error handler function.

• eh_data – pointer to user data passed to ehfun every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Error messages indicating that the MRIStep solver memory is NULL will always be directed to
stderr.

int MRIStepSetFixedStep(void* arkode_mem, realtype hs)
Set the slow step size used within MRIStep.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• hs – value of the outer (slow) step size.

Return value:

• ARK_SUCCESS if successful
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• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes:

The step sizes used by the inner (fast) stepper may be controlled through calling the appropriate “Set” routines
on the inner integrator.

int MRIStepSetMaxHnilWarns(void* arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that 𝑡 + ℎ = 𝑡 on the next internal
step, before MRIStep will instead return with an error.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• mxhnil – maximum allowed number of warning messages (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

int MRIStepSetMaxNumSteps(void* arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before MRIStep will return with an error.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• mxsteps – maximum allowed number of internal steps.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Passing mxsteps = 0 results in MRIStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int MRIStepSetStopTime(void* arkode_mem, realtype tstop)
Specifies the value of the independent variable 𝑡 past which the solution is not to proceed.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• tstop – stopping time for the integrator.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value
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Notes: The default is that no stop time is imposed.

int MRIStepSetUserData(void* arkode_mem, void* user_data)
Specifies the user data block user_data for the outer integrator and attaches it to the main MRIStep memory
block.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• user_data – pointer to the user data.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: If specified, the pointer to user_data is passed to all user-supplied functions called by the outer integra-
tor for which it is an argument; otherwise NULL is passed.

To attach a user data block to the inner integrator call the appropriate SetUserData function for the inner in-
tegrator memory structure (e.g., ARKStepSetUserData() if the inner stepper is ARKStep). This pointer
may be the same as or different from the pointer attached to the outer integrator depending on what is required
by the user code.

int MRIStepSetPreInnerFn(void* arkode_mem, MRIStepPreInnerFn prefn)
Specifies the function called before each inner integration.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• prefn – the name of the C function (of type MRIStepPreInnerFn()) defining pre inner integra-
tion function.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

int MRIStepSetPostInnerFn(void* arkode_mem, MRIStepPostInnerFn postfn)
Specifies the function called after each inner integration.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• postfn – the name of the C function (of type MRIStepPostInnerFn()) defining post inner inte-
gration function.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL
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6.5.7.2 Optional inputs for IVP method selection

Optional input Function name Default
Set MRI coupling coefficients MRIStepSetCoupling() internal
Set MRI outer RK table MRIStepSetTable() internal
Specify MRI outer table number MRIStepSetTableNum() internal

int MRIStepSetCoupling(void* arkode_mem, MRIStepCoupling C)
Specifies a customized set of slow-to-fast coupling coefficients for the MRI method.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• C – the table of coupling coefficients for the MRI method.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes:

For a description of the MRIStepCoupling type and related functions for creating Butcher tables see the
Section MRI Coupling Coefficients Data Structure.

int MRIStepSetTable(void* arkode_mem, int q, ARKodeButcherTable B)
Specifies a customized slow Butcher table for a traditional MIS method.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• q – global order of accuracy for the MRI method.

• B – the Butcher table for the outer (slow) RK method.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables see
Butcher Table Data Structure.

Internally, this function directly calls the utility routine MRIStepCoupling_MIStoMRI() to convert from
the input table B to an MRI coupling table. As such, all constraints on B stated for that function apply here as
well: it must have explicit first stage (i.e., 𝑐1 = 0 and 𝐴1,𝑗 = 0 for 1 ≤ 𝑗 ≤ 𝑠) and sorted abcissae (i.e.,
𝑐𝑖 ≥ 𝑐𝑖−1 for 2 ≤ 𝑖 ≤ 𝑠).

The input value of q is used rather than the order encoded in the Butcher table since the overall order of the
MRI method may differ from the order of the outer table (see equation (2.12) and surrounding discussion). No
error checking is performed to ensure that q correctly describes the order of the overall MRI method.

int MRIStepSetTableNum(void* arkode_mem, int itable)
Indicates to use a specific built-in Butcher table or MRI coupling table for the MRI outer (slow) method.
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Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• itable – index of the outer (slow) Butcher or MRI table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Depending on the value of itable, this routine will do one of two things.

If itable specifies a built-in ERK or DIRK Butcher table, then this will internally retrieve the
ARKodeButcherTable corresponding to the itable argument, and then immediately call the utility rou-
tine MRIStepSetTable() to convert this to an MRI coupling table and store the result within MRIS-
tep. In this case, itable should match one of the methods from the section Explicit Butcher tables or the sec-
tion Implicit Butcher tables. Error-checking is performed to ensure that this table exists and satisfies the re-
strictions listed above for MRIStepSetTable(). This approach assumes that the overall MRI method
order equals 𝑚𝑖𝑛(𝑞, 2), where 𝑞 is the order of accuracy for the Butcher table indicated by itable; if in
fact the overall method differs from this assumed value, it is recommended that the user instead call either
MRIStepSetCoupling() or MRIStepSetTable() directly.

If itable instead specifies a built-in MRI coupling table, then this will internally retrieve the
MRIStepCoupling table via the routine MRIStepCoupling_LoadTable(), and store the result in
MRIStep. In this case, itable should match one of the methods from the section MRIStepCoupling tables.

Optional inputs for implicit stage solves

The mathematical explanation for the nonlinear solver strategies used by MRIStep, including how each of the param-
eters below is used within the code, is provided in the section Nonlinear solver methods.

Optional input Function name Default
Specify linearly implicit 𝑓𝑆 MRIStepSetLinear() SUNFALSE
Specify nonlinearly implicit 𝑓𝑆 MRIStepSetNonlinear() SUNTRUE
Implicit predictor method MRIStepSetPredictorMethod() 0
Maximum number of nonlinear iterations MRIStepSetMaxNonlinIters() 3
Coefficient in the nonlinear convergence test MRIStepSetNonlinConvCoef() 0.1
Nonlinear convergence rate constant MRIStepSetNonlinCRDown() 0.3
Nonlinear residual divergence ratio MRIStepSetNonlinRDiv() 2.3
User-provided implicit stage predictor MRIStepSetStagePredictFn() NULL

int MRIStepSetLinear(void* arkode_mem, int timedepend)
Specifies that the implicit slow right-hand side function, 𝑓𝑆(𝑡, 𝑦) is linear in 𝑦.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• timedepend – flag denoting whether the Jacobian of 𝑓𝑆(𝑡, 𝑦) is time-dependent (1) or not (0). Al-
ternately, when using a matrix-free iterative linear solver this flag denotes time dependence of the
preconditioner.

Return value:

• ARK_SUCCESS if successful
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• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Tightens the linear solver tolerances and takes only a single Newton iteration. Calls
MRIStepSetDeltaGammaMax() to enforce Jacobian recomputation when the step size ratio changes by
more than 100 times the unit roundoff (since nonlinear convergence is not tested). Only applicable when used
in combination with the modified or inexact Newton iteration (not the fixed-point solver).

The only SUNDIALS-provided SUNNonlinearSolver module that is compatible with the
MRIStepSetLinear() option is the Newton solver.

int MRIStepSetNonlinear(void* arkode_mem)
Specifies that the implicit slow right-hand side function, 𝑓𝑆(𝑡, 𝑦) is nonlinear in 𝑦.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is the default behavior of MRIStep, so the function is primarily useful to undo a previous call to
MRIStepSetLinear(). Calls MRIStepSetDeltaGammaMax() to reset the step size ratio threshold to
the default value.

int MRIStepSetPredictorMethod(void* arkode_mem, int method)
Specifies the method to use for predicting implicit solutions.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• method – method choice (0 ≤ method ≤ 4):

– 0 is the trivial predictor,

– 1 is the maximum order (dense output) predictor,

– 2 is the variable order predictor, that decreases the polynomial degree for more distant RK
stages,

– 3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a first-order
predictor for distant RK stages,

– 4 is the bootstrap predictor, that uses a second-order predictor based on only information within
the current step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 0. If method is set to an undefined value, this default predictor will be used.

int MRIStepSetMaxNonlinIters(void* arkode_mem, int maxcor)
Specifies the maximum number of nonlinear solver iterations permitted per slow MRI stage within each time
step.
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Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• maxcor – maximum allowed solver iterations per stage (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value or if the SUNNONLINSOL module is NULL

• ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: The default value is 3; set maxcor ≤ 0 to specify this default.

int MRIStepSetNonlinConvCoef(void* arkode_mem, realtype nlscoef)
Specifies the safety factor used within the nonlinear solver convergence test.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nlscoef – coefficient in nonlinear solver convergence test (> 0.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 0.1; set nlscoef ≤ 0 to specify this default.

int MRIStepSetNonlinCRDown(void* arkode_mem, realtype crdown)
Specifies the constant used in estimating the nonlinear solver convergence rate.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• crdown – nonlinear convergence rate estimation constant (default is 0.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int MRIStepSetNonlinRDiv(void* arkode_mem, realtype rdiv)
Specifies the nonlinear correction threshold beyond which the iteration will be declared divergent.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• rdiv – tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL
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• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int MRIStepSetStagePredictFn(void* arkode_mem, ARKStagePredictFn PredictStage)
Sets the user-supplied function to update the implicit stage predictor prior to execution of the nonlinear or lin-
ear solver algorithms that compute the implicit stage solution.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• PredictStage – name of user-supplied predictor function. If NULL, then any previously-provided
stage prediction function will be disabled.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

Notes: See the section Implicit stage prediction function for more information on this user-supplied routine.

Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to MRIStep is provided in the section Linear
solver methods. We group the user-callable routines into four categories: general routines concerning the update
frequency for matrices and/or preconditioners, optional inputs for matrix-based linear solvers, optional inputs for
matrix-free linear solvers, and optional inputs for iterative linear solvers. We note that the matrix-based and matrix-
free groups are mutually exclusive, whereas the “iterative” tag can apply to either case.

6.6 Optional inputs for the ARKLS linear solver interface

As discussed in the section Updating the linear solver, ARKode strives to reuse matrix and preconditioner data for
as many solves as possible to amortize the high costs of matrix construction and factorization. To that end, MRIStep
provides user-callable routines to modify this behavior. Recall that the Newton system matrices that arise within an
implicit stage solve are 𝒜(𝑡, 𝑧) ≈ 𝐼 − 𝛾𝐽(𝑡, 𝑧), where the implicit right-hand side function has Jacobian matrix
𝐽(𝑡, 𝑧) = 𝜕𝑓𝑆(𝑡,𝑧)

𝜕𝑧 .

The matrix or preconditioner for 𝒜 can only be updated within a call to the linear solver ‘setup’ routine. In gen-
eral, the frequency with which the linear solver setup routine is called may be controlled with the msbp argument
to MRIStepSetLSetupFrequency(). When this occurs, the validity of 𝒜 for successive time steps intimately
depends on whether the corresponding 𝛾 and 𝐽 inputs remain valid.

At each call to the linear solver setup routine the decision to update 𝒜 with a new value of 𝛾, and to reuse or reevalu-
ate Jacobian information, depends on several factors including:

• the success or failure of previous solve attempts,

• the success or failure of the previous time step attempts,

• the change in 𝛾 from the value used when constructing 𝒜, and

• the number of steps since Jacobian information was last evaluated.

The frequency with which to update Jacobian information can be controlled with the msbj argument to
MRIStepSetJacEvalFrequency(). We note that this is only checked within calls to the linear solver setup
routine, so values msbj < msbp do not make sense. For linear-solvers with user-supplied preconditioning the above
factors are used to determine whether to recommend updating the Jacobian information in the preconditioner (i.e.,
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whether to set jok to SUNFALSE in calling the user-supplied ARKLsPrecSetupFn()). For matrix-based linear
solvers these factors determine whether the matrix 𝐽(𝑡, 𝑦) = 𝜕𝑓𝑆(𝑡,𝑦)

𝜕𝑦 should be updated (either with an internal fi-
nite difference approximation or a call to the user-supplied ARKLsJacFn); if not then the previous value is reused
and the system matrix 𝒜(𝑡, 𝑦) ≈ 𝐼 − 𝛾𝐽(𝑡, 𝑦) is recomputed using the current 𝛾 value.

Optional input Function name Default
Max change in step signaling new 𝐽 MRIStepSetDeltaGammaMax() 0.2
Linear solver setup frequency MRIStepSetLSetupFrequency() 20
Jacobian / preconditioner update frequency MRIStepSetJacEvalFrequency() 51

int MRIStepSetDeltaGammaMax(void* arkode_mem, realtype dgmax)
Specifies a scaled step size ratio tolerance, beyond which the linear solver setup routine will be signaled.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• dgmax – tolerance on step size ratio change before calling linear solver setup routine (default is 0.2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int MRIStepSetLSetupFrequency(void* arkode_mem, int msbp)
Specifies the frequency of calls to the linear solver setup routine.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• msbp – the linear solver setup frequency.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

Notes: Positive values of msbp specify the linear solver setup frequency. For example, an input of 1 means
the setup function will be called every time step while an input of 2 means it will be called called every other
time step. If msbp is 0, the default value of 20 will be used. A negative value forces a linear solver step at each
implicit stage.

int MRIStepSetJacEvalFrequency(void* arkode_mem, long int msbj)
Specifies the frequency for recomputing the Jacobian or recommending a preconditioner update.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• msbj – the Jacobian re-computation or preconditioner update frequency.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the MRIStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.
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Notes: The Jacobian update frequency is only checked within calls to the linear solver setup rou-
tine, as such values of msbj < msbp will result in recomputing the Jacobian every msbp steps. See
MRIStepSetLSetupFrequency() for setting the linear solver steup frequency msbp.

Passing a value msbj ≤ 0 indicates to use the default value of 50.

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

6.7 Optional inputs for matrix-based SUNLinearSolver modules

Optional input Function name Default
Jacobian function MRIStepSetJacFn() DQ
Linear system function MRIStepSetLinSysFn() internal
Enable or disable linear solution scaling MRIStepSetLinearSolutionScaling() on

When using matrix-based linear solver modules, the ARKLS solver interface needs a function to compute an ap-
proximation to the Jacobian matrix 𝐽(𝑡, 𝑦) or the linear system 𝐼 − 𝛾𝐽 . The function to evaluate the Jacobian
must be of type ARKLsJacFn(). The user can supply a custom Jacobian function, or if using a dense or banded
𝐽 can use the default internal difference quotient approximation that comes with the ARKLS interface. At present,
we do not supply a corresponding routine to approximate Jacobian entries in sparse matrices 𝐽 . To specify a user-
supplied Jacobian function jac, MRIStep provides the function MRIStepSetJacFn(). Alternatively, a func-
tion of type ARKLsLinSysFn() can be provided to evaluate the matrix 𝐼 − 𝛾𝐽 . By default, ARKLS uses an
internal linear system function leveraging the SUNMATRIX API to form the matrix 𝐼 − 𝛾𝐽 . To specify a user-
supplied linear system function linsys, MRIStep provides the function MRIStepSetLinSysFn(). In either
case the matrix information will be updated infrequently to reduce matrix construction and, with direct solvers,
factorization costs. As a result the value of 𝛾 may not be current and a scaling factor is applied to the solution of
the linear system to account for lagged value of 𝛾. See Lagged matrix information for more details. The function
MRIStepSetLinearSolutionScaling() can be used to disable this scaling when necessary, e.g., when pro-
viding a custom linear solver that updates the matrix using the current 𝛾 as part of the solve.

The ARKLS interface passes the user data pointer to the Jacobian and linear system functions. This allows the user
to create an arbitrary structure with relevant problem data and access it during the execution of the user-supplied Ja-
cobian or linear system functions, without using global data in the program. The user data pointer may be specified
through MRIStepSetUserData().

int MRIStepSetJacFn(void* arkode_mem, ARKLsJacFn jac)
Specifies the Jacobian approximation routine to be used for the matrix-based solver with the ARKLS interface.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• jac – name of user-supplied Jacobian approximation function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This routine must be called after the ARKLS linear solver interface has been initialized through a call
to MRIStepSetLinearSolver().

By default, ARKLS uses an internal difference quotient function for dense and band matrices. If NULL is
passed in for jac, this default is used. An error will occur if no jac is supplied when using other matrix types.
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The function type ARKLsJacFn() is described in the section User-supplied functions.

int MRIStepSetLinSysFn(void* arkode_mem, ARKLsLinSysFn linsys)
Specifies the linear system approximation routine to be used for the matrix-based solver with the ARKLS in-
terface.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• linsys – name of user-supplied linear system approximation function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This routine must be called after the ARKLS linear solver interface has been initialized through a call
to MRIStepSetLinearSolver().

By default, ARKLS uses an internal linear system function that leverages the SUNMATRIX API to form the
system 𝐼 − 𝛾𝐽 . If NULL is passed in for linsys, this default is used.

The function type ARKLsLinSysFn() is described in the section User-supplied functions.

int MRIStepSetLinearSolutionScaling(void* arkode_mem, booleantype onoff)
Enables or disables scaling the linear system solution to account for a change in 𝛾 in the linear system. For
more details see Lagged matrix information.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• onoff – flag to enable (SUNTRUE) or disable (SUNFALSE) scaling

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_ILL_INPUT if the attached linear solver is not matrix-based

Notes: Linear solution scaling is enabled by default when a matrix-based linear solver is attached.

6.8 Optional inputs for matrix-free SUNLinearSolver modules

Optional input Function name Default
𝐽𝑣 functions (jtimes and jtsetup) MRIStepSetJacTimes() DQ, none
𝐽𝑣 DQ rhs function (jtimesRhsFn) MRIStepSetJacTimesRhsFn() fs

As described in the section Linear solver methods, when solving the Newton linear systems with matrix-free meth-
ods, the ARKLS interface requires a jtimes function to compute an approximation to the product between the Jaco-
bian matrix 𝐽(𝑡, 𝑦) and a vector 𝑣. The user can supply a custom Jacobian-times-vector approximation function, or
use the default internal difference quotient function that comes with the ARKLS interface.
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A user-defined Jacobian-vector function must be of type ARKLsJacTimesVecFn and can be specified
through a call to MRIStepSetJacTimes() (see the section User-supplied functions for specification de-
tails). As with the user-supplied preconditioner functions, the evaluation and processing of any Jacobian-
related data needed by the user’s Jacobian-times-vector function is done in the optional user-supplied func-
tion of type ARKLsJacTimesSetupFn (see the section User-supplied functions for specification details).
As with the preconditioner functions, a pointer to the user-defined data structure, user_data, specified through
MRIStepSetUserData() (or a NULL pointer otherwise) is passed to the Jacobian-times-vector setup and prod-
uct functions each time they are called.

int MRIStepSetJacTimes(void* arkode_mem, ARKLsJacTimesSetupFn jtsetup, ARKLsJac-
TimesVecFn jtimes)

Specifies the Jacobian-times-vector setup and product functions.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• jtsetup – user-defined Jacobian-vector setup function. Pass NULL if no setup is necessary.

• jtimes – user-defined Jacobian-vector product function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the MRIStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up the Jacobian-vector product in the
SUNLinearSolver object used by the ARKLS interface.

Notes: The default is to use an internal finite difference quotient for jtimes and to leave out jtsetup. If NULL is
passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

The function types ARKLsJacTimesSetupFn and ARKLsJacTimesVecFn are described in the section
User-supplied functions.

When using the internal difference quotient the user may optionally supply an alternative implicit right-hand side
function for use in the Jacobian-vector product approximation by calling MRIStepSetJacTimesRhsFn(). The
alternative implicit right-hand side function should compute a suitable (and differentiable) approximation to the 𝑓𝑆

function provided to MRIStepCreate(). For example, as done in [DFWBT2010], the alternative function may
use lagged values when evaluating a nonlinearity in 𝑓𝑆 to avoid differencing a potentially non-differentiable factor.

int MRIStepSetJacTimesRhsFn(void* arkode_mem, ARKRhsFn jtimesRhsFn)
Specifies an alternative implicit right-hand side function for use in the internal Jacobian-vector product differ-
ence quotient approximation.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• jtimesRhsFn – the name of the C function (of type ARKRhsFn()) defining the alternative right-
hand side function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the MRIStep memory was NULL.
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• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

Notes: The default is to use the implicit right-hand side function provided to MRIStepCreate() in the in-
ternal difference quotient. If the input implicit right-hand side function is NULL, the default is used.

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

6.9 Optional inputs for iterative SUNLinearSolver modules

Optional input Function name Default
Newton preconditioning functions MRIStepSetPreconditioner() NULL, NULL
Newton linear and nonlinear tolerance ratio MRIStepSetEpsLin() 0.05
Newton linear solve tolerance conversion factor MRIStepSetLSNormFactor() vector length

As described in the section Linear solver methods, when using an iterative linear solver the user may supply a pre-
conditioning operator to aid in solution of the system. This operator consists of two user-supplied functions, psetup
and psolve, that are supplied to MRIStep using the function MRIStepSetPreconditioner(). The psetup func-
tion supplied to these routines should handle evaluation and preprocessing of any Jacobian data needed by the user’s
preconditioner solve function, psolve. The user data pointer received through MRIStepSetUserData() (or a
pointer to NULL if user data was not specified) is passed to the psetup and psolve functions. This allows the user to
create an arbitrary structure with relevant problem data and access it during the execution of the user-supplied pre-
conditioner functions without using global data in the program.

Also, as described in the section Linear iteration error control, the ARKLS interface requires that iterative linear
solvers stop when the norm of the preconditioned residual satisfies

‖𝑟‖ ≤ 𝜖𝐿𝜖

10

where the default 𝜖𝐿 = 0.05, which may be modified by the user through the MRIStepSetEpsLin() function.

int MRIStepSetPreconditioner(void* arkode_mem, ARKLsPrecSetupFn psetup, ARKLsPrec-
SolveFn psolve)

Specifies the user-supplied preconditioner setup and solve functions.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• psetup – user defined preconditioner setup function. Pass NULL if no setup is needed.

• psolve – user-defined preconditioner solve function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the MRIStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up preconditioning in the
SUNLinearSolver object used by the ARKLS interface.
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Notes: The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

Both of the function types ARKLsPrecSetupFn() and ARKLsPrecSolveFn() are described in the sec-
tion User-supplied functions.

int MRIStepSetEpsLin(void* arkode_mem, realtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the lin-
ear iteration.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• eplifac – linear convergence safety factor.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the MRIStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

Notes: Passing a value eplifac ≤ 0 indicates to use the default value of 0.05.

This function must be called after the ARKLS system solver interface has been initialized through a call to
MRIStepSetLinearSolver().

int MRIStepSetLSNormFactor(void* arkode_mem, realtype nrmfac)
Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for Newton linear system solves e.g., tol_L2 = fac * tol_WRMS.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nrmfac – the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac =
sqrt(N_VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac =
sqrt(N_VDotProd(v,v)) where all the entries of v are one.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the MRIStep memory was NULL.

Notes: This function must be called after the ARKLS system solver interface has been initialized through a
call to MRIStepSetLinearSolver().

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in the section Rootfinding.

Optional input Function name Default
Direction of zero-crossings to monitor MRIStepSetRootDirection() both
Disable inactive root warnings MRIStepSetNoInactiveRootWarn() enabled
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int MRIStepSetRootDirection(void* arkode_mem, int* rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• rootdir – state array of length nrtfn, the number of root functions 𝑔𝑖 (the value of nrtfn was sup-
plied in the call to MRIStepRootInit()). If rootdir[i] == 0 then crossing in either di-
rection for 𝑔𝑖 should be reported. A value of +1 or -1 indicates that the solver should report only
zero-crossings where 𝑔𝑖 is increasing or decreasing, respectively.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default behavior is to monitor for both zero-crossing directions.

int MRIStepSetNoInactiveRootWarn(void* arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integra-
tion.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

Notes: MRIStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components 𝑔𝑖 are zero at the initial time). However, if it appears that some 𝑔𝑖 is identically zero at the initial
time (i.e., 𝑔𝑖 is zero at the initial time and after the first step), MRIStep will issue a warning which can be dis-
abled with this optional input function.

6.9.1 Interpolated output function

An optional function MRIStepGetDky() is available to obtain additional values of solution-related quantities.
This function should only be called after a successful return from MRIStepEvolve(), as it provides interpolated
values either of 𝑦 or of its derivatives (up to the 3rd derivative) interpolated to any value of 𝑡 in the last internal step
taken by MRIStepEvolve(). Internally, this dense output algorithm is identical to the algorithm used for the
maximum order implicit predictors, described in the section Maximum order predictor, except that derivatives of
the polynomial model may be evaluated upon request.

int MRIStepGetDky(void* arkode_mem, realtype t, int k, N_Vector dky)
Computes the k-th derivative of the function 𝑦 at the time t, i.e. 𝑑(𝑘)

𝑑𝑡(𝑘) 𝑦(𝑡), for values of the independent vari-
able satisfying 𝑡𝑛 − ℎ𝑛 ≤ 𝑡 ≤ 𝑡𝑛, with 𝑡𝑛 as current internal time reached, and ℎ𝑛 is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to MRIStepSetInterpolantDegree(). The user may request k in the
range {0,. . . ,*min(degree, kmax)*} where kmax depends on the choice of interpolation module. For Hermite
interpolants kmax = 5 and for Lagrange interpolants kmax = 3.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.
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• t – the value of the independent variable at which the derivative is to be evaluated.

• k – the derivative order requested.

• dky – output vector (must be allocated by the user).

Return value:

• ARK_SUCCESS if successful

• ARK_BAD_K if k is not in the range {0,. . . ,*min(degree, kmax)*}.

• ARK_BAD_T if t is not in the interval [𝑡𝑛 − ℎ𝑛, 𝑡𝑛]

• ARK_BAD_DKY if the dky vector was NULL

• ARK_MEM_NULL if the MRIStep memory is NULL

Notes: It is only legal to call this function after a successful return from MRIStepEvolve().

A user may access the values 𝑡𝑛 and ℎ𝑛 via the functions MRIStepGetCurrentTime() and
MRIStepGetLastStep(), respectively.

6.9.2 Optional output functions

MRIStep provides an extensive set of functions that can be used to obtain solver performance information. We orga-
nize these into groups:

1. SUNDIALS version information accessor routines are in the subsection SUNDIALS version information,

2. General MRIStep output routines are in the subsection Main solver optional output functions,

3. MRIStep implicit solver output routines are in the subsection Implicit solver optional output functions,

4. Linear solver output routines are in the subsection Linear solver interface optional output functions and

5. General usability routines (e.g. to print the current MRIStep parameters, or output the current coupling table)
are in the subsection General usability functions.

6. Output routines regarding root-finding results are in the subsection Rootfinding optional output functions,

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of var-
ious methods inside MRIStep. For example:

• The number of steps and right-hand side evaluations at both the slow and fast time scales provide a rough mea-
sure of the overall cost of a given run, and can be compared between runs with different solver options to sug-
gest which set of options is the most efficient.

• The ratio nniters/nsteps measures the performance of the nonlinear iteration in solving the nonlinear systems at
each implicit stage, providing a measure of the degree of nonlinearity in the problem. Typical values of this for
a Newton solver on a general problem range from 1.1 to 1.8.

• When using a Newton nonlinear solver, the ratio njevals/nniters (in the case of a direct linear solver), and the
ratio npevals/nniters (in the case of an iterative linear solver) can measure the overall degree of nonlinearity in
the problem, since these are updated infrequently, unless the Newton method convergence slows.

• When using a Newton nonlinear solver, the ratio njevals/nniters (when using a direct linear solver), and the ra-
tio nliters/nniters (when using an iterative linear solver) can indicate the quality of the approximate Jacobian or
preconditioner being used. For example, if this ratio is larger for a user-supplied Jacobian or Jacobian-vector
product routine than for the difference-quotient routine, it can indicate that the user-supplied Jacobian is inac-
curate.
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It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

6.9.2.1 SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:

• version – character array to hold the SUNDIALS version information.

• len – allocated length of the version character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS version

Notes: An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber(int *major, int *minor, int *patch, char *label, int len)
This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with
the release label if applicable.

Arguments:

• major – SUNDIALS release major version number.

• minor – SUNDIALS release minor version number.

• patch – SUNDIALS release patch version number.

• label – string to hold the SUNDIALS release label.

• len – allocated length of the label character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS label

Notes: An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.
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6.9.2.2 Main solver optional output functions

Optional output Function name
Size of MRIStep real and integer workspaces MRIStepGetWorkSpace()
Cumulative number of internal steps MRIStepGetNumSteps()
Step size used for the last successful step MRIStepGetLastStep()
Current internal time reached by the solver MRIStepGetCurrentTime()
Current internal solution reached by the solver MRIStepGetCurrentState()
Current 𝛾 value used by the solver MRIStepGetCurrentGamma()
Error weight vector for state variables MRIStepGetErrWeights()
Suggested factor for tolerance scaling MRIStepGetTolScaleFactor()
Name of constant associated with a return flag MRIStepGetReturnFlagName()
No. of calls to the fs function MRIStepGetNumRhsEvals()
Current MRI coupling tables MRIStepGetCurrentCoupling()
Last inner stepper return value MRIStepGetLastInnerStepFlag()

int MRIStepGetWorkSpace(void* arkode_mem, long int* lenrw, long int* leniw)
Returns the MRIStep real and integer workspace sizes.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• lenrw – the number of realtype values in the MRIStep workspace.

• leniw – the number of integer values in the MRIStep workspace.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetNumSteps(void* arkode_mem, long int* nssteps, long int* nfsteps)
Returns the cumulative number of slow and fast internal steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nssteps – number of slow steps taken in the solver.

• nfsteps – number of fast steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetLastStep(void* arkode_mem, realtype* hlast)
Returns the integration step size taken on the last successful internal step.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• hlast – step size taken on the last internal step.

Return value:

• ARK_SUCCESS if successful
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• ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetCurrentTime(void* arkode_mem, realtype* tcur)
Returns the current internal time reached by the solver.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetCurrentState(void *arkode_mem, N_Vector *ycur)
Returns the current internal solution reached by the solver.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• ycur – current internal solution.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

Notes: Users should exercise extreme caution when using this function, as altering values of ycur may lead to
undesirable behavior, depending on the particular use case and on when this routine is called.

int MRIStepGetCurrentGamma(void *arkode_mem, realtype *gamma)
Returns the current internal value of 𝛾 used in the implicit solver Newton matrix (see equation (2.28)).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• gamma – current step size scaling factor in the Newton system.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetTolScaleFactor(void* arkode_mem, realtype* tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• tolsfac – suggested scaling factor for user-supplied tolerances.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetErrWeights(void* arkode_mem, N_Vector eweight)
Returns the current error weight vector.
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Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• eweight – solution error weights at the current time.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

Notes: The user must allocate space for eweight, that will be filled in by this function.

char *MRIStepGetReturnFlagName(long int flag)
Returns the name of the MRIStep constant corresponding to flag.

Arguments:

• flag – a return flag from an MRIStep function.

Return value: The return value is a string containing the name of the corresponding constant.

int MRIStepGetNumRhsEvals(void* arkode_mem, long int* nfs_evals)
Returns the number of calls to the user’s outer (slow) right-hand side function, 𝑓𝑠 (so far).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nfs_evals – number of calls to the user’s 𝑓𝑠(𝑡, 𝑦) function.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetCurrentCoupling(void* arkode_mem, MRIStepCoupling *C)
Returns the MRI coupling table currently in use by the solver.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• C – pointer to slow-to-fast MRI coupling structure.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

Notes: The MRIStepCoupling data structure is defined in the header file arkode/arkode_mristep.h. It
is defined as a pointer to the following C structure:

struct MRIStepCouplingMem {

int nmat; /* number of MRI coupling matrices */
int stages; /* size of coupling matrices (stages * stages) */
int q; /* method order of accuracy */
int p; /* embedding order of accuracy */
realtype ***G; /* coupling matrices [nmat][stages][stages] */
realtype *c; /* abcissae */

};
typedef MRIStepCouplingMem *MRIStepCoupling;
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For more details see MRI Coupling Coefficients Data Structure.

int MRIStepGetLastInnerStepFlag(void* arkode_mem, int* flag)
Returns the last return value from the inner stepper.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• flag – inner stepper return value.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

6.9.2.3 Implicit solver optional output functions

Optional output Function name
No. of calls to linear solver setup function MRIStepGetNumLinSolvSetups()
No. of nonlinear solver iterations MRIStepGetNumNonlinSolvIters()
No. of nonlinear solver convergence failures MRIStepGetNumNonlinSolvConvFails()
Single accessor to all nonlinear solver statistics MRIStepGetNonlinSolvStats()

int MRIStepGetNumLinSolvSetups(void* arkode_mem, long int* nlinsetups)
Returns the number of calls made to the linear solver’s setup routine (so far).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nlinsetups – number of linear solver setup calls made.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

Notes: This is only accumulated for the ‘life’ of the nonlinear solver object; the counter is reset whenever a
new nonlinear solver module is ‘attached’ to MRIStep, or when MRIStep is resized.

int MRIStepGetNumNonlinSolvIters(void* arkode_mem, long int* nniters)
Returns the number of nonlinear solver iterations performed (so far).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nniters – number of nonlinear iterations performed.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

• ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: This is only accumulated for the ‘life’ of the nonlinear solver object; the counter is reset whenever a
new nonlinear solver module is ‘attached’ to MRIStep, or when MRIStep is resized.
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int MRIStepGetNumNonlinSolvConvFails(void* arkode_mem, long int* nncfails)
Returns the number of nonlinear solver convergence failures that have occurred (so far).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nncfails – number of nonlinear convergence failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

Notes: This is only accumulated for the ‘life’ of the nonlinear solver object; the counter is reset whenever a
new nonlinear solver module is ‘attached’ to MRIStep, or when MRIStep is resized.

int MRIStepGetNonlinSolvStats(void* arkode_mem, long int* nniters, long int* nncfails)
Returns all of the nonlinear solver statistics in a single call.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nniters – number of nonlinear iterations performed.

• nncfails – number of nonlinear convergence failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

• ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: These are only accumulated for the ‘life’ of the nonlinear solver object; the counters are reset whenever
a new nonlinear solver module is ‘attached’ to MRIStep, or when MRIStep is resized.

6.9.2.4 Linear solver interface optional output functions

The following optional outputs are available from the ARKLS modules: workspace requirements, number of calls to
the Jacobian routine, number of calls to the implicit right-hand side routine for finite-difference Jacobian approxima-
tion or Jacobian-vector product approximation, number of linear iterations, number of linear convergence failures,
number of calls to the preconditioner setup and solve routines, number of calls to the Jacobian-vector setup and prod-
uct routines, and last return value from an ARKLS function. Note that, where the name of an output would otherwise
conflict with the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been added
here (e.g. lenrwLS).
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Optional output Function name
Size of real and integer workspaces MRIStepGetLinWorkSpace()
No. of Jacobian evaluations MRIStepGetNumJacEvals()
No. of preconditioner evaluations MRIStepGetNumPrecEvals()
No. of preconditioner solves MRIStepGetNumPrecSolves()
No. of linear iterations MRIStepGetNumLinIters()
No. of linear convergence failures MRIStepGetNumLinConvFails()
No. of Jacobian-vector setup evaluations MRIStepGetNumJTSetupEvals()
No. of Jacobian-vector product evaluations MRIStepGetNumJtimesEvals()
No. of fs calls for finite diff. 𝐽 or 𝐽𝑣 evals. MRIStepGetNumLinRhsEvals()
Last return from a linear solver function MRIStepGetLastLinFlag()
Name of constant associated with a return flag MRIStepGetLinReturnFlagName()

int MRIStepGetLinWorkSpace(void* arkode_mem, long int* lenrwLS, long int* leniwLS)
Returns the real and integer workspace used by the ARKLS linear solver interface.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• lenrwLS – the number of realtype values in the ARKLS workspace.

• leniwLS – the number of integer values in the ARKLS workspace.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

int MRIStepGetNumJacEvals(void* arkode_mem, long int* njevals)
Returns the number of Jacobian evaluations.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• njevals – number of Jacobian evaluations.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to MRIStep, or when MRIStep is resized.

int MRIStepGetNumPrecEvals(void* arkode_mem, long int* npevals)
Returns the total number of preconditioner evaluations, i.e. the number of calls made to psetup with jok =
SUNFALSE and that returned *jcurPtr = SUNTRUE.

Arguments:
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• arkode_mem – pointer to the MRIStep memory block.

• npevals – the current number of calls to psetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to MRIStep, or when MRIStep is resized.

int MRIStepGetNumPrecSolves(void* arkode_mem, long int* npsolves)
Returns the number of calls made to the preconditioner solve function, psolve.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• npsolves – the number of calls to psolve.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to MRIStep, or when MRIStep is resized.

int MRIStepGetNumLinIters(void* arkode_mem, long int* nliters)
Returns the cumulative number of linear iterations.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nliters – the current number of linear iterations.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to MRIStep, or when MRIStep is resized.

int MRIStepGetNumLinConvFails(void* arkode_mem, long int* nlcfails)
Returns the cumulative number of linear convergence failures.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nlcfails – the current number of linear convergence failures.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL
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• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to MRIStep, or when MRIStep is resized.

int MRIStepGetNumJTSetupEvals(void* arkode_mem, long int* njtsetup)
Returns the cumulative number of calls made to the user-supplied Jacobian-vector setup function, jtsetup.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• njtsetup – the current number of calls to jtsetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to MRIStep, or when MRIStep is resized.

int MRIStepGetNumJtimesEvals(void* arkode_mem, long int* njvevals)
Returns the cumulative number of calls made to the Jacobian-vector product function, jtimes.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• njvevals – the current number of calls to jtimes.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to MRIStep, or when MRIStep is resized.

int MRIStepGetNumLinRhsEvals(void* arkode_mem, long int* nfevalsLS)
Returns the number of calls to the user-supplied implicit right-hand side function 𝑓𝑆 for finite difference Jaco-
bian or Jacobian-vector product approximation.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nfevalsLS – the number of calls to the user implicit right-hand side function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The value nfevalsLS is incremented only if the default internal difference quotient function is used.

This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new linear
solver module is ‘attached’ to MRIStep, or when MRIStep is resized.
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int MRIStepGetLastLinFlag(void* arkode_mem, long int* lsflag)
Returns the last return value from an ARKLS routine.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• lsflag – the value of the last return flag from an ARKLS function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the MRIStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: If the ARKLS setup function failed when using the SUNLINSOL_DENSE or SUNLINSOL_BAND
modules, then the value of lsflag is equal to the column index (numbered from one) at which a zero diagonal
element was encountered during the LU factorization of the (dense or banded) Jacobian matrix. For all other
failures, lsflag is negative.

Otherwise, if the ARKLS setup function failed (MRIStepEvolve() returned ARK_LSETUP_FAIL),
then lsflag will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC or
SUNLS_PACKAGE_FAIL_UNREC.

If the ARKLS solve function failed (MRIStepEvolve() returned ARK_LSOLVE_FAIL), then lsflag con-
tains the error return flag from the SUNLinearSolver object, which will be one of: SUNLS_MEM_NULL,
indicating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_NULL, indicating that
a matrix-free iterative solver was provided, but is missing a routine for the matrix-vector product ap-
proximation, SUNLS_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the 𝐽𝑣 function;
SUNLS_PSOLVE_NULL, indicating that an iterative linear solver was configured to use preconditioning, but
no preconditioner solve routine was provided, SUNLS_PSOLVE_FAIL_UNREC, indicating that the precondi-
tioner solve function failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt pro-
cedure (SPGMR and SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrix 𝑅 was found to be
singular during the QR solve phase (SPGMR and SPFGMR only); or SUNLS_PACKAGE_FAIL_UNREC, indi-
cating an unrecoverable failure in an external iterative linear solver package.

char *MRIStepGetLinReturnFlagName(long int lsflag)
Returns the name of the ARKLS constant corresponding to lsflag.

Arguments:

• lsflag – a return flag from an ARKLS function.

Return value: The return value is a string containing the name of the corresponding constant. If using the
SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then if 1 ≤ lsflag ≤ 𝑛 (LU factorization failed), this
routine returns “NONE”.

6.9.2.5 General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters or write the
current MRI coupling table. While neither of these would typically be called during the course of solving an initial
value problem, these may be useful for users wishing to better understand MRIStep.

Optional routine Function name
Output all MRIStep solver parameters MRIStepWriteParameters()
Output the current MRI coupling table MRIStepWriteCoupling()
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int MRIStepWriteParameters(void* arkode_mem, FILE *fp)
Outputs all MRIStep solver parameters to the provided file pointer.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• fp – pointer to use for printing the solver parameters.

Return value:

• ARKS_SUCCESS if successful

• ARKS_MEM_NULL if the MRIStep memory was NULL

Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

int MRIStepWriteCoupling(void* arkode_mem, FILE *fp)
Outputs the current MRI coupling table to the provided file pointer.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• fp – pointer to use for printing the Butcher tables.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all pro-
cesses would be identical.

6.9.2.6 Rootfinding optional output functions

Optional output Function name
Array showing roots found MRIStepGetRootInfo()
No. of calls to user root function MRIStepGetNumGEvals()

int MRIStepGetRootInfo(void* arkode_mem, int* rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• rootsfound – array of length nrtfn with the indices of the user functions 𝑔𝑖 found to have a root
(the value of nrtfn was supplied in the call to MRIStepRootInit()). For 𝑖 = 0 . . . nrtfn-1,
rootsfound[i] is nonzero if 𝑔𝑖 has a root, and 0 if not.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL
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Notes: The user must allocate space for rootsfound prior to calling this function.

For the components of 𝑔𝑖 for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that 𝑔𝑖 is increasing, while a value of -1 indicates a decreasing 𝑔𝑖.

int MRIStepGetNumGEvals(void* arkode_mem, long int* ngevals)
Returns the cumulative number of calls made to the user’s root function 𝑔.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• ngevals – number of calls made to 𝑔 so far.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

6.9.3 MRIStep re-initialization function

To reinitialize the MRIStep module for the solution of a new problem, where a prior call to MRIStepCreate()
has been made, the user must call the function MRIStepReInit(). The new problem must have the same size as
the previous one. This routine retains the current settings for all ARKstep module options and performs the same
input checking and initializations that are done in MRIStepCreate(), but it performs no memory allocation as
is assumes that the existing internal memory is sufficient for the new problem. A call to this re-initialization routine
deletes the solution history that was stored internally during the previous integration. Following a successful call to
MRIStepReInit(), call MRIStepEvolve() again for the solution of the new problem.

The use of MRIStepReInit() requires that the number of Runge Kutta stages for both the slow and fast methods
be no larger for the new problem than for the previous problem.

One important use of the MRIStepReInit() function is in the treating of jump discontinuities in the RHS func-
tions. Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and
restart the integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the dis-
continuity is known, simply make that location a value of tout. To stop when the location of the discontinuity is
determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not incor-
porate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and sub-
sequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int MRIStepReInit(void* arkode_mem, ARKRhsFn fs, realtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the MRIStep outer (slow) stepper.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• fs – the name of the C function (of type ARKRhsFn()) defining the slow right-hand side function in
�̇� = 𝑓𝑠(𝑡, 𝑦) + 𝑓𝑓 (𝑡, 𝑦).

• t0 – the initial value of 𝑡.

• y0 – the initial condition vector 𝑦(𝑡0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL
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• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If the inner (fast) stepper also needs to be reinitialized, its reinitialization function should be called be-
fore calling MRIStepReInit() to reinitialize the outer stepper.

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, MRIStepReInit() also sends an error message to the error handler function.

6.9.4 MRIStep reset function

To reset the MRIStep module to a particular independent variable value and dependent variable vector for the con-
tinued solution of a problem, where a prior call to MRIStepCreate() has been made, the user must call the
function MRIStepReset(). Like MRIStepReInit() this routine retains the current settings for all MRIStep
module options and performs no memory allocations but, unlike MRIStepReInit(), this routine performs only
a subset of the input checking and initializations that are done in MRIStepCreate(). In particular this routine
retains all internal counter values and the step size/error history and does not reinitialize the linear and/or nonlin-
ear solver but it does indicate that a linear solver setup is necessary in the next step. Following a successful call to
MRIStepReset(), call MRIStepEvolve() again to continue solving the problem. By default the next call to
MRIStepEvolve() will use the step size computed by MRIStep prior to calling MRIStepReset(). To set a
different step size or have MRIStep estimate a new step size use MRIStepSetInitStep().

One important use of the MRIStepReset() function is in the treating of jump discontinuities in the RHS func-
tions. Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and
restart the integrator with a readjusted ODE model, using a call to MRIStepReset(). To stop when the location
of the discontinuity is known, simply make that location a value of tout. To stop when the location of the disconti-
nuity is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not
incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int MRIStepReset(void* arkode_mem, realtype tR, N_Vector yR)
Resets the current MRIStep outer (slow) time-stepper module state to the provided independent variable value
and dependent variable vector.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• tR – the value of the independent variable 𝑡.

• yR – the value of the dependent variable vector 𝑦(𝑡𝑅).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If the inner (fast) stepper also needs to be reset, its reset function should be called before calling
MRIStepReset() to reset the outer stepper.

All previously set options are retained but may be updated by calling the appropriate “Set” functions.
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If an error occurred, MRIStepReset() also sends an error message to the error handler function.

6.9.5 MRIStep system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the MRIStep integrator may be “resized” be-
tween slow integration steps, through calls to the MRIStepResize() function. This function modifies MRIStep’s
internal memory structures to use the new problem size.

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn()) is not supplied (i.e. is set to NULL), then all existing vectors internal to MRIStep will be
destroyed and re-cloned from the new input vector.

int MRIStepResize(void* arkode_mem, N_Vector ynew, realtype t0, ARKVecResizeFn resize, void* re-
size_data)

Re-initializes MRIStep with a different state vector.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• ynew – the newly-sized solution vector, holding the current dependent variable values 𝑦(𝑡0).

• t0 – the current value of the independent variable 𝑡0 (this must be consistent with ynew).

• resize – the user-supplied vector resize function (of type ARKVecResizeFn().

• resize_data – the user-supplied data structure to be passed to resize when modifying internal MRIS-
tep vectors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, MRIStepResize() also sends an error message to the error handler function.

6.9.5.1 Resizing the absolute tolerance array

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call to
MRIStepResize(), so the new absolute tolerance vector should be re-set following each call to
MRIStepResize() through a new call to MRIStepSVtolerances().

If scalar-valued tolerances or a tolerance function was specified through either MRIStepSStolerances() or
MRIStepWFtolerances(), then these will remain valid and no further action is necessary.

Note: For an example showing usage of the similar ARKStepResize() routine, see the supplied serial C exam-
ple problem, ark_heat1D_adapt.c.
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6.10 User-supplied functions

The user-supplied functions for MRIStep consist of:

• a function that defines the slow portion of the ODE (required),

• a function that handles error and warning messages (optional),

• a function that provides the error weight vector (optional),

• a function that updates the implicit stage prediction (optional),

• a function that defines the root-finding problem(s) to solve (optional),

• one or two functions that provide Jacobian-related information for the linear solver, if the method is implicit at
the slow time scale and a Newton-based nonlinear iteration is chosen (optional),

• one or two functions that define the preconditioner for use in any of the Krylov iterative algorithms, if the
method is implicit at the slow time scale and a Newton-based nonlinear iteration and iterative linear solver are
chosen (optional),

• a function that handles vector resizing operations, if the underlying vector structure supports resizing (as op-
posed to deletion/recreation), and if the user plans to call MRIStepResize() (optional), and

• functions to be called before and after each inner integration to perform any communication or memory trans-
fers of forcing data supplied by the outer integrator to the inner integrator, or state data supplied by the inner
integrator to the outer integrator.

Additionally, a user may supply a custom set of slow-to-fast coupling coefficients for the MRI method.

6.10.1 ODE right-hand side

The user must supply a function of type ARKRhsFn to specify the “slow” right-hand side of the ODE system:

typedef int (*ARKRhsFn)(realtype t, N_Vector y, N_Vector ydot, void* user_data)
This function computes a portion of the ODE right-hand side for a given value of the independent variable 𝑡
and state vector 𝑦.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• ydot – the output vector that forms a portion the ODE RHS 𝑓(𝑡, 𝑦).

• user_data – the user_data pointer that was passed to MRIStepSetUserData().

Return value: An ARKRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case MRIStep will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARK_RHSFUNC_FAIL is returned).

Notes: Allocation of memory for ydot is handled within the MRIStep module.

The vector ydot may be uninitialized on input; it is the user’s responsibility to fill this entire vector with mean-
ingful values.

A recoverable failure error return from the ARKRhsFn is typically used to flag a value of the dependent vari-
able 𝑦 that is “illegal” in some way (e.g., negative where only a non-negative value is physically meaningful).
If such a return is made within an implicit solve, MRIStep may attempt to recover by repeating the nonlinear
iteration in order to avoid this recoverable error return. However, since MRIStep currently requires fixed time
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stepping at the slow time scale, no other recovery mechanisms are available, and MRIStep may halt on a re-
coverable error flag.

6.10.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
MRIStepSetErrFile()), the user may provide a function of type ARKErrHandlerFn to process any such
messages.

typedef void (*ARKErrHandlerFn)(int error_code, const char* module, const char* function, char* msg,
void* user_data)

This function processes error and warning messages from MRIStep and its sub-modules.

Arguments:

• error_code – the error code.

• module – the name of the MRIStep module reporting the error.

• function – the name of the function in which the error occurred.

• msg – the error message.

• user_data – a pointer to user data, the same as the eh_data parameter that was passed to
MRIStepSetErrHandlerFn().

Return value: An ARKErrHandlerFn function has no return value.

Notes: error_code is negative for errors and positive (ARK_WARNING) for warnings. If a function that returns
a pointer to memory encounters an error, it sets error_code to 0.

6.10.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of
type ARKEwtFn to compute a vector ewt containing the weights in the WRMS norm ‖𝑣‖𝑊𝑅𝑀𝑆 =(︁

1
𝑛

∑︀𝑛
𝑖=1 (𝑒𝑤𝑡𝑖 𝑣𝑖)

2
)︁1/2

. These weights will be used in place of those defined in the section Error norms.

typedef int (*ARKEwtFn)(N_Vector y, N_Vector ewt, void* user_data)
This function computes the WRMS error weights for the vector 𝑦.

Arguments:

• y – the dependent variable vector at which the weight vector is to be computed.

• ewt – the output vector containing the error weights.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
MRIStepSetUserData().

Return value: An ARKEwtFn function must return 0 if it successfully set the error weights, and -1 otherwise.

Notes: Allocation of memory for ewt is handled within MRIStep.

The error weight vector must have all components positive. It is the user’s responsibility to perform this test
and return -1 if it is not satisfied.
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6.10.4 Implicit stage prediction function

A user may supply a function to update the prediction for each implicit stage solution. If supplied, this routine will
be called after any existing MRIStep predictor algorithm completes, so that the predictor may be modified by the
user as desired. In this scenario, a user may provide a function of type ARKStagePredictFn to provide this im-
plicit predictor to MRIStep. This function takes as input the already-predicted implicit stage solution and the corre-
sponding ‘time’ for that prediction; it then updates the prediction vector as desired. If the user-supplied routine will
construct a full prediction (and thus the MRIStep prediction is irrelevant), it is recommended that the user not call
MRIStepSetPredictorMethod(), thereby leaving the default trivial predictor in place.

typedef int (*ARKStagePredictFn)(realtype t, N_Vector zpred, void* user_data)
This function updates the prediction for the implicit stage solution.

Arguments:

• t – the current value of the independent variable.

• zpred – the MRIStep-predicted stage solution on input, and the user-modified predicted stage solu-
tion on output.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
MRIStepSetUserData().

Return value: An ARKStagePredictFn function should return 0 if it successfully set the upcoming stable step
size, and a non-zero value otherwise.

Notes: This may be useful if there are bound constraints on the solution, and these should be enforced prior to
beginning the nonlinear or linear implicit solver algorithm.

6.10.5 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a function of
type ARKRootFn.

typedef int (*ARKRootFn)(realtype t, N_Vector y, realtype* gout, void* user_data)
This function implements a vector-valued function 𝑔(𝑡, 𝑦) such that the roots of the nrtfn components 𝑔𝑖(𝑡, 𝑦)
are sought.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• gout – the output array, of length nrtfn, with components 𝑔𝑖(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
MRIStepSetUserData().

Return value: An ARKRootFn function should return 0 if successful or a non-zero value if an error occurred
(in which case the integration is halted and MRIStep returns ARK_RTFUNC_FAIL).

Notes: Allocation of memory for gout is handled within MRIStep.

6.10.6 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e., a non-NULL SUNMatrix object was supplied to
MRIStepSetLinearSolver() in section A skeleton of the user’s main program), the user may provide a func-
tion of type ARKLsJacFn to provide the Jacobian approximation or ARKLsLinSysFn to provide an approxima-
tion of the linear system 𝐴 = 𝐼 − 𝛾𝐽 .
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typedef int (*ARKLsJacFn)(realtype t, N_Vector y, N_Vector fy, SUNMatrix Jac, void* user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)

This function computes the Jacobian matrix 𝐽 = 𝜕𝑓𝑆

𝜕𝑦 (or an approximation to it).

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector, namely the predicted value of 𝑦(𝑡).

• fy – the current value of the vector 𝑓𝑆(𝑡, 𝑦).

• Jac – the output Jacobian matrix.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
MRIStepSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsJacFn as temporary storage or work space.

Return value: An ARKLsJacFn function should return 0 if successful, a positive value if a recover-
able error occurred (in which case MRIStep will attempt to correct, while ARKLS sets last_flag to
ARKLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the inte-
gration is halted, MRIStepEvolve() returns ARK_LSETUP_FAIL and ARKLS sets last_flag to
ARKLS_JACFUNC_UNRECVR).

Notes: Information regarding the structure of the specific SUNMatrix structure (e.g.~number of rows, up-
per/lower bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix
interface functions (see the section Matrix Data Structures for details).

When using a linear solver of type SUNLINEARSOLVER_DIRECT, prior to calling the user-supplied Jaco-
bian function, the Jacobian matrix 𝐽(𝑡, 𝑦) is zeroed out, so only nonzero elements need to be loaded into Jac.

With the default nonlinear solver (the native SUNDIALS Netwon method), each call to the user’s
ARKLsJacFn() function is preceded by a call to the implicit ARKRhsFn() user function with the same
(𝑡, 𝑦) arguments. Thus, the Jacobian function can use any auxiliary data that is computed and saved during the
evaluation of the implicit ODE right-hand side. In the case of a user-supplied or external nonlinear solver, this
is also true if the nonlinear system function is evaluated prior to calling the linear solver setup function (see
Functions provided by SUNDIALS integrators for more information).

If the user’s ARKLsJacFn function uses difference quotient approximations, then it may need to access quan-
tities not in the argument list. These include the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the MRIStepGet*
functions listed in Optional output functions. The unit roundoff can be accessed as UNIT_ROUNDOFF, which
is defined in the header file sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an approximation to the
Jacobian matrix 𝐽(𝑡, 𝑦) at the point (𝑡, 𝑦). The accessor macros SM_ELEMENT_D and SM_COLUMN_D allow
the user to read and write dense matrix elements without making explicit references to the underlying repre-
sentation of the SUNMATRIX_DENSE type. SM_ELEMENT_D(J, i, j) references the (i,j)-th ele-
ment of the dense matrix J (for i, j between 0 and N-1). This macro is meant for small problems for which
efficiency of access is not a major concern. Thus, in terms of the indices 𝑚 and 𝑛 ranging from 1 to N, the
Jacobian element 𝐽𝑚,𝑛 can be set using the statement SM_ELEMENT_D(J, m-1, n-1) = 𝐽𝑚,𝑛. Alter-
natively, SM_COLUMN_D(J, j) returns a pointer to the first element of the j-th column of J (for j ranging
from 0 to N-1), and the elements of the j-th column can then be accessed using ordinary array indexing. Con-
sequently, 𝐽𝑚,𝑛 can be loaded using the statements col_n = SM_COLUMN_D(J, n-1); col_n[m-1]
= 𝐽𝑚,𝑛. For large problems, it is more efficient to use SM_COLUMN_D than to use SM_ELEMENT_D. Note
that both of these macros number rows and columns starting from 0. The SUNMATRIX_DENSE type and
accessor macros are documented in section The SUNMATRIX_DENSE Module.
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band:

A user-supplied banded Jacobian function must load the band matrix Jac with the elements of the
Jacobian 𝐽(𝑡, 𝑦) at the point (𝑡, 𝑦). The accessor macros SM_ELEMENT_B, SM_COLUMN_B, and
SM_COLUMN_ELEMENT_B allow the user to read and write band matrix elements without making specific
references to the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT_B(J, i, j)
references the (i,j)-th element of the band matrix J, counting from 0. This macro is meant for use in small
problems for which efficiency of access is not a major concern. Thus, in terms of the indices 𝑚 and 𝑛 rang-
ing from 1 to N with (𝑚,𝑛) within the band defined by mupper and mlower, the Jacobian element 𝐽𝑚,𝑛 can
be loaded using the statement SM_ELEMENT_B(J, m-1, n-1) = 𝐽𝑚,𝑛. The elements within the band
are those with -mupper ≤ 𝑚 − 𝑛 ≤ mlower. Alternatively, SM_COLUMN_B(J, j) returns a pointer to
the diagonal element of the j-th column of J, and if we assign this address to realtype *col_j, then the
i-th element of the j-th column is given by SM_COLUMN_ELEMENT_B(col_j, i, j), counting from
0. Thus, for (𝑚,𝑛) within the band, 𝐽𝑚,𝑛 can be loaded by setting col_n = SM_COLUMN_B(J, n-1);
SM_COLUMN_ELEMENT_B(col_n, m-1, n-1) = 𝐽𝑚,𝑛 . The elements of the j-th column can also
be accessed via ordinary array indexing, but this approach requires knowledge of the underlying storage for a
band matrix of type SUNMATRIX_BAND. The array col_n can be indexed from -mupper to mlower. For
large problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_ELEMENT_B than to use the
SM_ELEMENT_B macro. As in the dense case, these macros all number rows and columns starting from 0.
The SUNMATRIX_BAND type and accessor macros are documented in section The SUNMATRIX_BAND
Module.

sparse:

A user-supplied sparse Jacobian function must load the compressed-sparse-column (CSC) or compressed-
sparse-row (CSR) matrix Jac with an approximation to the Jacobian matrix 𝐽(𝑡, 𝑦) at the point (𝑡, 𝑦). Stor-
age for Jac already exists on entry to this function, although the user should ensure that sufficient space is
allocated in Jac to hold the nonzero values to be set; if the existing space is insufficient the user may reallo-
cate the data and index arrays as needed. The amount of allocated space in a SUNMATRIX_SPARSE object
may be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ(). The SUNMA-
TRIX_SPARSE type is further documented in the section The SUNMATRIX_SPARSE Module.

typedef int (*ARKLsLinSysFn)(realtype t, N_Vector y, N_Vector fy, SUNMatrix A, SUNMatrix M,
booleantype jok, booleantype *jcur, realtype gamma, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)

This function computes the linear system matrix 𝐴 = 𝐼 − 𝛾𝐽 (or an approximation to it).

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector, namely the predicted value of 𝑦(𝑡).

• fy – the current value of the vector 𝑓𝑆(𝑡, 𝑦).

• A – the output linear system matrix.

• M – the argument will be NULL since MRIStep does not support non-identity mass matrices.

• jok – is an input flag indicating whether the Jacobian-related data needs to be updated. The jok ar-
gument provides for the reuse of Jacobian data. When jok = SUNFALSE, the Jacobian-related data
should be recomputed from scratch. When jok = SUNTRUE the Jacobian data, if saved from the
previous call to this function, can be reused (with the current value of gamma). A call with jok =
SUNTRUE can only occur after a call with jok = SUNFALSE.

• jcur – is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set
to SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

• gamma – the scalar 𝛾 appearing in the Newton matrix given by 𝐴 = 𝐼 − 𝛾𝐽 .
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• user_data – a pointer to user data, the same as the user_data parameter that was passed to
MRIStepSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsLinSysFn as temporary storage or work space.

Return value: An ARKLsLinSysFn function should return 0 if successful, a positive value if a recov-
erable error occurred (in which case MRIStep will attempt to correct, while ARKLS sets last_flag to
ARKLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the inte-
gration is halted, MRIStepEvolve() returns ARK_LSETUP_FAIL and ARKLS sets last_flag to
ARKLS_JACFUNC_UNRECVR).

6.10.7 Jacobian-vector product (matrix-free linear solvers)

When using a matrix-free linear solver module for the implicit stage solves (i.e., a NULL-valued SUNMATRIX ar-
gument was supplied to MRIStepSetLinearSolver() in the section A skeleton of the user’s main program),
the user may provide a function of type ARKLsJacTimesVecFn in the following form, to compute matrix-vector
products 𝐽𝑣. If such a function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*ARKLsJacTimesVecFn)(N_Vector v, N_Vector Jv, realtype t, N_Vector y, N_Vector fy,
void* user_data, N_Vector tmp)

This function computes the product 𝐽𝑣 =
(︁

𝜕𝑓𝑆

𝜕𝑦

)︁
𝑣 (or an approximation to it).

Arguments:

• v – the vector to multiply.

• Jv – the output vector computed.

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector 𝑓𝑆(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
MRIStepSetUserData().

• tmp – pointer to memory allocated to a variable of type N_Vector which can be used as temporary
storage or work space.

Return value: The value to be returned by the Jacobian-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the generic Krylov solver, in which case the
integration is halted.

Notes: If the user’s ARKLsJacTimesVecFn function uses difference quotient approximations, it may need
to access quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then
use the MRIStepGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

6.10.8 Jacobian-vector product setup (matrix-free linear solvers)

If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type ARKLsJacTimesSetupFn, defined as follows:

typedef int (*ARKLsJacTimesSetupFn)(realtype t, N_Vector y, N_Vector fy, void* user_data)
This function preprocesses and/or evaluates any Jacobian-related data needed by the Jacobian-times-vector
routine.
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Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector 𝑓𝑆(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
MRIStepSetUserData().

Return value: The value to be returned by the Jacobian-vector setup function should be 0 if successful, pos-
itive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable error (in
which case the integration is halted).

Notes: Each call to the Jacobian-vector setup function is preceded by a call to the implicit ARKRhsFn user
function with the same (𝑡, 𝑦) arguments. Thus, the setup function can use any auxiliary data that is computed
and saved during the evaluation of the implicit ODE right-hand side.

If the user’s ARKLsJacTimesSetupFn function uses difference quotient approximations, it may need
to access quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then
use the MRIStepGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

6.10.9 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLinSol solver module, then the user must provide a func-
tion of type ARKLsPrecSolveFn to solve the linear system 𝑃𝑧 = 𝑟, where 𝑃 corresponds to either a left or right
preconditioning matrix. Here 𝑃 should approximate (at least crudely) the Newton matrix 𝐴 = 𝐼 − 𝛾𝐽 , where
𝐽 = 𝜕𝑓𝑆

𝜕𝑦 If preconditioning is done on both sides, the product of the two preconditioner matrices should approxi-
mate 𝐴.

typedef int (*ARKLsPrecSolveFn)(realtype t, N_Vector y, N_Vector fy, N_Vector r, N_Vector z, real-
type gamma, realtype delta, int lr, void* user_data)

This function solves the preconditioner system 𝑃𝑧 = 𝑟.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector 𝑓𝑆(𝑡, 𝑦).

• r – the right-hand side vector of the linear system.

• z – the computed output solution vector.

• gamma – the scalar 𝛾 appearing in the Newton matrix given by 𝐴 = 𝐼 − 𝛾𝐽 .

• delta – an input tolerance to be used if an iterative method is employed in the solution. In that case,
the residual vector 𝑅𝑒𝑠 = 𝑟 − 𝑃𝑧 of the system should be made to be less than delta in the weighted

𝑙2 norm, i.e.
(︁∑︀𝑛

𝑖=1 (𝑅𝑒𝑠𝑖 * 𝑒𝑤𝑡𝑖)2
)︁1/2

< 𝛿, where 𝛿 = delta. To obtain the N_Vector ewt, call
MRIStepGetErrWeights().

• lr – an input flag indicating whether the preconditioner solve is to use the left preconditioner (lr = 1)
or the right preconditioner (lr = 2).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
MRIStepSetUserData().

6.10. User-supplied functions 251



User Documentation for ARKode, v4.7.0

Return value: The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

6.10.10 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner routine requires that any data be preprocessed or evaluated, then these actions need to
occur within a user-supplied function of type ARKLsPrecSetupFn.

typedef int (*ARKLsPrecSetupFn)(realtype t, N_Vector y, N_Vector fy, booleantype jok, boolean-
type* jcurPtr, realtype gamma, void* user_data)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector 𝑓𝑆(𝑡, 𝑦).

• jok – is an input flag indicating whether the Jacobian-related data needs to be updated. The jok ar-
gument provides for the reuse of Jacobian data in the preconditioner solve function. When jok =
SUNFALSE, the Jacobian-related data should be recomputed from scratch. When jok = SUNTRUE
the Jacobian data, if saved from the previous call to this function, can be reused (with the current
value of gamma). A call with jok = SUNTRUE can only occur after a call with jok = SUNFALSE.

• jcurPtr – is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or
set to SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

• gamma – the scalar 𝛾 appearing in the Newton matrix given by 𝐴 = 𝐼 − 𝛾𝐽 .

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
MRIStepSetUserData().

Return value: The value to be returned by the preconditioner setup function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

Notes: The operations performed by this function might include forming a crude approximate Jacobian, and
performing an LU factorization of the resulting approximation to 𝐴 = 𝐼 − 𝛾𝐽 .

With the default nonlinear solver (the native SUNDIALS Netwon method), each call to the preconditioner
setup function is preceded by a call to the implicit ARKRhsFn user function with the same (𝑡, 𝑦) arguments.
Thus, the preconditioner setup function can use any auxiliary data that is computed and saved during the eval-
uation of the implicit ODE right-hand side. In the case of a user-supplied or external nonlinear solver, this
is also true if the nonlinear system function is evaluated prior to calling the linear solver setup function (see
Functions provided by SUNDIALS integrators for more information).

This function is not called in advance of every call to the preconditioner solve function, but rather is called
only as often as needed to achieve convergence in the Newton iteration.

If the user’s ARKLsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the MRIStepGet*
functions listed in Optional output functions. The unit roundoff can be accessed as UNIT_ROUNDOFF, which
is defined in the header file sundials_types.h.
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6.10.11 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the MRIStep integrator may be “resized” between integration steps, through
calls to the MRIStepResize() function. Typically, when performing adaptive simulations the solution is stored in
a customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory.
In these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDI-
ALS and their problem-specific data structure. If this vector kernel includes a function of type ARKVecResizeFn
to resize a given vector implementation, then this function may be supplied to MRIStepResize() so that all in-
ternal MRIStep vectors may be resized, instead of deleting and re-creating them at each call. This resize function
should have the following form:

typedef int (*ARKVecResizeFn)(N_Vector y, N_Vector ytemplate, void* user_data)
This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Arguments:

• y – the vector to resize.

• ytemplate – a vector of the desired size.

• user_data – a pointer to user data, the same as the resize_data parameter that was passed to
MRIStepResize().

Return value: An ARKVecResizeFn function should return 0 if it successfully resizes the vector y, and a non-
zero value otherwise.

Notes: If this function is not supplied, then MRIStep will instead destroy the vector y and clone a new vector y
off of ytemplate.

6.10.12 Pre inner integrator communication function

The user may supply a function of type MRIStepPreInnerFn that will be called before each inner integration to
perform any communication or memory transfers of forcing data supplied by the outer integrator to the inner integra-
tor for the inner integration.

typedef int (*MRIStepPreInnerFn)(realtype t, N_Vector* f, int num_vecs, void* user_data)

Arguments:

• t – the current value of the independent variable.

• f – an N_Vector array of outer forcing vectors.

• num_vecs – the number of vectors in the N_Vector array.

• user_data – the user_data pointer that was passed to MRIStepSetUserData().

Return value: An MRIStepPreInnerFn function should return 0 if successful, a positive value if a recoverable
error occurred, or a negative value if an unrecoverable error occurred. As the MRIStep module only supports
fixed step sizes at this time any non-zero return value will halt the integration.

Notes: In a heterogeneous computing environment if any data copies between the host and device vector data
are necessary, this is where that should occur.

6.10.13 Post inner integrator communication function

The user may supply a function of type MRIStepPostInnerFn that will be called after each inner integration to
perform any communication or memory transfers of state data supplied by the inner integrator to the outer integrator
for the outer integration.
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typedef int (*MRIStepPostInnerFn)(realtype t, N_Vector y, void* user_data)

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• user_data – the user_data pointer that was passed to MRIStepSetUserData().

Return value: An MRIStepPostInnerFn function should return 0 if successful, a positive value if a recoverable
error occurred, or a negative value if an unrecoverable error occurred. As the MRIStep module only supports
fixed step sizes at this time any non-zero return value will halt the integration.

Notes: In a heterogeneous computing environment if any data copies between the host and device vector data
are necessary, this is where that should occur.

tocdepth 3

6.10.14 MRI Coupling Coefficients Data Structure

As mentioned in the section MRIStep User-callable functions, a user may supply a custom set of coupling coef-
ficients between fast and slow time scales (through MRIStepSetCoupling()). MRIStep uses a custom data
type, MRIStepCoupling, to store these coefficients, and provides several related utility routines. As described
in the Section MRIStep – Multirate infinitesimal step methods, the coupling from slow to fast time scales in MRI
methods may be encoded by a vector of slow ‘stage time’ abcissae, 𝑐𝑆 ∈ R𝑠+1 and a set of coupling matrices
Γ{𝑘} ∈ R(𝑠+1)×(𝑠+1). We therefore define the MRIStepCoupling structure to be

typedef MRIStepCouplingMem *MRIStepCoupling

where MRIStepCouplingMem is the structure

struct MRIStepCouplingMem {

int nmat;
int stages;
int q;
int p;
realtype ***G;
realtype *c;

};

Here,

• nmat corresponds to the number of Γ{𝑘} matrices used for coupling,

• stages is the number of entries in c, i.e., 𝑠 + 1 above,

• q and p indicate the orders of accuracy for both the MRI method and the embedding, respectively,

• G is a three-dimensional array with dimensions [nmat][stages][stages] containing the set of Γ{𝑘}

matrices, and

• c is an array of length stages containing slow abcissae 𝑐𝑆 for the MRI method.

254 Chapter 6. Using MRIStep for C and C++ Applications



User Documentation for ARKode, v4.7.0

6.10.14.1 MRIStepCoupling functions

Function name Description
MRIStepCoupling_LoadTable() Loads a pre-defined MRIStepCoupling table
MRIStepCoupling_Alloc() Allocate an empty MRIStepCoupling table
MRIStepCoupling_Create() Create a new MRIStepCoupling table from coefficients
MRIStepCoupling_MIStoMRI() Create a new MRIStepCoupling table from a slow Butcher table
MRIStepCoupling_Copy() Create a copy of a MRIStepCoupling table
MRIStepCoupling_Space() Get the MRIStepCoupling table real and integer workspace sizes
MRIStepCoupling_Free() Deallocate a MRIStepCoupling table
MRIStepCoupling_Write() Write the MRIStepCoupling table to an output file

MRIStepCoupling MRIStepCoupling_LoadTable(int imethod)
Retrieves a specified MRIStepCoupling table. The prototype for this function, as well as the integer names
for each provided method, are defined in top of the header file arkode/arkode_mristep.h. For further
information on the current set of coupling tables and their corresponding identifiers, see MRIStepCoupling
tables.

Arguments:

• itable – MRIStepCoupling table identifier to load.

Return value:

• MRIStepCoupling structure if successful.

• NULL pointer if itable was invalid or an allocation error occured.

MRIStepCoupling MRIStepCoupling_Alloc(int nmat, int stages)
Allocates an empty MRIStepCoupling table.

Arguments:

• nmat – number of Γ{𝑘} matrices in the coupling table.

• stages – number of stages in the coupling table.

Return value:

• MRIStepCoupling structure if successful.

• NULL pointer if stages was invalid or an allocation error occured.

MRIStepCoupling MRIStepCoupling_Create(int nmat, int stages, int q, int p, realtype *G, realtype *c)
Allocates an MRIStepCoupling table and fills it with the given values.

Arguments:

• nmat – number of Γ{𝑘} matrices in the coupling table.

• stages – number of stages in the MRI method.

• q – global order of accuracy for the MRI method.

• p – global order of accuracy for the embedded MRI method.

• G – array of coefficients defining the Γ{𝑘} matrices. This should be stored as a 1D array of size
nmat*stages*stages, in row-major order.

• c – array (of length stages) of slow abcissae for the MRI method.

Return value:

• MRIStepCoupling structure if successful.
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• NULL pointer if stages was invalid or an allocation error occured.

Notes: As embeddings are not currently supported in MRIStep, then p should be equal to zero.

MRIStepCoupling MRIStepCoupling_MIStoMRI(ARKodeButcherTable B, int q, int p)
Creates an MRI coupling table for a traditional MIS method based on the slow Butcher table B, following the
formula shown in (2.11).

Arguments:

• B – the ARKodeButcherTable for the ‘slow’ MIS method.

• q – the overall order of the MIS/MRI method.

• p – the overall order of the MIS/MRI embedding.

Return value:

• MRIStepCoupling structure if successful.

• NULL pointer an allocation error occured.

Notes: The 𝑠-stage slow Butcher table must have an explicit first stage (i.e., 𝑐1 = 0 and 𝐴1,𝑗 = 0 for 1 ≤ 𝑗 ≤
𝑠) and sorted abcissae (i.e., 𝑐𝑖 ≥ 𝑐𝑖−1 for 2 ≤ 𝑖 ≤ 𝑠).

Since an MIS method is at most third order accurate, and even then only if it meets certain compatibility cri-
teria (see (2.12)), the values of q and p may differ from the method and embedding orders of accuracy for the
Runge–Kutta encoded in B, which is why these arguments should be supplied separately.

As embeddings are not currently supported in MRIStep, then p should be equal to zero.

MRIStepCoupling MRIStepCoupling_Copy(MRIStepCoupling C)
Creates copy of the given coupling table.

Arguments:

• C – the coupling table to copy.

Return value:

• MRIStepCoupling structure if successful.

• NULL pointer an allocation error occured.

void MRIStepCoupling_Space(MRIStepCoupling C, sunindextype *liw, sunindextype *lrw)
Get the real and integer workspace size for an MRIStepCoupling table.

Arguments:

• C – the coupling table.

• lenrw – the number of realtype values in the coupling table workspace.

• leniw – the number of integer values in the coupling table workspace.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the Butcher table memory was NULL.

void MRIStepCoupling_Free(MRIStepCoupling C)
Deallocate the coupling table memory.

Arguments:

• C – the MRIStepCoupling table.
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void MRIStepCoupling_Write(MRIStepCoupling C, FILE *outfile)
Write the coupling table to the provided file pointer.

Arguments:

• C – the MRIStepCoupling table.

• outfile – pointer to use for printing the table.

Notes: The outfile argument can be stdout or stderr, or it may point to a specific file created using
fopen.

6.10.14.2 MRIStepCoupling tables

MRIStep currently includes two classes of MRI coupling tables: those that encode methods that are explicit at the
slow time scale, and those that are diagonally-implicit and solve-decoupled at the slow time scale. We list the current
identifiers, multirate order of accuracy, and relevant references for each in the tables below. For the implicit methods,
we also list the number of implicit solves per step that are required at the slow time scale.

Explicit MRI coupling tables:

Table name Order Reference
MIS_KW3 3

[SKAW2009]
MRI_GARK_ERK45a 4

[S2019]

Diagonally-implicit, solve-decoupled MRI coupling tables:

Table name Order Implicit Solves Reference
MRI_GARK_IRK21a 2 1

[S2019]
MRI_GARK_ESDIRK34a 4 3

[S2019]
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Chapter 7

Using ARKode for Fortran Applications

Fortran 2003 interfaces to each of the time-stepping modules as well as a Fortran 77 style interface to the ARKStep
time-stepping module are provided to support the use of ARKode, for the solution of ODE systems, in a mixed For-
tran/C setting. While ARKode is written in C, it is assumed here that the user’s calling program and user-supplied
problem-definining rotuines are written in Fortran.

7.1 ARKode Fortran 2003 Interface Modules

The ARKode Fortran 2003 modules define interfaces to most of the ARKode C API using the intrinsic
iso_c_binding module which provides a standardized mechanism for interoperating with C. AKRode provides
four Fortran 2003 modules:

• farkode_arkstep_mod, farkode_erkstep_mod, farkode_mristep_mod provide interfaces to
the ARKStep, ERKStep, and MRIStep time-stepping modules respectively

• farkode_mod which interfaces to the components of ARKode which are shared by the time-stepping mod-
ules

All interfaced functions are named after the corresponding C function, but with a leading ‘F’. For example. the
ARKStep function ARKStepCreate is interfaced as FARKStepCreate. Thus, the steps to use an ARKode time-
stepping module from Fortran are identical (ignoring language differences) to using it from C/C++.

The Fortran 2003 ARKode interface modules can be accessed by the use statement, i.e. use farkode_mod, and
linking to the library libsundials_farkode_mod.lib in addition to libsundials_farkode.lib. Fur-
ther information on the location of installed modules is provided in the Chapter ARKode Installation Procedure.

The Fortran 2003 interface modules were generated with SWIG Fortran, a fork of SWIG [JPE2019]. Users who are
interested in the SWIG code used in the generation process should contact the SUNDIALS development team.

7.1.1 SUNDIALS Fortran 2003 Interface Modules

All of the generic SUNDIALS modules provide Fortran 2003 interface modules. Many of the generic module
implementations provide Fortran 2003 interfaces (a complete list of modules with Fortran 2003 interfaces is
given in Table: SUNDIALS Fortran 2003 Interface Modules. A module can be accessed with the use statement,
e.g. use fnvector_openmp_mod, and linking to the Fortran 2003 library in addition to the C library, e.g.
libsundials_fnvecpenmp_mod.lib and libsundials_nvecopenmp.lib.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow
the SUNDIALS C API (ignoring language differences). The generic SUNDIALS structures, e.g. N_Vector, are
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interfaced as Fortran derived types, and function signatures are matched but with an F prepending the name, e.g.
FN_VConst instead of N_VConst. Constants are named exactly as they are in the C API. Accordingly, using
SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming from the language
differences are discussed in the section Notable Fortran/C usage differences. A discussion on the topic of equivalent
data types in C and Fortran 2003 is presented in section Data Types.

Further information on the Fortran 2003 interfaces specific to modules is given in the NVECTOR, SUNMatrix,
SUNLinearSolver, and SUNNonlinearSolver sections alongside the C documentation (chapters Vector Data Struc-
tures, Matrix Data Structures, Description of the SUNLinearSolver module, and Description of the SUNNonlinear-
Solver Module respectively). For details on where the Fortran 2003 module (.mod) files and libraries are installed
see Appendix ARKode Installation Procedure.

7.1.1.1 Table: SUNDIALS Fortran 2003 Interface Modules

Module Fortran 2003 Module Name
NVECTOR fsundials_nvector_mod
NVECTOR_SERIAL fnvector_serial_mod
NVECTOR_OPENMP fnvector_openmp_mod
NVECTOR_PTHREADS fnvector_pthreads_mod
NVECTOR_PARALLEL fnvector_parallel_mod
NVECTOR_PARHYP Not interfaced
NVECTOR_PETSC Not interfaced
NVECTOR_CUDA Not interfaced
NVECTOR_RAJA Not interfaced
NVECTOR_MANVECTOR fnvector_manyvector_mod
NVECTOR_MPIMANVECTOR fnvector_mpimanyvector_mod
NVECTOR_MPIPLUSX fnvector_mpiplusx_mod
SUNMATRIX fsundials_matrix_mod
SUNMATRIX_BAND fsunmatrix_band_mod
SUNMATRIX_DENSE fsunmatrix_dense_mod
SUNMATRIX_SPARSE fsunmatrix_sparse_mod
SUNLINSOL fsundials_linearsolver_mod
SUNLINSOL_BAND fsunlinsol_band_mod
SUNLINSOL_DENSE fsunlinsol_dense_mod
SUNLINSOL_LAPACKBAND Not interfaced
SUNLINSOL_LAPACKDENSE Not interfaced
SUNLINSOL_KLU fsunlinsol_klu_mod
SUNLINSOL_SLUMT Not interfaced
SUNLINSOL_SLUDIST Not interfaced
SUNLINSOL_SPGMR fsunlinsol_spgmr_mod
SUNLINSOL_SPFGMR fsunlinsol_spfgmr_mod
SUNLINSOL_SPBCGS fsunlinsol_spbcgs_mod
SUNLINSOL_SPTFQMR fsunlinsol_sptfqmr_mod
SUNLINSOL_PCG fsunlinsol_pcg_mof
SUNNONLINSOL fsundials_nonlinearsolver_mod
SUNNONLINSOL_NEWTON fsunnonlinsol_newton_mod
SUNNONLINSOL_FIXEDPOINT fsunnonlinsol_fixedpoint_mod
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7.1.2 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to the
iso_c_binding type equivalent. SUNDIALS generic types map to a Fortran derived type. However, the handling
of pointer types is not always clear as they can depend on the parameter direction. ref:Fortran2003.DataTypesTable
presents a summary of the type equivalencies with the parameter direction in mind.

NOTE: Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the realtype is
double-precision the sunindextype size is 64-bits.

7.1.2.1 Table: C/Fortran-2003 Equivalent Types

C Type Parameter Direction Fortran 2003 type
double in, inout, out, return real(c_double)
int in, inout, out, return integer(c_int)
long in, inout, out, return integer(c_long)
booleantype in, inout, out, return integer(c_int)
realtype in, inout, out, return real(c_double)
sunindextype in, inout, out, return integer(c_long)
double* in, inout, out real(c_double), dimension(*)
double* return real(c_double), pointer, dimension(:)
int* in, inout, out real(c_int), dimension(*)
int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(*)
long* return real(c_long), pointer, dimension(:)
realtype* in, inout, out real(c_double), dimension(*)
realtype* return real(c_double), pointer, dimension(:)
sunindextype* in, inout, out real(c_long), dimension(*)
sunindextype* return real(c_long), pointer, dimension(:)
realtype[] in, inout, out real(c_double), dimension(*)
sunindextype[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)
N_Vector return type(N_Vector), pointer
SUNMatrix in, inout, out type(SUNMatrix)
SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver in, inout, out type(SUNNonlinearSolver)
SUNNonlinearSolver return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)
void* in, inout, out, return type(c_ptr)
T** in, inout, out, return type(c_ptr)
T*** in, inout, out, return type(c_ptr)
T**** in, inout, out, return type(c_ptr)

7.1.3 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, section Data
Types discusses equivalencies of data types in the two languages.
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7.1.3.1 Creating generic SUNDIALS objects

In the C API a generic SUNDIALS object, such as an N_Vector, is actually a pointer to an underlying C struct.
However, in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. E.g.,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence
of this is that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snip-
pets below:

C code:

N_Vector x;
x = N_VNew_Serial(N);

Fortran code:

type(N_Vector), pointer :: x
x => FN_VNew_Serial(N)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assign-
ment operator is then used.

7.1.3.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return
values versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in
the C API must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003
standard for C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets
below illustrate the differences.

C code:

N_Vector x
realtype* xdata;
long int leniw, lenrw;

x = N_VNew_Serial(N);

/* capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/* passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x
real(c_double), pointer :: xdataptr(:)
real(c_double) :: xdata(N)
integer(c_long) :: leniw(1), lenrw(1)

x => FN_VNew_Serial(x)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer(x)
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! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

7.1.3.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind(C) Additionally, when providing them as arguments to a Fortran 2003 interface routine, it
is required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as
a void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure
does not have to be bind(C) since it is never accessed on the C side.

C code:

MyUserData* udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type(MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-
supplied functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUN-
DIALS functions.

7.1.3.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass NULL to. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see section Data Types), then a Fortran
user can pass the intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to
type(c_ptr), then a caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code
example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

! SUNLinSolSolve expects a SUNMatrix or NULL
! as the second parameter.
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:
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type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer :: A
type(N_Vector), pointer :: x, b

A => null()

! SUNLinSolSolve expects a type(SUNMatrix), pointer
! as the second parameter. Therefore, we cannot
! pass a c_null_ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

7.1.3.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as opaque type(c_ptr). As such, it is
not possible to directly index an array of N_Vector objects returned by the N_Vector “VectorAr-
ray” operations, or packages with sensitivity capabilities. Instead, SUNDIALS provides a utility function
FN_VGetVecAtIndexVectorArray that can be called for accessing a vector in a vector array. The example
below demonstrates this:

C code:

N_Vector x;
N_Vector* vecs;

vecs = N_VCloneVectorArray(count, x);
for (int i=0; i < count; ++i)
N_VConst(vecs[i]);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) :: vecs

vecs = FN_VCloneVectorArray(count, x)
do index, count
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi)
enddo

SUNDIALS also provides the functions FN_VSetVecAtIndexVectorArray and FN_VNewVectorArray
for working with N_Vector arrays. These functions are particularly useful for users of the Fortran interface to the
NVECTOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these func-
tions along with FN_VGetVecAtIndexVectorArray are further described in Chapter NVECTOR Utility Func-
tions.

7.1.3.6 Providing file pointers

Expert SUNDIALS users may notice that there are a few advanced functions in the SUNDIALS C API which take
a FILE* argument. Since there is no portable way to convert between a Fortran file descriptor and a C file pointer,
SUNDIALS provides two utility functions for creating a FILE* and destroying it. These functions are defined in the
module fsundials_futils_mod.

function FSUNDIALSFileOpen(filename, mode)
The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.

264 Chapter 7. Using ARKode for Fortran Applications



User Documentation for ARKode, v4.7.0

The function argument filename is the full path to the file and has the type character(kind=C_CHAR,
len=*).

The function argument mode has the type character(kind=C_CHAR, len=*). The string begins with
one of the following characters:

• “r” - open text file for reading

• “r+” - open text file for reading and writing

• “w” - truncate text file to zero length or create it for writing

• “w+” - open text file for reading or writing, create it if it does not exist

• “a” - open for appending, see documentation of fopen for your system/compiler

• “a+ - open for reading and appending, see documentation for fopen for your system/compiler

The function returns a type(C_PTR) which holds a C FILE*.

subroutine FSUNDIALSFileClose(fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

The function argument fp has the type type(c_ptr) and should be the C FILE* obtained from fopen.

7.1.4 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard. However, it has only been tested and confirmed to be working with GNU Fortran 4.9+ and Intel Fortran
18.0.1+.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler used to generate the modules.

7.2 FARKODE, an Interface Module for FORTRAN Applications

The FARKODE interface module is a package of C functions which support the use of the ARKStep time-stepping
module for the solution of ODE systems

𝑀 �̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓 𝐼(𝑡, 𝑦),

in a mixed Fortran/C setting. While ARKode is written in C, it is assumed here that the user’s calling program and
user-supplied problem-defining routines are written in Fortran. We assume only minimal Fortran capabilities; specif-
ically that the Fortran compiler support full Fortran77 functionality (although more modern standards are similarly
supported). This package provides the necessary interfaces to ARKODE for the majority of supplied serial and paral-
lel NVECTOR implementations.

7.2.1 Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user routines called by
them, appear as dummy names which are mapped to actual values by a series of definitions in the header files.
By default, those mapping definitions depend in turn on the C macro F77_FUNC defined in the header file
sundials_config.h. The mapping defined by F77_FUNC in turn transforms the C interface names to match
the name-mangling approach used by the supplied Fortran compiler.
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By “name-mangling”, we mean that due to the case-independent nature of the Fortran language, Fortran com-
pilers convert all subroutine and object names to use either all lower-case or all upper-case characters, and ap-
pend either zero, one or two underscores as a prefix or suffix the the name. For example, the Fortran subroutine
MyFunction() will be changed to one of myfunction, MYFUNCTION, myfunction__, MYFUNCTION_,
and so on, depending on the Fortran compiler used.

SUNDIALS determines this name-mangling scheme at configuration time (see ARKode Installation Procedure).

7.2.2 Fortran Data Types

Throughout this documentation, we will refer to data types according to their usage in C. The equivalent types to
these may vary, depending on your computer architecture and on how SUNDIALS was compiled (see ARKode In-
stallation Procedure). A Fortran user should first determine the equivalent types for their architecture and compiler,
and then take care that all arguments passed through this Fortran/C interface are declared of the appropriate type.

Integers: SUNDIALS uses int, long int and sunindextype types. As discussed in ARKode Installation
Procedure, at compilation SUNDIALS allows the configuration of the ‘index’ type, that accepts values of 32-bit
signed and 64-bit signed. This choice dictates the size of a SUNDIALS sunindextype variable.

• int – equivalent to an INTEGER or INTEGER*4 in Fortran

• long int – this will depend on the computer architecture:

– 32-bit architecture – equivalent to an INTEGER or INTEGER*4 in Fortran

– 64-bit architecture – equivalent to an INTEGER*8 in Fortran

• sunindextype – this will depend on the SUNDIALS configuration:

– 32-bit – equivalent to an INTEGER or INTEGER*4 in Fortran

– 64-bit – equivalent to an INTEGER*8 in Fortran

Real numbers: As discussed in ARKode Installation Procedure, at compilation SUNDIALS allows the configuration
option --with-precision, that accepts values of single, double or extended (the default is double).
This choice dictates the size of a realtype variable. The corresponding Fortran types for these realtype sizes
are:

• single – equivalent to a REAL or REAL*4 in Fortran

• double – equivalent to a DOUBLE PRECISION or REAL*8 in Fortran

• extended – equivalent to a REAL*16 in Fortran

We note that when SUNDIALS is compiled with Fortran interfaces enabled, a file sundials/
sundials_fconfig.h is placed in the installation’s include directory, containing information about the For-
tran types that correspond to the C types of the configured SUNDIALS installation. This file may be “included” by
Fortran routines, as long as the compiler supports the Fortran90 standard (or higher), as shown in the ARKode exam-
ple programs ark_bruss.f90, ark_bruss1D_FEM_klu.f90 and fark_heat2D.f90.

Details on the Fortran interface to ARKode are provided in the following sub-sections:

7.2.2.1 FARKODE routines

In this section, we list the full set of user-callable functions comprising the FARKODE solver interface. For each
function, we list the corresponding ARKStep functions, to provide a mapping between the two solver interfaces.
Further documentation on each FARKODE function is provided in the following sections, Usage of the FARKODE
interface module, FARKODE optional output, Usage of the FARKROOT interface to rootfinding and Usage of the
FARKODE interface to built-in preconditioners. Additionally, all Fortran and C functions below are hyperlinked to
their definitions in the documentation, for simplified access.
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Interface to the NVECTOR modules

• FNVINITS() (defined by NVECTOR_SERIAL) interfaces to N_VNewEmpty_Serial().

• FNVINITP() (defined by NVECTOR_PARALLEL) interfaces to N_VNewEmpty_Parallel().

• FNVINITOMP() (defined by NVECTOR_OPENMP) interfaces to N_VNewEmpty_OpenMP().

• FNVINITPTS() (defined by NVECTOR_PTHREADS) interfaces to N_VNewEmpty_Pthreads().

• FNVINITPH() (defined by NVECTOR_PARHYP) interfaces to N_VNewEmpty_ParHyp().

Interface to the SUNMATRIX modules

• FSUNBANDMATINIT() (defined by SUNMATRIX_BAND) interfaces to SUNBandMatrix().

• FSUNDENSEMATINIT() (defined by SUNMATRIX_DENSE) interfaces to SUNDenseMatrix().

• FSUNSPARSEMATINIT() (defined by SUNMATRIX_SPARSE) interfaces to SUNSparseMatrix().

Interface to the SUNLINSOL modules

• FSUNBANDLINSOLINIT() (defined by SUNLINSOL_BAND) interfaces to SUNLinSol_Band().

• FSUNDENSELINSOLINIT() (defined by SUNLINSOL_DENSE) interfaces to SUNLinSol_Dense().

• FSUNKLUINIT() (defined by SUNLINSOL_KLU) interfaces to SUNLinSol_KLU().

• FSUNKLUREINIT() (defined by SUNLINSOL_KLU) interfaces to SUNLinSol_KLUReinit().

• FSUNLAPACKBANDINIT() (defined by SUNLINSOL_LAPACKBAND) interfaces to
SUNLinSol_LapackBand().

• FSUNLAPACKDENSEINIT() (defined by SUNLINSOL_LAPACKDENSE) interfaces to
SUNLinSol_LapackDense().

• FSUNPCGINIT() (defined by SUNLINSOL_PCG) interfaces to SUNLinSol_PCG().

• FSUNSPBCGSINIT() (defined by SUNLINSOL_SPBCGS) interfaces to SUNLinSol_SPBCGS().

• FSUNSPFGMRINIT() (defined by SUNLINSOL_SPFGMR) interfaces to SUNLinSol_SPFGMR().

• FSUNSPGMRINIT() (defined by SUNLINSOL_SPGMR) interfaces to SUNLinSol_SPGMR().

• FSUNSPTFQMRINIT() (defined by SUNLINSOL_SPTFQMR) interfaces to SUNLinSol_SPTFQMR().

• FSUNSUPERLUMTINIT() (defined by SUNLINSOL_SUPERLUMT) interfaces to
SUNLinSol_SuperLUMT().

Interface to the SUNNONLINSOL modules

• FSUNNEWTONINIT() (defined by SUNNONLINSOL_NEWTON) interfaces to
SUNNonlinSol_Newton().

• FSUNNEWTONSETMAXITERS() (defined by SUNNONLINSOL_NEWTON) interfaces to
SUNNonlinSolSetMaxIters() for a SUNNONLINSOL_NEWTON object.

• FSUNFIXEDPOINTINIT() (defined by SUNNONLINSOL_FIXEDPOINT) interfaces to
SUNNonlinSol_Newton().
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• FSUNFIXEDPOINTSETMAXITERS() (defined by SUNNONLINSOL_FIXEDPOINT) interfaces to
SUNNonlinSolSetMaxIters() for a SUNNONLINSOL_FIXEDPOINT object.

Interface to the main ARKODE module

• FARKMALLOC() interfaces to ARKStepCreate() and ARKStepSetUserData(), as well as one of
ARKStepSStolerances() or ARKStepSVtolerances().

• FARKREINIT() interfaces to ARKStepReInit().

• FARKRESIZE() interfaces to ARKStepResize().

• FARKSETIIN() and FARKSETRIN() interface to the ARKStepSet* and ARKStepSet* functions (see Op-
tional input functions).

• FARKEWTSET() interfaces to ARKStepWFtolerances().

• FARKADAPTSET() interfaces to ARKStepSetAdaptivityFn().

• FARKEXPSTABSET() interfaces to ARKStepSetStabilityFn().

• FARKSETERKTABLE() interfaces to ARKStepSetTables().

• FARKSETIRKTABLE() interfaces to ARKStepSetTables().

• FARKSETARKTABLES() interfaces to ARKStepSetTables().

• FARKSETRESTOLERANCE() interfaces to either ARKStepResStolerance() and
ARKStepResVtolerance()

• FARKODE() interfaces to ARKStepEvolve(), the ARKStepGet* functions (see Optional output func-
tions), and to the optional output functions for the selected linear solver module (see Optional output func-
tions).

• FARKDKY() interfaces to the interpolated output function ARKStepGetDky().

• FARKGETERRWEIGHTS() interfaces to ARKStepGetErrWeights().

• FARKGETESTLOCALERR() interfaces to ARKStepGetEstLocalErrors().

• FARKFREE() interfaces to ARKStepFree().

Interface to the system nonlinear solver interface

• FARKNLSINIT() interfaces to ARKStepSetNonlinearSolver().

Interface to the system linear solver interfaces

• FARKLSINIT() interfaces to ARKStepSetLinearSolver().

• FARKDENSESETJAC() interfaces to ARKStepSetJacFn().

• FARKBANDSETJAC() interfaces to ARKStepSetJacFn().

• FARKSPARSESETJAC() interfaces to ARKStepSetJacFn().

• FARKLSSETEPSLIN() interfaces to ARKStepSetEpsLin().

• FARKLSSETJAC() interfaces to ARKStepSetJacTimes().

• FARKLSSETPREC() interfaces to ARKStepSetPreconditioner().
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Interface to the mass matrix linear solver interfaces

• FARKLSMASSINIT() interfaces to ARKStepSetMassLinearSolver().

• FARKDENSESETMASS() interfaces to ARKStepSetMassFn().

• FARKBANDSETMASS() interfaces to ARKStepSetMassFn().

• FARKSPARSESETMASS() interfaces to ARKStepSetMassFn().

• FARKLSSETMASSEPSLIN() interfaces to ARKStepSetMassEpsLin().

• FARKLSSETMASS() interfaces to ARKStepSetMassTimes().

• FARKLSSETMASSPREC() interfaces to ARKStepSetMassPreconditioner().

User-supplied routines

As with the native C interface, the FARKODE solver interface requires user-supplied functions to specify the ODE
problem to be solved. In contrast to the case of direct use of ARKStep, and of most Fortran ODE solvers, the names
of all user-supplied routines here are fixed, in order to maximize portability for the resulting mixed-language pro-
gram. As a result, whether using a purely implicit, purely explicit, or mixed implicit-explicit solver, routines for both
𝑓𝐸(𝑡, 𝑦) and 𝑓 𝐼(𝑡, 𝑦) must be provided by the user (though either of which may do nothing):

FARKODE routine (FORTRAN, user-supplied) ARKStep interface function type
FARKIFUN() ARKRhsFn()
FARKEFUN() ARKRhsFn()

In addition, as with the native C interface a user may provide additional routines to assist in the solution process.
Each of the following user-supplied routines is activated by calling the specified “activation” routine, with the excep-
tion of FARKSPJAC() which is required whenever a sparse matrix solver is used:

FARKODE routine (FORTRAN, user-
supplied)

ARKStep interface function
type

FARKODE “activation” rou-
tine

FARKDJAC() ARKLsJacFn() FARKDENSESETJAC()
FARKBJAC() ARKLsJacFn() FARKBANDSETJAC()
FARKSPJAC() ARKLsJacFn() FARKSPARSESETJAC()
FARKDMASS() ARKLsMassFn() FARKDENSESETMASS()
FARKBMASS() ARKLsMassFn() FARKBANDSETMASS()
FARKSPMASS() ARKLsMassFn() FARKSPARSESETMASS()
FARKPSET() ARKLsPrecSetupFn() FARKLSSETPREC()
FARKPSOL() ARKLsPrecSolveFn() FARKLSSETPREC()
FARKJTSETUP() ARKLsJacTimesSetupFn() FARKLSSETJAC()
FARKJTIMES() ARKLsJacTimesVecFn() FARKLSSETJAC()
FARKMASSPSET() ARKLsMassPrecSetupFn() FARKLSSETMASSPREC()
FARKMASSPSOL() ARKLsMassPrecSolveFn() FARKLSSETMASSPREC()
FARKMTSETUP() ARKLsMassTimesSetupFn() FARKLSSETMASS()
FARKMTIMES() ARKLsMassTimesVecFn() FARKLSSETMASS()
FARKEWT() ARKEwtFn() FARKEWTSET()
FARKADAPT() ARKAdaptFn() FARKADAPTSET()
FARKEXPSTAB() ARKExpStabFn() FARKEXPSTABSET()
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7.2.2.2 Usage of the FARKODE interface module

The usage of FARKODE requires calls to a variety of interface functions, depending on the method options selected,
and two or more user-supplied routines which define the problem to be solved. These function calls and user rou-
tines are summarized separately below. Some details are omitted, and the user is referred to the description of the
corresponding C interface ARKStep functions for complete information on the arguments of any given user-callable
interface routine, or of a given user-supplied function called by an interface function. The usage of FARKODE for
rootfinding and with preconditioner modules is described in later subsections.

Right-hand side specification

The user must in all cases supply the following Fortran routines:

subroutine FARKIFUN(T, Y, YDOT, IPAR, RPAR, IER)
Sets the YDOT array to 𝑓 𝐼(𝑡, 𝑦), the implicit portion of the right-hand side of the ODE system, as function of
the independent variable T = 𝑡 and the array of dependent state variables Y = 𝑦.

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing state variables.

• YDOT (realtype, output) – array containing state derivatives.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, >0 recoverable error, <0 unrecoverable error).

subroutine FARKEFUN(T, Y, YDOT, IPAR, RPAR, IER)
Sets the YDOT array to 𝑓𝐸(𝑡, 𝑦), the explicit portion of the right-hand side of the ODE system, as function of
the independent variable T = 𝑡 and the array of dependent state variables Y = 𝑦.

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing state variables.

• YDOT (realtype, output) – array containing state derivatives.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, >0 recoverable error, <0 unrecoverable error).

For purely explicit problems, although the routine FARKIFUN() must exist, it will never be called, and may remain
empty. Similarly, for purely implicit problems, FARKEFUN() will never be called and must exist and may remain
empty.

NVECTOR module initialization

If using one of the NVECTOR modules supplied with SUNDIALS, the user must make a call of the form

CALL FNVINITS(4, NEQ, IER)
CALL FNVINITP(COMM, 4, NLOCAL, NGLOBAL, IER)
CALL FNVINITOMP(4, NEQ, NUM_THREADS, IER)
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CALL FNVINITPTS(4, NEQ, NUM_THREADS, IER)
CALL FNVINITPH(COMM, 4, NLOCAL, NGLOBAL, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Vector Data Structures.

SUNMATRIX module initialization

In the case of using either an implicit or ImEx method, the solution of each Runge-Kutta stage may involve the solu-
tion of linear systems related to the Jacobian 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 of the implicit portion of the ODE system. If using a Newton
iteration with direct SUNLINSOL linear solver module and one of the SUNMATRIX modules supplied with SUN-
DIALS, the user must make a call of the form

CALL FSUNBANDMATINIT(4, N, MU, ML, SMU, IER)
CALL FSUNDENSEMATINIT(4, M, N, IER)
CALL FSUNSPARSEMATINIT(4, M, N, NNZ, SPARSETYPE, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Matrix Data Structures.
Note that these matrix options are usable only in a serial or multi-threaded environment.

As described in the section Mass matrix solver (ARKStep only), in the case of using a problem with a non-identity
mass matrix (no matter whether the integrator is implicit, explicit or ImEx), linear systems of the form 𝑀𝑥 = 𝑏 must
be solved, where 𝑀 is the system mass matrix. If these are to be solved with a direct SUNLINSOL linear solver
module and one of the SUNMATRIX modules supplied with SUNDIALS, the user must make a call of the form

CALL FSUNBANDMASSMATINIT(N, MU, ML, SMU, IER)
CALL FSUNDENSEMASSMATINIT(M, N, IER)
CALL FSUNSPARSEMASSMATINIT(M, N, NNZ, SPARSETYPE, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Matrix Data Structures,
again noting that these are only usable in a serial or multi-threaded environment.

SUNLINSOL module initialization

If using a Newton iteration with one of the SUNLINSOL linear solver modules supplied with SUNDIALS, the user
must make a call of the form

CALL FSUNBANDLINSOLINIT(4, IER)
CALL FSUNDENSELINSOLINIT(4, IER)
CALL FSUNKLUINIT(4, IER)
CALL FSUNLAPACKBANDINIT(4, IER)
CALL FSUNLAPACKDENSEINIT(4, IER)
CALL FSUNPCGINIT(4, PRETYPE, MAXL, IER)
CALL FSUNSPBCGSINIT(4, PRETYPE, MAXL, IER)
CALL FSUNSPFGMRINIT(4, PRETYPE, MAXL, IER)
CALL FSUNSPGMRINIT(4, PRETYPE, MAXL, IER)
CALL FSUNSPTFQMRINIT(4, PRETYPE, MAXL, IER)
CALL FSUNSUPERLUMTINIT(4, NUM_THREADS, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Description of the SUNLin-
earSolver module. Note that the dense, band and sparse solvers are usable only in a serial or multi-threaded environ-
ment.

Once one of these has been initialized, its solver parameters may be modified using a call to the functions
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CALL FSUNKLUSETORDERING(4, ORD_CHOICE, IER)
CALL FSUNSUPERLUMTSETORDERING(4, ORD_CHOICE, IER)
CALL FSUNPCGSETPRECTYPE(4, PRETYPE, IER)
CALL FSUNPCGSETMAXL(4, MAXL, IER)
CALL FSUNSPBCGSSETPRECTYPE(4, PRETYPE, IER)
CALL FSUNSPBCGSSETMAXL(4, MAXL, IER)
CALL FSUNSPFGMRSETGSTYPE(4, GSTYPE, IER)
CALL FSUNSPFGMRSETPRECTYPE(4, PRETYPE, IER)
CALL FSUNSPGMRSETGSTYPE(4, GSTYPE, IER)
CALL FSUNSPGMRSETPRECTYPE(4, PRETYPE, IER)
CALL FSUNSPTFQMRSETPRECTYPE(4, PRETYPE, IER)
CALL FSUNSPTFQMRSETMAXL(4, MAXL, IER)

where again the call sequences are described in the appropriate sections of the Chapter Description of the SUNLin-
earSolver module.

Similarly, in the case of using one of the SUNLINSOL linear solver modules supplied with SUNDIALS to solve a
problem with a non-identity mass matrix, the user must make a call of the form

CALL FSUNMASSBANDLINSOLINIT(IER)
CALL FSUNMASSDENSELINSOLINIT(IER)
CALL FSUNMASSKLUINIT(IER)
CALL FSUNMASSLAPACKBANDINIT(IER)
CALL FSUNMASSLAPACKDENSEINIT(IER)
CALL FSUNMASSPCGINIT(PRETYPE, MAXL, IER)
CALL FSUNMASSSPBCGSINIT(PRETYPE, MAXL, IER)
CALL FSUNMASSSPFGMRINIT(PRETYPE, MAXL, IER)
CALL FSUNMASSSPGMRINIT(PRETYPE, MAXL, IER)
CALL FSUNMASSSPTFQMRINIT(PRETYPE, MAXL, IER)
CALL FSUNMASSSUPERLUMTINIT(NUM_THREADS, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Description of the SUNLin-
earSolver module.

Once one of these has been initialized, its solver parameters may be modified using a call to the functions

CALL FSUNMASSKLUSETORDERING(ORD_CHOICE, IER)
CALL FSUNMASSSUPERLUMTSETORDERING(ORD_CHOICE, IER)
CALL FSUNMASSPCGSETPRECTYPE(PRETYPE, IER)
CALL FSUNMASSPCGSETMAXL(MAXL, IER)
CALL FSUNMASSSPBCGSSETPRECTYPE(PRETYPE, IER)
CALL FSUNMASSSPBCGSSETMAXL(MAXL, IER)
CALL FSUNMASSSPFGMRSETGSTYPE(GSTYPE, IER)
CALL FSUNMASSSPFGMRSETPRECTYPE(PRETYPE, IER)
CALL FSUNMASSSPGMRSETGSTYPE(GSTYPE, IER)
CALL FSUNMASSSPGMRSETPRECTYPE(PRETYPE, IER)
CALL FSUNMASSSPTFQMRSETPRECTYPE(PRETYPE, IER)
CALL FSUNMASSSPTFQMRSETMAXL(MAXL, IER)

where again the call sequences are described in the appropriate sections of the Chapter Description of the SUNLin-
earSolver module.

SUNNONLINSOL module initialization

If using a non-default nonlinear solver method, the user must make a call of the form

272 Chapter 7. Using ARKode for Fortran Applications



User Documentation for ARKode, v4.7.0

CALL FSUNNEWTONINIT(4, IER)
CALL FSUNFIXEDPOINTINIT(4, M, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Description of the SUN-
NonlinearSolver Module.

Once one of these has been initialized, its solver parameters may be modified using a call to the functions

CALL FSUNNEWTONSETMAXITERS(4, MAXITERS, IER)
CALL FSUNFIXEDPOINTSETMAXITERS(4, MAXITERS, IER)

where again the call sequences are described in the appropriate sections of the Chapter Description of the SUNNon-
linearSolver Module.

Problem specification

To set various problem and solution parameters and allocate internal memory, the user must call FARKMALLOC().

subroutine FARKMALLOC(T0, Y0, IMEX, IATOL, RTOL, ATOL, IOUT, ROUT, IPAR, RPAR, IER)
Initializes the Fortran interface to the ARKStep solver, providing interfaces to the C routines
ARKStepCreate() and ARKStepSetUserData(), as well as one of ARKStepSStolerances()
or ARKStepSVtolerances().

Arguments:

• T0 (realtype, input) – initial value of 𝑡.

• Y0 (realtype, input) – array of initial conditions.

• IMEX (int, input) – flag denoting basic integration method: 0 = implicit, 1 = explicit, 2 = ImEx.

• IATOL (int, input) – type for absolute tolerance input ATOL: 1 = scalar, 2 = array, 3 = user-
supplied function; the user must subsequently call FARKEWTSET() and supply a routine
FARKEWT() to compute the error weight vector.

• RTOL (realtype, input) – scalar relative tolerance.

• ATOL (realtype, input) – scalar or array absolute tolerance.

• IOUT (long int, input/output) – array of length 29 for integer optional outputs.

• ROUT (realtype, input/output) – array of length 6 for real optional outputs.

• IPAR (long int, input/output) – array of user integer data, which will be passed unmodified to all
user-provided routines.

• RPAR (realtype, input/output) – array with user real data, which will be passed unmodified to all
user-provided routines.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Notes: Modifications to the user data arrays IPAR and RPAR inside a user-provided routine will be propagated
to all subsequent calls to such routines. The optional outputs associated with the main ARKStep integrator
are listed in Table: Optional FARKODE integer outputs and Table: Optional FARKODE real outputs, in the
section FARKODE optional output.

As an alternative to providing tolerances in the call to FARKMALLOC(), the user may provide a routine to compute
the error weights used in the WRMS norm evaluations. If supplied, it must have the following form:

subroutine FARKEWT(Y, EWT, IPAR, RPAR, IER)
It must set the positive components of the error weight vector EWT for the calculation of the WRMS norm of
Y.
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Arguments:

• Y (realtype, input) – array containing state variables.

• EWT (realtype, output) – array containing the error weight vector.

• IPAR (long int, input) – array containing the integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input) – array containing the real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, ̸= 0 failure).

If the FARKEWT() routine is provided, then, following the call to FARKMALLOC(), the user must call the function
FARKEWTSET().

subroutine FARKEWTSET(FLAG, IER)
Informs FARKODE to use the user-supplied FARKEWT() function.

Arguments:

• FLAG (int, input) – flag, use “1” to denoting to use FARKEWT().

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Setting optional inputs

Unlike ARKStep’s C interface, that provides separate functions for setting each optional input, FARKODE uses only
three functions, that accept keywords to specify which optional input should be set to the provided value. These rou-
tines are FARKSETIIN(), FARKSETRIN(), and FARKSETVIN() and are further described below.

subroutine FARKSETIIN(KEY, IVAL, IER)
Specification routine to pass optional integer inputs to the FARKODE() solver.

Arguments:

• KEY (quoted string, input) – which optional input is set (see Table: Keys for setting FARKODE inte-
ger optional inputs).

• IVAL (long int, input) – the integer input value to be used.

• IER (int, output) – return flag (0 success, ̸= 0 failure).
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Table: Keys for setting FARKODE integer optional inputs

Key ARKStep routine
ORDER ARKStepSetOrder()
DENSE_ORDER ARKStepSetDenseOrder()
LINEAR ARKStepSetLinear()
NONLINEAR ARKStepSetNonlinear()
EXPLICIT ARKStepSetExplicit()
IMPLICIT ARKStepSetImplicit()
IMEX ARKStepSetImEx()
IRK_TABLE_NUM ARKStepSetTableNum()
ERK_TABLE_NUM ARKStepSetTableNum()
ARK_TABLE_NUM (a) ARKStepSetTableNum()
MAX_NSTEPS ARKStepSetMaxNumSteps()
HNIL_WARNS ARKStepSetMaxHnilWarns()
PREDICT_METHOD ARKStepSetPredictorMethod()
MAX_ERRFAIL ARKStepSetMaxErrTestFails()
MAX_CONVFAIL ARKStepSetMaxConvFails()
MAX_NITERS ARKStepSetMaxNonlinIters()
ADAPT_SMALL_NEF ARKStepSetSmallNumEFails()
LSETUP_MSBP ARKStepSetLSetupFrequency()
MAX_CONSTR_FAIL ARKStepSetMaxNumConstrFails()

(a) When setting ARK_TABLE_NUM, pass in IVAL as an array of length 2, specifying the IRK table number first,
then the ERK table number. The integer specifiers for each table may be found in the section Appendix: ARKode
Constants, or in the ARKode header files arkode_butcher_dirk.h and arkode_butcher_erk.h.

subroutine FARKSETRIN(KEY, RVAL, IER)
Specification routine to pass optional real inputs to the FARKODE() solver.

Arguments:

• KEY (quoted string, input) – which optional input is set (see Table: Keys for setting FARKODE real
optional inputs).

• RVAL (realtype, input) – the real input value to be used.

• IER (int, output) – return flag (0 success, ̸= 0 failure).
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Table: Keys for setting FARKODE real optional inputs

Key ARKStep routine
INIT_STEP ARKStepSetInitStep()
MAX_STEP ARKStepSetMaxStep()
MIN_STEP ARKStepSetMinStep()
STOP_TIME ARKStepSetStopTime()
NLCONV_COEF ARKStepSetNonlinConvCoef()
ADAPT_CFL ARKStepSetCFLFraction()
ADAPT_SAFETY ARKStepSetSafetyFactor()
ADAPT_BIAS ARKStepSetErrorBias()
ADAPT_GROWTH ARKStepSetMaxGrowth()
ADAPT_ETAMX1 ARKStepSetMaxFirstGrowth()
ADAPT_BOUNDS ARKStepSetFixedStepBounds()
ADAPT_ETAMXF ARKStepSetMaxEFailGrowth()
ADAPT_ETACF ARKStepSetMaxCFailGrowth()
NONLIN_CRDOWN ARKStepSetNonlinCRDown()
NONLIN_RDIV ARKStepSetNonlinRDiv()
LSETUP_DGMAX ARKStepSetDeltaGammaMax()
FIXED_STEP ARKStepSetFixedStep()

subroutine FARKSETVIN(KEY, VVAL, IER)
Specification routine to pass optional vector inputs to the FARKODE() solver.

Arguments:

• KEY (quoted string, input) – which optional input is set (see Table: Keys for setting FARKODE vec-
tor optional inputs).

• VVAL (realtype*, input) – the input vector of real values to be used.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Table: Keys for setting FARKODE vector optional inputs

Key ARKStep routine
CONSTR_VEC ARKStepSetConstraints()

If a user wishes to reset all of the options to their default values, they may call the routine FARKSETDEFAULTS().

subroutine FARKSETDEFAULTS(IER)
Specification routine to reset all FARKODE optional inputs to their default values.

Arguments:

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Optional advanced FARKODE inputs

FARKODE supplies additional routines to specify optional advanced inputs to the ARKStepEvolve() solver.
These are summarized below, and the user is referred to their C routine counterparts for more complete information.
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subroutine FARKSETERKTABLE(S, Q, P, C, A, B, BEMBED, IER)
Interface to the routine ARKStepSetTables().

Arguments:

• S (int, input) – number of stages in the table.

• Q (int, input) – global order of accuracy of the method.

• P (int, input) – global order of accuracy of the embedding.

• C (realtype, input) – array of length S containing the stage times.

• A (realtype, input) – array of length S*S containing the ERK coefficients (stored in row-major,
“C”, order).

• B (realtype, input) – array of length S containing the solution coefficients.

• BEMBED (realtype, input) – array of length S containing the embedding coefficients.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

subroutine FARKSETIRKTABLE(S, Q, P, C, A, B, BEMBED, IER)
Interface to the routine ARKStepSetTables().

Arguments:

• S (int, input) – number of stages in the table.

• Q (int, input) – global order of accuracy of the method.

• P (int, input) – global order of accuracy of the embedding.

• C (realtype, input) – array of length S containing the stage times.

• A (realtype, input) – array of length S*S containing the IRK coefficients (stored in row-major,
“C”, order).

• B (realtype, input) – array of length S containing the solution coefficients.

• BEMBED (realtype, input) – array of length S containing the embedding coefficients.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

subroutine FARKSETARKTABLES(S, Q, P, CI, CE, AI, AE, BI, BE, B2I, B2E, IER)
Interface to the routine ARKStepSetTables().

Arguments:

• S (int, input) – number of stages in the table.

• Q (int, input) – global order of accuracy of the method.

• P (int, input) – global order of accuracy of the embedding.

• CI (realtype, input) – array of length S containing the implicit stage times.

• CE (realtype, input) – array of length S containing the explicit stage times.

• AI (realtype, input) – array of length S*S containing the IRK coefficients (stored in row-major,
“C”, order).

• AE (realtype, input) – array of length S*S containing the ERK coefficients (stored in row-major,
“C”, order).

• BI (realtype, input) – array of length S containing the implicit solution coefficients.

• BE (realtype, input) – array of length S containing the explicit solution coefficients.
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• B2I (realtype, input) – array of length S containing the implicit embedding coefficients.

• B2E (realtype, input) – array of length S containing the explicit embedding coefficients.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

subroutine FARKSETRESTOLERANCE(IATOL, ATOL, IER)
Interface to the routines ARKStepResStolerance() and ARKStepResVtolerance().

Arguments:

• IATOL (int, input) – type for absolute residual tolerance input ATOL: 1 = scalar, 2 = array.

• ATOL (realtype, input) – scalar or array absolute residual tolerance.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Additionally, a user may set the accuracy-based step size adaptivity strategy (and it’s associated parameters) through
a call to FARKSETADAPTIVITYMETHOD(), as described below.

subroutine FARKSETADAPTIVITYMETHOD(IMETHOD, IDEFAULT, IPQ, PARAMS, IER)
Specification routine to set the step size adaptivity strategy and parameters within the FARKODE() solver.
Interfaces with the C routine ARKStepSetAdaptivityMethod().

Arguments:

• IMETHOD (int, input) – choice of adaptivity method.

• IDEFAULT (int, input) – flag denoting whether to use default parameters (1) or that customized
parameters will be supplied (1).

• IPQ (int, input) – flag denoting whether to use the embedding order of accuracy (0) or the method
order of accuracy (1) within step adaptivity algorithm.

• PARAMS (realtype, input) – array of 3 parameters to be used within the adaptivity strategy.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Lastly, the user may provide functions to aid/replace those within ARKStep for handling adaptive error control and
explicit stability. The former of these is designed for advanced users who wish to investigate custom step adaptiv-
ity approaches as opposed to using any of those built-in to ARKStep. In ARKStep’s C/C++ interface, this would be
provided by a function of type ARKAdaptFn(); in the Fortran interface this is provided through the user-supplied
function:

subroutine FARKADAPT(Y, T, H1, H2, H3, E1, E2, E3, Q, P, HNEW, IPAR, RPAR, IER)
It must set the new step size HNEW based on the three previous steps (H1, H2, H3) and the three previous er-
ror estimates (E1, E2, E3).

Arguments:

• Y (realtype, input) – array containing state variables.

• T (realtype, input) – current value of the independent variable.

• H1 (realtype, input) – current step size.

• H2 (realtype, input) – previous step size.

• H3 (realtype, input) – previous-previous step size.

• E1 (realtype, input) – estimated temporal error in current step.

• E2 (realtype, input) – estimated temporal error in previous step.

• E3 (realtype, input) – estimated temporal error in previous-previous step.

• Q (int, input) – global order of accuracy for RK method.
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• P (int, input) – global order of accuracy for RK embedded method.

• HNEW (realtype, output) – array containing the error weight vector.

• IPAR (long int, input) – array containing the integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input) – array containing the real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, ̸= 0 failure).

This routine is enabled by a call to the activation routine:

subroutine FARKADAPTSET(FLAG, IER)
Informs FARKODE to use the user-supplied FARKADAPT() function.

Arguments:

• FLAG (int, input) – flag, use “1” to denoting to use FARKADAPT(), or use “0” to denote a return
to the default adaptivity strategy.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Note: The call to FARKADAPTSET() must occur after the call to FARKMALLOC().

Similarly, if either an explicit or mixed implicit-explicit integration method is to be employed, the user may spec-
ify a function to provide the maximum explicitly-stable step for their problem. Again, in the C/C++ interface this
would be a function of type ARKExpStabFn(), while in ARKStep’s Fortran interface this must be given through
the user-supplied function:

subroutine FARKEXPSTAB(Y, T, HSTAB, IPAR, RPAR, IER)
It must set the maximum explicitly-stable step size, HSTAB, based on the current solution, Y.

Arguments:

• Y (realtype, input) – array containing state variables.

• T (realtype, input) – current value of the independent variable.

• HSTAB (realtype, output) – maximum explicitly-stable step size.

• IPAR (long int, input) – array containing the integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input) – array containing the real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, ̸= 0 failure).

This routine is enabled by a call to the activation routine:

subroutine FARKEXPSTABSET(FLAG, IER)
Informs FARKODE to use the user-supplied FARKEXPSTAB() function.

Arguments:

• FLAG (int, input) – flag, use “1” to denoting to use FARKEXPSTAB(), or use “0” to denote a re-
turn to the default error-based stability strategy.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Note: The call to FARKEXPSTABSET() must occur after the call to FARKMALLOC().
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Nonlinear solver module specification

To use a non-default nonlinear solver algorithm, then after it has been initialized in step SUNNONLINSOL module
initialization above, the user of FARKODE must attach it to ARKSTEP by calling the FARKNLSINIT() routine:

subroutine FARKNLSINIT(IER)
Interfaces with the ARKStepSetNonlinearSolver() function to specify use of a non-default nonlinear
solver module.

Arguments:

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an ille-
gal input).

System linear solver interface specification

To attach the linear solver (and optionally the matrix) object(s) initialized in steps SUNMATRIX module initialization
and SUNLINSOL module initialization above, the user of FARKODE must initialize the linear solver interface. To
attach any SUNLINSOL object (and optional SUNMATRIX object) to ARKStep, following calls to initialize the
SUNLINSOL (and SUNMATRIX) object(s) in steps SUNMATRIX module initialization and SUNLINSOL module
initialization above, the user must call the FARKLSINIT() routine:

subroutine FARKLSINIT(IER)
Interfaces with the ARKStepSetLinearSolver() function to attach a linear solver object (and optionally
a matrix object) to ARKStep.

Arguments:

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an ille-
gal input).

Matrix-based linear solvers

As an option when using ARKSTEP with either the SUNLINSOL_DENSE or SUNLINSOL_LAPACKDENSE
linear solver modules, the user may supply a routine that computes a dense approximation of the system Jacobian
𝐽 = 𝜕𝑓𝐼

𝜕𝑦 . If supplied, it must have the following form:

subroutine FARKDJAC(NEQ, T, Y, FY, DJAC, H, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied dense Jacobian approximation function (of type ARKLsJacFn()), to be
used by the SUNLINSOL_DENSE or SUNLINSOL_LAPACKDENSE solver modules.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing values of the dependent state variables.

• FY (realtype, input) – array containing values of the dependent state derivatives.

• DJAC (realtype of size (NEQ,NEQ), output) – 2D array containing the Jacobian entries.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.
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• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecover-
able error occurred).

Notes: Typically this routine will use only NEQ, T, Y, and DJAC. It must compute the Jacobian and store it
column-wise in DJAC.

If the above routine uses difference quotient approximations, it may need to access the error weight array EWT in the
calculation of suitable increments. The array EWT can be obtained by calling FARKGETERRWEIGHTS() using one
of the work arrays as temporary storage for EWT. It may also need the unit roundoff, which can be obtained as the
optional output ROUT(6), passed from the calling program to this routine using either RPAR or a common block.

If the FARKDJAC() routine is provided, then, following the call to FARKLSINIT(), the user must call the routine
FARKDENSESETJAC():

subroutine FARKDENSESETJAC(FLAG, IER)
Interface to the ARKStepSetJacFn() function, specifying to use the user-supplied routine FARKDJAC()
for the Jacobian approximation.

Arguments:

• FLAG (int, input) – any nonzero value specifies to use FARKDJAC().

• IER (int, output) – return flag (0 if success, ̸= 0 if an error occurred).

As an option when using ARKStep with either the SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND linear
solver modules, the user may supply a routine that computes a banded approximation of the linear system Jacobian
𝐽 = 𝜕𝑓𝐼

𝜕𝑦 . If supplied, it must have the following form:

subroutine FARKBJAC(NEQ, MU, ML, MDIM, T, Y, FY, BJAC, H, IPAR, RPAR, WK1, WK2, WK3,
IER)

Interface to provide a user-supplied band Jacobian approximation function (of type ARKLsJacFn()), to be
used by the SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND solver modules.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• MU (long int, input) – upper half-bandwidth.

• ML (long int, input) – lower half-bandwidth.

• MDIM (long int, input) – leading dimension of BJAC array.

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing dependent state variables.

• FY (realtype, input) – array containing dependent state derivatives.

• BJAC (realtype of size (MDIM,NEQ), output) – 2D array containing the Jacobian entries.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecover-
able error occurred).

Notes: Typically this routine will use only NEQ, MU, ML, T, Y, and BJAC. It must load the MDIM by N array
BJAC with the Jacobian matrix at the current (𝑡, 𝑦) in band form. Store in BJAC(k,j) the Jacobian element 𝐽𝑖,𝑗
with k = i - j + MU + 1 (or k = 1, . . . , ML+MU+1) and j = 1, . . . , N.

7.2. FARKODE, an Interface Module for FORTRAN Applications 281



User Documentation for ARKode, v4.7.0

If the above routine uses difference quotient approximations, it may need to use the error weight array EWT in the
calculation of suitable increments. The array EWT can be obtained by calling FARKGETERRWEIGHTS() using one
of the work arrays as temporary storage for EWT. It may also need the unit roundoff, which can be obtained as the
optional output ROUT(6), passed from the calling program to this routine using either RPAR or a common block.

If the FARKBJAC() routine is provided, then, following the call to FARKLSINIT(), the user must call the routine
FARKBANDSETJAC().

subroutine FARKBANDSETJAC(FLAG, IER)
Interface to the ARKStepSetJacFn() function, specifying to use the user-supplied routine FARKBJAC()
for the Jacobian approximation.

Arguments:

• FLAG (int, input) – any nonzero value specifies to use FARKBJAC().

• IER (int, output) – return flag (0 if success, ̸= 0 if an error occurred).

When using ARKStep with either the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT sparse direct lin-
ear solver modules, the user must supply a routine that computes a sparse approximation of the system Jacobian
𝐽 = 𝜕𝑓𝐼

𝜕𝑦 . Both the KLU and SuperLU_MT solvers allow specification of 𝐽 in either compressed-sparse-column
(CSC) format or compressed-sparse-row (CSR) format. The sparse Jacobian approximation function must have the
following form:

subroutine FARKSPJAC(T, Y, FY, N, NNZ, JDATA, JINDEXVALS, JINDEXPTRS, H, IPAR, RPAR, WK1,
WK2, WK3, IER)

Interface to provide a user-supplied sparse Jacobian approximation function (of type ARKLsJacFn()), to be
used by the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT solver modules.

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing values of the dependent state variables.

• FY (realtype, input) – array containing values of the dependent state derivatives.

• N (sunindextype, input) – number of matrix rows and columns in Jacobian.

• NNZ (sunindextype, input) – allocated length of nonzero storage in Jacobian.

• JDATA (realtype of size NNZ, output) – nonzero values in Jacobian.

• JINDEXVALS (sunindextype of size NNZ, output) – row [CSR: column] indices for each
nonzero Jacobian entry.

• JINDEXPTRS (sunindextype of size N+1, output) – indices of where each column’s [CSR:
row’s] nonzeros begin in data array; last entry points just past end of data values.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecover-
able error occurred).

Notes: due to the internal storage format of the SUNMATRIX_SPARSE module, the matrix-specific integer
parameters and arrays are all of type sunindextype – the index precision (32-bit vs 64-bit signed inte-
gers) specified during the SUNDIALS build. It is assumed that the user’s Fortran codes are constructed to have
matching type to how SUNDIALS was installed.
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If the above routine uses difference quotient approximations to compute the nonzero entries, it may need to access
the error weight array EWT in the calculation of suitable increments. The array EWT can be obtained by calling
FARKGETERRWEIGHTS() using one of the work arrays as temporary storage for EWT. It may also need the unit
roundoff, which can be obtained as the optional output ROUT(6), passed from the calling program to this routine us-
ing either RPAR or a common block.

When supplying the FARKSPJAC() routine, following the call to FARKLSINIT(), the user must call the routine
FARKSPARSESETJAC().

subroutine FARKSPARSESETJAC(IER)
Interface to the ARKStepSetJacFn() function, specifying that the user-supplied routine FARKSPJAC()
has been provided for the Jacobian approximation.

Arguments:

• IER (int, output) – return flag (0 if success, ̸= 0 if an error occurred).

Iterative linear solvers

As described in the section Linear iteration error control, a user may adjust the linear solver tolerance scaling factor
𝜖𝐿. Fortran users may adjust this value by calling the function FARKLSSETEPSLIN():

subroutine FARKLSSETEPSLIN(EPLIFAC, IER)
Interface to the function ARKStepSetEpsLin() to specify the linear solver tolerance scale factor 𝜖𝐿 for the
Newton system linear solver.

This routine must be called after FARKLSINIT().

Arguments:

• EPLIFAC (realtype, input) – value to use for 𝜖𝐿. Passing a value of 0 indicates to use the default
value (0.05).

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Optional user-supplied routines FARKJTSETUP() and FARKJTIMES() may be provided to compute the prod-
uct of the system Jacobian 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 and a given vector 𝑣. If these are supplied, then following the call to
FARKLSINIT(), the user must call the FARKLSSETJAC() routine with FLAG ̸= 0:

subroutine FARKLSSETJAC(FLAG, IER)
Interface to the function ARKStepSetJacTimes() to specify use of the user-supplied Jacobian-times-
vector setup and product functions, FARKJTSETUP() and FARKJTIMES(), respectively.

This routine must be called after FARKLSINIT().

Arguments:

• FLAG (int, input) – flag denoting use of user-supplied Jacobian-times-vector routines. A nonzero
value specifies to use these the user-supplied routines, a zero value specifies not to use these.

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Similarly, optional user-supplied routines FARKPSET() and FARKPSOL() may be provided to perform precondi-
tioning of the iterative linear solver (note: the SUNLINSOL module must have been configured with preconditioning
enabled). If these routines are supplied, then following the call to FARKLSINIT() the user must call the routine
FARKLSSETPREC() with FLAG ̸= 0:

subroutine FARKLSSETPREC(FLAG, IER)
Interface to the function ARKStepSetPreconditioner() to specify use of the user-supplied precondi-
tioner setup and solve functions, FARKPSET() and FARKPSOL(), respectively.

This routine must be called after FARKLSINIT().
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Arguments:

• FLAG (int, input) – flag denoting use of user-supplied preconditioning routines. A nonzero value
specifies to use these the user-supplied routines, a zero value specifies not to use these.

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

With treatment of the linear systems by any of the Krylov iterative solvers, there are four optional user-supplied rou-
tines – FARKJTSETUP(), FARKJTIMES(), FARKPSET() and FARKPSOL(). The specifications of these func-
tions are given below.

As an option when using iterative linear solvers, the user may supply a routine that computes the product of the sys-
tem Jacobian 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 and a given vector 𝑣. If supplied, it must have the following form:

subroutine FARKJTIMES(V, FJV, T, Y, FY, H, IPAR, RPAR, WORK, IER)
Interface to provide a user-supplied Jacobian-times-vector product approximation function (corresponding to
a C interface routine of type ARKLsJacTimesVecFn()), to be used by one of the Krylov iterative linear
solvers.

Arguments:

• V (realtype, input) – array containing the vector to multiply.

• FJV (realtype, output) – array containing resulting product vector.

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing dependent state variables.

• FY (realtype, input) – array containing dependent state derivatives.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WORK (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Notes: Typically this routine will use only T, Y, V, and FJV. It must compute the product vector 𝐽𝑣, where 𝑣 is
given in V, and the product is stored in FJV.

If the user’s Jacobian-times-vector product routine requires that any Jacobian related data be evaluated or prepro-
cessed, then the following routine can be used for the evaluation and preprocessing of this data:

subroutine FARKJTSETUP(T, Y, FY, H, IPAR, RPAR, IER)
Interface to setup data for use in a user-supplied Jacobian-times-vector product approximation function (corre-
sponding to a C interface routine of type ARKLJacTimesSetupFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing dependent state variables.

• FY (realtype, input) – array containing dependent state derivatives.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).
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Notes: Typically this routine will use only T and Y, and store the results in either the arrays IPAR and RPAR,
or in a Fortran module or common block.

If preconditioning is to be included, the following routine must be supplied, for solution of the preconditioner linear
system:

subroutine FARKPSOL(T, Y, FY, R, Z, GAMMA, DELTA, LR, IPAR, RPAR, VT, IER)
User-supplied preconditioner solve routine (of type ARKLsPrecSolveFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – current dependent state variable array.

• FY (realtype, input) – current dependent state variable derivative array.

• R (realtype, input) – right-hand side array.

• Z (realtype, output) – solution array.

• GAMMA (realtype, input) – Jacobian scaling factor.

• DELTA (realtype, input) – desired residual tolerance.

• LR (int, input) – flag denoting to solve the right or left preconditioner system: 1 = left precondi-
tioner, 2 = right preconditioner.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable fail-
ure).

Notes: Typically this routine will use only T, Y, GAMMA, R, LR, and Z. It must solve the preconditioner linear
system 𝑃𝑧 = 𝑟. The preconditioner (or the product of the left and right preconditioners if both are nontriv-
ial) should be an approximation to the matrix 𝑀 − 𝛾𝐽 , where 𝑀 is the system mass matrix, 𝛾 is the input
GAMMA, and 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 .

If the user’s preconditioner requires that any Jacobian related data be evaluated or preprocessed, then the following
routine can be used for the evaluation and preprocessing of the preconditioner:

subroutine FARKPSET(T, Y, FY, JOK, JCUR, GAMMA, H, IPAR, RPAR, IER)
User-supplied preconditioner setup routine (of type ARKLsPrecSetupFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – current dependent state variable array.

• FY (realtype, input) – current dependent state variable derivative array.

• JOK (int, input) – flag indicating whether Jacobian-related data needs to be recomputed: 0 = re-
compute, 1 = reuse with the current value of GAMMA.

• JCUR (realtype, output) – return flag to denote if Jacobian data was recomputed (1=yes, 0=no).

• GAMMA (realtype, input) – Jacobian scaling factor.

• H (realtype, input) – current step size.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().
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• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable fail-
ure).

Notes: This routine must set up the preconditioner 𝑃 to be used in the subsequent call to FARKPSOL(). The
preconditioner (or the product of the left and right preconditioners if using both) should be an approximation
to the matrix 𝑀 − 𝛾𝐽 , where 𝑀 is the system mass matrix, 𝛾 is the input GAMMA, and 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 .

Notes:

1. If the user’s FARKJTSETUP(), FARKJTIMES() or FARKPSET() routines use difference quotient approx-
imations, they may need to use the error weight array EWT and/or the unit roundoff, in the calculation of suit-
able increments. Also, if FARKPSOL() uses an iterative method in its solution, the residual vector 𝜌 = 𝑟−𝑃𝑧
of the system should be made less than 𝛿 = DELTA in the weighted l2 norm, i.e.(︃∑︁

𝑖

(𝜌𝑖 𝐸𝑊𝑇𝑖)
2

)︃1/2

< 𝛿.

2. If needed in FARKJTSETUP() FARKJTIMES(), FARKPSOL(), or FARKPSET(), the error weight array
EWT can be obtained by calling FARKGETERRWEIGHTS() using a user-allocated array as temporary storage
for EWT.

3. If needed in FARKJTSETUP() FARKJTIMES(), FARKPSOL(), or FARKPSET(), the unit roundoff can be
obtained as the optional output ROUT(6) (available after the call to FARKMALLOC()) and can be passed using
either the RPAR user data array or a common block.

Mass matrix linear solver interface specification

To attach the mass matrix linear solver (and optionally the mass matrix) object(s) initialized in steps SUNMA-
TRIX module initialization and SUNLINSOL module initialization above, the user of FARKODE must initialize
the mass-matrix linear solver interface. To attach any SUNLINSOL object (and optional SUNMATRIX object)
to the mass-matrix solver interface, following calls to initialize the SUNLINSOL (and SUNMATRIX) object(s)
in steps SUNMATRIX module initialization and SUNLINSOL module initialization above, the user must call the
FARKLSMASSINIT() routine:

subroutine FARKLSMASSINIT(TIME_DEP, IER)
Interfaces with the ARKStepSetMassLinearSolver() function to attach a linear solver object (and op-
tionally a matrix object) to ARKStep’s mass-matrix linear solver interface.

Arguments:

• TIME_DEP (int, input) – flag indicating whether the mass matrix is time-dependent (1) or not (0).
Currently, only values of “0” are supported

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an ille-
gal input).

Matrix-based mass matrix linear solvers

When using the mass-matrix linear solver interface with the SUNLINSOL_DENSE or SUNLIN-
SOL_LAPACKDENSE mass matrix linear solver modules, the user must supply a routine that computes the dense
mass matrix 𝑀 . This routine must have the following form:
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subroutine FARKDMASS(NEQ, T, DMASS, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied dense mass matrix computation function (of type ARKLsMassFn()), to
be used by the SUNLINSOL_DENSE or SUNLINSOL_LAPACKDENSE solver modules.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• T (realtype, input) – current value of the independent variable.

• DMASS (realtype of size (NEQ,NEQ), output) – 2D array containing the mass matrix entries.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecover-
able error occurred).

Notes: Typically this routine will use only NEQ, T, and DMASS. It must compute the mass matrix and store it
column-wise in DMASS.

To indicate that the FARKDMASS() routine has been provided, then, following the call to FARKLSMASSINIT(),
the user must call the routine FARKDENSESETMASS():

subroutine FARKDENSESETMASS(IER)
Interface to the ARKStepSetMassFn() function, specifying to use the user-supplied routine
FARKDMASS() for the mass matrix calculation.

Arguments:

• IER (int, output) – return flag (0 if success, ̸= 0 if an error occurred).

When using the mass-matrix linear solver interface with the SUNLINSOL_BAND or SUNLIN-
SOL_LAPACKBAND mass matrix linear solver modules, the user must supply a routine that computes the banded
mass matrix 𝑀 . This routine must have the following form:

subroutine FARKBMASS(NEQ, MU, ML, MDIM, T, BMASS, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied band mass matrix calculation function (of type ARKLsMassFn()), to be
used by the SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND solver modules.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• MU (long int, input) – upper half-bandwidth.

• ML (long int, input) – lower half-bandwidth.

• MDIM (long int, input) – leading dimension of BMASS array.

• T (realtype, input) – current value of the independent variable.

• BMASS (realtype of size (MDIM,NEQ), output) – 2D array containing the mass matrix entries.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecover-
able error occurred).
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Notes: Typically this routine will use only NEQ, MU, ML, T, and BMASS. It must load the MDIM by N array
BMASS with the mass matrix at the current (𝑡) in band form. Store in BMASS(k,j) the mass matrix element
𝑀𝑖,𝑗 with k = i - j + MU + 1 (or k = 1, . . . , ML+MU+1) and j = 1, . . . , N.

To indicate that the FARKBMASS() routine has been provided, then, following the call to FARKLSMASSINIT(),
the user must call the routine FARKBANDSETMASS():

subroutine FARKBANDSETMASS(IER)
Interface to the ARKStepSetMassFn() function, specifying to use the user-supplied routine
FARKBMASS() for the mass matrix calculation.

Arguments:

• IER (int, output) – return flag (0 if success, ̸= 0 if an error occurred).

When using the mass-matrix linear solver interface with the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT
mass matrix linear solver modules, the user must supply a routine that computes the sparse mass matrix 𝑀 . Both
the KLU and SuperLU_MT solver interfaces support the compressed-sparse-column (CSC) and compressed-sparse-
row (CSR) matrix formats. The desired format must have been specified to the FSUNSPARSEMASSMATINIT()
function when initializing the sparse mass matrix. The user-provided routine to compute 𝑀 must have the following
form:

subroutine FARKSPMASS(T, N, NNZ, MDATA, MINDEXVALS, MINDEXPTRS, IPAR, RPAR, WK1,
WK2, WK3, IER)

Interface to provide a user-supplied sparse mass matrix approximation function (of type ARKLsMassFn()),
to be used by the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT solver modules.

Arguments:

• T (realtype, input) – current value of the independent variable.

• N (sunindextype, input) – number of mass matrix rows and columns.

• NNZ (sunindextype, input) – allocated length of nonzero storage in mass matrix.

• MDATA (realtype of size NNZ, output) – nonzero values in mass matrix.

• MINDEXVALS (sunindextype of size NNZ, output) – row [CSR: column] indices for each
nonzero mass matrix entry.

• MINDEXPTRS (sunindextype of size N+1, output) – indices of where each column’s [CSR:
row’s] nonzeros begin in data array; last entry points just past end of data values.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecover-
able error occurred).

Notes: due to the internal storage format of the SUNMATRIX_SPARSE module, the matrix-specific integer
parameters and arrays are all of type sunindextype – the index precision (32-bit vs 64-bit signed inte-
gers) specified during the SUNDIALS build. It is assumed that the user’s Fortran codes are constructed to have
matching type to how SUNDIALS was installed.

To indicate that the FARKSPMASS() routine has been provided, then, following the call to FARKLSMASSINIT(),
the user must call the routine FARKSPARSESETMASS():

subroutine FARKSPARSESETMASS(IER)
Interface to the ARKStepSetMassFn() function, specifying that the user-supplied routine
FARKSPMASS() has been provided for the mass matrix calculation.

Arguments:
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• IER (int, output) – return flag (0 if success, ̸= 0 if an error occurred).

Iterative mass matrix linear solvers

As described in the section Linear iteration error control, a user may adjust the linear solver tolerance scal-
ing factor 𝜖𝐿. Fortran users may adjust this value for the mass matrix linear solver by calling the function
FARKLSSETMASSEPSLIN():

subroutine FARKLSSETMASSEPSLIN(EPLIFAC, IER)
Interface to the function ARKStepSetMassEpsLin() to specify the linear solver tolerance scale factor 𝜖𝐿
for the mass matrix linear solver.

This routine must be called after FARKLSMASSINIT().

Arguments:

• EPLIFAC (realtype, input) – value to use for 𝜖𝐿. Passing a value of 0 indicates to use the default
value (0.05).

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

With treatment of the mass matrix linear systems by any of the Krylov iterative solvers, there are two required user-
supplied routines, FARKMTSETUP() and FARKMTIMES(), and there are two optional user-supplied routines,
FARKMASSPSET() and FARKMASSPSOL(). The specifications of these functions are given below.

The required routines when using a Krylov iterative mass matrix linear solver perform setup and computation of the
product of the system mass matrix 𝑀 and a given vector 𝑣. The product routine must have the following form:

subroutine FARKMTIMES(V, MV, T, IPAR, RPAR, IER)
Interface to a user-supplied mass-matrix-times-vector product approximation function (corresponding to a
C interface routine of type ARKLsMassTimesVecFn()), to be used by one of the Krylov iterative linear
solvers.

Arguments:

• V (realtype, input) – array containing the vector to multiply.

• MV (realtype, output) – array containing resulting product vector.

• T (realtype, input) – current value of the independent variable.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Notes: Typically this routine will use only T, V, and MV. It must compute the product vector 𝑀𝑣, where 𝑣 is
given in V, and the product is stored in MV.

If the user’s mass-matrix-times-vector product routine requires that any mass matrix data be evaluated or prepro-
cessed, then the following routine can be used for the evaluation and preprocessing of this data:

subroutine FARKMTSETUP(T, IPAR, RPAR, IER)
Interface to a user-supplied mass-matrix-times-vector setup function (corresponding to a C interface routine of
type ARKLsMassTimesSetupFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().
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• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Notes: Typically this routine will use only T, and store the results in either the arrays IPAR and RPAR, or in a
Fortran module or common block. If no mass matrix setup is needed, this routine should just set IER to 0 and
return.

To indicate that these routines have been supplied by the user, then, following the call to FARKLSMASSINIT(), the
user must call the routine FARKLSSETMASS():

subroutine FARKLSSETMASS(IER)
Interface to the function ARKStepSetMassTimes() to specify use of the user-supplied mass-matrix-times-
vector setup and product functions FARKMTSETUP() and FARKMTIMES().

This routine must be called after FARKLSMASSINIT().

Arguments:

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Two optional user-supplied preconditioning routines may be supplied to help accelerate convergence of the Krylov
mass matrix linear solver. If preconditioning was selected when enabling the Krylov solver (i.e. the solver was set up
with IPRETYPE ̸= 0), then the user must also call the routine FARKLSSETMASSPREC() with FLAG ̸= 0:

subroutine FARKLSSETMASSPREC(FLAG, IER)
Interface to the function ARKStepSetMassPreconditioner() to specify use of the user-supplied pre-
conditioner setup and solve functions, FARKMASSPSET() and FARKMASSPSOL(), respectively.

This routine must be called after FARKLSMASSINIT().

Arguments:

• FLAG (int, input) – flag denoting use of user-supplied preconditioning routines.

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

In addition, the user must provide the following two routines to implement the preconditioner setup and solve func-
tions to be used within the solve.

subroutine FARKMASSPSET(T, IPAR, RPAR, IER)
User-supplied preconditioner setup routine (of type ARKLsMassPrecSetupFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable fail-
ure).

Notes: This routine must set up the preconditioner 𝑃 to be used in the subsequent call to FARKMASSPSOL().
The preconditioner (or the product of the left and right preconditioners if using both) should be an approxima-
tion to the system mass matrix, 𝑀 .

subroutine FARKMASSPSOL(T, R, Z, DELTA, LR, IPAR, RPAR, IER)
User-supplied preconditioner solve routine (of type ARKLsMassPrecSolveFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• R (realtype, input) – right-hand side array.
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• Z (realtype, output) – solution array.

• DELTA (realtype, input) – desired residual tolerance.

• LR (int, input) – flag denoting to solve the right or left preconditioner system: 1 = left precondi-
tioner, 2 = right preconditioner.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable fail-
ure).

Notes: Typically this routine will use only T, R, LR, and Z. It must solve the preconditioner linear system
𝑃𝑧 = 𝑟. The preconditioner (or the product of the left and right preconditioners if both are nontrivial) should
be an approximation to the system mass matrix 𝑀 .

Notes:

1. If the user’s FARKMASSPSOL() uses an iterative method in its solution, the residual vector 𝜌 = 𝑟 − 𝑃𝑧 of the
system should be made less than 𝛿 = DELTA in the weighted l2 norm, i.e.(︃∑︁

𝑖

(𝜌𝑖 𝐸𝑊𝑇𝑖)
2

)︃1/2

< 𝛿.

2. If needed in FARKMTIMES(), FARKMTSETUP(), FARKMASSPSOL(), or FARKMASSPSET(), the error
weight array EWT can be obtained by calling FARKGETERRWEIGHTS() using a user-allocated array as tem-
porary storage for EWT.

3. If needed in FARKMTIMES(), FARKMTSETUP(), FARKMASSPSOL(), or FARKMASSPSET(), the unit
roundoff can be obtained as the optional output ROUT(6) (available after the call to FARKMALLOC()) and can
be passed using either the RPAR user data array or a common block.

Problem solution

Carrying out the integration is accomplished by making calls to FARKODE().

subroutine FARKODE(TOUT, T, Y, ITASK, IER)
Fortran interface to the C routine ARKStepEvolve() for performing the solve, along with many of the
ARK*Get* routines for reporting on solver statistics.

Arguments:

• TOUT (realtype, input) – next value of 𝑡 at which a solution is desired.

• T (realtype, output) – value of independent variable that corresponds to the output Y

• Y (realtype, output) – array containing dependent state variables on output.

• ITASK (int, input) – task indicator :

– 1 = normal mode (overshoot TOUT and interpolate)

– 2 = one-step mode (return after each internal step taken)

– 3 = normal ‘tstop’ mode (like 1, but integration never proceeds past TSTOP, which must be
specified through a preceding call to FARKSETRIN() using the key STOP_TIME)

– 4 = one step ‘tstop’ mode (like 2, but integration never goes past TSTOP).

7.2. FARKODE, an Interface Module for FORTRAN Applications 291



User Documentation for ARKode, v4.7.0

• IER (int, output) – completion flag:

– 0 = success,

– 1 = tstop return,

– 2 = root return,

– values -1, . . . , -10 are failure modes (see ARKStepEvolve() and Appendix: ARKode Con-
stants).

Notes: The current values of the optional outputs are immediately available in IOUT and ROUT upon return
from this function (see Table: Optional FARKODE integer outputs and Table: Optional FARKODE real out-
puts).

A full description of error flags and output behavior of the solver (values filled in for T and Y) is provided in
the description of ARKStepEvolve().

Additional solution output

After a successful return from FARKODE(), the routine FARKDKY() may be used to obtain a derivative of the solu-
tion, of order up to 3, at any 𝑡 within the last step taken.

subroutine FARKDKY(T, K, DKY, IER)
Fortran interface to the C routine ARKDKY() for interpolating output of the solution or its derivatives at any
point within the last step taken.

Arguments:

• T (realtype, input) – time at which solution derivative is desired, within the interval [𝑡𝑛 − ℎ, 𝑡𝑛].

• K (int, input) – derivative order (0 ≤ 𝑘 ≤ 3).

• DKY (realtype, output) – array containing the computed K-th derivative of 𝑦.

• IER (int, output) – return flag (0 if success, <0 if an illegal argument).

Problem reinitialization

To re-initialize the ARKStep solver for the solution of a new problem of the same size as one already solved, the user
must call FARKREINIT():

subroutine FARKREINIT(T0, Y0, IMEX, IATOL, RTOL, ATOL, IER)
Re-initializes the Fortran interface to the ARKStep solver.

Arguments: The arguments have the same names and meanings as those of FARKMALLOC().

Notes: This routine performs no memory allocation, instead using the existing memory created by the previ-
ous FARKMALLOC() call. The call to specify the linear system solution method may or may not be needed.

Following a call to FARKREINIT() if the choice of linear solver is being changed then a user must make a call to
create the alternate SUNLINSOL module and then attach it to ARKStep, as shown above. If only linear solver pa-
rameters are being modified, then these calls may be made without re-attaching to ARKStep.

Resizing the ODE system

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when solving a
spatially-adaptive PDE), the FARKODE() integrator may be “resized” between integration steps, through calls to the
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FARKRESIZE() function, that interfaces with the C routine ARKStepResize(). This function modifies ARK-
Step’s internal memory structures to use the new problem size, without destruction of the temporal adaptivity heuris-
tics. It is assumed that the dynamical time scales before and after the vector resize will be comparable, so that all
time-stepping heuristics prior to calling FARKRESIZE() remain valid after the call. If instead the dynamics should
be re-calibrated, the FARKODE memory structure should be deleted with a call to FARKFREE(), and re-created
with a call to FARKMALLOC().

subroutine FARKRESIZE(T0, Y0, HSCALE, ITOL, RTOL, ATOL, IER)
Re-initializes the Fortran interface to the ARKStep solver for a differently-sized ODE system.

Arguments:

• T0 (realtype, input) – initial value of the independent variable 𝑡.

• Y0 (realtype, input) – array of dependent-variable initial conditions.

• HSCALE (realtype, input) – desired step size scale factor:

– 1.0 is the default,

– any value <= 0.0 results in the default.

• ITOL (int, input) – flag denoting that a new relative tolerance and vector of absolute tolerances are
supplied in the RTOL and ATOL arguments:

– 0 = retain the current scalar-valued relative and absolute tolerances, or the user-supplied error
weight function, FARKEWT().

– 1 = RTOL contains the new scalar-valued relative tolerance and ATOL contains a new array of
absolute tolerances.

• RTOL (realtype, input) – scalar relative tolerance.

• ATOL (realtype, input) – array of absolute tolerances.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Notes: This routine performs the opposite set of of operations as FARKREINIT(): it does not reinitialize any
of the time-step heuristics, but it does perform memory reallocation.

Following a call to FARKRESIZE(), the internal data structures for all linear solver and matrix objects will be the
incorrect size. Hence, calls must be made to re-create the linear system solver, mass matrix solver, linear system ma-
trix, and mass matrix, followed by calls to attach the updated objects to ARKStep.

If any user-supplied linear solver helper routines were used (Jacobian evaluation, Jacobian-vector product, mass ma-
trix evaluation, mass-matrix-vector product, preconditioning, etc.), then the relevant “set” routines to specify their
usage must be called again following the re-specification of the linear solver module(s).

Memory deallocation

To free the internal memory created by FARKMALLOC(), FARKLSINIT(), FARKLSMASSINIT(), and the SUN-
MATRIX, SUNLINSOL and SUNNONLINSOL objects, the user may call FARKFREE(), as follows:

subroutine FARKFREE()
Frees the internal memory created by FARKMALLOC().

Arguments: None.

7.2.2.3 FARKODE optional output

We note that the optional inputs to FARKODE have already been described in the section Setting optional inputs.
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IOUT and ROUT arrays

In the Fortran interface, the optional outputs from the FARKODE() solver are accessed not through individual func-
tions, but rather through a pair of user-allocated arrays, IOUT (having long int type) of dimension at least 36,
and ROUT (having realtype type) of dimension at least 6. These arrays must be allocated by the user program
that calls FARKODE(), that passes them through the Fortran interface as arguments to FARKMALLOC(). Follow-
ing this call, FARKODE() will modify the entries of these arrays to contain all optional output values provided to a
Fortran user.

In the following tables, Table: Optional FARKODE integer outputs and Table: Optional FARKODE real outputs, we
list the entries in these arrays by index, naming them according to their role with the main ARKStep solver, and list
the relevant ARKStep C/C++ function that is actually called to extract the output value. Similarly, optional integer
output values that are specific to the ARKLS linear solver interface are listed in Table: Optional ARKLS interface
outputs.

For more details on the optional inputs and outputs to ARKStep, see the sections Optional input functions and Op-
tional output functions.

Table: Optional FARKODE integer outputs

IOUT Index Optional output ARKStep function
1 LENRW ARKStepGetWorkSpace()
2 LENIW ARKStepGetWorkSpace()
3 NST ARKStepGetNumSteps()
4 NST_STB ARKStepGetNumExpSteps()
5 NST_ACC ARKStepGetNumAccSteps()
6 NST_ATT ARKStepGetNumStepAttempts()
7 NFE ARKStepGetNumRhsEvals() (num 𝑓𝐸 calls)
8 NFI ARKStepGetNumRhsEvals() (num 𝑓 𝐼 calls)
9 NSETUPS ARKStepGetNumLinSolvSetups()
10 NETF ARKStepGetNumErrTestFails()
11 NNI ARKStepGetNumNonlinSolvIters()
12 NCFN ARKStepGetNumNonlinSolvConvFails()
13 NGE ARKStepGetNumGEvals()

Table: Optional FARKODE real outputs

ROUT Index Optional output ARKStep function
1 H0U ARKStepGetActualInitStep()
2 HU ARKStepGetLastStep()
3 HCUR ARKStepGetCurrentStep()
4 TCUR ARKStepGetCurrentTime()
5 TOLSF ARKStepGetTolScaleFactor()
6 UROUND UNIT_ROUNDOFF (see the section Data Types)
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Table: Optional ARKLS interface outputs

IOUT Index Optional output ARKStep function
14 LENRWLS ARKLsGetWorkSpace()
15 LENIWLS ARKLsGetWorkSpace()
16 LSTF ARKLsGetLastFlag()
17 NFELS ARKLsGetNumRhsEvals()
18 NJE ARKLsGetNumJacEvals()
19 NJTS ARKLsGetNumJTSetupEvals()
20 NJTV ARKLsGetNumJtimesEvals()
21 NPE ARKLsGetNumPrecEvals()
22 NPS ARKLsGetNumPrecSolves()
23 NLI ARKLsGetNumLinIters()
24 NCFL ARKLsGetNumConvFails()

Table: Optional ARKLS mass interface outputs

IOUT Index Optional output ARKStep function
25 LENRWMS ARKLsGetMassWorkSpace()
26 LENIWMS ARKLsGetMassWorkSpace()
27 LSTMF ARKLsGetLastMassFlag()
28 NMSET ARKLsGetNumMassSetups()
29 NMSOL ARKLsGetNumMassSolves()
30 NMTSET ARKLsGetNumMTSetups()
31 NMMUL ARKLsGetNumMassMult()
32 NMPE ARKLsGetNumMassPrecEvals()
33 NMPS ARKLsGetNumMassPrecSolves()
34 NMLI ARKLsGetNumMassIters()
35 NMCFL ARKLsGetNumMassConvFails()

Table: Optional ARKode constraints outputs

IOUT Index Optional output ARKStep function
36 CONSTRFAILS ARKStepGetNumConstrFails()

Additional optional output routines

In addition to the optional inputs communicated through FARKSET* calls and the optional outputs extracted from
IOUT and ROUT, the following user-callable routines are available.

To obtain the error weight array EWT, containing the multiplicative error weights used in the WRMS norms, the user
may call the routine FARKGETERRWEIGHTS() as follows:

subroutine FARKGETERRWEIGHTS(EWT, IER)
Retrieves the current error weight vector (interfaces with ARKStepGetErrWeights()).

Arguments:

• EWT (realtype, output) – array containing the error weight vector.
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• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Notes: The array EWT must have already been allocated by the user, of the same size as the solution array Y.

Similarly, to obtain the estimated local truncation errors, following a successful call to FARKODE(), the user may
call the routine FARKGETESTLOCALERR() as follows:

subroutine FARKGETESTLOCALERR(ELE, IER)
Retrieves the current local truncation error estimate vector (interfaces with
ARKStepGetEstLocalErrors()).

Arguments:

• ELE (realtype, output) – array with the estimated local truncation error vector.

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Notes: The array ELE must have already been allocated by the user, of the same size as the solution array Y.

7.2.2.4 Usage of the FARKROOT interface to rootfinding

The FARKROOT interface package allows programs written in Fortran to use the rootfinding feature of the ARK-
Step solver module. The user-callable functions in FARKROOT, with the corresponding ARKStep functions, are as
follows:

• FARKROOTINIT() interfaces to ARKStepRootInit(),

• FARKROOTINFO() interfaces to ARKStepGetRootInfo(), and

• FARKROOTFREE() interfaces to ARKStepRootInit(), freeing memory by calling the initializer with no
root functions.

Note that at this time, FARKROOT does not provide support to specify the direction of zero-crossing that is to be
monitored. Instead, all roots are considered. However, the actual direction of zero-crossing may be captured by the
user through monitoring the sign of any non-zero elements in the array INFO returned by FARKROOTINFO().

In order to use the rootfinding feature of ARKStep, after calling FARKMALLOC() but prior to calling FARKODE(),
the user must call FARKROOTINIT() to allocate and initialize memory for the FARKROOT module:

subroutine FARKROOTINIT(NRTFN, IER)
Initializes the Fortran interface to the FARKROOT module.

Arguments:

• NRTFN (int, input) – total number of root functions.

• IER (int, output) – return flag (0 success, -1 if ARKStep memory is NULL, and -11 if a memory
allocation error occurred).

If rootfinding is enabled, the user must specify the functions whose roots are to be found. These rootfinding func-
tions should be implemented in the user-supplied FARKROOTFN() subroutine:

subroutine FARKROOTFN(T, Y, G, IPAR, RPAR, IER)
User supplied function implementing the vector-valued function 𝑔(𝑡, 𝑦) such that the roots of the NRTFN com-
ponents 𝑔𝑖(𝑡, 𝑦) = 0 are sought.

Arguments:

• T (realtype, input) – independent variable value 𝑡.

• Y (realtype, input) – dependent variable array 𝑦.

• G (realtype, output) – function value array 𝑔(𝑡, 𝑦).
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• IPAR (long int, input/output) – integer user data array, the same as the array passed to
FARKMALLOC().

• RPAR (realtype, input/output) – real-valued user data array, the same as the array passed to
FARKMALLOC().

• IER (int, output) – return flag (0 success, < 0 if error).

When making calls to FARKODE() to solve the ODE system, the occurrence of a root is flagged by the return value
IER = 2. In that case, if NRTFN > 1, the functions 𝑔𝑖(𝑡, 𝑦) which were found to have a root can be identified by call-
ing the routine FARKROOTINFO():

subroutine FARKROOTINFO(NRTFN, INFO, IER)
Initializes the Fortran interface to the FARKROOT module.

Arguments:

• NRTFN (int, input) – total number of root functions.

• INFO (int, input/output) – array of length NRTFN with root information (must be allocated by the
user). For each index, i = 1, . . . , NRTFN:

– INFO(i) = 1 if 𝑔𝑖(𝑡, 𝑦) was found to have a root, and 𝑔𝑖 is increasing.

– INFO(i) = -1 if 𝑔𝑖(𝑡, 𝑦) was found to have a root, and 𝑔𝑖 is decreasing.

– INFO(i) = 0 otherwise.

• IER (int, output) – return flag (0 success, < 0 if error).

The total number of calls made to the root function FARKROOTFN(), denoted NGE, can be obtained from
IOUT(12). If the FARKODE/ARKStep memory block is reinitialized to solve a different problem via a call to
FARKREINIT(), then the counter NGE is reset to zero.

Lastly, to free the memory resources allocated by a prior call to FARKROOTINIT(), the user must make a call to
FARKROOTFREE():

subroutine FARKROOTFREE()
Frees memory associated with the FARKODE rootfinding module.

7.2.2.5 Usage of the FARKODE interface to built-in preconditioners

The FARKODE interface enables usage of the two built-in preconditioning modules ARKBANDPRE and ARKBB-
DPRE. Details on how these preconditioners work are provided in the section Preconditioner modules. In this sec-
tion, we focus specifically on the Fortran interface to these modules.

Usage of the FARKBP interface to ARKBANDPRE

The FARKBP interface module is a package of C functions which, as part of the FARKODE interface module, sup-
port the use of the ARKStep solver with the serial or threaded NVector modules (The NVECTOR_SERIAL Module,
The NVECTOR_OPENMP Module or The NVECTOR_PTHREADS Module), and the combination of the ARK-
BANDPRE preconditioner module (see the section A serial banded preconditioner module) with the ARKStep linear
solver interface and any of the Krylov iterative linear solvers.

The two user-callable functions in this package, with the corresponding ARKStep function around which they wrap,
are:

• FARKBPINIT() interfaces to ARKBandPrecInit().

• FARKBPOPT() interfaces to the ARKBANDPRE optional output functions,
ARKBandPrecGetWorkSpace() and ARKBandPrecGetNumRhsEvals().
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As with the rest of the FARKODE routines, the names of the user-supplied routines are mapped to actual values
through a series of definitions in the header file farkbp.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main program described
in the section Usage of the FARKODE interface module are italicized.

1. Right-hand side specification

2. NVECTOR module initialization

3. SUNLINSOL module initialization

Initialize one of the iterative SUNLINSOL modules, by calling one of FSUNPCGINIT, FSUNSPBCGSINIT,
FSUNSPFGMRINIT, FSUNSPGMRINIT or FSUNSPTFQMRINIT, supplying an argument to specify that the
SUNLINSOL module should utilize left or right preconditioning.

4. Problem specification

5. Set optional inputs

6. Linear solver interface specification

First, initialize the ARKStep linear solver interface by calling FARKLSINIT().

Optionally, to specify that ARKStep should use the supplied FARKJTIMES() and FARKJTSETUP() rou-
tines, the user should call FARKLSSETJAC() with FLAG ̸= 0, as described in the section Iterative linear
solvers.

Then, to initialize the ARKBANDPRE preconditioner, call the routine FARKBPINIT(), as follows:

subroutine FARKBPINIT(NEQ, MU, ML, IER)
Interfaces with the ARKBandPrecInit() function to allocate memory and initialize data associated
with the ARKBANDPRE preconditioner.

Arguments:

• NEQ (long int, input) – problem size.

• MU (long int, input) – upper half-bandwidth of the band matrix that is retained as an ap-
proximation of the Jacobian.

• ML (long int, input) – lower half-bandwidth of the band matrix approximation to the Jaco-
bian.

• IER (int, output) – return flag (0 if success, -1 if a memory failure).

7. Problem solution

8. ARKBANDPRE optional outputs

Optional outputs for ARKStep’s linear solver interface are listed in Table: Optional ARKLS interface out-
puts. To obtain the optional outputs associated with the ARKBANDPRE module, the user should call the
FARKBPOPT(), as specified below:

subroutine FARKBPOPT(LENRWBP, LENIWBP, NFEBP)
Interfaces with the ARKBANDPRE optional output functions.

Arguments:

• LENRWBP (long int, output) – length of real preconditioner work space (from
ARKBandPrecGetWorkSpace()).

• LENIWBP (long int, output) – length of integer preconditioner work space, in integer words
(from ARKBandPrecGetWorkSpace()).
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• NFEBP (long int, output) – number of 𝑓 𝐼(𝑡, 𝑦) evaluations (from
ARKBandPrecGetNumRhsEvals())

9. Additional solution output

10. Problem re-initialization

11. Memory deallocation

(The memory allocated for the FARKBP module is deallocated automatically by FARKFREE())

Usage of the FARKBBD interface to ARKBBDPRE

The FARKBBD interface module is a package of C functions which, as part of the FARKODE interface module,
support the use of the ARKStep solver with the parallel vector module (The NVECTOR_PARALLEL Module), and
the combination of the ARKBBDPRE preconditioner module (see the section A parallel band-block-diagonal pre-
conditioner module) with any of the Krylov iterative linear solvers.

The user-callable functions in this package, with the corresponding ARKStep and ARKBBDPRE functions, are as
follows:

• FARKBBDINIT() interfaces to ARKBBDPrecInit().

• FARKBBDREINIT() interfaces to ARKBBDPrecReInit().

• FARKBBDOPT() interfaces to the ARKBBDPRE optional output functions.

In addition to the functions required for general FARKODE usage, the user-supplied functions required by this pack-
age are listed in the table below, each with the corresponding interface function which calls it (and its type within
ARKBBDPRE or ARKStep).

Table: FARKBBD function mapping

FARKBBD routine (FORTRAN, user-
supplied)

ARKStep routine (C, inter-
face)

ARKStep interface function
type

FARKGLOCFN() FARKgloc ARKLocalFn()
FARKCOMMFN() FARKcfn ARKCommFn()
FARKJTIMES() FARKJtimes ARKLsJacTimesVecFn()
FARKJTSETUP() FARKJTSetup ARKLsJacTimesSetupFn()

As with the rest of the FARKODE routines, the names of all user-supplied routines here are fixed, in order to maxi-
mize portability for the resulting mixed-language program. Additionally, based on flags discussed above in the sec-
tion FARKODE routines, the names of the user-supplied routines are mapped to actual values through a series of defi-
nitions in the header file farkbbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main program described
in the section Usage of the FARKODE interface module are italicized.

1. Right-hand side specification

2. NVECTOR module initialization

3. SUNLINSOL module initialization

Initialize one of the iterative SUNLINSOL modules, by calling one of FSUNPCGINIT, FSUNSPBCGSINIT,
FSUNSPFGMRINIT, FSUNSPGMRINIT or FSUNSPTFQMRINIT, supplying an argument to specify that the
SUNLINSOL module should utilize left or right preconditioning.

4. Problem specification

5. Set optional inputs
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6. Linear solver interface specification

First, initialize ARKStep’s linear solver interface by calling FARKLSINIT().

Optionally, to specify that ARKStep should use the supplied FARKJTIMES() and FARKJTSETUP() rou-
tines, the user should call FARKLSSETJAC() with FLAG ̸= 0, as described in the section Iterative linear
solvers.

Then, to initialize the ARKBBDPRE preconditioner, call the function FARKBBDINIT(), as described below:

subroutine FARKBBDINIT(NLOCAL, MUDQ, MLDQ, MU, ML, DQRELY, IER)
Interfaces with the ARKBBDPrecInit() routine to initialize the ARKBBDPRE preconditioning mod-
ule.

Arguments:

• NLOCAL (long int, input) – local vector size on this process.

• MUDQ (long int, input) – upper half-bandwidth to be used in the computation of the local
Jacobian blocks by difference quotients. These may be smaller than the true half-bandwidths of
the Jacobian of the local block of 𝑔, when smaller values may provide greater efficiency.

• MLDQ (long int, input) – lower half-bandwidth to be used in the computation of the local
Jacobian blocks by difference quotients.

• MU (long int, input) – upper half-bandwidth of the band matrix that is retained as an ap-
proximation of the local Jacobian block (may be smaller than MUDQ).

• ML (long int, input) – lower half-bandwidth of the band matrix that is retained as an approx-
imation of the local Jacobian block (may be smaller than MLDQ).

• DQRELY (realtype, input) – relative increment factor in 𝑦 for difference quotients (0.0 indi-
cates to use the default).

• IER (int, output) – return flag (0 if success, -1 if a memory failure).

7. Problem solution

8. ARKBBDPRE optional outputs

Optional outputs from the ARKStep linear solver interface are listed in Table: Optional ARKLS interface
outputs. To obtain the optional outputs associated with the ARKBBDPRE module, the user should call
FARKBBDOPT(), as specified below:

subroutine FARKBBDOPT(LENRWBBD, LENIWBBD, NGEBBD)
Interfaces with the ARKBBDPRE optional output functions.

Arguments:

• LENRWBP (long int, output) – length of real preconditioner work space on this process
(from ARKBBDPrecGetWorkSpace()).

• LENIWBP (long int, output) – length of integer preconditioner work space on this process
(from ARKBBDPrecGetWorkSpace()).

• NGEBBD (long int, output) – number of 𝑔(𝑡, 𝑦) evaluations (from
ARKBBDPrecGetNumGfnEvals()) so far.

9. Additional solution output

10. Problem re-initialization

If a sequence of problems of the same size is being solved using the same linear solver in combination with the
ARKBBDPRE preconditioner, then the ARKStep package can be re-initialized for the second and subsequent
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problems by calling FARKREINIT(), following which a call to FARKBBDREINIT() may or may not be
needed. If the input arguments are the same, no FARKBBDREINIT() call is needed.

If there is a change in input arguments other than MU or ML, then the user program should call
FARKBBDREINIT() as specified below:

subroutine FARKBBDREINIT(NLOCAL, MUDQ, MLDQ, DQRELY, IER)
Interfaces with the ARKBBDPrecReInit() function to reinitialize the ARKBBDPRE module.

Arguments: The arguments of the same names have the same meanings as in FARKBBDINIT().

However, if the value of MU or ML is being changed, then a call to FARKBBDINIT() must be made instead.

Finally, if there is a change in any of the linear solver inputs, then a call to one of FSUNSPGMRINIT(),
FSUNSPBCGSINIT(), FSUNSPTFQMRINIT(), FSUNSPFGMRINIT() or FSUNPCGINIT(), followed
by a call to FARKLSINIT() must also be made; in this case the linear solver memory is reallocated.

11. Problem resizing

If a sequence of problems of different sizes (but with similar dynamical time scales) is being solved using the
same linear solver (SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG) in combination with the ARKBBDPRE
preconditioner, then the ARKStep package can be re-initialized for the second and subsequent problems by
calling FARKRESIZE(), following which a call to FARKBBDINIT() is required to delete and re-allocate
the preconditioner memory of the correct size.

subroutine FARKBBDREINIT(NLOCAL, MUDQ, MLDQ, DQRELY, IER)
Interfaces with the ARKBBDPrecReInit() function to reinitialize the ARKBBDPRE module.

Arguments: The arguments of the same names have the same meanings as in FARKBBDINIT().

However, if the value of MU or ML is being changed, then a call to FARKBBDINIT() must be made instead.

Finally, if there is a change in any of the linear solver inputs, then a call to one of FSUNSPGMRINIT(),
FSUNSPBCGSINIT(), FSUNSPTFQMRINIT(), FSUNSPFGMRINIT() or FSUNPCGINIT(), followed
by a call to FARKLSINIT() must also be made; in this case the linear solver memory is reallocated.

12. Memory deallocation

(The memory allocated for the FARKBBD module is deallocated automatically by FARKFREE()).

13. User-supplied routines

The following two routines must be supplied for use with the ARKBBDPRE module:

subroutine FARKGLOCFN(NLOC, T, YLOC, GLOC, IPAR, RPAR, IER)
User-supplied routine (of type ARKLocalFn()) that computes a processor-local approximation 𝑔(𝑡, 𝑦)
to the right-hand side function 𝑓 𝐼(𝑡, 𝑦).

Arguments:

• NLOC (long int, input) – local problem size.

• T (realtype, input) – current value of the independent variable.

• YLOC (realtype, input) – array containing local dependent state variables.

• GLOC (realtype, output) – array containing local dependent state derivatives.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unre-
coverable error occurred).
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subroutine FARKCOMMFN(NLOC, T, YLOC, IPAR, RPAR, IER)
User-supplied routine (of type ARKCommFn()) that performs all inter-process communication necessary
for the execution of the FARKGLOCFN() function above, using the input vector YLOC.

Arguments:

• NLOC (long int, input) – local problem size.

• T (realtype, input) – current value of the independent variable.

• YLOC (realtype, input) – array containing local dependent state variables.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unre-
coverable error occurred).

Notes: This subroutine must be supplied even if it is not needed, and must return IER = 0.
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Butcher Table Data Structure

To store the Butcher table defining a Runge Kutta method ARKode provides the ARKodeButcherTable type and
several related utilitiy routines. We use the following Butcher table notation (shown for a 3-stage method):

𝑐 𝐴
𝑞 𝑏

𝑝 �̃�

=

𝑐1 𝑎1,1 𝑎1,2 𝑎1,3
𝑐2 𝑎2,1 𝑎2,2 𝑎2,3
𝑐3 𝑎3,1 𝑎3,2 𝑎3,3
𝑞 𝑏1 𝑏2 𝑏3
𝑝 �̃�1 �̃�2 �̃�3

where the method and embedding share stage 𝐴 and abscissa 𝑐 values, but use their stages 𝑧𝑖 differently through the
coefficients 𝑏 and �̃� to generate methods of orders 𝑞 (the main method) and 𝑝 (the embedding, typically 𝑞 = 𝑝 + 1,
though sometimes this is reversed). ARKodeButcherTable is defined as

typedef ARKodeButcherTableMem* ARKodeButcherTable

where ARKodeButcherTableMem is the structure

typedef struct ARKodeButcherTableMem {

int q;
int p;
int stages;
realtype **A;
realtype *c;
realtype *b;
realtype *d;

};

where stages is the number of stages in the RK method, the variables q, p, A, c, and b have the same meaning as
in the Butcher table above, and d is used to store �̃�.
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8.1 ARKodeButcherTable functions

Function name Description
ARKodeButcherTable_LoadERK() Retrieve a given explicit Butcher table by its unique name
ARKodeButcherTable_LoadDIRK() Retrieve a given implicit Butcher table by its unique name
ARKodeButcherTable_Alloc() Allocate an empty Butcher table
ARKodeButcherTable_Create() Create a new Butcher table
ARKodeButcherTable_Copy() Create a copy of a Butcher table
ARKodeButcherTable_Space() Get the Butcher table real and integer workspace size
ARKodeButcherTable_Free() Deallocate a Butcher table
ARKodeButcherTable_Write() Write the Butcher table to an output file
ARKodeButcherTable_CheckOrder() Check the order of a Butcher table
ARKodeButcherTable_CheckARKOrder() Check the order of an ARK pair of Butcher tables

ARKodeButcherTable ARKodeButcherTable_LoadERK(int emethod)
Retrieves a specified explicit Butcher table. The prototype for this function, as well as the integer names for
each provided method, are defined in the header file arkode/arkode_butcher_erk.h. For further in-
formation on these tables and their corresponding identifiers, see Appendix: Butcher tables.

Arguments:

• emethod – integer input specifying the given Butcher table.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if imethod was invalid.

ARKodeButcherTable ARKodeButcherTable_LoadDIRK(int imethod)
Retrieves a specified diagonally-implicit Butcher table. The prototype for this function, as well as the integer
names for each provided method, are defined in the header file arkode/arkode_butcher_dirk.h. For
further information on these tables and their corresponding identifiers, see Appendix: Butcher tables.

Arguments:

• imethod – integer input specifying the given Butcher table.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if imethod was invalid.

ARKodeButcherTable ARKodeButcherTable_Alloc(int stages, booleantype embedded)
Allocates an empty Butcher table.

Arguments:

• stages – the number of stages in the Butcher table.

• embedded – flag denoting whether the Butcher table has an embedding (SUNTRUE) or not
(SUNFALSE).

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if stages was invalid or an allocation error occured.
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ARKodeButcherTable ARKodeButcherTable_Create(int s, int q, int p, realtype *c, realtype *A, real-
type *b, realtype *d)

Allocates a Butcher table and fills it with the given values.

Arguments:

• s – number of stages in the RK method.

• q – global order of accuracy for the RK method.

• p – global order of accuracy for the embedded RK method.

• c – array (of length s) of stage times for the RK method.

• A – array of coefficients defining the RK stages. This should be stored as a 1D array of size s*s, in
row-major order.

• b – array of coefficients (of length s) defining the time step solution.

• d – array of coefficients (of length s) defining the embedded solution.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if stages was invalid or an allocation error occured.

Notes: If the method does not have an embedding then d should be NULL and p should be equal to zero.

ARKodeButcherTable ARKodeButcherTable_Copy(ARKodeButcherTable B)
Creates copy of the given Butcher table.

Arguments:

• B – the Butcher table to copy.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer an allocation error occured.

void ARKodeButcherTable_Space(ARKodeButcherTable B, sunindextype *liw, sunindextype *lrw)
Get the real and integer workspace size for a Butcher table.

Arguments:

• B – the Butcher table.

• lenrw – the number of realtype values in the Butcher table workspace.

• leniw – the number of integer values in the Butcher table workspace.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the Butcher table memory was NULL.

void ARKodeButcherTable_Free(ARKodeButcherTable B)
Deallocate the Butcher table memory.

Arguments:

• B – the Butcher table.

void ARKodeButcherTable_Write(ARKodeButcherTable B, FILE *outfile)
Write the Butcher table to the provided file pointer.

Arguments:
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• B – the Butcher table.

• outfile – pointer to use for printing the Butcher table.

Notes: The outfile argument can be stdout or stderr, or it may point to a specific file created using
fopen.

int ARKodeButcherTable_CheckOrder(ARKodeButcherTable B, int* q, int* p, FILE* outfile)
Determine the analytic order of accuracy for the specified Butcher table. The analytic (necessary) conditions
are checked up to order 6. For orders greater than 6 the Butcher simplifying (sufficient) assumptions are used.

Arguments:

• B – the Butcher table.

• q – the measured order of accuracy for the method.

• p – the measured order of accuracy for the embedding; 0 if the method does not have an embedding.

• outfile – file pointer for printing results; NULL to suppress output.

Return value:

• 0 – success, the measured vales of q and p match the values of q and p in the provided Butcher ta-
bles.

• 1 – warning, the values of q and p in the provided Butcher tables are lower than the measured val-
ues, or the measured values achieve the maximum order possible with this function and the values of
q and p in the provided Butcher tables table are higher.

• -1 – failure, the values of q and p in the provided Butcher tables are higher than the measured val-
ues.

• -2 – failure, the input Butcher table or critical table contents are NULL.

Notes: For embedded methods, if the return flags for q and p would differ, failure takes precedence over warn-
ing, which takes precedence over success.

int ARKodeButcherTable_CheckARKOrder(ARKodeButcherTable B1, ARKodeButcherTable B2,
int *q, int *p, FILE *outfile)

Determine the analytic order of accuracy (up to order 6) for a specified ARK pair of Butcher tables.

Arguments:

• B1 – a Butcher table in the ARK pair.

• B2 – a Butcher table in the ARK pair.

• q – the measured order of accuracy for the method.

• p – the measured order of accuracy for the embedding; 0 if the method does not have an embedding.

• outfile – file pointer for printing results; NULL to suppress output.

Return value:

• 0 – success, the measured vales of q and p match the values of q and p in the provided Butcher ta-
bles.

• 1 – warning, the values of q and p in the provided Butcher tables are lower than the measured val-
ues, or the measured values achieve the maximum order possible with this function and the values of
q and p in the provided Butcher tables table are higher.

• -1 – failure, the input Butcher tables or critical table contents are NULL.

Notes: For embedded methods, if the return flags for q and p would differ, warning takes precedence over suc-
cess.
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ARKODE Features for GPU Accelerated
Computing

This chapter is concerned with using GPU-acceleration and ARKODE for the solution of IVPs.

9.1 SUNDIALS GPU Programming Model

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features.
The model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the
shared vector, matrix, and solver APIs (see Vector Data Structures, Matrix Data Structures, Description of the SUN-
LinearSolver module, and Description of the SUNNonlinearSolver Module) or through user-supplied callback func-
tions. Thus, under the model, the overall structure of the user’s calling program, and the way users interact with the
SUNDIALS packages is similar to using SUNDIALS in CPU-only environments.

Within the SUNDIALS GPU programming model, all control logic executes on the CPU, and all simulation data re-
sides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the program. That is, SUN-
DIALS will not migrate data (explicitly) from one memory space to another. Except in the most advanced use cases,
it is safe to assume that data is kept resident in the GPU-device memory space. The consequence of this is that, when
control is passed from the user’s calling program to SUNDIALS, simulation data in vector or matrix objects must
be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to the user’s calling
program, the user should assume that any simulation data in vector and matrix objects are up-to-date in the device
memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data coherency
between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as managed
memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data from
the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the way
SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise
extra memory transfers will be required and performance will be poor. The exception to this rule is if some form of
hybrid data partitioning (achievable with the The NVECTOR_MANYVECTOR Module) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these are primar-
ily limited to the NVIDIA CUDA platform [CUDA], although support for more GPU computing platforms such as
AMD ROCm/HIP [ROCm] and Intel oneAPI [oneAPI], is an area of active development. Table List of SUNDIALS
GPU-enabled Modules summarizes the shared SUNDIALS modules that are GPU-enabled, what GPU programming
environments they support, and what class of memory they support (unmanaged or UVM). Users may also supply
their own GPU-enabled N_Vector, SUNMatrix, SUNLinearSolver, or SUNNonlinearSolver implemen-
tation, and the capabilties will be leveraged since SUNDIALS operates on data through these APIs.
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In addition, SUNDIALS provides Tools for Memory Management to support applications which implement their own
memory management or memory pooling.

Table 9.1: List of SUNDIALS GPU-enabled Modules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
NVECTOR_CUDA X X X
NVECTOR_RAJA X X X
NVECTOR_OPENMPDEV X X2 X2 X
SUNMATRIX_CUSPARSE X X X
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_SPGMR X1 X1 X1 X1 X1

SUNLINSOL_SPFGMR X1 X1 X1 X1 X1

SUNLINSOL_SPTFQMR X1 X1 X1 X1 X1

SUNLINSOL_SPBCGS X1 X1 X1 X1 X1

SUNLINSOL_PCG X1 X1 X1 X1 X1

SUNNONLINSOL_NEWTON X1 X1 X1 X1 X1

SUNNONLINSOL_FIXEDPOINT X1 X1 X1 X1 X1

1. This module inherits support from the NVECTOR module used

2. Support for ROCm/HIP and oneAPI are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.

9.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1. Utilize a GPU-enabled vector implementation. Initial data can be loaded on the host, but must be in the device
memory space prior to handing control to SUNDIALS.

2. Utilize a GPU-enabled linear solver (if necessary).

3. Utilize a GPU-enabled implementation (if using a matrix-based linear solver).

4. Utilize a GPU-enabled nonlinear solver (if necessary).

5. Write user-supplied functions so that they use data only in the device memory space (again, unless an atypi-
cal data partitioning is used). A few examples of these functions are the right-hand side evaluation function,
the Jacobian evalution function, or the preconditioner evaulation function. In the context of CUDA and the
right-hand side function, one way a user might ensure data is accessed on the device is, for example, calling a
CUDA kernel, which does all of the computation, from a CPU function which simply extracts the underlying
device data array from the vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to Table List of SUNDIALS GPU-enabled Modules for a list of GPU-enabled native SUNDIALS
modules.
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Chapter 10

Vector Data Structures

The SUNDIALS library comes packaged with a variety of NVECTOR implementations, designed for simulations
in serial, shared-memory parallel, and distributed-memory parallel environments, as well as interfaces to vector data
structures used within external linear solver libraries. All native implementations assume that the process-local data
is stored contiguously, and they in turn provide a variety of standard vector algebra operations that may be performed
on the data.

In addition, SUNDIALS provides a simple interface for generic vectors (akin to a C++ abstract base class). All of
the major SUNDIALS solvers (CVODE(s), IDA(s), KINSOL, ARKODE) in turn are constructed to only depend on
these generic vector operations, making them immediately extensible to new user-defined vector objects. The only
exceptions to this rule relate to the dense, banded and sparse-direct linear system solvers, since they rely on particu-
lar data storage and access patterns in the NVECTORS used.

10.1 Description of the NVECTOR Modules

The SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors (of type
N_Vector) through a set of operations defined by, and specific to, the particular NVECTOR implementation. Users
can provide a custom implementation of the NVECTOR module or use one of four provided within SUNDIALS – a
serial and three parallel implementations. The generic operations are described below. In the sections following, the
implementations provided with SUNDIALS are described.

The generic N_Vector type is a pointer to a structure that has an implementation-dependent content field contain-
ing the description and actual data of the vector, and an ops field pointing to a structure with generic vector opera-
tions. The type N_Vector is defined as:

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {
void *content;
struct _generic_N_Vector_Ops *ops;

};

Here, the _generic_N_Vector_Op structure is essentially a list of function pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {
N_Vector_ID (*nvgetvectorid)(N_Vector);
N_Vector (*nvclone)(N_Vector);
N_Vector (*nvcloneempty)(N_Vector);
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void (*nvdestroy)(N_Vector);
void (*nvspace)(N_Vector, sunindextype *, sunindextype *);
realtype* (*nvgetarraypointer)(N_Vector);
realtype* (*nvgetdevicearraypointer)(N_Vector);
void (*nvsetarraypointer)(realtype *, N_Vector);
void* (*nvgetcommunicator)(N_Vector);
sunindextype (*nvgetlength)(N_Vector);
void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);
void (*nvconst)(realtype, N_Vector);
void (*nvprod)(N_Vector, N_Vector, N_Vector);
void (*nvdiv)(N_Vector, N_Vector, N_Vector);
void (*nvscale)(realtype, N_Vector, N_Vector);
void (*nvabs)(N_Vector, N_Vector);
void (*nvinv)(N_Vector, N_Vector);
void (*nvaddconst)(N_Vector, realtype, N_Vector);
realtype (*nvdotprod)(N_Vector, N_Vector);
realtype (*nvmaxnorm)(N_Vector);
realtype (*nvwrmsnorm)(N_Vector, N_Vector);
realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);
realtype (*nvmin)(N_Vector);
realtype (*nvwl2norm)(N_Vector, N_Vector);
realtype (*nvl1norm)(N_Vector);
void (*nvcompare)(realtype, N_Vector, N_Vector);
booleantype (*nvinvtest)(N_Vector, N_Vector);
booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);
realtype (*nvminquotient)(N_Vector, N_Vector);
int (*nvlinearcombination)(int, realtype *, N_Vector *, N_Vector);
int (*nvscaleaddmulti)(int, realtype *, N_Vector, N_Vector *, N_Vector *);
int (*nvdotprodmulti)(int, N_Vector, N_Vector *, realtype *);
int (*nvlinearsumvectorarray)(int, realtype, N_Vector *, realtype,

N_Vector *, N_Vector *);
int (*nvscalevectorarray)(int, realtype *, N_Vector *, N_Vector *);
int (*nvconstvectorarray)(int, realtype, N_Vector *);
int (*nvwrmsnomrvectorarray)(int, N_Vector *, N_Vector *, realtype *);
int (*nvwrmsnomrmaskvectorarray)(int, N_Vector *, N_Vector *, N_Vector,

realtype *);
int (*nvscaleaddmultivectorarray)(int, int, realtype *, N_Vector *,

N_Vector **, N_Vector **);
int (*nvlinearcombinationvectorarray)(int, int, realtype *, N_Vector **,

N_Vector *);
realtype (*nvdotprodlocal)(N_Vector, N_Vector);
realtype (*nvmaxnormlocal)(N_Vector);
realtype (*nvminlocal)(N_Vector);
realtype (*nvl1normlocal)(N_Vector);
booleantype (*nvinvtestlocal)(N_Vector, N_Vector);
booleantype (*nvconstrmasklocal)(N_Vector, N_Vector, N_Vector);
realtype (*nvminquotientlocal)(N_Vector, N_Vector);
realtype (*nvwsqrsumlocal)(N_Vector, N_Vector);
realtype (*nvwsqrsummasklocal(N_Vector, N_Vector, N_Vector);
int (*nvbufsize)(N_Vector, sunindextype *);
int (*nvbufpack)(N_Vector, void*);
int (*nvbufunpack)(N_Vector, void*);

};

The generic NVECTOR module defines and implements the vector operations acting on a N_Vector. These rou-
tines are nothing but wrappers for the vector operations defined by a particular NVECTOR implementation, which
are accessed through the ops field of the N_Vector structure. To illustrate this point we show below the implemen-
tation of a typical vector operation from the generic NVECTOR module, namely N_VScale, which performs the
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scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z) {
z->ops->nvscale(c, x, z);

}

The subsection Description of the NVECTOR operations contains a complete list of all standard vector operations
defined by the generic NVECTOR module. The subsections Description of the NVECTOR fused operations, De-
scription of the NVECTOR vector array operations and Description of the NVECTOR local reduction operations,
Description of the NVECTOR exchange operations list optional fused, vector array, local reduction, and exchange
operations respectively.

Fused and vector array operations are intended to increase data reuse, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. If a particular NVECTOR
implementation defines a fused or vector array operation as NULL, the generic NVECTOR module will automatically
call standard vector operations as necessary to complete the desired operation. In all SUNDIALS-provided NVEC-
TOR implementations, all fused and vector array operations are disabled by default. However, these implementations
provide additional user-callable functions to enable/disable any or all of the fused and vector array operations. See
the following sections for the implementation specific functions to enable/disable operations.

Local reduction operations are similarly intended to reduce parallel communication on distributed memory systems,
particularly when NVECTOR objects are combined together within a NVECTOR_MANYVECTOR object (see the
section The NVECTOR_MANYVECTOR Module). If a particular NVECTOR implementation defines a local reduc-
tion operation as NULL, the NVECTOR_MANYVECTOR module will automatically call standard vector reduction
operations as necessary to complete the desired operation. All SUNDIALS-provided NVECTOR implementations
include these local reduction operations, which may be used as templates for user-defined NVECTOR implementa-
tions.

The exchange operations are intended only for use with the XBraid library for parallel-in-time integration and are
otherwise unused by SUNDIALS packages.

10.1.1 NVECTOR Utility Functions

The generic NVECTOR module also defines the utility functions N_VCloneVectorArray,
N_VCloneVectorArrayEmpty, and N_VDestroyVectorArray. Both clone functions create (by
cloning) an array of count variables of type N_Vector, each of the same type as an existing N_Vector. Their
prototypes are:

N_Vector *N_VCloneVectorArray(int count, N_Vector w);
N_Vector *N_VCloneVectorArrayEmpty(int count, N_Vector w);

and their definitions are based on the implementation-specific N_VClone and N_VCloneEmpty operations, re-
spectively. An array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray,
whose prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N_VDestroy operation.

Finally, we note that users of the Fortran 2003 interface may be interested in the additional utility functions
N_NewVectorArray, N_VGetVecAtIndexVectorArray, and N_VSetVecAtIndexVectorArray.
These functions allow a Fortran 2003 user to create an empty vector array, get a vector at an index, and set a vector
at an index. There prototypes are given below:

N_Vector *N_VNewVectorArray(int count);
N_Vector *N_VGetVecAtIndexVectorArray(N_Vector* vs, int index);
void N_VSetVecAtIndexVectorArray(N_Vector* vs, int index, N_Vector w)
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10.1.2 Vector Identifications associated with vector kernels supplied with SUNDIALS

Vector ID Vector type ID Value
SUNDIALS_NVEC_SERIAL Serial 0
SUNDIALS_NVEC_PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel 2
SUNDIALS_NVEC_PTHREADS PThreads shared memory parallel 3
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector 4
SUNDIALS_NVEC_PETSC PETSc parallel vector 5
SUNDIALS_NVEC_CUDA CUDA vector 6
SUNDIALS_NVEC_HIP HIP vector 7
SUNDIALS_NVEC_SYCL SYCL vector 8
SUNDIALS_NVEC_RAJA RAJA vector 9
SUNDIALS_NVEC_OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS_NVEC_TRILINOS Trilinos Tpetra vector 11
SUNDIALS_NVEC_MANYVECTOR “ManyVector” vector 12
SUNDIALS_NVEC_MPIMANYVECTOR MPI-enabled “ManyVector” vector 13
SUNDIALS_NVEC_MPIPLUSX MPI+X vector 14
SUNDIALS_NVEC_CUSTOM User-provided custom vector 15

10.1.3 Implementing a custom NVECTOR

A particular implementation of the NVECTOR module must:

• Specify the content field of N_Vector.

• Define and implement the vector operations. Note that the names of these routines should be unique to that
implementation in order to permit using more than one NVECTOR module (each with different N_Vector
internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an N_Vector with
the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined N_Vector
(e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined N_Vector.

To aid in the creation of custom NVECTOR modules the generic NVECTOR module provides two utility functions
N_VNewEmpty() and N_VCopyOps(). When used in custom NVECTOR constructors and clone routines these
functions will ease the introduction of any new optional vector operations to the NVECTOR API by ensuring only
required operations need to be set and all operations are copied when cloning a vector.

N_Vector N_VNewEmpty()
This allocates a new generic N_Vector object and initializes its content pointer and the function pointers in
the operations structure to NULL.

Return value: If successful, this function returns an N_Vector object. If an error occurs when allocating the
object, then this routine will return NULL.

void N_VFreeEmpty(N_Vector v)
This routine frees the generic N_Vector object, under the assumption that any implementation-specific
data that was allocated within the underlying content structure has already been freed. It will additionally test
whether the ops pointer is NULL, and, if it is not, it will free it as well.
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Arguments:

• v – an N_Vector object

int N_VCopyOps(N_Vector w, N_Vector v)
This function copies the function pointers in the ops structure of w into the ops structure of v.

Arguments:

• w – the vector to copy operations from

• v – the vector to copy operations to

Return value: If successful, this function returns 0. If either of the inputs are NULL or the ops
structure of either input is NULL, then is function returns a non-zero value.

Each NVECTOR implementation included in SUNDIALS has a unique identifier specified in enumeration
and shown in the table below. It is recommended that a user supplied NVECTOR implementation use the
SUNDIALS_NVEC_CUSTOM identifier.

10.1.3.1 Support for complex-valued vectors

While SUNDIALS itself is written under an assumption of real-valued data, it does provide limited support for
complex-valued problems. However, since none of the built-in NVECTOR modules supports complex-valued data,
users must provide a custom NVECTOR implementation for this task. Many of the NVECTOR routines described
in the subsections Description of the NVECTOR operations through Description of the NVECTOR local reduction
operations above naturally extend to complex-valued vectors; however, some do not. To this end, we provide the fol-
lowing guidance:

• N_VMin() and N_VMinLocal())() should return the minimum of all real components of the vector, i.e.,
𝑚 = min𝑖 real(𝑥𝑖).

• N_VConst() (and similarly N_VConstVectorArray()) should set the real components of the vector to
the input constant, and set all imaginary components to zero, i.e., 𝑧𝑖 = 𝑐 + 0𝑗, 𝑖 = 0, . . . , 𝑛− 1.

• N_VAddConst() should only update the real components of the vector with the input constant, leaving all
imaginary components unchanged.

• N_VWrmsNorm(), N_VWrmsNormMask(), N_VWSqrSumLocal() and N_VWSqrSumMaskLocal()
should assume that all entries of the weight vector w and the mask vector id are real-valued.

• N_VDotProd() should mathematically return a complex number for complex-valued vectors; as this is not
possible with SUNDIALS’ current realtype, this routine should be set to NULL in the custom NVECTOR
implementation.

• N_VCompare(), N_VConstrMask(), N_VMinQuotient(), N_VConstrMaskLocal() and
N_VMinQuotientLocal() are ill-defined due to the lack of a clear ordering in the complex plane. These
routines should be set to NULL in the custom NVECTOR implementation.

While many SUNDIALS solver modules may be utilized on complex-valued data, others cannot. Specifically, al-
though both SUNNonlinearSolver_Newton and SUNNonlinearSolver_FixedPoint may be used with any of the IVP
solvers (CVODE(S), IDA(S) and ARKode) for complex-valued problems, the Anderson-acceleration feature SUN-
NonlinearSolver_FixedPoint cannot be used due to its reliance on N_VDotProd(). By this same logic, the Ander-
son acceleration feature within KINSOL also will not work with complex-valued vectors.

Similarly, although each package’s linear solver interface (e.g., ARKLS) may be used on complex-valued problems,
none of the built-in SUNMatrix or SUNLinearSolver modules work. Hence a complex-valued user should provide a
custom SUNLinearSolver (and optionally a custom SUNMatrix) implementation for solving linear systems, and then
attach this module as normal to the package’s linear solver interface.

10.1. Description of the NVECTOR Modules 313



User Documentation for ARKode, v4.7.0

Finally, constraint-handling features of each package cannot be used for complex-valued data, due to the
issue of ordering in the complex plane discussed above with N_VCompare(), N_VConstrMask(),
N_VMinQuotient(), N_VConstrMaskLocal() and N_VMinQuotientLocal().

We provide a simple example of a complex-valued example problem, including a custom complex-
valued Fortran 2003 NVECTOR module, in the files examples/arkode/F2003_custom/
ark_analytic_complex_f2003.f90, examples/arkode/F2003_custom/
fnvector_complex_mod.f90, and examples/arkode/F2003_custom/
test_fnvector_complex_mod.f90.

10.2 Description of the NVECTOR operations

The standard vector operations defined by the generic N_Vector module are defined as follows. For each of these
operations, we give the name, usage of the function, and a description of its mathematical operations below.

N_Vector_ID N_VGetVectorID(N_Vector w)
Returns the vector type identifier for the vector w. It is used to determine the vector implementation type (e.g.
serial, parallel, . . . ) from the abstract N_Vector interface. Returned values are given in the table, Vector
Identifications associated with vector kernels supplied with SUNDIALS

Usage:

id = N_VGetVectorID(w);

N_Vector N_VClone(N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not copy the
vector, but rather allocates storage for the new vector.

Usage:

v = N_VClone(w);

N_Vector N_VCloneEmpty(N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not allocate
storage for the new vector’s data.

Usage:

v = N VCloneEmpty(w);

void N_VDestroy(N_Vector v)
Destroys the N_Vector v and frees memory allocated for its internal data.

Usage:

N_VDestroy(v);

void N_VSpace(N_Vector v, sunindextype* lrw, sunindextype* liw)
Returns storage requirements for the N_Vector v: lrw contains the number of realtype words and liw
contains the number of integer words. This function is advisory only, for use in determining a user’s total
space requirements; it could be a dummy function in a user-supplied NVECTOR module if that information
is not of interest.

Usage:

N_VSpace(nvSpec, &lrw, &liw);
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realtype* N_VGetArrayPointer(N_Vector v)
Returns a pointer to a realtype array from the N_Vector v. Note that this assumes that the internal data in
the N_Vector is a contiguous array of realtype and is accesible from the CPU.

This routine is only used in the solver-specific interfaces to the dense and banded (serial) linear solvers, and in
the interfaces to the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided with
SUNDIALS.

Usage:

vdata = N_VGetArrayPointer(v);

realtype* N_VGetDeviceArrayPointer(N_Vector v)
Returns a device pointer to a realtype array from the N_Vector v. Note that this assumes that the internal
data in N_Vector is a contiguous array of realtype and is accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.

Usage:

vdata = N_VGetArrayPointer(v);

void N_VSetArrayPointer(realtype* vdata, N_Vector v)
Replaces the data array pointer in an N_Vector with a given array of realtype. Note that this assumes
that the internal data in the N_Vector is a contiguous array of realtype. This routine is only used in the
interfaces to the dense (serial) linear solver, hence need not exist in a user-supplied NVECTOR module.

Usage:

N_VSetArrayPointer(vdata,v);

void* N_VGetCommunicator(N_Vector v)
Returns a pointer to the MPI_Comm object associated with the vector (if applicable). For MPI-unaware vector
implementations, this should return NULL.

Usage:

commptr = N_VGetCommunicator(v);

sunindextype N_VGetLength(N_Vector v)
Returns the global length (number of ‘active’ entries) in the NVECTOR v. This value should be cumulative
across all processes if the vector is used in a parallel environment. If v contains additional storage, e.g., for
parallel communication, those entries should not be included.

Usage:

global_length = N_VGetLength(v);

void N_VLinearSum(realtype a, N_Vector x, realtype b, N_Vector y, N_Vector z)
Performs the operation z = ax + by, where a and b are realtype scalars and x and y are of type N_Vector:

𝑧𝑖 = 𝑎𝑥𝑖 + 𝑏𝑦𝑖, 𝑖 = 0, . . . , 𝑛− 1.

The output vector z can be the same as either of the input vectors (x or y).

Usage:

N_VLinearSum(a, x, b, y, z);
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void N_VConst(realtype c, N_Vector z)
Sets all components of the N_Vector z to realtype c:

𝑧𝑖 = 𝑐, 𝑖 = 0, . . . , 𝑛− 1.

Usage:

N_VConst(c, z);

void N_VProd(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:

𝑧𝑖 = 𝑥𝑖𝑦𝑖, 𝑖 = 0, . . . , 𝑛− 1.

Usage:

N_VProd(x, y, z);

void N_VDiv(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:

𝑧𝑖 =
𝑥𝑖

𝑦𝑖
, 𝑖 = 0, . . . , 𝑛− 1.

The 𝑦𝑖 may not be tested for 0 values. It should only be called with a y that is guaranteed to have all nonzero
components.

Usage:

N_VDiv(x, y, z);

void N_VScale(realtype c, N_Vector x, N_Vector z)
Scales the N_Vector x by the realtype scalar c and returns the result in z:

𝑧𝑖 = 𝑐𝑥𝑖, 𝑖 = 0, . . . , 𝑛− 1.

Usage:

N_VScale(c, x, z);

void N_VAbs(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the absolute values of the components of the N_Vector x:

𝑧𝑖 = |𝑥𝑖|, 𝑖 = 0, . . . , 𝑛− 1.

Usage:

N_VAbs(x, z);

void N_VInv(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x:

𝑧𝑖 = 1.0/𝑥𝑖, 𝑖 = 0, . . . , 𝑛− 1.

This routine may not check for division by 0. It should be called only with an x which is guaranteed to have all
nonzero components.

Usage:
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N_VInv(x, z);

void N_VAddConst(N_Vector x, realtype b, N_Vector z)
Adds the realtype scalar b to all components of x and returns the result in the N_Vector z:

𝑧𝑖 = 𝑥𝑖 + 𝑏, 𝑖 = 0, . . . , 𝑛− 1.

Usage:

N_VAddConst(x, b, z);

realtype N_VDotProd(N_Vector x, N_Vector z)
Returns the value of the dot-product of the N_Vectors x and y:

𝑑 =

𝑛−1∑︁
𝑖=0

𝑥𝑖𝑦𝑖.

Usage:

d = N_VDotProd(x, y);

realtype N_VMaxNorm(N_Vector x)
Returns the value of the 𝑙∞ norm of the N_Vector x:

𝑚 = max
0≤𝑖≤𝑛−1

|𝑥𝑖|.

Usage:

m = N_VMaxNorm(x);

realtype N_VWrmsNorm(N_Vector x, N_Vector w)
Returns the weighted root-mean-square norm of the N_Vector x with (positive) realtype weight vector
w:

𝑚 =

⎯⎸⎸⎷(︃𝑛−1∑︁
𝑖=0

(𝑥𝑖𝑤𝑖)2

)︃
/𝑛

Usage:

m = N_VWrmsNorm(x, w);

realtype N_VWrmsNormMask(N_Vector x, N_Vector w, N_Vector id)
Returns the weighted root mean square norm of the N_Vector x with realtype weight vector w built us-
ing only the elements of x corresponding to positive elements of the N_Vector id:

𝑚 =

⎯⎸⎸⎷(︃𝑛−1∑︁
𝑖=0

(𝑥𝑖𝑤𝑖𝐻(𝑖𝑑𝑖))2

)︃
/𝑛,

where 𝐻(𝛼) =

{︃
1 𝛼 > 0

0 𝛼 ≤ 0
.

Usage:
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m = N_VWrmsNormMask(x, w, id);

realtype N_VMin(N_Vector x)
Returns the smallest element of the N_Vector x:

𝑚 = min
0≤𝑖≤𝑛−1

𝑥𝑖.

Usage:

m = N_VMin(x);

realtype N_VWl2Norm(N_Vector x, N_Vector w)
Returns the weighted Euclidean 𝑙2 norm of the N_Vector x with realtype weight vector w:

𝑚 =

⎯⎸⎸⎷𝑛−1∑︁
𝑖=0

(𝑥𝑖𝑤𝑖)
2
.

Usage:

m = N_VWL2Norm(x, w);

realtype N_VL1Norm(N_Vector x)
Returns the 𝑙1 norm of the N_Vector x:

𝑚 =

𝑛−1∑︁
𝑖=0

|𝑥𝑖|.

Usage:

m = N_VL1Norm(x);

void N_VCompare(realtype c, N_Vector x, N_Vector z)
Compares the components of the N_Vector x to the realtype scalar c and returns an N_Vector z such
that for all 0 ≤ 𝑖 ≤ 𝑛− 1,

𝑧𝑖 =

{︃
1.0 if |𝑥𝑖| ≥ 𝑐,

0.0 otherwise
.

Usage:

N_VCompare(c, x, z);

booleantype N_VInvTest(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x, with prior
testing for zero values:

𝑧𝑖 = 1.0/𝑥𝑖, 𝑖 = 0, . . . , 𝑛− 1.

This routine returns a boolean assigned to SUNTRUE if all components of x are nonzero (successful inversion)
and returns SUNFALSE otherwise.

Usage:

t = N_VInvTest(x, z);
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booleantype N_VConstrMask(N_Vector c, N_Vector x, N_Vector m)
Performs the following constraint tests based on the values in 𝑐𝑖:

𝑥𝑖 > 0 if 𝑐𝑖 = 2,

𝑥𝑖 ≥ 0 if 𝑐𝑖 = 1,

𝑥𝑖 < 0 if 𝑐𝑖 = −2,

𝑥𝑖 ≤ 0 if 𝑐𝑖 = −1.

There is no constraint on 𝑥𝑖 if 𝑐𝑖 = 0. This routine returns a boolean assigned to SUNFALSE if any element
failed the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m, with elements
equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine is used only for con-
straint checking.

Usage:

t = N_VConstrMask(c, x, m);

realtype N_VMinQuotient(N_Vector num, N_Vector denom)
This routine returns the minimum of the quotients obtained by termwise dividing the elements of n by the ele-
ments in d:

min
𝑖=0,...,𝑛−1

num𝑖

denom𝑖
.

A zero element in denom will be skipped. If no such quotients are found, then the large value BIG_REAL (de-
fined in the header file sundials_types.h) is returned.

Usage:

minq = N_VMinQuotient(num, denom);

10.2.1 Description of the NVECTOR fused operations

The following fused vector operations are optional. These operations are intended to increase data reuse, reduce
parallel communication on distributed memory systems, and lower the number of kernel launches on systems with
accelerators. If a particular NVECTOR implementation defines one of the fused vector operations as NULL, the
NVECTOR interface will call one of the above standard vector operations as necessary. As above, for each opera-
tion, we give the name, usage of the function, and a description of its mathematical operations below.

int N_VLinearCombination(int nv, realtype* c, N_Vector* X, N_Vector z)
This routine computes the linear combination of nv vectors with 𝑛 elements:

𝑧𝑖 =

𝑛𝑣−1∑︁
𝑗=0

𝑐𝑗𝑥𝑗,𝑖, 𝑖 = 0, . . . , 𝑛− 1,

where 𝑐 is an array of 𝑛𝑣 scalars, 𝑥𝑗 is a vector in the vector array X, and z is the output vector. If the output
vector z is one of the vectors in X, then it must be the first vector in the vector array. The operation returns 0
for success and a non-zero value otherwise.

Usage:

ier = N_VLinearCombination(nv, c, X, z);

int N_VScaleAddMulti(int nv, realtype* c, N_Vector x, N_Vector* Y, N_Vector* Z)
This routine scales and adds one vector to nv vectors with 𝑛 elements:

𝑧𝑗,𝑖 = 𝑐𝑗𝑥𝑖 + 𝑦𝑗,𝑖, 𝑗 = 0, . . . , 𝑛𝑣 − 1 𝑖 = 0, . . . , 𝑛− 1,
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where c is an array of scalars, x is a vector, 𝑦𝑗 is a vector in the vector array Y, and 𝑧𝑗 is an output vector in the
vector array Z. The operation returns 0 for success and a non-zero value otherwise.

Usage:

ier = N_VScaleAddMulti(nv, c, x, Y, Z);

int N_VDotProdMulti(int nv, N_Vector x, N_Vector* Y, realtype* d)
This routine computes the dot product of a vector with nv vectors having 𝑛 elements:

𝑑𝑗 =

𝑛−1∑︁
𝑖=0

𝑥𝑖𝑦𝑗,𝑖, 𝑗 = 0, . . . , 𝑛𝑣 − 1,

where d is an array of scalars containing the computed dot products, x is a vector, and 𝑦𝑗 is a vector the vector
array Y. The operation returns 0 for success and a non-zero value otherwise.

Usage:

ier = N_VDotProdMulti(nv, x, Y, d);

10.2.2 Description of the NVECTOR vector array operations

The following vector array operations are also optional. As with the fused vector operations, these are intended to
increase data reuse, reduce parallel communication on distributed memory systems, and lower the number of kernel
launches on systems with accelerators. If a particular NVECTOR implementation defines one of the fused or vector
array operations as NULL, the NVECTOR interface will call one of the above standard vector operations as neces-
sary. As above, for each operation, we give the name, usage of the function, and a description of its mathematical
operations below.

int N_VLinearSumVectorArray(int nv, realtype a, N_Vector X, realtype b, N_Vector* Y, N_Vector* Z)
This routine computes the linear sum of two vector arrays of nv vectors with 𝑛 elements:

𝑧𝑗,𝑖 = 𝑎𝑥𝑗,𝑖 + 𝑏𝑦𝑗,𝑖, 𝑖 = 0, . . . , 𝑛− 1 𝑗 = 0, . . . , 𝑛𝑣 − 1,

where a and b are scalars, 𝑥𝑗 and 𝑦𝑗 are vectors in the vector arrays X and Y respectively, and 𝑧𝑗 is a vector in
the output vector array Z. The operation returns 0 for success and a non-zero value otherwise.

Usage:

ier = N_VLinearSumVectorArray(nv, a, X, b, Y, Z);

int N_VScaleVectorArray(int nv, realtype* c, N_Vector* X, N_Vector* Z)
This routine scales each element in a vector of 𝑛 elements in a vector array of nv vectors by a potentially dif-
ferent constant:

𝑧𝑗,𝑖 = 𝑐𝑗𝑥𝑗,𝑖, 𝑖 = 0, . . . , 𝑛− 1 𝑗 = 0, . . . , 𝑛𝑣 − 1,

where c is an array of scalars, 𝑥𝑗 is a vector in the vector array X, and 𝑧𝑗 is a vector in the output vector array
Z. The operation returns 0 for success and a non-zero value otherwise.

Usage:

ier = N_VScaleVectorArray(nv, c, X, Z);

int N_VConstVectorArray(int nv, realtype c, N_Vector* Z)
This routine sets each element in a vector of 𝑛 elements in a vector array of nv vectors to the same value:

𝑧𝑗,𝑖 = 𝑐, 𝑖 = 0, . . . , 𝑛− 1 𝑗 = 0, . . . , 𝑛𝑣 − 1,
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where c is a scalar and 𝑧𝑗 is a vector in the vector array Z. The operation returns 0 for success and a non-zero
value otherwise.

Usage:

ier = N_VConstVectorArray(nv, c, Z);

int N_VWrmsNormVectorArray(int nv, N_Vector* X, N_Vector* W, realtype* m)
This routine computes the weighted root mean square norm of each vector in a vector array:

𝑚𝑗 =

(︃
1

𝑛

𝑛−1∑︁
𝑖=0

(𝑥𝑗,𝑖𝑤𝑗,𝑖)
2

)︃1/2

, 𝑗 = 0, . . . , 𝑛𝑣 − 1,

where 𝑥𝑗 is a vector in the vector array X, 𝑤𝑗 is a weight vector in the vector array W, and m is the output array
of scalars containing the computed norms. The operation returns 0 for success and a non-zero value otherwise.

Usage:

ier = N_VWrmsNormVectorArray(nv, X, W, m);

int N_VWrmsNormMaskVectorArray(int nv, N_Vector* X, N_Vector* W, N_Vector id, realtype* m)
This routine computes the masked weighted root mean square norm of each vector in a vector array:

𝑚𝑗 =

(︃
1

𝑛

𝑛−1∑︁
𝑖=0

(𝑥𝑗,𝑖𝑤𝑗,𝑖𝐻(𝑖𝑑𝑖))
2

)︃1/2

, 𝑗 = 0, . . . , 𝑛𝑣 − 1,

where 𝐻(𝑖𝑑𝑖) = 1 for 𝑖𝑑𝑖 > 0 and is zero otherwise, 𝑥𝑗 is a vector in the vector array X, 𝑤𝑗 is a weight vec-
tor in the vector array W, id is the mask vector, and m is the output array of scalars containing the computed
norms. The operation returns 0 for success and a non-zero value otherwise.

Usage:

ier = N_VWrmsNormMaskVectorArray(nv, X, W, id, m);

int N_VScaleAddMultiVectorArray(int nv, int nsum, realtype* c, N_Vector* X, N_Vector** YY,
N_Vector** ZZ)

This routine scales and adds a vector array of nv vectors to nsum other vector arrays:

𝑧𝑘,𝑗,𝑖 = 𝑐𝑘𝑥𝑗,𝑖 + 𝑦𝑘,𝑗,𝑖, 𝑖 = 0, . . . , 𝑛− 1 𝑗 = 0, . . . , 𝑛𝑣 − 1, 𝑘 = 0, . . . , 𝑛𝑠𝑢𝑚− 1

where c is an array of scalars, 𝑥𝑗 is a vector in the vector array X, 𝑦𝑘,𝑗 is a vector in the array of vector arrays
YY, and 𝑧𝑘,𝑗 is an output vector in the array of vector arrays ZZ. The operation returns 0 for success and a non-
zero value otherwise.

Usage:

ier = N_VScaleAddMultiVectorArray(nv, nsum, c, x, YY, ZZ);

int N_VLinearCombinationVectorArray(int nv, int nsum, realtype* c, N_Vector** XX,
N_Vector* Z)

This routine computes the linear combination of nsum vector arrays containing nv vectors:

𝑧𝑗,𝑖 =

𝑛𝑠𝑢𝑚−1∑︁
𝑘=0

𝑐𝑘𝑥𝑘,𝑗,𝑖, 𝑖 = 0, . . . , 𝑛− 1 𝑗 = 0, . . . , 𝑛𝑣 − 1,

where c is an array of scalars, 𝑥𝑘,𝑗 is a vector in array of vector arrays XX, and 𝑧𝑗,𝑖 is an output vector in the
vector array Z. If the output vector array is one of the vector arrays in XX, it must be the first vector array in
XX. The operation returns 0 for success and a non-zero value otherwise.

Usage:
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ier = N_VLinearCombinationVectorArray(nv, nsum, c, XX, Z);

10.2.3 Description of the NVECTOR local reduction operations

The following local reduction operations are also optional. As with the fused and vector array operations, these are
intended to reduce parallel communication on distributed memory systems. If a particular NVECTOR implementa-
tion defines one of the local reduction operations as NULL, the NVECTOR interface will call one of the above stan-
dard vector operations as necessary. As above, for each operation, we give the name, usage of the function, and a
description of its mathematical operations below.

realtype N_VDotProdLocal(N_Vector x, N_Vector y)
This routine computes the MPI task-local portion of the ordinary dot product of x and y:

𝑑 =

𝑛𝑙𝑜𝑐𝑎𝑙−1∑︁
𝑖=0

𝑥𝑖𝑦𝑖,

where 𝑛𝑙𝑜𝑐𝑎𝑙 corresponds to the number of components in the vector on this MPI task (or 𝑛𝑙𝑜𝑐𝑎𝑙 = 𝑛 for MPI-
unaware applications).

Usage:

d = N_VDotProdLocal(x, y);

realtype N_VMaxNormLocal(N_Vector x)
This routine computes the MPI task-local portion of the maximum norm of the NVECTOR x:

𝑚 = max
0≤𝑖<𝑛𝑙𝑜𝑐𝑎𝑙

|𝑥𝑖|,

where 𝑛𝑙𝑜𝑐𝑎𝑙 corresponds to the number of components in the vector on this MPI task (or 𝑛𝑙𝑜𝑐𝑎𝑙 = 𝑛 for MPI-
unaware applications).

Usage:

m = N_VMaxNormLocal(x);

realtype N_VMinLocal(N_Vector x)
This routine computes the smallest element of the MPI task-local portion of the NVECTOR x:

𝑚 = min
0≤𝑖<𝑛𝑙𝑜𝑐𝑎𝑙

𝑥𝑖,

where 𝑛𝑙𝑜𝑐𝑎𝑙 corresponds to the number of components in the vector on this MPI task (or 𝑛𝑙𝑜𝑐𝑎𝑙 = 𝑛 for MPI-
unaware applications).

Usage:

m = N_VMinLocal(x);

realtype N_VL1NormLocal(N_Vector x)
This routine computes the MPI task-local portion of the 𝑙1 norm of the N_Vector x:

𝑛 =

𝑛𝑙𝑜𝑐𝑎𝑙−1∑︁
𝑖=0

|𝑥𝑖|,

where 𝑛𝑙𝑜𝑐𝑎𝑙 corresponds to the number of components in the vector on this MPI task (or 𝑛𝑙𝑜𝑐𝑎𝑙 = 𝑛 for MPI-
unaware applications).

Usage:
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n = N_VL1NormLocal(x);

realtype N_VWSqrSumLocal(N_Vector x, N_Vector w)
This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with
weight vector w:

𝑠 =

𝑛𝑙𝑜𝑐𝑎𝑙−1∑︁
𝑖=0

(𝑥𝑖𝑤𝑖)
2,

where 𝑛𝑙𝑜𝑐𝑎𝑙 corresponds to the number of components in the vector on this MPI task (or 𝑛𝑙𝑜𝑐𝑎𝑙 = 𝑛 for MPI-
unaware applications).

Usage:

s = N_VWSqrSumLocal(x, w);

realtype N_VWSqrSumMaskLocal(N_Vector x, N_Vector w, N_Vector id)
This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with
weight vector w built using only the elements of x corresponding to positive elements of the NVECTOR id:

𝑚 =

𝑛𝑙𝑜𝑐𝑎𝑙−1∑︁
𝑖=0

(𝑥𝑖𝑤𝑖𝐻(𝑖𝑑𝑖))
2,

where

𝐻(𝛼) =

{︃
1 𝛼 > 0

0 𝛼 ≤ 0

and 𝑛𝑙𝑜𝑐𝑎𝑙 corresponds to the number of components in the vector on this MPI task (or 𝑛𝑙𝑜𝑐𝑎𝑙 = 𝑛 for MPI-
unaware applications).

Usage:

s = N_VWSqrSumMaskLocal(x, w, id);

booleantype N_VInvTestLocal(N_Vector x)
This routine sets the MPI task-local components of the NVECTOR z to be the inverses of the components of
the NVECTOR x, with prior testing for zero values:

𝑧𝑖 = 1.0/𝑥𝑖, 𝑖 = 0, . . . , 𝑛𝑙𝑜𝑐𝑎𝑙 − 1

where 𝑛𝑙𝑜𝑐𝑎𝑙 corresponds to the number of components in the vector on this MPI task (or 𝑛𝑙𝑜𝑐𝑎𝑙 = 𝑛 for MPI-
unaware applications). This routine returns a boolean assigned to SUNTRUE if all task-local components of x
are nonzero (successful inversion) and returns SUNFALSE otherwise.

Usage:

t = N_VInvTestLocal(x);

booleantype N_VConstrMaskLocal(N_Vector c, N_Vector x, N_Vector m)
This routine performs the following constraint tests: 𝑥𝑖 > 0 if 𝑐𝑖 = 2, 𝑥𝑖 ≥ 0 if 𝑐𝑖 = 1, 𝑥𝑖 ≤ 0 if 𝑐𝑖 = −1,
𝑥𝑖 < 0 if 𝑐𝑖 = −2, and 𝑥𝑖 = anything if 𝑐𝑖 = 0, for all MPI task-local components of the vectors. This rou-
tine returns a boolean assigned to SUNFALSE if any task-local element failed the constraint test and assigned
to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0 where the constraint test
failed, and 0.0 where the test passed. This routine is used only for constraint checking.

Usage:
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t = N_VConstrMaskLocal(c, x, m);

realtype N_VMinQuotientLocal(N_Vector num, N_Vector denom)
This routine returns the minimum of the quotients obtained by term-wise dividing 𝑛𝑢𝑚𝑖 by 𝑑𝑒𝑛𝑜𝑚𝑖, for all
MPI task-local components of the vectors. A zero element in denom will be skipped. If no such quotients are
found, then the large value BIG_REAL (defined in the header file sundials_types.h) is returned.

Usage:

minq = N_VMinQuotientLocal(num, denom);

10.2.4 Description of the NVECTOR exchange operations

The following vector exchange operations are also optional and are intended only for use when interfacing with the
XBraid library for parallel-in-time integration. In that setting these operations are required but are otherwise unused
by SUNDIALS packages and may be set to NULL. For each operation, we give the function signature, a description
of the expected behavior, and an example of the function usage.

int N_VBufSize(N_Vector x, sunindextype *size)
This routine returns the buffer size need to exchange in the data in the vector x between computational nodes.

Usage:

flag = N_VBufSize(x, &buf_size)

int N_VBufPack(N_Vector x, void *buf)
This routine fills the exchange buffer buf with the vector data in x.

Usage:

flag = N_VBufPack(x, &buf)

int N_VBufUnpack(N_Vector x, void *buf)
This routine unpacks the data in the exchange buffer buf into the vector x.

Usage:

flag = N_VBufUnpack(x, buf)

10.3 The NVECTOR_SERIAL Module

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR_SERIAL, defines
the content field of a N_Vector to be a structure containing the length of the vector, a pointer to the beginning of
a contiguous data array, and a boolean flag own_data which specifies the ownership of data.

struct _N_VectorContent_Serial {
sunindextype length;
booleantype own_data;
realtype *data;

};

The header file to be included when using this module is nvector_serial.h. The installed module library to
link to is libsundials_nvecserial.lib where .lib is typically .so for shared libraries and .a for static
libraries.
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10.3.1 NVECTOR_SERIAL accessor macros

The following five macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix _S in the
names denotes the serial version.

NV_CONTENT_S(v)
This macro gives access to the contents of the serial vector N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the serial N_Vector
content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )

NV_OWN_DATA_S(v)
Access the own_data component of the serial N_Vector v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

NV_DATA_S(v)
The assignment v_data = NV_DATA_S(v) sets v_data to be a pointer to the first component of the data
for the N_Vector v.

Similarly, the assignment NV_DATA_S(v) = v_data sets the component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

NV_LENGTH_S(v)
Access the length component of the serial N_Vector v.

The assignment v_len = NV_LENGTH_S(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_S(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

NV_Ith_S(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-
based C indexing.

The assignment r = NV_Ith_S(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to 𝑛− 1 for a vector of length 𝑛.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

10.3.2 NVECTOR_SERIAL functions

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in the sections De-
scription of the NVECTOR operations, Description of the NVECTOR fused operations, Description of the NVECTOR
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vector array operations, and Description of the NVECTOR local reduction operations. Their names are obtained
from those in those sections by appending the suffix _Serial (e.g. N_VDestroy_Serial). All the standard
vector operations listed in the section Description of the NVECTOR operations with the suffix _Serial appended
are callable via the Fortran 2003 interface by prepending an F (e.g. FN_VDestroy_Serial).

The module NVECTOR_SERIAL provides the following additional user-callable routines:

N_Vector N_VNew_Serial(sunindextype vec_length)
This function creates and allocates memory for a serial N_Vector. Its only argument is the vector length.

N_Vector N_VNewEmpty_Serial(sunindextype vec_length)
This function creates a new serial N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Serial(sunindextype vec_length, realtype* v_data)
This function creates and allocates memory for a serial vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

N_Vector* N_VCloneVectorArray_Serial(int count, N_Vector w)
This function creates (by cloning) an array of count serial vectors.

N_Vector* N_VCloneVectorArrayEmpty_Serial(int count, N_Vector w)
This function creates (by cloning) an array of count serial vectors, each with an empty (`NULL) data array.

void N_VDestroyVectorArray_Serial(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Serial() or with N_VCloneVectorArrayEmpty_Serial().

void N_VPrint_Serial(N_Vector v)
This function prints the content of a serial vector to stdout.

void N_VPrintFile_Serial(N_Vector v, FILE *outfile)
This function prints the content of a serial vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_SERIAL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Serial(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Serial() will have the default settings for the NVECTOR_SERIAL module.

int N_VEnableFusedOps_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the serial
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the se-
rial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the serial vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableDotProdMulti_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
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int N_VEnableScaleVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the serial
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the serial
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in
the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormMaskVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableScaleAddMultiVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the serial vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component
array via v_data = NV_DATA_S(v) and then access v_data[i] within the loop than it is to use
NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_Serial(), N_VMake_Serial(), and N_VCloneVectorArrayEmpty_Serial()
set the field own_data to SUNFALSE. The functions N_VDestroy_Serial() and
N_VDestroyVectorArray_Serial() will not attempt to free the pointer data for any N_Vector with
own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same length.

10.3.3 NVECTOR_SERIAL Fortran Interfaces

The NVECTOR_SERIAL module provides a Fortran 2003 module as well as Fortran 77 style interface functions for
use from Fortran applications.

10.3.3.1 FORTRAN 2003 interface module

The fnvector_serial_mod Fortran module defines interfaces to all NVECTOR_SERIAL C functions using the
intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Serial is interfaced as FN_VNew_Serial.

The Fortran 2003 NVECTOR_SERIAL interface module can be accessed with the use statement, i.e. use
fnvector_serial_mod, and linking to the library libsundials_fnvectorserial_mod.lib in addi-
tion to the C library. For details on where the library and module file fnvector_serial_mod.mod are installed
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see the section ARKode Installation Procedure. We note that the module is accessible from the Fortran 2003 SUNDI-
ALS integrators without separately linking to the libsundials_fnvectorserial_mod library.

10.3.3.2 FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the NVECTOR_SERIAL module also includes a Fortran-
callable function FNVINITS(code, NEQ, IER), to initialize this module. Here code is an input solver id (1
for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKode); NEQ is the problem size (declared so as to match C type
long int); and IER is an error return flag equal 0 for success and -1 for failure.

10.4 The NVECTOR_PARALLEL Module

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on
MPI. It defines the content field of a N_Vector to be a structure containing the global and local lengths of the vec-
tor, a pointer to the beginning of a contiguous local data array, an MPI communicator, an a boolean flag own_data
indicating ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
realtype *data;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_parallel.h. The installed module library
to link to is libsundials_nvecparallel.lib where .lib is typically .so for shared libraries and .a for
static libraries.

10.4.1 NVECTOR_PARALLEL accessor macros

The following seven macros are provided to access the content of a NVECTOR_PARALLEL vector. The suffix _P
in the names denotes the distributed memory parallel version.

NV_CONTENT_P(v)
This macro gives access to the contents of the parallel N_Vector v.

The assignment v_cont = NV_CONTENT_P(v) sets v_cont to be a pointer to the N_Vector content
structure of type struct N_VectorContent_Parallel.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )

NV_OWN_DATA_P(v)
Access the own_data component of the parallel N_Vector v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

NV_DATA_P(v)
The assignment v_data = NV_DATA_P(v) sets v_data to be a pointer to the first component of the lo-
cal_data for the N_Vector v.
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The assignment NV_DATA_P(v) = v_data sets the component array of v to be v_data by storing the
pointer v_data into data.

Implementation:

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

NV_LOCLENGTH_P(v)
The assignment v_llen = NV_LOCLENGTH_P(v) sets v_llen to be the length of the local part of v.

The call NV_LOCLENGTH_P(v) = llen_v sets the local_length of v to be llen_v.

Implementation:

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

NV_GLOBLENGTH_P(v)
The assignment v_glen = NV_GLOBLENGTH_P(v) sets v_glen to be the global_length of the vector v.

The call NV_GLOBLENGTH_P(v) = glen_v sets the global_length of v to be glen_v.

Implementation:

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

NV_COMM_P(v)
This macro provides access to the MPI communicator used by the parallel N_Vector v.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

NV_Ith_P(v, i)
This macro gives access to the individual components of the local_data array of an N_Vector.

The assignment r = NV_Ith_P(v,i) sets r to be the value of the i-th component of the local part of v.

The assignment NV_Ith_P(v,i) = r sets the value of the i-th component of the local part of v to be r.

Here i ranges from 0 to 𝑛− 1, where 𝑛 is the local_length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

10.4.2 NVECTOR_PARALLEL functions

The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in the sections
Description of the NVECTOR operations, Description of the NVECTOR fused operations, Description of the NVEC-
TOR vector array operations, and Description of the NVECTOR local reduction operations. Their names are ob-
tained from those in those sections by appending the suffix _Parallel (e.g. N_VDestroy_Parallel). The
module NVECTOR_PARALLEL provides the following additional user-callable routines:

N_Vector N_VNew_Parallel(MPI_Comm comm, sunindextype local_length, sunindex-
type global_length)

This function creates and allocates memory for a parallel vector having global length global_length, having
processor-local length local_length, and using the MPI communicator comm.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm, sunindextype local_length, sunindex-
type global_length)

This function creates a new parallel N_Vector with an empty (NULL) data array.
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N_Vector N_VMake_Parallel(MPI_Comm comm, sunindextype local_length, sunindex-
type global_length, realtype* v_data)

This function creates and allocates memory for a parallel vector with user-provided data array.

(This function does not allocate memory for v_data itself.)

N_Vector* N_VCloneVectorArray_Parallel(int count, N_Vector w)
This function creates (by cloning) an array of count parallel vectors.

N_Vector* N_VCloneVectorArrayEmpty_Parallel(int count, N_Vector w)
This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL) data array.

void N_VDestroyVectorArray_Parallel(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Parallel() or with N_VCloneVectorArrayEmpty_Parallel().

sunindextype N_VGetLocalLength_Parallel(N_Vector v)
This function returns the local vector length.

void N_VPrint_Parallel(N_Vector v)
This function prints the local content of a parallel vector to stdout.

void N_VPrintFile_Parallel(N_Vector v, FILE *outfile)
This function prints the local content of a parallel vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARALLEL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Parallel(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Parallel() will have the default settings for the NVECTOR_PARALLEL module.

int N_VEnableFusedOps_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the paral-
lel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the par-
allel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the parallel vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableDotProdMulti_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parallel
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parallel
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
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int N_VEnableWrmsNormVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in
the parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormMaskVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

int N_VEnableScaleAddMultiVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parallel vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector ar-
rays in the parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the local compo-
nent array via v_data = NV_DATA_P(v) and then access v_data[i] within the loop than it is to use
NV_Ith_P(v,i) within the loop.

• N_VNewEmpty_Parallel(), N_VMake_Parallel(), and
N_VCloneVectorArrayEmpty_Parallel() set the field own_data to SUNFALSE. The routines
N_VDestroy_Parallel() and N_VDestroyVectorArray_Parallel() will not attempt to
free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s
responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_PARALLEL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

10.4.3 NVECTOR_PARALLEL Fortran Interfaces

For solvers that include a Fortran interface module, the NVECTOR_PARALLEL module also includes a Fortran-
callable function FNVINITP(COMM, code, NLOCAL, NGLOBAL, IER), to initialize this NVEC-
TOR_PARALLEL module. Here COMM is the MPI communicator, code is an input solver id (1 for CVODE, 2 for
IDA, 3 for KINSOL, 4 for ARKode); NLOCAL and NGLOBAL are the local and global vector sizes, respectively (de-
clared so as to match C type long int); and IER is an error return flag equal 0 for success and -1 for failure.

Note: If the header file sundials_config.h defines SUNDIALS_MPI_COMM_F2C to be 1 (meaning the MPI
implementation used to build SUNDIALS includes the MPI_Comm_f2c function), then COMM can be any valid MPI
communicator. Otherwise, MPI_COMM_WORLD will be used, so just pass an integer value as a placeholder.

10.5 The NVECTOR_OPENMP Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of
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length at least 100, 000 before the overhead associated with creating and using the threads is made up by the paral-
lelism in the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the content
field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous
data array, a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on
the vector are threaded using OpenMP, the number of threads used is based on the supplied argument in the vector
constructor.

struct _N_VectorContent_OpenMP {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_openmp.h. The installed module li-
brary to link to is libsundials_nvecopenmp.lib where .lib is typically .so for shared libraries and
.a for static libraries. The Fortran module file to use when using the Fortran 2003 interface to this module is
fnvector_openmp_mod.mod.

10.5.1 NVECTOR_OPENMP accessor macros

The following six macros are provided to access the content of an NVECTOR_OPENMP vector. The suffix _OMP in
the names denotes the OpenMP version.

NV_CONTENT_OMP(v)
This macro gives access to the contents of the OpenMP vector N_Vector v.

The assignment v_cont = NV_CONTENT_OMP(v) sets v_cont to be a pointer to the OpenMP
N_Vector content structure.

Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP)(v->content) )

NV_OWN_DATA_OMP(v)
Access the own_data component of the OpenMP N_Vector v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )

NV_DATA_OMP(v)
The assignment v_data = NV_DATA_OMP(v) sets v_data to be a pointer to the first component of the
data for the N_Vector v.

Similarly, the assignment NV_DATA_OMP(v) = v_data sets the component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

NV_LENGTH_OMP(v)
Access the length component of the OpenMP N_Vector v.

The assignment v_len = NV_LENGTH_OMP(v) sets v_len to be the length of v. On the other hand, the
call NV_LENGTH_OMP(v) = len_v sets the length of v to be len_v.
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Implementation:

#define NV_LENGTH_OMP(v) ( NV_CONTENT_OMP(v)->length )

NV_NUM_THREADS_OMP(v)
Access the num_threads component of the OpenMP N_Vector v.

The assignment v_threads = NV_NUM_THREADS_OMP(v) sets v_threads to be the num_threads of
v. On the other hand, the call NV_NUM_THREADS_OMP(v) = num_threads_v sets the num_threads of
v to be num_threads_v.

Implementation:

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )

NV_Ith_OMP(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-
based C indexing.

The assignment r = NV_Ith_OMP(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to 𝑛− 1 for a vector of length 𝑛.

Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v)[i] )

10.5.2 NVECTOR_OPENMP functions

The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in the sections
Description of the NVECTOR operations, Description of the NVECTOR fused operations, Description of the NVEC-
TOR vector array operations, and Description of the NVECTOR local reduction operations. Their names are ob-
tained from those in those sections by appending the suffix _OpenMP (e.g. N_VDestroy_OpenMP). All the stan-
dard vector operations listed in the section Description of the NVECTOR operations with the suffix _OpenMP ap-
pended are callable via the Fortran 2003 interface by prepending an F’ (e.g. ‘‘FN_VDestroy_OpenMP‘).

The module NVECTOR_OPENMP provides the following additional user-callable routines:

N_Vector N_VNew_OpenMP(sunindextype vec_length, int num_threads)
This function creates and allocates memory for a OpenMP N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_OpenMP(sunindextype vec_length, int num_threads)
This function creates a new OpenMP N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMP(sunindextype vec_length, realtype* v_data, int num_threads)
This function creates and allocates memory for a OpenMP vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

N_Vector* N_VCloneVectorArray_OpenMP(int count, N_Vector w)
This function creates (by cloning) an array of count OpenMP vectors.

N_Vector* N_VCloneVectorArrayEmpty_OpenMP(int count, N_Vector w)
This function creates (by cloning) an array of count OpenMP vectors, each with an empty (`NULL) data array.

void N_VDestroyVectorArray_OpenMP(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_OpenMP() or with N_VCloneVectorArrayEmpty_OpenMP().
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void N_VPrint_OpenMP(N_Vector v)
This function prints the content of an OpenMP vector to stdout.

void N_VPrintFile_OpenMP(N_Vector v, FILE *outfile)
This function prints the content of an OpenMP vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenMP(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_OpenMP() will have the default settings for the NVECTOR_OPENMP module.

int N_VEnableFusedOps_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableDotProdMulti_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in
the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormMaskVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

int N_VEnableScaleAddMultiVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector ar-
rays in the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are
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NULL.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component
array via v_data = NV_DATA_OMP(v) and then access v_data[i] within the loop than it is to use
NV_Ith_OMP(v,i) within the loop.

• N_VNewEmpty_OpenMP(), N_VMake_OpenMP(), and N_VCloneVectorArrayEmpty_OpenMP()
set the field own_data to SUNFALSE. The functions N_VDestroy_OpenMP() and
N_VDestroyVectorArray_OpenMP() will not attempt to free the pointer data for any N_Vector with
own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

10.5.3 NVECTOR_OPENMP Fortran Interfaces

The NVECTOR_OPENMP module provides a Fortran 2003 module as well as Fortran 77 style interface functions
for use from Fortran applications.

10.5.3.1 FORTRAN 2003 interface module

The fnvector_openmp_mod Fortran module defines interfaces to all NVECTOR_OPENMP C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As
noted in the C function descriptions above, the interface functions are named after the corresponding C function, but
with a leading F. For example, the function N_VNew_OpenMP is interfaced as FN_VNew_OpenMP.

The Fortran 2003 NVECTOR_OPENMP interface module can be accessed with the use statement, i.e. use
fnvector_openmp_mod, and linking to the library libsundials_fnvectoropenmp_mod.lib in addi-
tion to the C library. For details on where the library and module file fnvector_openmp_mod.mod are installed
see the section ARKode Installation Procedure.

10.5.3.2 FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the NVECTOR_OPENMP module also includes a Fortran-
callable function FNVINITOMP(code, NEQ, NUMTHREADS, IER), to initialize this module. Here code is
an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKode); NEQ is the problem size (declared so
as to match C type long int); NUMTHREADS is the number of threads; and IER is an error return flag equal 0 for
success and -1 for failure.

10.6 The NVECTOR_PTHREADS Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of
length at least 100, 000 before the overhead associated with creating and using the threads is made up by the paral-
lelism in the vector calculations.

The Pthreads NVECTOR implementation provided with SUNDIALS, denoted NVECTOR_PTHREADS, defines
the content field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a
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contiguous data array, a boolean flag own_data which specifies the ownership of data, and the number of threads.
Operations on the vector are threaded using POSIX threads (Pthreads).

struct _N_VectorContent_Pthreads {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_pthreads.h. The installed module library
to link to is libsundials_nvecpthreads.lib where .lib is typically .so for shared libraries and .a for
static libraries.

10.6.1 NVECTOR_PTHREADS accessor macros

The following six macros are provided to access the content of an NVECTOR_PTHREADS vector. The suffix _PT
in the names denotes the Pthreads version.

NV_CONTENT_PT(v)
This macro gives access to the contents of the Pthreads vector N_Vector v.

The assignment v_cont = NV_CONTENT_PT(v) sets v_cont to be a pointer to the Pthreads N_Vector
content structure.

Implementation:

#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads)(v->content) )

NV_OWN_DATA_PT(v)
Access the own_data component of the Pthreads N_Vector v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )

NV_DATA_PT(v)
The assignment v_data = NV_DATA_PT(v) sets v_data to be a pointer to the first component of the
data for the N_Vector v.

Similarly, the assignment NV_DATA_PT(v) = v_data sets the component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

NV_LENGTH_PT(v)
Access the length component of the Pthreads N_Vector v.

The assignment v_len = NV_LENGTH_PT(v) sets v_len to be the length of v. On the other hand, the
call NV_LENGTH_PT(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

NV_NUM_THREADS_PT(v)
Access the num_threads component of the Pthreads N_Vector v.
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The assignment v_threads = NV_NUM_THREADS_PT(v) sets v_threads to be the num_threads of v.
On the other hand, the call NV_NUM_THREADS_PT(v) = num_threads_v sets the num_threads of v to
be num_threads_v.

Implementation:

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

NV_Ith_PT(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-
based C indexing.

The assignment r = NV_Ith_PT(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to 𝑛− 1 for a vector of length 𝑛.

Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )

10.6.2 NVECTOR_PTHREADS functions

The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed in the sec-
tions Description of the NVECTOR operations, Description of the NVECTOR fused operations, Description of the
NVECTOR vector array operations, and Description of the NVECTOR local reduction operations. Their names are
obtained from those in those sections by appending the suffix _Pthreads (e.g. N_VDestroy_Pthreads). All the
standard vector operations listed in the section Description of the NVECTOR operations are callable via the Fortran
2003 interface by prepending an F’ (e.g. ‘‘FN_VDestroy_Pthreads‘). The module NVECTOR_PTHREADS pro-
vides the following additional user-callable routines:

N_Vector N_VNew_Pthreads(sunindextype vec_length, int num_threads)
This function creates and allocates memory for a Pthreads N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_Pthreads(sunindextype vec_length, int num_threads)
This function creates a new Pthreads N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Pthreads(sunindextype vec_length, realtype* v_data, int num_threads)
This function creates and allocates memory for a Pthreads vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

N_Vector* N_VCloneVectorArray_Pthreads(int count, N_Vector w)
This function creates (by cloning) an array of count Pthreads vectors.

N_Vector* N_VCloneVectorArrayEmpty_Pthreads(int count, N_Vector w)
This function creates (by cloning) an array of count Pthreads vectors, each with an empty (`NULL) data array.

void N_VDestroyVectorArray_Pthreads(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Pthreads() or with N_VCloneVectorArrayEmpty_Pthreads().

void N_VPrint_Pthreads(N_Vector v)
This function prints the content of a Pthreads vector to stdout.

void N_VPrintFile_Pthreads(N_Vector v, FILE *outfile)
This function prints the content of a Pthreads vector to outfile.
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By default all fused and vector array operations are disabled in the NVECTOR_PTHREADS module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Pthreads(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Pthreads() will have the default settings for the NVECTOR_PTHREADS module.

int N_VEnableFusedOps_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the
Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableDotProdMulti_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the
Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the
Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in
the Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormMaskVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

int N_VEnableScaleAddMultiVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector ar-
rays in the Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component
array via v_data = NV_DATA_PT(v) and then access v_data[i] within the loop than it is to use
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NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_Pthreads(), N_VMake_Pthreads(), and
N_VCloneVectorArrayEmpty_Pthreads() set the field own_data to SUNFALSE. The func-
tions N_VDestroy_Pthreads() and N_VDestroyVectorArray_Pthreads() will not attempt
to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s
responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have more
than one N_Vector argument do not check for consistent internal representation of these vectors. It is the
user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same internal representations.

10.6.3 NVECTOR_PTHREADS Fortran Interfaces

The NVECTOR_PTHREADS module provides a Fortran 2003 module as well as Fortran 77 style interface functions
for use from Fortran applications.

10.6.3.1 FORTRAN 2003 interface module

The fnvector_pthreads_mod Fortran module defines interfaces to all NVECTOR_PTHREADS C functions
using the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C.
As noted in the C function descriptions above, the interface functions are named after the corresponding C function,
but with a leading F. For example, the function N_VNew_Pthreads is interfaced as FN_VNew_Pthreads.

The Fortran 2003 NVECTOR_PTHREADS interface module can be accessed with the use statement, i.e. use
fnvector_pthreads_mod, and linking to the library libsundials_fnvectorpthreads_mod.lib in
addition to the C library. For details on where the library and module file fnvector_pthreads_mod.mod are
installed see the section ARKode Installation Procedure.

10.6.3.2 FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the NVECTOR_PTHREADS module slso includes a Fortran-
callable function FNVINITPTS(code, NEQ, NUMTHREADS, IER), to initialize this module. Here code is
an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKode); NEQ is the problem size (declared so
as to match C type long int); NUMTHREADS is the number of threads; and IER is an error return flag equal 0 for
success and -1 for failure.

10.7 The NVECTOR_PARHYP Module

The NVECTOR_PARHYP implementation of the NVECTOR module provided with SUNDIALS is a wrapper
around HYPRE’s ParVector class. Most of the vector kernels simply call HYPRE vector operations. The implemen-
tation defines the content field of N_Vector to be a structure containing the global and local lengths of the vector, a
pointer to an object of type hypre_ParVector, an MPI communicator, and a boolean flag own_parvector indicat-
ing ownership of the HYPRE parallel vector object x.

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
booleantype own_parvector;
realtype *data;
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MPI_Comm comm;
hypre_ParVector *x;

};

The header file to be included when using this module is nvector_parhyp.h. The installed module library to
link to is libsundials_nvecparhyp.lib where .lib is typically .so for shared libraries and .a for static
libraries.

Unlike native SUNDIALS vector types, NVECTOR_PARHYP does not provide macros to access its member vari-
ables. Note that NVECTOR_PARHYP requires SUNDIALS to be built with MPI support.

10.7.1 NVECTOR_PARHYP functions

The NVECTOR_PARHYP module defines implementations of all vector operations listed in the sections De-
scription of the NVECTOR operations, Description of the NVECTOR fused operations, Description of the
NVECTOR vector array operations, and Description of the NVECTOR local reduction operations, except for
N_VSetArrayPointer and N_VGetArrayPointer, because accessing raw vector data is handled by low-
level HYPRE functions. As such, this vector is not available for use with SUNDIALS Fortran interfaces. When ac-
cess to raw vector data is needed, one should extract the HYPRE vector first, and then use HYPRE methods to ac-
cess the data. Usage examples of NVECTOR_PARHYP are provided in the cvAdvDiff_non_ph.c example pro-
grams for CVODE and the ark_diurnal_kry_ph.c example program for ARKode.

The names of parhyp methods are obtained from those in the sections Description of the NVECTOR operations, De-
scription of the NVECTOR fused operations, Description of the NVECTOR vector array operations, and Description
of the NVECTOR local reduction operations by appending the suffix _ParHyp (e.g. N_VDestroy_ParHyp). The
module NVECTOR_PARHYP provides the following additional user-callable routines:

N_Vector N_VNewEmpty_ParHyp(MPI_Comm comm, sunindextype local_length, sunindex-
type global_length)

This function creates a new parhyp N_Vector with the pointer to the HYPRE vector set to NULL.

N_Vector N_VMake_ParHyp(hypre_ParVector *x)
This function creates an N_Vector wrapper around an existing HYPRE parallel vector. It does not allocate
memory for x itself.

hypre_ParVector *N_VGetVector_ParHyp(N_Vector v)
This function returns a pointer to the underlying HYPRE vector.

N_Vector* N_VCloneVectorArray_ParHyp(int count, N_Vector w)
This function creates (by cloning) an array of count parhyp vectors.

N_Vector* N_VCloneVectorArrayEmpty_ParHyp(int count, N_Vector w)
This function creates (by cloning) an array of count parhyp vectors, each with an empty (`NULL) data array.

void N_VDestroyVectorArray_ParHyp(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_ParHyp() or with N_VCloneVectorArrayEmpty_ParHyp().

void N_VPrint_ParHyp(N_Vector v)
This function prints the local content of a parhyp vector to stdout.

void N_VPrintFile_ParHyp(N_Vector v, FILE *outfile)
This function prints the local content of a parhyp vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARHYP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VMake_ParHyp(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
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that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VMake_ParHyp() will have the default settings for the NVECTOR_PARHYP module.

int N_VEnableFusedOps_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parhyp
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the parhyp vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableDotProdMulti_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parhyp
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parhyp
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in
the parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormMaskVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableScaleAddMultiVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parhyp vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector ar-
rays in the parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

Notes

• When there is a need to access components of an N_Vector_ParHyp v, it is recommended to extract the
HYPRE vector via x_vec = N_VGetVector_ParHyp(v) and then access components using appropri-
ate HYPRE functions.

• N_VNewEmpty_ParHyp(), N_VMake_ParHyp(), and N_VCloneVectorArrayEmpty_ParHyp()
set the field own_parvector to SUNFALSE. The functions N_VDestroy_ParHyp() and
N_VDestroyVectorArray_ParHyp() will not attempt to delete an underlying HYPRE vector for any
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N_Vector with own_parvector set to SUNFALSE. In such a case, it is the user’s responsibility to delete the
underlying vector.

• To maximize efficiency, vector operations in the NVECTOR_PARHYP implementation that have more than
one N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

10.8 The NVECTOR_PETSC Module

The NVECTOR_PETSC module is an NVECTOR wrapper around the PETSc vector. It defines the content field of a
N_Vector to be a structure containing the global and local lengths of the vector, a pointer to the PETSc vector, an
MPI communicator, and a boolean flag own_data indicating ownership of the wrapped PETSc vector.

struct _N_VectorContent_Petsc {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
Vec *pvec;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_petsc.h. The installed module library to
link to is libsundials_nvecpetsc.lib where .lib is typically .so for shared libraries and .a for static
libraries.

Unlike native SUNDIALS vector types, NVECTOR_PETSC does not provide macros to access its member vari-
ables. Note that NVECTOR_PETSC requires SUNDIALS to be built with MPI support.

10.8.1 NVECTOR_PETSC functions

The NVECTOR_PETSC module defines implementations of all vector operations listed in the sections De-
scription of the NVECTOR operations, Description of the NVECTOR fused operations, Description of the
NVECTOR vector array operations, and Description of the NVECTOR local reduction operations, except for
N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used with SUNDIALS
Fortran interfaces. When access to raw vector data is needed, it is recommended to extract the PETSc vector first,
and then use PETSc methods to access the data. Usage examples of NVECTOR_PETSC is provided in example pro-
grams for IDA.

The names of vector operations are obtained from those in the sections Description of the NVECTOR operations, De-
scription of the NVECTOR fused operations, Description of the NVECTOR vector array operations, and Description
of the NVECTOR local reduction operations by appending the suffice _Petsc (e.g. N_VDestroy_Petsc). The
module NVECTOR_PETSC provides the following additional user-callable routines:

N_Vector N_VNewEmpty_Petsc(MPI_Comm comm, sunindextype local_length, sunindex-
type global_length)

This function creates a new PETSC N_Vector with the pointer to the wrapped PETSc vector set to NULL. It
is used by the N_VMake_Petsc and N_VClone_Petsc implementations. It should be used only with great
caution.

N_Vector N_VMake_Petsc(Vec* pvec)
This function creates and allocates memory for an NVECTOR_PETSC wrapper with a user-provided PETSc
vector. It does not allocate memory for the vector pvec itself.

Vec *N_VGetVector_Petsc(N_Vector v)
This function returns a pointer to the underlying PETSc vector.
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N_Vector* N_VCloneVectorArray_Petsc(int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_PETSC vectors.

N_Vector* N_VCloneVectorArrayEmpty_Petsc(int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_PETSC vectors, each with pointers to PETSc
vectors set to NULL.

void N_VDestroyVectorArray_Petsc(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Petsc() or with N_VCloneVectorArrayEmpty_Petsc().

void N_VPrint_Petsc(N_Vector v)
This function prints the global content of a wrapped PETSc vector to stdout.

void N_VPrintFile_Petsc(N_Vector v, const char fname[])
This function prints the global content of a wrapped PETSc vector to fname.

By default all fused and vector array operations are disabled in the NVECTOR_PETSC module. The following ad-
ditional user-callable routines are provided to enable or disable fused and vector array operations for a specific vec-
tor. To ensure consistency across vectors it is recommended to first create a vector with N_VMake_Petsc(), en-
able/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VMake_Petsc() will have the default settings for the NVECTOR_PETSC module.

int N_VEnableFusedOps_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the PETSc
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the PETSc vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableDotProdMulti_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the PETSc
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the PETSc
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in
the PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormMaskVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
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arrays in the PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableScaleAddMultiVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the PETSc vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector ar-
rays in the PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

Notes

• When there is a need to access components of an N_Vector_Petsc v, it is recommeded to extract the
PETSc vector via

x_vec = N_VGetVector_Petsc(v);

and then access components using appropriate PETSc functions.

• The functions N_VNewEmpty_Petsc(), N_VMake_Petsc(), and
N_VCloneVectorArrayEmpty_Petsc() set the field own_data to SUNFALSE. The routines
N_VDestroy_Petsc() and N_VDestroyVectorArray_Petsc() will not attempt to free the pointer
pvec for any N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to
deallocate the pvec pointer.

• To maximize efficiency, vector operations in the NVECTOR_PETSC implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s re-
sponsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

10.9 The NVECTOR_CUDA Module

The NVECTOR_CUDA module is an NVECTOR implementation in the CUDA language. The module allows for
SUNDIALS vector kernels to run on NVIDIA GPU devices. It is intended for users who are already familiar with
CUDA and GPU programming. Building this vector module requires a CUDA compiler and, by extension, a C++
compiler. The vector content layout is as follows:

struct _N_VectorContent_Cuda
{

sunindextype length;
booleantype own_exec;
booleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNCudaExecPolicy* stream_exec_policy;
SUNCudaExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */

};

typedef struct _N_VectorContent_Cuda *N_VectorContent_Cuda;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in change of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
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SUNMemoryHelper for performing memory operations, and a private data structure which holds additonal mem-
bers that should not be accessed directly.

When instantiated with N_VNew_Cuda(), the underlying data will be allocated on both the host and the device.
Alternatively, a user can provide host and device data arrays by using the N_VMake_Cuda() constructor. To use
CUDA managed memory, the constructors N_VNewManaged_Cuda() and N_VMakeManaged_Cuda() are
provided. Additionally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the
constructor N_VNewWithMemHelp_Cuda(). Details on each of these constructors are provided below.

To use the NVECTOR_CUDA module, include nvector_cuda.h and link to the library
libsundials_nveccuda.lib. The extension, .lib, is typically .so for shared libraries and .a for
static libraries.

10.9.1 NVECTOR_CUDA functions

Unlike other native SUNDIALS vector types, the NVECTOR_CUDA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:

realtype* N_VGetHostArrayPointer_Cuda(N_Vector v)
This function returns pointer to the vector data on the host.

realtype* N_VGetDeviceArrayPointer_Cuda(N_Vector v)
This function returns pointer to the vector data on the device.

booleantype N_VIsManagedMemory_Cuda(N_Vector v)
This function returns a boolean flag indiciating if the vector data array is in managed memory or not.

The NVECTOR_CUDA module defines implementations of all standard vector operations defined in the sec-
tions Description of the NVECTOR operations, Description of the NVECTOR fused operations, Description of
the NVECTOR vector array operations, and Description of the NVECTOR local reduction operations, except for
N_VSetArrayPointer, and, if using unmanaged memory, N_VGetArrayPointer. As such, this vector can
only be used with SUNDIALS Fortran interfaces, and the SUNDIALS direct solvers and preconditioners when us-
ing managed memory. The NVECTOR_CUDA module provides separate functions to access data on the host and on
the device for the unmanaged memory use case. It also provides methods for copying from the host to the device and
vice versa. Usage examples of NVECTOR_CUDA are provided in example programs for CVODE [HSR2017].

The names of vector operations are obtained from those in the sections Description of the NVECTOR operations,
Description of the NVECTOR fused operations, Description of the NVECTOR vector array operations, and Descrip-
tion of the NVECTOR local reduction operations by appending the suffix _Cuda (e.g. N_VDestroy_Cuda). The
module NVECTOR_CUDA provides the following additional user-callable routines:

N_Vector N_VNew_Cuda(sunindextype length)
This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated on
both the host and device.

N_Vector N_VNewManaged_Cuda(sunindextype vec_length)
This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated in
managed memory.

N_Vector N_VNewWithMemHelp_Cuda(sunindextype length, booleantype use_managed_mem, SUNMem-
oryHelper helper)

This function creates a new CUDA N_Vector with a user-supplied SUNMemoryHelper for allocat-
ing/freeing memory.

N_Vector N_VNewEmpty_Cuda(sunindextype vec_length)
This function creates a new CUDA N_Vector where the members of the content structure have not been al-
located. This utility function is used by the other constructors to create a new vector.
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N_Vector N_VMake_Cuda(sunindextype vec_length, realtype *h_vdata, realtype *d_vdata)
This function creates a CUDA N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Cuda(sunindextype vec_length, realtype *vdata)
This function creates a CUDA N_Vector with a user-supplied managed memory data array.

N_Vector N_VMakeWithManagedAllocator_Cuda(sunindextype length, void* (*allocfn)(size_t size),
void (*freefn)(void* ptr))

This function creates a CUDA N_Vector with a user-supplied memory allocator. It requires the user to pro-
vide a corresponding free function as well. The memory allocated by the allocator function must behave like
CUDA managed memory.

The module NVECTOR_CUDA also provides the following user-callable routines:

void N_VSetKernelExecPolicy_Cuda(N_Vector v, SUNCudaExecPolicy* stream_exec_policy, SUN-
CudaExecPolicy* reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when
launching the streaming and reduction CUDA kernels. By default the vector is setup to use the
SUNCudaThreadDirectExecPolicy and SUNCudaBlockReduceExecPolicy. Any custom ex-
ecution policy for reductions must ensure that the grid dimensions (number of thread blocks) is a multiple of
the CUDA warp size (32). See section The SUNCudaExecPolicy Class below for more information about the
SUNCudaExecPolicy class.

Note: Note: All vectors used in a single instance of a SUNDIALS package must use the same execution pol-
icy. It is strongly recommended that this function is called immediately after constructing the vector, and any
subsequent vector be created by cloning to ensure consistent execution policies across vectors

void N_VSetCudaStream_Cuda(N_Vector v, cudaStream_t *stream)
DEPRECATED This function will be removed in the next major release, user should utilize the
N_VSetKernelExecPolicy_Cuda function instead.

This function sets the CUDA stream that all vector kernels will be launched on. By default an NVEC-
TOR_CUDA uses the default CUDA stream.

Note: All vectors used in a single instance of a SUNDIALS solver must use the same CUDA stream. It is
strongly recommended that this function is called immediately after constructing the vector, and any subse-
quent vector be created by cloning to ensure consistent execution policies across vectors

realtype* N_VCopyToDevice_Cuda(N_Vector v)
This function copies host vector data to the device.

realtype* N_VCopyFromDevice_Cuda(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Cuda(N_Vector v)
This function prints the content of a CUDA vector to stdout.

void N_VPrintFile_Cuda(N_Vector v, FILE *outfile)
This function prints the content of a CUDA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_CUDA module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vec-
tor. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Cuda(), en-
able/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Cuda() will have the default settings for the NVECTOR_CUDA module.
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int N_VEnableFusedOps_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableDotProdMulti_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in
the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormMaskVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableScaleAddMultiVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector ar-
rays in the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

Notes

• When there is a need to access components of an N_Vector_Cuda, v, it is recommeded to use functions
N_VGetDeviceArrayPointer_Cuda() or N_VGetHostArrayPointer_Cuda(). However, when
using managed memory, the function N_VGetArrayPointer() may also be used.

• To maximize efficiency, vector operations in the NVECTOR_CUDA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s re-
sponsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.
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10.9.2 The SUNCudaExecPolicy Class

In order to provide maximum flexibility to users, the CUDA kernel execution parameters used by kernels within
SUNDIALS are defined by objects of the sundials::CudaExecPolicy abstract class type (this class can
be accessed in the global namespace as SUNCudaExecPolicy). Thus, users may provide custom execution
policies that fit the needs of their problem. The sundials::CudaExecPolicy is defined in the header file
sundials_cuda_policies.hpp, as follows:

class CudaExecPolicy
{
public:

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;
virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;
virtual cudaStream_t stream() const = 0;
virtual CudaExecPolicy* clone() const = 0;
virtual ~CudaExecPolicy() {}

};

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and
implements the methods. The SUNDIALS provided sundials::CudaThreadDirectExecPolicy (aka in
the global namespace as SUNCudaThreadDirectExecPolicy) class is a good example of a what a custom
execution policy may look like:

class CudaThreadDirectExecPolicy : public CudaExecPolicy
{
public:

CudaThreadDirectExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)
: blockDim_(blockDim), stream_(stream)

{}

CudaThreadDirectExecPolicy(const CudaThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), stream_(ex.stream_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const
{

return (numWorkUnits + blockSize() - 1) / blockSize();
}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const
{

return blockDim_;
}

virtual cudaStream_t stream() const
{

return stream_;
}

virtual CudaExecPolicy* clone() const
{

return static_cast<CudaExecPolicy*>(new CudaThreadDirectExecPolicy(*this));
}

private:
const cudaStream_t stream_;
const size_t blockDim_;

};
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In total, SUNDIALS provides 3 execution policies:

1. SUNCudaThreadDirectExecPolicy(const size_t blockDim, const cudaStream_t
stream = 0) maps each CUDA thread to a work unit. The number of threads per block (blockDim) can be
set to anything. The grid size will be calculated so that there are enough threads for one thread per element. If
a CUDA stream is provided, it will be used to execute the kernel.

2. SUNCudaGridStrideExecPolicy(const size_t blockDim, const size_t gridDim,
const cudaStream_t stream = 0) is for kernels that use grid stride loops. The number of threads
per block (blockDim) can be set to anything. The number of blocks (gridDim) can be set to anything. If a
CUDA stream is provided, it will be used to execute the kernel.

3. SUNCudaBlockReduceExecPolicy(const size_t blockDim, const cudaStream_t
stream = 0) is for kernels performing a reduction across indvidual thread blocks. The number of threads
per block (blockDim) can be set to any valid multiple of the CUDA warp size. The grid size (gridDim) can be
set to any value greater than 0. If it is set to 0, then the grid size will be chosen so that there is enough threads
for one thread per work unit. If a CUDA stream is provided, it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

cudaStream_t stream;
cudaStreamCreate(&stream);
SUNCudaThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an
N_Vector) since they do not hold any modifiable state information.

10.10 The NVECTOR_HIP Module

The NVECTOR_HIP module is an NVECTOR implementation using the AMD ROCm HIP library. The module
allows for SUNDIALS vector kernels to run on AMD or NVIDIA GPU devices. It is intended for users who are al-
ready familiar with HIP and GPU programming. Building this vector module requires the HIP-clang compiler. The
vector content layout is as follows:

struct _N_VectorContent_Hip
{

sunindextype length;
booleantype own_data;
SUNMemory host_data;
SUNMemory device_data;
SUNHipExecPolicy* stream_exec_policy;
SUNHipExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */

};

typedef struct _N_VectorContent_Hip *N_VectorContent_Hip;

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e. it is in
charge of freeing the data), pointers to vector data on the host and the device, pointers to SUNHipExecPolicy
implementations that control how the HIP kernels are launched for streaming and reduction vector kernels, and a
private data structure which holds additonal members that should not be accessed directly.

When instantiated with N_VNew_Hip(), the underlying data will be allocated on both the host and the device.
Alternatively, a user can provide host and device data arrays by using the N_VMake_Hip() constructor. To use
managed memory, the constructors N_VNewManaged_Hip() and N_VMakeManaged_Hip() are provided.

10.10. The NVECTOR_HIP Module 349



User Documentation for ARKode, v4.7.0

Additionally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor
N_VNewWithMemHelp_Hip(). Details on each of these constructors are provided below.

To use the NVECTOR_HIP module, include nvector_hip.h and link to the library
libsundials_nvechip.lib. The extension, .lib, is typically .so for shared libraries and .a for
static libraries.

10.10.1 NVECTOR_HIP functions

Unlike other native SUNDIALS vector types, the NVECTOR_HIP module does not provide macros to access its
member variables. Instead, user should use the accessor functions:

realtype* N_VGetHostArrayPointer_Hip(N_Vector v)
This function returns pointer to the vector data on the host.

realtype* N_VGetDeviceArrayPointer_Hip(N_Vector v)
This function returns pointer to the vector data on the device.

booleantype N_VIsManagedMemory_Hip(N_Vector v)
This function returns a boolean flag indiciating if the vector data array is in managed memory or not.

The NVECTOR_HIP module defines implementations of all standard vector operations defined in the sections
Description of the NVECTOR operations, Description of the NVECTOR fused operations, Description of the
NVECTOR vector array operations, and Description of the NVECTOR local reduction operations, except for
N_VSetArrayPointer(). The names of vector operations are obtained from those in the sections Description
of the NVECTOR operations, Description of the NVECTOR fused operations, Description of the NVECTOR vector
array operations, and Description of the NVECTOR local reduction operations by appending the suffix _Hip (e.g.
N_VDestroy_Hip()). The module NVECTOR_HIP provides the following additional user-callable routines:

N_Vector N_VNew_Hip(sunindextype length)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated on both
the host and device.

N_Vector N_VNewManaged_Hip(sunindextype vec_length)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated in man-
aged memory.

N_Vector N_VNewWithMemHelp_Hip(sunindextype length, booleantype use_managed_mem, SUNMemo-
ryHelper helper)

This function creates a new HIP N_Vector with a user-supplied SUNMemoryHelper for allocating/freeing
memory.

N_Vector N_VNewEmpty_Hip(sunindextype vec_length)
This function creates a new HIP N_Vector where the members of the content structure have not been allo-
cated. This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Hip(sunindextype vec_length, realtype *h_vdata, realtype *d_vdata)
This function creates a HIP N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Hip(sunindextype vec_length, realtype *vdata)
This function creates a HIP N_Vector with a user-supplied managed memory data array.

The module NVECTOR_HIP also provides the following user-callable routines:

void N_VSetKernelExecPolicy_Hip(N_Vector v, SUNHipExecPolicy* stream_exec_policy, SUN-
HipExecPolicy* reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when
launching the streaming and reduction HIP kernels. By default the vector is setup to use the
SUNHipThreadDirectExecPolicy and SUNHipBlockReduceExecPolicy. Any custom execu-
tion policy for reductions must ensure that the grid dimensions (number of thread blocks) is a multiple of the
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HIP warp size (32 for NVIDIA GPUs, 64 for AMD GPUs). See section The SUNHipExecPolicy Class below
for more information about the SUNHipExecPolicy class.

Note: Note: All vectors used in a single instance of a SUNDIALS package must use the same execution pol-
icy. It is strongly recommended that this function is called immediately after constructing the vector, and any
subsequent vector be created by cloning to ensure consistent execution policies across vectors*

realtype* N_VCopyToDevice_Hip(N_Vector v)
This function copies host vector data to the device.

realtype* N_VCopyFromDevice_Hip(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Hip(N_Vector v)
This function prints the content of a HIP vector to stdout.

void N_VPrintFile_Hip(N_Vector v, FILE *outfile)
This function prints the content of a HIP vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_HIP module. The following ad-
ditional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Hip(), en-
able/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Hip() will have the default settings for the NVECTOR_HIP module.

int N_VEnableFusedOps_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the HIP
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the HIP
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the HIP vector. The return value is 0 for success and -1 if the input vector or its ops struc-
ture are NULL.

int N_VEnableDotProdMulti_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
HIP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
HIP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the HIP
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the HIP
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in
the HIP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
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int N_VEnableWrmsNormMaskVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the HIP vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableScaleAddMultiVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vec-
tor arrays operation in the HIP vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Hip(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the HIP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N_Vector_Hip, v, it is recommeded to use functions
N_VGetDeviceArrayPointer_Hip() or N_VGetHostArrayPointer_Hip(). However, when
using managed memory, the function N_VGetArrayPointer() may also be used.

• To maximize efficiency, vector operations in the NVECTOR_HIP implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s re-
sponsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

10.10.2 The SUNHipExecPolicy Class

In order to provide maximum flexibility to users, the HIP kernel execution parameters used by kernels within
SUNDIALS are defined by objects of the sundials::HipExecPolicy abstract class type (this class can
be accessed in the global namespace as SUNHipExecPolicy). Thus, users may provide custom execution
policies that fit the needs of their problem. The sundials::HipExecPolicy is defined in the header file
sundials_hip_policies.hpp, as follows:

class HipExecPolicy
{
public:

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;
virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;
virtual hipStream_t stream() const = 0;
virtual HipExecPolicy* clone() const = 0;
virtual ~HipExecPolicy() {}

};

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials::HipThreadDirectExecPolicy (aka in the
global namespace as SUNHipThreadDirectExecPolicy) class is a good example of a what a custom execu-
tion policy may look like:

class HipThreadDirectExecPolicy : public HipExecPolicy
{
public:

HipThreadDirectExecPolicy(const size_t blockDim, const hipStream_t stream = 0)
: blockDim_(blockDim), stream_(stream)

{}

HipThreadDirectExecPolicy(const HipThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), stream_(ex.stream_)
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{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const
{

return (numWorkUnits + blockSize() - 1) / blockSize();
}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const
{

return blockDim_;
}

virtual hipStream_t stream() const
{

return stream_;
}

virtual HipExecPolicy* clone() const
{

return static_cast<HipExecPolicy*>(new HipThreadDirectExecPolicy(*this));
}

private:
const hipStream_t stream_;
const size_t blockDim_;

};

In total, SUNDIALS provides 3 execution policies:

1. SUNHipThreadDirectExecPolicy(const size_t blockDim, const hipStream_t
stream = 0) maps each HIP thread to a work unit. The number of threads per block (blockDim) can be
set to anything. The grid size will be calculated so that there are enough threads for one thread per element. If
a HIP stream is provided, it will be used to execute the kernel.

2. SUNHipGridStrideExecPolicy(const size_t blockDim, const size_t gridDim,
const hipStream_t stream = 0) is for kernels that use grid stride loops. The number of threads
per block (blockDim) can be set to anything. The number of blocks (gridDim) can be set to anything. If a HIP
stream is provided, it will be used to execute the kernel.

3. SUNHipBlockReduceExecPolicy(const size_t blockDim, const hipStream_t
stream = 0) is for kernels performing a reduction across indvidual thread blocks. The number of threads
per block (blockDim) can be set to any valid multiple of the HIP warp size. The grid size (gridDim) can be set
to any value greater than 0. If it is set to 0, then the grid size will be chosen so that there is enough threads for
one thread per work unit. If a HIP stream is provided, it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

hipStream_t stream;
hipStreamCreate(&stream);
SUNHipThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an
N_Vector) since they do not hold any modifiable state information.
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10.11 The NVECTOR_RAJA Module

The NVECTOR_RAJA module is an experimental NVECTOR implementation using the RAJA hardware abstrac-
tion layer. In this implementation, RAJA allows for SUNDIALS vector kernels to run on AMD or NVIDIA GPU
devices. The module is intended for users who are already familiar with RAJA and GPU programming. Building
this vector module requires a C++11 compliant compiler and either the NVIDIA CUDA programming environ-
ment, or the AMD ROCm HIP programming environment. When using the AMD ROCm HIP environment, the
HIP-clang compiler must be utilized. Users can select which backend (CUDA or HIP) to compile with by setting
the SUNDIALS_RAJA_BACKENDS CMake variable to either CUDA or HIP. Besides the CUDA and HIP backends,
RAJA has other backends such as serial, OpenMP, and OpenACC. These backends are not used in this SUNDIALS
release.

The vector content layout is as follows:

struct _N_VectorContent_Raja
{

sunindextype length;
booleantype own_data;
realtype* host_data;
realtype* device_data;
void* priv; /* 'private' data */

};

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e., it is in
charge of freeing the data), pointers to vector data on the host and the device, and a private data structure which holds
the memory management type, which should not be accessed directly.

When instantiated with N_VNew_Raja(), the underlying data will be allocated on both the host and the device.
Alternatively, a user can provide host and device data arrays by using the N_VMake_Raja() constructor. To use
managed memory, the constructors N_VNewManaged_Raja() and N_VMakeManaged_Raja() are provided.
Details on each of these constructors are provided below.

The header file to include when using this is nvector_raja.h. The installed module library to link to is
libsundials_nveccudaraja.lib when using the CUDA backend and libsundials_nvechipraja.
lib when using the HIP backend. The extension .lib is typically .so for shared libraries .a for static libraries.

10.11.1 NVECTOR_RAJA functions

Unlike other native SUNDIALS vector types, the NVECTOR_RAJA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:

realtype* N_VGetHostArrayPointer_Raja(N_Vector v)
This function returns pointer to the vector data on the host.

realtype* N_VGetDeviceArrayPointer_Raja(N_Vector v)
This function returns pointer to the vector data on the device.

booleantype N_VIsManagedMemory_Raja(N_Vector v)
This function returns a boolean flag indicating if the vector data is allocated in managed memory or not.

The NVECTOR_RAJA module defines the implementations of all vector operations listed in the sections De-
scription of the NVECTOR operations, Description of the NVECTOR fused operations, Description of the
NVECTOR vector array operations, and Description of the NVECTOR local reduction operations, except for
N_VDotProdMulti, N_VWrmsNormVectorArray, N_VWrmsNormMaskVectorArray as support for ar-
rays of reduction vectors is not yet supported in RAJA. These functions will be added to the NVECTOR_RAJA im-
plementation in the future. Additionally, the operations N_VGetArrayPointer and N_VSetArrayPointer
are not implemented by the RAJA vector. As such, this vector cannot be used with SUNDIALS Fortran interfaces,
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nor with SUNDIALS direct solvers and preconditioners. The NVECTOR_RAJA module provides separate functions
to access data on the host and on the device. It also provides methods for copying from the host to the device and
vice versa. Usage examples of NVECTOR_RAJA are provided in some example programs for CVODE [HSR2017].

The names of vector operations are obtained from those in the sections Description of the NVECTOR operations,
Description of the NVECTOR fused operations, Description of the NVECTOR vector array operations, and Descrip-
tion of the NVECTOR local reduction operations by appending the suffix _Raja (e.g. N_VDestroy_Raja). The
module NVECTOR_RAJA provides the following additional user-callable routines:

N_Vector N_VNew_Raja(sunindextype vec_length)
This function creates and allocates memory for a RAJA N_Vector. The memory is allocated on both the host
and the device. Its only argument is the vector length.

N_Vector N_VNewManaged_Raja(sunindextype vec_length)
This function creates and allocates memory for a RAJA N_Vector. The vector data array is allocated in man-
aged memory.

N_Vector N_VMake_Raja(sunindextype length, realtype *h_data, realtype *v_data)
This function creates an NVECTOR_RAJA with user-supplied host and device data arrays. This function does
not allocate memory for data itself.

N_Vector N_VMakeManaged_Raja(sunindextype length, realtype *vdata)
This function creates an NVECTOR_RAJA with a user-supplied managed memory data array. This function
does not allocate memory for data itself.

N_Vector N_VNewWithMemHelp_Raja(sunindextype length, booleantype use_managed_mem, SUNMem-
oryHelper helper)

This function creates an NVECTOR_RAJA with a user-supplied SUNMemoryHelper for allocating/freeing
memory.

N_Vector N_VNewEmpty_Raja()
This function creates a new N_Vector where the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

void N_VCopyToDevice_Raja(N_Vector v)
This function copies host vector data to the device.

void N_VCopyFromDevice_Raja(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Raja(N_Vector v)
This function prints the content of a RAJA vector to stdout.

void N_VPrintFile_Raja(N_Vector v, FILE *outfile)
This function prints the content of a RAJA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_RAJA module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vec-
tor. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Raja(), en-
able/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Raja() will have the default settings for the NVECTOR_RAJA module.

int N_VEnableFusedOps_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the RAJA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
RAJA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.
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int N_VEnableScaleAddMulti_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the RAJA vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearSumVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
RAJA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the RAJA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the RAJA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the RAJA vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the RAJA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N_Vector_Raja, v, it is recommended to use functions
N_VGetDeviceArrayPointer_Raja() or N_VGetHostArrayPointer_Raja(). However, when
using managed memory, the function N_VGetArrayPointer may also be used.

• To maximize efficiency, vector operations in the NVECTOR_RAJA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s re-
sponsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

10.12 The NVECTOR_SYCL Module

The NVECTOR_SYCL module is an experimental NVECTOR implementation using the SYCL abstraction layer.
At present the only supported SYCL compiler is the DPC++ (Intel oneAPI) compiler. This module allows for SUN-
DIALS vector kernels to run on Intel GPU devices. The module is intended for users who are already familiar with
SYCL and GPU programming.

The vector content layout is as follows:

struct _N_VectorContent_Sycl
{

sunindextype length;
booleantype own_exec;
booleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNSyclExecPolicy* stream_exec_policy;
SUNSyclExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
sycl::queue* queue;
void* priv; /* 'private' data */

356 Chapter 10. Vector Data Structures

https://www.khronos.org/sycl/


User Documentation for ARKode, v4.7.0

};

typedef struct _N_VectorContent_Sycl *N_VectorContent_Sycl;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in charge of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, the SYCL queue, and a private data structure which holds
additional members that should not be accessed directly.

When instantiated with N_VNew_Sycl(), the underlying data will be allocated on both the host and the device.
Alternatively, a user can provide host and device data arrays by using the N_VMake_Sycl() constructor. To use
managed (shared) memory, the constructors N_VNewManaged_Sycl() and N_VMakeManaged_Sycl() are
provided. Additionally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the
constructor N_VNewWithMemHelp_Sycl(). Details on each of these constructors are provided below.

The header file to include when using this is nvector_sycl.h. The installed module library to link to is
libsundials_nvecsycl.lib. The extension .lib is typically .so for shared libraries .a for static libraries.

10.12.1 NVECTOR_SYCL functions

The NVECTOR_SYCL module implementations of all vector operations listed in the sections Description of the
NVECTOR operations, Description of the NVECTOR fused operations, Description of the NVECTOR vector ar-
ray operations, and Description of the NVECTOR local reduction operations, except for N_VDotProdMulti(),
N_VWrmsNormVectorArray(), N_VWrmsNormMaskVectorArray() as support for arrays of reduction
vectors is not yet supported. These functions will be added to the NVECTOR_SYCL implementation in the fu-
ture. The names of vector operations are obtained from those in the aforementioned sections by appending the suffix
_Sycl (e.g., N_VDestroy_Sycl).

Additionally, the NVECTOR_SYCL module provides the following user-callable constructors for creating a new
NVECTOR_SYCL:

N_Vector N_VNew_Sycl(sunindextype vec_length, sycl::queue* Q)
This function creates and allocates memory for an NVECTOR_SYCL. Vector data arrays are allocated on both
the host and the device associated with the input queue. All operation are launched in the provided queue.

N_Vector N_VNewManaged_Sycl(sunindextype vec_length, sycl::queue* Q)
This function creates and allocates memory for a NVECTOR_SYCL. The vector data array is allocated in
managed (shared) memory using the input queue. All operation are launched in the provided queue.

N_Vector N_VMake_Sycl(sunindextype length, realtype *h_vdata, realtype *d_vdata, sycl::queue* Q)
This function creates an NVECTOR_SYCL with user-supplied host and device data arrays. This function does
not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VMakeManaged_Sycl(sunindextype length, realtype *vdata, sycl::queue *Q)
This function creates an NVECTOR_SYCL with a user-supplied managed (shared) data array. This function
does not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VNewWithMemHelp_Sycl(sunindextype length, booleantype use_managed_mem, SUNMem-
oryHelper helper, sycl::queue *Q)

This function creates an NVECTOR_SYCL with a user-supplied SUNMemoryHelper for allocating/freeing
memory. All operation are launched in the provided queue.

N_Vector N_VNewEmpty_Sycl()
This function creates a new N_Vector where the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.
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The following user-callable functions are provided for accessing the vector data arrays on the host and
device and copying data between the two memory spaces. Note the generic NVECTOR operations
N_VGetArrayPointer() and N_VSetArrayPointer() are mapped to the corresponding HostArray
functions given below. To ensure memory coherency, a user will need to call the CopyTo or CopyFrom functions
as necessary to transfer data between the host and device, unless managed (shared) memory is used.

realtype* N_VGetHostArrayPointer_Sycl(N_Vector v)
This function returns a pointer to the vector host data array.

realtype* N_VGetDeviceArrayPointer_Sycl(N_Vector v)
This function returns a pointer to the vector device data array.

void N_VSetHostArrayPointer_Sycl(realtype* h_vdata, N_Vector v)
This function sets the host array pointer in the vector v.

void N_VSetDeviceArrayPointer_Sycl(realtype* d_vdata, N_Vector v)
This function sets the device array pointer in the vector v.

void N_VCopyToDevice_Sycl(N_Vector v)
This function copies host vector data to the device.

void N_VCopyFromDevice_Sycl(N_Vector v)
This function copies vector data from the device to the host.

booleantype N_VIsManagedMemory_Sycl(N_Vector v)
This function returns SUNTRUE if the vector data is allocated as managed (shared) memory otherwise it re-
turns SUNFALSE.

The following user-callable function is provided to set the execution policies for how SYCL kernels are launched on
a device.

int N_VSetKernelExecPolicy_Sycl(N_Vector v, SUNSyclExecPolicy *stream_exec_policy, SUNSy-
clExecPolicy *reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when
launching the streaming and reduction kernels. By default the vector is setup to use the
SUNSyclThreadDirectExecPolicy and SUNSyclBlockReduceExecPolicy. See the sec-
tion The SUNSyclExecPolicy Class below for more information about the SUNSyclExecPolicy class.

Note: All vectors used in a single instance of a SUNDIALS package must use the same execution policy. It is
strongly recommended that this function is called immediately after constructing the vector, and any subse-
quent vector be created by cloning to ensure consistent execution policies across vectors.

The following user-callable functions are provided to print the host vector data array. Unless managed memory is
used, a user may need to call N_VCopyFromDevice_Sycl() to ensure consistency between the host and device
array.

void N_VPrint_Sycl(N_Vector v)
This function prints the host data array to stdout.

void N_VPrintFile_Sycl(N_Vector v, FILE *outfile)
This function prints the host data array to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_SYCL module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with one of the above constructors,
enable/disable the desired operations on that vector with the functions below, and then use this vector in conjunction
with N_VClone() to create any additional vectors. This guarantees the new vectors will have the same operations
enabled/disabled as cloned vectors inherit the same enable/disable options as the vector they are cloned from while
vectors created by any of the constructors above will have the default settings for the NVECTOR_SYCL module.
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int N_VEnableFusedOps_Sycl(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the SYCL
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_Sycl(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
SYCL vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_Sycl(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the SYCL vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearSumVectorArray_Sycl(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
SYCL vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_Sycl(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the SYCL
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_Sycl(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the SYCL
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMultiVectorArray_Sycl(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the SYCL vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

int N_VEnableLinearCombinationVectorArray_Sycl(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the SYCL vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an NVECTOR_SYCL, v, it is recommended to use
N_VGetDeviceArrayPointer() to access the device array or N_VGetArrayPointer() for the host
array. When using managed (shared) memory, either function may be used. To ensure memory coherency, a
user may need to call the CopyTo or CopyFrom functions as necessary to transfer data between the host and
device, unless managed (shared) memory is used.

• To maximize efficiency, vector operations in the NVECTOR_SYCL implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s re-
sponsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

10.12.2 The SUNSyclExecPolicy Class

In order to provide maximum flexibility to users, the SYCL kernel execution parameters used by kernels within
SUNDIALS are defined by objects of the sundials::SyclExecPolicy abstract class type (this class can
be accessed in the global namespace as SUNSyclExecPolicy). Thus, users may provide custom execution
policies that fit the needs of their problem. The sundials::SyclExecPolicy is defined in the header file
sundials_sycl_policies.hpp, as follows:

class SyclExecPolicy
{
public:
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virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;
virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;
virtual SyclExecPolicy* clone() const = 0;
virtual ~SyclExecPolicy() {}

};

For consistency the function names and behavior mirror the execution policies for the CUDA and HIP vectors.
In the SYCL case the blockSize is the local work-group range in a one-dimensional nd_range (threads per
group). The gridSize is the number of local work groups so the global work-group range in a one-dimensional
nd_range is blockSize * gridSize (total number of threads). All vector kernels are written with a many-
to-one mapping where work units (vector elements) are mapped in a round-robin manner across the global range. As
such, the blockSize and gridSize can be set to any positive value.

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and
implements the methods. The SUNDIALS provided sundials::SyclThreadDirectExecPolicy (aka in
the global namespace as SUNSyclThreadDirectExecPolicy) class is a good example of a what a custom
execution policy may look like:

class SyclThreadDirectExecPolicy : public SyclExecPolicy
{
public:

SyclThreadDirectExecPolicy(const size_t blockDim)
: blockDim_(blockDim)

{}

SyclThreadDirectExecPolicy(const SyclThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const
{

return (numWorkUnits + blockSize() - 1) / blockSize();
}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const
{

return blockDim_;
}

virtual SyclExecPolicy* clone() const
{

return static_cast<SyclExecPolicy*>(new SyclThreadDirectExecPolicy(*this));
}

private:
const size_t blockDim_;

};

SUNDIALS provides the following execution policies:

1. SUNSyclThreadDirectExecPolicy(const size_t blockDim) is for kernels performing
streaming operations and maps each work unit (vector element) to a work-item (thread). Based on the
local work-group range (number of threads per group, blockSize) the number of local work-groups
(gridSize) is computed so there are enough work-items in the global work-group range ( total number of
threads, blockSize * gridSize) for one work unit per work-item (thread).

2. SUNSyclGridStrideExecPolicy(const size_t blockDim, const size_t gridDim) is
for kernels performing streaming operations and maps each work unit (vector element) to a work-item (thread)
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in a round-robin manner so the local work-group range (number of threads per group, blockSize) and the
number of local work-groups (gridSize) can be set to any positive value. In this case the global work-group
range (total number of threads, blockSize * gridSize) may be less than the number of work units (vec-
tor elements).

3. SUNSyclBlockReduceExecPolicy(const size_t blockDim) is for kernels performing a re-
duction, the local work-group range (number of threads per group, blockSize) and the number of local
work-groups (gridSize) can be set to any positive value or the gridSize may be set to 0 in which case
the global range is chosen so that there are enough threads for at most two work units per work-item.

By default the NVECTOR_SYCL module uses the SUNSyclThreadDirectExecPolicy and
SUNSyclBlockReduceExecPolicy where the default blockDim is determined by querying the device for the
max_work_group_size. User may specify different policies by constructing a new SyclExecPolicy and at-
taching it with N_VSetKernelExecPolicy_Sycl(). For example, a policy that uses 128 work-items (threads)
per group can be created and attached like so:

N_Vector v = N_VNew_Sycl(length);
SUNSyclThreadDirectExecPolicy thread_direct(128);
SUNSyclBlockReduceExecPolicy block_reduce(128);
flag = N_VSetKernelExecPolicy_Sycl(v, &thread_direct, &block_reduce);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an
N_Vector) since they do not hold any modifiable state information.

10.13 The NVECTOR_OPENMPDEV Module

In situations where a user has access to a device such as a GPU for offloading computation, SUNDIALS provides an
NVECTOR implementation using OpenMP device offloading, called NVECTOR_OPENMPDEV.

The NVECTOR_OPENMPDEV implementation defines the content field of the N_Vector to be a structure con-
taining the length of the vector, a pointer to the beginning of a contiguousdata array on the host, a pointer to the be-
ginning of a contiguous data array on the device, and a boolean flag own_data which specifies the ownership of
host and device data arrays.

struct _N_VectorContent_OpenMPDEV
{

sunindextype length;
booleantype own_data;
realtype *host_data;
realtype *dev_data;

};

The header file to include when using this module is nvector_openmpdev.h. The installed module library to
link to is libsundials_nvecopenmpdev.lib where .lib is typically .so for shared libraries and .a for
static libraries.

10.13.1 NVECTOR_OPENMPDEV accessor macros

The following macros are provided to access the content of an NVECTOR_OPENMPDEV vector.

NV_CONTENT_OMPDEV(v)
This macro gives access to the contents of the NVECTOR_OPENMPDEV vector N_Vector.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the NVEC-
TOR_OPENMPDEV content structure.
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Implementation:

#define NV_CONTENT_OMPDEV(v) ( (N_VectorContent_OpenMPDEV)(v->content) )

NV_OWN_DATA_OMPDEV(v)
Access the own_data component of the OpenMPDEV N_Vector v.

The assignment v_data = NV_DATA_HOST_OMPDEV(v) sets v_data to be a pointer to the first compo-
nent of the data on the host for the N_Vector v.

Implementation:

#define NV_OWN_DATA_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->own_data )

NV_DATA_HOST_OMPDEV(v)
The assignment NV_DATA_HOST_OMPDEV(v) = v_data sets the host component array of v to be
v_data by storing the pointer v_data.

Implementation:

#define NV_DATA_HOST_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->host_data )

NV_DATA_DEV_OMPDEV(v)
The assignment v_dev_data = NV_DATA_DEV_OMPDEV(v) sets v_dev_data to be a
pointer to the first component of the data on the device for the N_Vector v. The assignment
NV_DATA_DEV_OMPDEV(v) = v_dev_data sets the device component array of v to be v_dev_data
by storing the pointer v_dev_data.

Implementation:

#define NV_DATA_DEV_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->dev_data )

NV_LENGTH_OMPDEV
Access the length component of the OpenMPDEV N_Vector v.

The assignment v_len = NV_LENGTH_OMPDEV(v) sets v_len to be the length of v. On the other hand,
the call NV_LENGTH_OMPDEV(v) = len_v sets the length of v to be len_v.

#define NV_LENGTH_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->length )

10.13.2 NVECTOR_OPENMPDEV functions

The NVECTOR_OPENMPDEV module defines OpenMP device offloading implementations of all vector operations
listed in Tables Description of the NVECTOR operations, Description of the NVECTOR fused operations, Descrip-
tion of the NVECTOR vector array operations, and Description of the NVECTOR local reduction operations, except
for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used with the SUNDI-
ALS FORTRAN interfaces, nor with the SUNDIALS direct solvers and preconditioners. It also provides methods for
copying from the host to the device and vice versa.

The names of the vector operations are obtained from those in tables Description of the NVECTOR opera-
tions, Description of the NVECTOR fused operations, Description of the NVECTOR vector array operations,
and Description of the NVECTOR local reduction operations by appending the suffix _OpenMPDEV (e.g.
N_VDestroy_OpenMPDEV). The module NVECTOR_OPENMPDEV provides the following additional user-
callable routines:

N_Vector N_VNew_OpenMPDEV(sunindextype vec_length)
This function creates and allocates memory for an NVECTOR_OPENMPDEV N_Vector.
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N_Vector N_VNewEmpty_OpenMPDEV(sunindextype vec_length)
This function creates a new NVECTOR_OPENMPDEV N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMPDEV(sunindextype vec_length, realtype *h_vdata, realtype *d_vdata)
This function creates an NVECTOR_OPENMPDEV vector with user-supplied vector data arrays h_vdata}
and ``d_vdata. This function does not allocate memory for data itself.

N_Vector *N_VCloneVectorArray_OpenMPDEV(int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_OPENMPDEV vectors.

N_Vector *N_VCloneVectorArrayEmpty_OpenMPDEV(int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_OPENMPDEV vectors, each with an empty
(NULL) data array.

void N_VDestroyVectorArray_OpenMPDEV(N_Vector *vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_OpenMPDEV or with N_VCloneVectorArrayEmpty_OpenMPDEV.

realtype *N_VGetHostArrayPointer_OpenMPDEV(N_Vector v)
This function returns a pointer to the host data array.

realtype *N_VGetDeviceArrayPointer_OpenMPDEV(N_Vector v)
This function returns a pointer to the device data array.

void N_VPrint_OpenMPDEV(N_Vector v)
This function prints the content of an NVECTOR_OPENMPDEV vector to stdout.

void N_VPrintFile_OpenMPDEV(N_Vector v, FILE *outfile)
This function prints the content of an NVECTOR_OPENMPDEV vector to outfile.

void N_VCopyToDevice_OpenMPDEV(N_Vector v)
This function copies the content of an NVECTOR_OPENMPDEV vector’s host data array to the device data
array.

void N_VCopyFromDevice_OpenMPDEV(N_Vector v)
This function copies the content of an NVECTOR_OPENMPDEV vector’s device data array to the host data
array.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMPDEV module. The
following additional user-callable routines are provided to enable or disable fused and vector array opera-
tions for a specific vector. To ensure consistency across vectors it is recommended to first create a vector with
id{N_VNew_OpenMPDEV}, enable/disable the desired operations for that vector with the functions below, and
create any additional vectors from that vector using id{N_VClone}. This guarantees the new vectors will have the
same operations enabled/disabled as cloned vectors inherit the same enable/disable options as the vector they are
cloned from while vectors created with id{N_VNew_OpenMPDEV} will have the default settings for the NVEC-
TOR_OPENMPDEV module.

int N_VEnableFusedOps_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the
NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or its
id{ops} structure are id{NULL}.

int N_VEnableLinearCombination_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or its
id{ops} structure are id{NULL}.

int N_VEnableScaleAddMulti_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1}
if the input vector or its id{ops} structure are id{NULL}.
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int N_VEnableDotProdMulti_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or its
id{ops} structure are id{NULL}.

int N_VEnableLinearSumVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or its
id{ops} structure are id{NULL}.

int N_VEnableScaleVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the NVEC-
TOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or its id{ops}
structure are id{NULL}.

int N_VEnableConstVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the
NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or its
id{ops} structure are id{NULL}.

int N_VEnableWrmsNormVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in
the NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or
its id{ops} structure are id{NULL}.

int N_VEnableWrmsNormMaskVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input
vector or its id{ops} structure are id{NULL}.

N_VEnableScaleAddMultiVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if
the input vector or its id{ops} structure are id{NULL}.

N_VEnableLinearCombinationVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector
or its id{ops} structure are id{NULL}.

Notes

• When looping over the components of an N_Vector v, it is most efficient to first obtain the com-
ponent array via h_data = NV_DATA_HOST_OMPDEV(v) for the host arry or v_data =
NV_DATA_DEV_OMPDEV(v) for the device array and then access v_data[i] within the loop.

• When accessing individual components of an N_Vector v on the host remember to first copy the array back
from the device with N_VCopyFromDevice_OpenMPDEV(v) to ensure the array is up to date.

• N_VNewEmpty_OpenMPDEV(), N_VMake_OpenMPDEV(), and
N_VCloneVectorArrayEmpty_OpenMPDEV() set the field own_data to SUNFALSE. The func-
tions N_VDestroy_OpenMPDEV() and N_VDestroyVectorArray_OpenMPDEV() will not attempt
to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s
responsibility to deallocate the data pointers.

• To maximize efficiency, vector operations in the NVECTOR_OPENMPDEV implementation that have more
than one N_Vector argument do not check for consistent internal representation of these vectors. It is the
user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same length.
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10.14 The NVECTOR_TRILINOS Module

The NVECTOR_TRILINOS module is an NVECTOR wrapper around the Trilinos Tpetra vector. The interface to
Tpetra is implemented in the Sundials::TpetraVectorInterface class. This class simply stores a refer-
ence counting pointer to a Tpetra vector and inherits from an empty structure

struct _N_VectorContent_Trilinos {};

to interface the C++ class with the NVECTOR C code. A pointer to an instance of this class is kept in the content
field of the N_Vector object, to ensure that the Tpetra vector is not deleted for as long as the N_Vector object
exists.

The Tpetra vector type in the Sundials::TpetraVectorInterface class is defined as:

typedef Tpetra::Vector<realtype, int, sunindextype> vector_type;

The Tpetra vector will use the SUNDIALS-specified realtype as its scalar type, int as the local ordinal type,
and sunindextype as the global ordinal type. This type definition will use Tpetra’s default node type. Available
Kokkos node types in Trilinos 12.14 release are serial (single thread), OpenMP, Pthread, and CUDA. The default
node type is selected when building the Kokkos package. For example, the Tpetra vector will use a CUDA node if
Tpetra was built with CUDA support and the CUDA node was selected as the default when Tpetra was built.

The header file to include when using this module is nvector_trilinos.h. The installed module library to link
to is libsundials_nvectrilinos.lib where .lib is typically .so for shared libraries and .a for static
libraries.

10.14.1 NVECTOR_TRILINOS functions

The NVECTOR_TRILINOS module defines implementations of all vector operations listed in the sections
Description of the NVECTOR operations, Description of the NVECTOR fused operations, Description of the
NVECTOR vector array operations, and Description of the NVECTOR local reduction operations, except for
N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used with SUNDIALS
Fortran interfaces, nor with the SUNDIALS direct solvers and preconditioners. When access to raw vector data is
needed, it is recommended to extract the Trilinos Tpetra vector first, and then use Tpetra vector methods to access
the data. Usage examples of NVECTOR_TRILINOS are provided in example programs for IDA.

The names of vector operations are obtained from those in the sections Description of the NVECTOR oper-
ations, Description of the NVECTOR fused operations, Description of the NVECTOR vector array opera-
tions, and Description of the NVECTOR local reduction operations by appending the suffice _Trilinos
(e.g. N_VDestroy_Trilinos). Vector operations call existing Tpetra::Vector methods when avail-
able. Vector operations specific to SUNDIALS are implemented as standalone functions in the namespace
Sundials::TpetraVector, located in the file SundialsTpetraVectorKernels.hpp. The module
NVECTOR_TRILINOS provides the following additional user-callable routines:

Teuchos::RCP<vector_type> N_VGetVector_Trilinos(N_Vector v)
This C++ function takes an N_Vector as the argument and returns a reference counting pointer to the under-
lying Tpetra vector. This is a standalone function defined in the global namespace.

N_Vector N_VMake_Trilinos(Teuchos::RCP<vector_type> v)
This C++ function creates and allocates memory for an NVECTOR_TRILINOS wrapper around a user-
provided Tpetra vector. This is a standalone function defined in the global namespace.

Notes

• The template parameter vector_type should be set as:
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typedef Sundials::TpetraVectorInterface::vector_type vector_type

This will ensure that data types used in Tpetra vector match those in SUNDIALS.

• When there is a need to access components of an N_Vector_Trilinos, v, it is recommeded to extract the
Trilinos vector object via x_vec = N_VGetVector_Trilinos(v) and then access components using
the appropriate Trilinos functions.

• The functions N_VDestroy_Trilinos and N_VDestroyVectorArray_Trilinos only delete the
N_Vector wrapper. The underlying Tpetra vector object will exist for as long as there is at least one refer-
ence to it.

10.15 The NVECTOR_MANYVECTOR Module

The NVECTOR_MANYVECTOR implementation of the NVECTOR module provided with SUNDIALS is de-
signed to facilitate problems with an inherent data partitioning for the solution vector within a computational node.
These data partitions are entirely user-defined, through construction of distinct NVECTOR modules for each compo-
nent, that are then combined together to form the NVECTOR_MANYVECTOR. We envision two generic use cases
for this implementation:

1. Heterogenous computational architectures: for users who wish to partition data on a node between different
computing resources, they may create architecture-specific subvectors for each partition. For example, a user
could create one serial component based on NVECTOR_SERIAL, another component for GPU accelerators
based on NVECTOR_CUDA, and another threaded component based on NVECTOR_OPENMP.

2. Structure of arrays (SOA) data layouts: for users who wish to create separate subvectors for each solution
component, e.g., in a Navier-Stokes simulation they could have separate subvectors for density, velocities and
pressure, which are combined together into a single NVECTOR_MANYVECTOR for the overall “solution”.

We note that the above use cases are not mutually exclusive, and the NVECTOR_MANYVECTOR implementation
should support arbitrary combinations of these cases.

The NVECTOR_MANYVECTOR implementation is designed to work with any NVECTOR subvectors that im-
plement the minimum required set of operations. Additionally, NVECTOR_MANYVECTOR sets no limit on the
number of subvectors that may be attached (aside from the limitations of using sunindextype for indexing, and
standard per-node memory limitations). However, while this ostensibly supports subvectors with one entry each (i.e.,
one subvector for each solution entry), we anticipate that this extreme situation will hinder performance due to non-
stride-one memory accesses and increased function call overhead. We therefore recommend a relatively coarse parti-
tioning of the problem, although actual performance will likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time integration modules
that will leverage the problem partitioning enabled by NVECTOR_MANYVECTOR. However, even at present we
anticipate that users will be able to leverage such data partitioning in their problem-defining ODE right-hand side,
DAE residual, or nonlinear solver residual functions.

10.15.1 NVECTOR_MANYVECTOR structure

The NVECTOR_MANYVECTOR implementation defines the content field of N_Vector to be a structure contain-
ing the number of subvectors comprising the ManyVector, the global length of the ManyVector (including all subvec-
tors), a pointer to the beginning of the array of subvectors, and a boolean flag own_data indicating ownership of
the subvectors that populate subvec_array.

struct _N_VectorContent_ManyVector {
sunindextype num_subvectors; /* number of vectors attached */
sunindextype global_length; /* overall manyvector length */
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N_Vector* subvec_array; /* pointer to N_Vector array */
booleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector_manyvector.h. The installed module library to
link against is libsundials_nvecmanyvector.lib where .lib is typically .so for shared libraries and .a
for static libraries.

10.15.2 NVECTOR_MANYVECTOR functions

The NVECTOR_MANYVECTOR module implements all vector operations listed in the sections Descrip-
tion of the NVECTOR operations, Description of the NVECTOR fused operations, Description of the NVEC-
TOR vector array operations, and Description of the NVECTOR local reduction operations, except for
N_VGetArrayPointer(), N_VSetArrayPointer(), N_VScaleAddMultiVectorArray(),
and N_VLinearCombinationVectorArray(). As such, this vector cannot be used with the SUNDI-
ALS Fortran-77 interfaces, nor with the SUNDIALS direct solvers and preconditioners. Instead, the NVEC-
TOR_MANYVECTOR module provides functions to access subvectors, whose data may in turn be accessed accord-
ing to their NVECTOR implementations.

The names of vector operations are obtained from those in the sections Description of the NVECTOR opera-
tions, Description of the NVECTOR fused operations, Description of the NVECTOR vector array operations,
and Description of the NVECTOR local reduction operations by appending the suffix _ManyVector (e.g.
N_VDestroy_ManyVector). The module NVECTOR_MANYVECTOR provides the following additional user-
callable routines:

N_Vector N_VNew_ManyVector(sunindextype num_subvectors, N_Vector *vec_array)
This function creates a ManyVector from a set of existing NVECTOR objects.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that
pointer array after calling this function. However, this routine does not allocate any new subvectors, so the
underlying NVECTOR objects themselves should not be destroyed before the ManyVector that contains them.

Upon successful completion, the new ManyVector is returned; otherwise this routine returns NULL (e.g., a
memory allocation failure occurred).

Users of the Fortran 2003 interface to this function will first need to use the generic N_Vector utility func-
tions N_VNewVectorArray, and N_VSetVecAtIndexVectorArray to create the N_Vector* argu-
ment. This is further explained in Chapter Working with N_Vector arrays, and the functions are documented in
Chapter NVECTOR Utility Functions.

N_Vector N_VGetSubvector_ManyVector(N_Vector v, sunindextype vec_num)
This function returns the vec_num subvector from the NVECTOR array.

realtype *N_VGetSubvectorArrayPointer_ManyVector(N_Vector v, sunindextype vec_num)
This function returns the data array pointer for the vec_num subvector from the NVECTOR array.

If the input vec_num is invalid, or if the subvector does not support the N_VGetArrayPointer operation,
then NULL is returned.

int N_VSetSubvectorArrayPointer_ManyVector(realtype *v_data, N_Vector v, sunindex-
type vec_num)

This function sets the data array pointer for the vec_num subvector from the NVECTOR array.

If the input vec_num is invalid, or if the subvector does not support the N_VSetArrayPointer operation,
then -1 is returned; otherwise it returns 0.

sunindextype N_VGetNumSubvectors_ManyVector(N_Vector v)
This function returns the overall number of subvectors in the ManyVector object.
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By default all fused and vector array operations are disabled in the NVECTOR_MANYVECTOR module, except
for N_VWrmsNormVectorArray() and N_VWrmsNormMaskVectorArray(), that are enabled by de-
fault. The following additional user-callable routines are provided to enable or disable fused and vector array op-
erations for a specific vector. To ensure consistency across vectors it is recommended to first create a vector with
N_VNew_ManyVector(), enable/disable the desired operations for that vector with the functions below, and cre-
ate any additional vectors from that vector using N_VClone(). This guarantees that the new vectors will have the
same operations enabled/disabled, since cloned vectors inherit those configuration options from the vector they are
cloned from, while vectors created with N_VNew_ManyVector() will have the default settings for the NVEC-
TOR_MANYVECTOR module. We note that these routines do not call the corresponding routines on subvectors, so
those should be set up as desired before attaching them to the ManyVector in N_VNew_ManyVector().

int N_VEnableFusedOps_ManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the
manyvector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_ManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
manyvector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleAddMulti_ManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the manyvector vector. The return value is 0 for success and -1 if the input vector or its
ops structure are NULL.

int N_VEnableDotProdMulti_ManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
manyvector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearSumVectorArray_ManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
manyvector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableScaleVectorArray_ManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the
manyvector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_ManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the
manyvector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_ManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in
the manyvector vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableWrmsNormMaskVectorArray_ManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector ar-
rays in the manyvector vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

Notes

• N_VNew_ManyVector() sets the field own_data = SUNFALSE. N_VDestroy_ManyVector() will
not attempt to call N_VDestroy() on any subvectors contained in the subvector array for any N_Vector
with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the subvectors.

• To maximize efficiency, arithmetic vector operations in the NVECTOR_MANYVECTOR implementation that
have more than one N_Vector argument do not check for consistent internal representation of these vectors.
It is the user’s responsibility to ensure that such routines are called with N_Vector arguments that were all
created with the same subvector representations.
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10.16 The NVECTOR_MPIMANYVECTOR Module

The NVECTOR_MPIMANYVECTOR implementation of the NVECTOR module provided with SUNDIALS is
designed to facilitate problems with an inherent data partitioning for the solution vector, and when using distributed-
memory parallel architectures. As such, the MPIManyVector implementation supports all use cases allowed by the
MPI-unaware NVECTOR_MANYVECTOR implementation, as well as partitioning data between nodes in a parallel
environment. These data partitions are entirely user-defined, through construction of distinct NVECTOR modules for
each component, that are then combined together to form the NVECTOR_MPIMANYVECTOR. We envision three
generic use cases for this implementation:

1. Heterogenous computational architectures (single-node or multi-node): for users who wish to partition data on
a node between different computing resources, they may create architecture-specific subvectors for each par-
tition. For example, a user could create one MPI-parallel component based on NVECTOR_PARALLEL, an-
other single-node component for GPU accelerators based on NVECTOR_CUDA, and another threaded single-
node component based on NVECTOR_OPENMP.

2. Process-based multiphysics decompositions (multi-node): for users who wish to combine separate simulations
together, e.g., where one subvector resides on one subset of MPI processes, while another subvector resides on
a different subset of MPI processes, and where the user has created a MPI intercommunicator to connect these
distinct process sets together.

3. Structure of arrays (SOA) data layouts (single-node or multi-node): for users who wish to create sepa-
rate subvectors for each solution component, e.g., in a Navier-Stokes simulation they could have sepa-
rate subvectors for density, velocities and pressure, which are combined together into a single NVEC-
TOR_MPIMANYVECTOR for the overall “solution”.

We note that the above use cases are not mutually exclusive, and the NVECTOR_MPIMANYVECTOR implementa-
tion should support arbitrary combinations of these cases.

The NVECTOR_MPIMANYVECTOR implementation is designed to work with any NVECTOR subvectors that im-
plement the minimum required set of operations, however significant performance benefits may be obtained when
subvectors additionally implement the optional local reduction operations listed in the section Description of the
NVECTOR local reduction operations.

Additionally, NVECTOR_MPIMANYVECTOR sets no limit on the number of subvectors that may be attached
(aside from the limitations of using sunindextype for indexing, and standard per-node memory limitations).
However, while this ostensibly supports subvectors with one entry each (i.e., one subvector for each solution en-
try), we anticipate that this extreme situation will hinder performance due to non-stride-one memory accesses and
increased function call overhead. We therefore recommend a relatively coarse partitioning of the problem, although
actual performance will likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time integration modules
that will leverage the problem partitioning enabled by NVECTOR_MPIMANYVECTOR. However, even at present
we anticipate that users will be able to leverage such data partitioning in their problem-defining ODE right-hand side,
DAE residual, or nonlinear solver residual functions.

10.16.1 NVECTOR_MPIMANYVECTOR structure

The NVECTOR_MPIMANYVECTOR implementation defines the content field of N_Vector to be a structure con-
taining the MPI communicator (or MPI_COMM_NULL if running on a single-node), the number of subvectors com-
prising the MPIManyVector, the global length of the MPIManyVector (including all subvectors on all MPI tasks), a
pointer to the beginning of the array of subvectors, and a boolean flag own_data indicating ownership of the sub-
vectors that populate subvec_array.

struct _N_VectorContent_MPIManyVector {
MPI_Comm comm; /* overall MPI communicator */
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sunindextype num_subvectors; /* number of vectors attached */
sunindextype global_length; /* overall mpimanyvector length */
N_Vector* subvec_array; /* pointer to N_Vector array */
booleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector_mpimanyvector.h. The installed module library
to link against is libsundials_nvecmpimanyvector.lib where .lib is typically .so for shared libraries
and .a for static libraries.

Note: If SUNDIALS is configured with MPI disabled, then the MPIManyVector library will not be built. Further-
more, any user codes that include nvector_mpimanyvector.h must be compiled using an MPI-aware compiler
(whether the specific user code utilizes MPI or not). We note that the NVECTOR_MANYVECTOR implementation
is designed for ManyVector use cases in an MPI-unaware environment.

10.16.2 NVECTOR_MPIMANYVECTOR functions

The NVECTOR_MPIMANYVECTOR module implements all vector operations listed in the sections De-
scription of the NVECTOR operations, Description of the NVECTOR fused operations, Description of the
NVECTOR vector array operations, and Description of the NVECTOR local reduction operations, except for
N_VGetArrayPointer(), N_VSetArrayPointer(), N_VScaleAddMultiVectorArray(),
and N_VLinearCombinationVectorArray(). As such, this vector cannot be used with the SUNDI-
ALS Fortran-77 interfaces, nor with the SUNDIALS direct solvers and preconditioners. Instead, the NVEC-
TOR_MPIMANYVECTOR module provides functions to access subvectors, whose data may in turn be accessed
according to their NVECTOR implementations.

The names of vector operations are obtained from those in the sections Description of the NVECTOR opera-
tions, Description of the NVECTOR fused operations, Description of the NVECTOR vector array operations,
and Description of the NVECTOR local reduction operations by appending the suffix _MPIManyVector (e.g.
N_VDestroy_MPIManyVector). The module NVECTOR_MPIMANYVECTOR provides the following addi-
tional user-callable routines:

N_Vector N_VNew_MPIManyVector(sunindextype num_subvectors, N_Vector *vec_array)
This function creates a MPIManyVector from a set of existing NVECTOR objects, under the requirement that
all MPI-aware subvectors use the same MPI communicator (this is checked internally). If none of the subvec-
tors are MPI-aware, then this may equivalently be used to describe data partitioning within a single node. We
note that this routine is designed to support use cases A and C above.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that
pointer array after calling this function. However, this routine does not allocate any new subvectors, so the
underlying NVECTOR objects themselves should not be destroyed before the MPIManyVector that contains
them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine returns NULL (e.g., if
two MPI-aware subvectors use different MPI communicators).

Users of the Fortran 2003 interface to this function will first need to use the generic N\_Vector utility func-
tions N_VNewVectorArray, and N_VSetVecAtIndexVectorArray to create the N_Vector* argu-
ment. This is further explained in Chapter Working with N_Vector arrays, and the functions are documented in
Chapter NVECTOR Utility Functions.

N_Vector N_VMake_MPIManyVector(MPI_Comm comm, sunindextype num_subvectors,
N_Vector *vec_array)

This function creates a MPIManyVector from a set of existing NVECTOR objects, and a user-created MPI
communicator that “connects” these subvectors. Any MPI-aware subvectors may use different MPI communi-
cators than the input comm. We note that this routine is designed to support any combination of the use cases
above.
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The input comm should be this user-created MPI communicator. This routine will internally call
MPI_Comm_dup to create a copy of the input comm, so the user-supplied comm argument need not be re-
tained after the call to N_VMake_MPIManyVector().

If all subvectors are MPI-unaware, then the input comm argument should be MPI_COMM_NULL, although
in this case, it would be simpler to call N_VNew_MPIManyVector() instead, or to just use the NVEC-
TOR_MANYVECTOR module.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that
pointer array after calling this function. However, this routine does not allocate any new subvectors, so the
underlying NVECTOR objects themselves should not be destroyed before the MPIManyVector that contains
them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine returns NULL (e.g., if
the input vec_array is NULL).

N_Vector N_VGetSubvector_MPIManyVector(N_Vector v, sunindextype vec_num)
This function returns the vec_num subvector from the NVECTOR array.

realtype *N_VGetSubvectorArrayPointer_MPIManyVector(N_Vector v, sunindextype vec_num)
This function returns the data array pointer for the vec_num subvector from the NVECTOR array.

If the input vec_num is invalid, or if the subvector does not support the N_VGetArrayPointer operation,
then NULL is returned.

int N_VSetSubvectorArrayPointer_MPIManyVector(realtype *v_data, N_Vector v, sunindex-
type vec_num)

This function sets the data array pointer for the vec_num subvector from the NVECTOR array.

If the input vec_num is invalid, or if the subvector does not support the N_VSetArrayPointer operation,
then -1 is returned; otherwise it returns 0.

sunindextype N_VGetNumSubvectors_MPIManyVector(N_Vector v)
This function returns the overall number of subvectors in the MPIManyVector object.

By default all fused and vector array operations are disabled in the NVECTOR_MPIMANYVECTOR mod-
ule, except for N_VWrmsNormVectorArray() and N_VWrmsNormMaskVectorArray(), that are en-
abled by default. The following additional user-callable routines are provided to enable or disable fused and vec-
tor array operations for a specific vector. To ensure consistency across vectors it is recommended to first cre-
ate a vector with N_VNew_MPIManyVector() or N_VMake_MPIManyVector(), enable/disable the de-
sired operations for that vector with the functions below, and create any additional vectors from that vector us-
ing N_VClone(). This guarantees that the new vectors will have the same operations enabled/disabled, since
cloned vectors inherit those configuration options from the vector they are cloned from, while vectors created
with N_VNew_MPIManyVector() and N_VMake_MPIManyVector() will have the default settings
for the NVECTOR_MPIMANYVECTOR module. We note that these routines do not call the corresponding
routines on subvectors, so those should be set up as desired before attaching them to the MPIManyVector in
N_VNew_MPIManyVector() or N_VMake_MPIManyVector().

int N_VEnableFusedOps_MPIManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the MPI-
ManyVector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableLinearCombination_MPIManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
MPIManyVector vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableScaleAddMulti_MPIManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors
fused operation in the MPIManyVector vector. The return value is 0 for success and -1 if the input vector or
its ops structure are NULL.
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int N_VEnableDotProdMulti_MPIManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
MPIManyVector vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableLinearSumVectorArray_MPIManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
MPIManyVector vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

int N_VEnableScaleVectorArray_MPIManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the MPI-
ManyVector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableConstVectorArray_MPIManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the MPI-
ManyVector vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

int N_VEnableWrmsNormVectorArray_MPIManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in
the MPIManyVector vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

int N_VEnableWrmsNormMaskVectorArray_MPIManyVector(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the MPIManyVector vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

Notes

• N_VNew_MPIManyVector() and N_VMake_MPIManyVector() set the field own_data =
SUNFALSE. N_VDestroy_MPIManyVector() will not attempt to call N_VDestroy() on any subvec-
tors contained in the subvector array for any N_Vector with own_data set to SUNFALSE. In such a case, it
is the user’s responsibility to deallocate the subvectors.

• To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIMANYVECTOR implementation
that have more than one N_Vector argument do not check for consistent internal representation of these vec-
tors. It is the user’s responsibility to ensure that such routines are called with N_Vector arguments that were
all created with the same subvector representations.

10.17 The NVECTOR_MPIPLUSX Module

The NVECTOR_MPIPLUSX implementation of the NVECTOR module provided with SUNDIALS is designed to
facilitate the MPI+X paradigm, where X is some form of on-node (local) parallelism (e.g. OpenMP, CUDA). This
paradigm is becoming increasingly popular with the rise of heterogeneous computing architectures.

The NVECTOR_MPIPLUSX implementation is designed to work with any NVECTOR that implements the min-
imum required set of operations. However, it is not recommended to use the NVECTOR_PARALLEL, NVEC-
TOR_PARHYP, NVECTOR_PETSC, or NVECTOR_TRILINOS implementations underneath the NVEC-
TOR_MPIPLUSX module since they already provide MPI capabilities.

10.17.1 NVECTOR_MPIPLUSX structure

The NVECTOR_MPIPLUSX implementation is a thin wrapper around the NVECTOR_MPIMANYVECTOR. Ac-
cordingly, it adopts the same content structure as defined in the section NVECTOR_MPIMANYVECTOR structure.
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The header file to include when using this module is nvector_mpiplusx.h. The installed module library to link
against is libsundials_nvecmpiplusx.lib where .lib is typically .so for shared libraries and .a for
static libraries.

Note: If SUNDIALS is configured with MPI disabled, then the mpiplusx library will not be built. Furthermore, any
user codes that include nvector_mpiplusx.h must be compiled using an MPI-aware compiler.

10.17.2 NVECTOR_MPIPLUSX functions

The NVECTOR_MPIPLUSX module adopts all vector operations listed in the sections Description of the NVEC-
TOR operations, Description of the NVECTOR fused operations, Description of the NVECTOR vector array oper-
ations, and Description of the NVECTOR local reduction operations, from the NVECTOR_MPIMANYVECTOR
(see section The NVECTOR_MPIMANYVECTOR Module) except for N_VGetArrayPointer(), and
N_VSetArrayPointer(); the module provides its own implementation of these functions that call
the local vector implementations. Therefore, the NVECTOR_MPIPLUSX module implements all of the
operations listed in the referenced sections except for N_VScaleAddMultiVectorArray(), and
N_VLinearCombinationVectorArray(). Accordingly, it’s compatibility with the SUNDIALS Fortran-77
interface, and with the SUNDIALS direct solvers and preconditioners depends on the local vector implementation.

The module NVECTOR_MPIPLUSX provides the following additional user-callable routines:

N_Vector N_VMake_MPIPlusX(MPI_Comm comm, N_Vector *local_vector)
This function creates a MPIPlusX vector from an exisiting local (i.e. on node) NVECTOR object, and a user-
created MPI communicator.

The input comm should be this user-created MPI communicator. This routine will internally call
MPI_Comm_dup to create a copy of the input comm, so the user-supplied comm argument need not be re-
tained after the call to N_VMake_MPIPlusX().

This routine will copy the NVECTOR pointer to the input local_vector, so the underlying local NVEC-
TOR object should not be destroyed before the mpiplusx that contains it.

Upon successful completion, the new MPIPlusX is returned; otherwise this routine returns NULL (e.g., if the
input local_vector is NULL).

N_Vector N_VGetLocal_MPIPlusX(N_Vector v)
This function returns the local vector underneath the MPIPlusX NVECTOR.

realtype *N_VGetArrayPointer_MPIPlusX(N_Vector v)
This function returns the data array pointer for the local vector.

If the local vector does not support the N_VGetArrayPointer operation, then NULL is returned.

void N_VSetArrayPointer_MPIPlusX(realtype *v_data, N_Vector v)
This function sets the data array pointer for the local vector if the local vector implements the
N_VGetArrayPointe() operation.

The NVECTOR_MPIPLUSX module does not implement any fused or vector array operations. Instead users should
enable/disable fused operations on the local vector.

Notes

• N_VMake_MPIPlusX() sets the field own_data = SUNFALSE and N_VDestroy_MPIPlusX() will
not call N_VDestroy() on the local vector. In this a case, it is the user’s responsibility to deallocate the lo-
cal vector.

• To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIPLUSX implementation that have
more than one N_Vector argument do not check for consistent internal representation of these vectors. It is
the user’s responsibility to ensure that such routines are called with N_Vector arguments that were all cre-
ated with the same subvector representations.
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10.18 NVECTOR Examples

There are NVECTOR examples that may be installed for each implementation: serial, parallel, OpenMP, and
Pthreads. Each implementation makes use of the functions in test_nvector.c. These example functions show
simple usage of the NVECTOR family of functions. The input to the examples are the vector length, number of
threads (if threaded implementation), and a print timing flag.

The following is a list of the example functions in test_nvector.c:

• Test_N_VClone: Creates clone of vector and checks validity of clone.

• Test_N_VCloneEmpty: Creates clone of empty vector and checks validity of clone.

• Test_N_VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test_N_VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned array.

• Test_N_VGetArrayPointer: Get array pointer.

• Test_N_VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check values.

• Test_N_VGetLength: Compares self-reported length to calculated length.

• Test_N_VGetCommunicator: Compares self-reported communicator to the one used in constructor; or
for MPI-unaware vectors it ensures that NULL is reported.

• Test_N_VLinearSum Case 1a: Test y = x + y

• Test_N_VLinearSum Case 1b: Test y = -x + y

• Test_N_VLinearSum Case 1c: Test y = ax + y

• Test_N_VLinearSum Case 2a: Test x = x + y

• Test_N_VLinearSum Case 2b: Test x = x - y

• Test_N_VLinearSum Case 2c: Test x = x + by

• Test_N_VLinearSum Case 3: Test z = x + y

• Test_N_VLinearSum Case 4a: Test z = x - y

• Test_N_VLinearSum Case 4b: Test z = -x + y

• Test_N_VLinearSum Case 5a: Test z = x + by

• Test_N_VLinearSum Case 5b: Test z = ax + y

• Test_N_VLinearSum Case 6a: Test z = -x + by

• Test_N_VLinearSum Case 6b: Test z = ax - y

• Test_N_VLinearSum Case 7: Test z = a(x + y)

• Test_N_VLinearSum Case 8: Test z = a(x - y)

• Test_N_VLinearSum Case 9: Test z = ax + by

• Test_N_VConst: Fill vector with constant and check result.

• Test_N_VProd: Test vector multiply: z = x * y

• Test_N_VDiv: Test vector division: z = x / y

• Test_N_VScale: Case 1: scale: x = cx

• Test_N_VScale: Case 2: copy: z = x

• Test_N_VScale: Case 3: negate: z = -x
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• Test_N_VScale: Case 4: combination: z = cx

• Test_N_VAbs: Create absolute value of vector.

• Test_N_VAddConst: add constant vector: z = c + x

• Test_N_VDotProd: Calculate dot product of two vectors.

• Test_N_VMaxNorm: Create vector with known values, find and validate the max norm.

• Test_N_VWrmsNorm: Create vector of known values, find and validate the weighted root mean square.

• Test_N_VWrmsNormMask: Create vector of known values, find and validate the weighted root mean square
using all elements except one.

• Test_N_VMin: Create vector, find and validate the min.

• Test_N_VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test_N_VL1Norm: Create vector, find and validate the L1 norm.

• Test_N_VCompare: Compare vector with constant returning and validating comparison vector.

• Test_N_VInvTest: Test z[i] = 1 / x[i]

• Test_N_VConstrMask: Test mask of vector x with vector c.

• Test_N_VMinQuotient: Fill two vectors with known values. Calculate and validate minimum quotient.

• Test_N_VLinearCombination: Case 1a: Test x = a x

• Test_N_VLinearCombination: Case 1b: Test z = a x

• Test_N_VLinearCombination: Case 2a: Test x = a x + b y

• Test_N_VLinearCombination: Case 2b: Test z = a x + b y

• Test_N_VLinearCombination: Case 3a: Test x = x + a y + b z

• Test_N_VLinearCombination: Case 3b: Test x = a x + b y + c z

• Test_N_VLinearCombination: Case 3c: Test w = a x + b y + c z

• Test_N_VScaleAddMulti: Case 1a: y = a x + y

• Test_N_VScaleAddMulti: Case 1b: z = a x + y

• Test_N_VScaleAddMulti: Case 2a: Y[i] = c[i] x + Y[i], i = 1,2,3

• Test_N_VScaleAddMulti: Case 2b: Z[i] = c[i] x + Y[i], i = 1,2,3

• Test_N_VDotProdMulti: Case 1: Calculate the dot product of two vectors

• Test_N_VDotProdMulti: Case 2: Calculate the dot product of one vector with three other vectors in a
vector array.

• Test_N_VLinearSumVectorArray: Case 1: z = a x + b y

• Test_N_VLinearSumVectorArray: Case 2a: Z[i] = a X[i] + b Y[i]

• Test_N_VLinearSumVectorArray: Case 2b: X[i] = a X[i] + b Y[i]

• Test_N_VLinearSumVectorArray: Case 2c: Y[i] = a X[i] + b Y[i]

• Test_N_VScaleVectorArray: Case 1a: y = c y

• Test_N_VScaleVectorArray: Case 1b: z = c y

• Test_N_VScaleVectorArray: Case 2a: Y[i] = c[i] Y[i]

• Test_N_VScaleVectorArray: Case 2b: Z[i] = c[i] Y[i]
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• Test_N_VScaleVectorArray: Case 1a: z = c

• Test_N_VScaleVectorArray: Case 1b: Z[i] = c

• Test_N_VWrmsNormVectorArray: Case 1a: Create a vector of know values, find and validate the
weighted root mean square norm.

• Test_N_VWrmsNormVectorArray: Case 1b: Create a vector array of three vectors of know values, find
and validate the weighted root mean square norm of each.

• Test_N_VWrmsNormMaskVectorArray: Case 1a: Create a vector of know values, find and validate the
weighted root mean square norm using all elements except one.

• Test_N_VWrmsNormMaskVectorArray: Case 1b: Create a vector array of three vectors of know values,
find and validate the weighted root mean square norm of each using all elements except one.

• Test_N_VScaleAddMultiVectorArray: Case 1a: y = a x + y

• Test_N_VScaleAddMultiVectorArray: Case 1b: z = a x + y

• Test_N_VScaleAddMultiVectorArray: Case 2a: Y[j][0] = a[j] X[0] + Y[j][0]

• Test_N_VScaleAddMultiVectorArray: Case 2b: Z[j][0] = a[j] X[0] + Y[j][0]

• Test_N_VScaleAddMultiVectorArray: Case 3a: Y[0][i] = a[0] X[i] + Y[0][i]

• Test_N_VScaleAddMultiVectorArray: Case 3b: Z[0][i] = a[0] X[i] + Y[0][i]

• Test_N_VScaleAddMultiVectorArray: Case 4a: Y[j][i] = a[j] X[i] + Y[j][i]

• Test_N_VScaleAddMultiVectorArray: Case 4b: Z[j][i] = a[j] X[i] + Y[j][i]

• Test_N_VLinearCombinationVectorArray: Case 1a: x = a x

• Test_N_VLinearCombinationVectorArray: Case 1b: z = a x

• Test_N_VLinearCombinationVectorArray: Case 2a: x = a x + b y

• Test_N_VLinearCombinationVectorArray: Case 2b: z = a x + b y

• Test_N_VLinearCombinationVectorArray: Case 3a: x = a x + b y + c z

• Test_N_VLinearCombinationVectorArray: Case 3b: w = a x + b y + c z

• Test_N_VLinearCombinationVectorArray: Case 4a: X[0][i] = c[0] X[0][i]

• Test_N_VLinearCombinationVectorArray: Case 4b: Z[i] = c[0] X[0][i]

• Test_N_VLinearCombinationVectorArray: Case 5a: X[0][i] = c[0] X[0][i] + c[1] X[1][i]

• Test_N_VLinearCombinationVectorArray: Case 5b: Z[i] = c[0] X[0][i] + c[1] X[1][i]

• Test_N_VLinearCombinationVectorArray: Case 6a: X[0][i] = X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test_N_VLinearCombinationVectorArray: Case 6b: X[0][i] = c[0] X[0][i] + c[1] X[1][i] + c[2]
X[2][i]

• Test_N_VLinearCombinationVectorArray: Case 6c: Z[i] = c[0] X[0][i] + c[1] X[1][i] + c[2]
X[2][i]

• Test_N_VDotProdLocal: Calculate MPI task-local portion of the dot product of two vectors.

• Test_N_VMaxNormLocal: Create vector with known values, find and validate the MPI task-local portion
of the max norm.

• Test_N_VMinLocal: Create vector, find and validate the MPI task-local min.

• Test_N_VL1NormLocal: Create vector, find and validate the MPI task-local portion of the L1 norm.
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• Test_N_VWSqrSumLocal: Create vector of known values, find and validate the MPI task-local portion of
the weighted squared sum of two vectors.

• Test_N_VWSqrSumMaskLocal: Create vector of known values, find and validate the MPI task-local por-
tion of the weighted squared sum of two vectors, using all elements except one.

• Test_N_VInvTestLocal: Test the MPI task-local portion of z[i] = 1 / x[i]

• Test_N_VConstrMaskLocal: Test the MPI task-local portion of the mask of vector x with vector c.

• Test_N_VMinQuotientLocal: Fill two vectors with known values. Calculate and validate the MPI task-
local minimum quotient.

10.19 NVECTOR functions required by ARKode

In the table below, we list the vector functions in the N_Vector module that are called within the ARKode pack-
age. The table also shows, for each function, which ARKode module uses the function. The ARKSTEP and ERK-
STEP columns show function usage within the main time-stepping modules and the shared ARKode infrastructure,
while the remaining columns show function usage within the ARKLS linear solver interface, the ARKBANDPRE
and ARKBBDPRE preconditioner modules, and the FARKODE module.

Note that since FARKODE is built on top of ARKode, and therefore requires the same N_Vector routines, in the
FARKODE column we only list the routines that the FARKODE interface directly utilizes.

Note that for ARKLS we only list the N_Vector routines used directly by ARKLS, each SUNLinearSolver
module may have additional requirements that are not listed here. In addition, specific SUNNonlinearSolver
modules attached to ARKode may have additional N_Vector requirements. For additional requirements by specific
SUNLinearSolver and SUNNonlinearSolver modules, please see the accompanying sections Description of
the SUNLinearSolver module and Description of the SUNNonlinearSolver Module.

At this point, we should emphasize that the user does not need to know anything about ARKode’s usage of vec-
tor functions in order to use ARKode. Instead, this information is provided primarily for users interested in con-
structing a custom N_Vector module. We note that a number of N_Vector functions from the section De-
scription of the NVECTOR Modules are not listed in the above table. Therefore a user-supplied N_Vector mod-
ule for ARKode could safely omit these functions from their implementation (although some may be needed by
SUNNonlinearSolver or SUNLinearSolver modules).
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Routine ARK-
STEP

ERK-
STEP

ARKLS ARKBAND-
PRE

ARKBBD-
PRE

FARKODE

N_VGetLength X
N_VAbs X X
N_VAddConst X X
N_VClone X X X
N_VCloneEmpty X
N_VConst X X X X
N_VDestroy X X X X
N_VDiv X X
N_VGetArrayPointer X1 X X X
N_VInv X X
N_VLinearSum X X X
N_VMaxNorm X X
N_VMin X X X
N_VScale X X X X X
N_VSetArrayPointer X1 X
N_VSpace2 X X X X X
N_VWrmsNorm X X X X X
N_VLinearCombination3 X X
N_VMinQuotient5 X X
N_VConstrMask5 X X
N_VCompare5 X X

1. This is only required with dense or band matrix-based linear solver modules, where the default difference-
quotient Jacobian approximation is used.

2. The N_VSpace() function is only informational, and will only be called if provided by the N_Vector im-
plementation.

3. The N_VLinearCombination() function is in fact optional; if it is not supplied then N_VLinearSum()
will be used instead.

4. The N_VGetLength() function is only required when an iterative or matrix iterative SUNLinearSolver
module is used.

5. The functions N_VMinQuotient(), N_VConstrMask(), and N_VCompare() are only used when in-
equality constraints are enabled and may be omitted if this feature is not used.
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Matrix Data Structures

The SUNDIALS library comes packaged with a variety of SUNMatrix implementations, designed for simulations
requiring direct linear solvers for problems in serial or shared-memory parallel environments. SUNDIALS addition-
ally provides a simple interface for generic matrices (akin to a C++ abstract base class). All of the major SUNDI-
ALS packages (CVODE(s), IDA(s), KINSOL, ARKODE), are constructed to only depend on these generic matrix
operations, making them immediately extensible to new user-defined matrix objects. For each of the SUNDIALS-
provided matrix types, SUNDIALS also provides at least two SUNLinearSolver implementations that factor
these matrix objects and use them in the solution of linear systems.

11.1 Description of the SUNMATRIX Modules

For problems that involve direct methods for solving linear systems, the SUNDIALS solvers not only operate on
generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations defined by the par-
ticular SUNMATRIX implementation. Users can provide their own specific implementation of the SUNMATRIX
module, particularly in cases where they provide their own N_Vector and/or linear solver modules, and require
matrices that are compatible with those implementations. Alternately, we provide three SUNMATRIX implementa-
tions: dense, banded, and sparse. The generic operations are described below, and descriptions of the implementa-
tions provided with SUNDIALS follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic N_Vector type.
Specifically, a generic SUNMatrix is a pointer to a structure that has an implementation-dependent content field
containing the description and actual data of the matrix, and an ops field pointing to a structure with generic matrix
operations. The type SUNMatrix is defined as:

typedef struct _generic_SUNMatrix *SUNMatrix;

struct _generic_SUNMatrix {
void *content;
struct _generic_SUNMatrix_Ops *ops;

};

Here, the _generic_SUNMatrix_Ops structure is essentially a list of function pointers to the various actual ma-
trix operations, and is defined as

struct _generic_SUNMatrix_Ops {
SUNMatrix_ID (*getid)(SUNMatrix);
SUNMatrix (*clone)(SUNMatrix);
void (*destroy)(SUNMatrix);
int (*zero)(SUNMatrix);
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int (*copy)(SUNMatrix, SUNMatrix);
int (*scaleadd)(realtype, SUNMatrix, SUNMatrix);
int (*scaleaddi)(realtype, SUNMatrix);
int (*matvecsetup)(SUNMatrix);
int (*matvec)(SUNMatrix, N_Vector, N_Vector);
int (*space)(SUNMatrix, long int*, long int*);

};

The generic SUNMATRIX module defines and implements the matrix operations acting on a SUNMatrix. These
routines are nothing but wrappers for the matrix operations defined by a particular SUNMATRIX implementation,
which are accessed through the ops field of the SUNMatrix structure. To illustrate this point we show below the
implementation of a typical matrix operation from the generic SUNMATRIX module, namely SUNMatZero, which
sets all values of a matrix A to zero, returning a flag denoting a successful/failed operation:

int SUNMatZero(SUNMatrix A)
{

return((int) A->ops->zero(A));
}

The subsection Description of the SUNMATRIX operations contains a complete list of all matrix operations defined
by the generic SUNMATRIX module. A particular implementation of the SUNMATRIX module must:

• Specify the content field of the SUNMatrix object.

• Define and implement a minimal subset of the matrix operations. See the documentation for each SUNDIALS
solver to determine which SUNMATRIX operations they require. The list of required operations for use with
ARKode is given in the section SUNMATRIX functions required by ARKode.

Note that the names of these routines should be unique to that implementation in order to permit using more
than one SUNMATRIX module (each with different SUNMatrix internal data representations) in the same
code.

• Define and implement user-callable constructor and destructor routines to create and free a SUNMatrix with
the new content field and with ops pointing to the new matrix operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined SUNMatrix
(e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined SUNMatrix.

To aid in the creation of custom SUNMATRIX modules the generic SUNMATRIX module provides three utility
functions SUNMatNewEmpty(), SUNMatCopyOps(), and SUNMatFreeEmpty(). When used in custom
SUNMATRIX constructors and clone routines these functions will ease the introduction of any new optional ma-
trix operations to the SUNMATRIX API by ensuring only required operations need to be set and all operations are
copied when cloning a matrix.

SUNMatrix SUNMatNewEmpty()
This function allocates a new generic SUNMatrix object and initializes its content pointer and the function
pointers in the operations structure to NULL.

Return value: If successful, this function returns a SUNMatrix object. If an error occurs when allocating the
object, then this routine will return NULL.

int SUNMatCopyOps(SUNMatrix A, SUNMatrix B)
This function copies the function pointers in the ops structure of A into the ops structure of B.

Arguments:

• A – the matrix to copy operations from.
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• B – the matrix to copy operations to.

Return value: If successful, this function returns 0. If either of the inputs are NULL or the ops
structure of either input is NULL, then is function returns a non-zero value.

void SUNMatFreeEmpty(SUNMatrix A)
This routine frees the generic SUNMatrix object, under the assumption that any implementation-specific
data that was allocated within the underlying content structure has already been freed. It will additionally test
whether the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:

• A – a SUNMatrix object

Each SUNMATRIX implementation included in SUNDIALS has a unique identifier specified in enumeration
and shown in the table below. It is recommended that a user-supplied SUNMATRIX implementation use the
SUNMATRIX_CUSTOM identifier.

11.1.1 Identifiers associated with matrix kernels supplied with SUNDIALS

Matrix ID Matrix type ID Value
SUNMATRIX_DENSE Dense 𝑀 ×𝑁 matrix 0
SUNMATRIX_MAGMADENSE Magma dense 𝑀 ×𝑁 matrix 1
SUNMATRIX_BAND Band 𝑀 ×𝑀 matrix 2
SUNMATRIX_SPARSE Sparse (CSR or CSC) 𝑀 ×𝑁 matrix 3
SUNMATRIX_SLUNRLOC SUNMatrix wrapper for SuperLU_DIST SuperMatrix 4
SUNMATRIX_CUSPARSE CUDA sparse CSR matrix 5
SUNMATRIX_CUSTOM User-provided custom matrix 6

11.2 Description of the SUNMATRIX operations

For each of the SUNMatrix operations, we give the name, usage of the function, and a description of its mathemati-
cal operations below.

SUNMatrix_ID SUNMatGetID(SUNMatrix A)
Returns the type identifier for the matrix A. It is used to determine the matrix implementation type (e.g.
dense, banded, sparse,. . . ) from the abstract SUNMatrix interface. This is used to assess compatibility with
SUNDIALS-provided linear solver implementations. Returned values are given in the Table Identifiers associ-
ated with matrix kernels supplied with SUNDIALS

Usage:

id = SUNMatGetID(A);

SUNMatrix SUNMatClone(SUNMatrix A)
Creates a new SUNMatrix of the same type as an existing matrix A and sets the ops field. It does not copy
the matrix, but rather allocates storage for the new matrix.

Usage:

B = SUNMatClone(A);

void SUNMatDestroy(SUNMatrix A)
Destroys the SUNMatrix A and frees memory allocated for its internal data.
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Usage:

SUNMatDestroy(A);

int SUNMatSpace(SUNMatrix A, long int *lrw, long int *liw)
Returns the storage requirements for the matrix A. lrw contains the number of realtype words and liw contains
the number of integer words. The return value denotes success/failure of the operation.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied SUNMatrix module if that information is not of interest.

Usage:

ier = SUNMatSpace(A, &lrw, &liw);

int SUNMatZero(SUNMatrix A)
Zeros all entries of the SUNMatrix A. The return value is an integer flag denoting success/failure of the oper-
ation:

𝐴𝑖,𝑗 = 0, 𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛.

Usage:

ier = SUNMatZero(A);

int SUNMatCopy(SUNMatrix A, SUNMatrix B)
Performs the operation B = A for all entries of the matrices A and B. The return value is an integer flag denot-
ing success/failure of the operation:

𝐵𝑖,𝑗 = 𝐴𝑖,𝑗 , 𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛.

Usage:

ier = SUNMatCopy(A,B);

SUNMatScaleAdd(realtype c, SUNMatrix A, SUNMatrix B)
Performs the operation A = cA + B. The return value is an integer flag denoting success/failure of the opera-
tion:

𝐴𝑖,𝑗 = 𝑐𝐴𝑖,𝑗 + 𝐵𝑖,𝑗 , 𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛.

Usage:

ier = SUNMatScaleAdd(c, A, B);

SUNMatScaleAddI(realtype c, SUNMatrix A)
Performs the operation A = cA + I. The return value is an integer flag denoting success/failure of the operation:

𝐴𝑖,𝑗 = 𝑐𝐴𝑖,𝑗 + 𝛿𝑖,𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑛.

Usage:

ier = SUNMatScaleAddI(c, A);

SUNMatMatvecSetup(SUNMatrix A)
Performs any setup necessary to perform a matrix-vector product. The return value is an integer flag denoting
success/failure of the operation. It is useful for SUNMatrix implementations which need to prepare the matrix
itself, or communication structures before performing the matrix-vector product.

Usage:
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ier = SUNMatMatvecSetup(A);

SUNMatMatvec(SUNMatrix A, N_Vector x, N_Vector y)
Performs the matrix-vector product y = Ax. It should only be called with vectors x and y that are compatible
with the matrix A – both in storage type and dimensions. The return value is an integer flag denoting suc-
cess/failure of the operation:

𝑦𝑖 =

𝑛∑︁
𝑗=1

𝐴𝑖,𝑗𝑥𝑗 , 𝑖 = 1, . . . ,𝑚.

Usage:

ier = SUNMatMatvec(A, x, y);

11.2.1 SUNMatrix return codes

The functions provided to SUNMatrix modules within the SUNDIALS-provided SUNMatrix implementations utilize
a common set of return codes, listed below. These adhere to a common pattern: 0 indicates success, a negative value
indicates a failure. Aside from this pattern, the actual values of each error code are primarily to provide additional
information to the user in case of a SUNMatrix failure.

• SUNMAT_SUCCESS (0) – successful call

• SUNMAT_ILL_INPUT (-1) – an illegal input has been provided to the function

• SUNMAT_MEM_FAIL (-2) – failed memory access or allocation

• SUNMAT_OPERATION_FAIL (-3) – a SUNMatrix operation returned nonzero

• SUNMAT_MATVEC_SETUP_REQUIRED (-4) – the SUNMatMatvecSetup routine needs to be called prior
to calling SUNMatMatvec

11.3 Compatibility of SUNMATRIX types

We note that not all SUNMatrix types are compatible with all N_Vector types provided with SUNDIALS. This
is primarily due to the need for compatibility within the SUNMatMatvec routine; however, compatibility be-
tween SUNMatrix and N_Vector implementations is more crucial when considering their interaction within
SUNLinearSolver objects, as will be described in more detail in section Description of the SUNLinearSolver
module. More specifically, in the Table SUNDIALS matrix interfaces and vector implementations that can be used
for each we show the matrix interfaces available as SUNMatrix modules, and the compatible vector implementa-
tions.

11.3.1 SUNDIALS matrix interfaces and vector implementations that can be used for each

Linear
Solver

Se-
rial

Parallel
(MPI)

OpenMP pThreads hypre
Vec.

PETSc
Vec.

CUDA RAJA User
Suppl.

Dense X X X X
Band X X X X
Sparse X X X X
SLUNRloc X X X X X X X
User sup-
plied

X X X X X X X X X
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11.4 The SUNMATRIX_DENSE Module

The dense implementation of the SUNMatrix module provided with SUNDIALS, SUNMATRIX_DENSE, defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Dense {
sunindextype M;
sunindextype N;
realtype *data;
sunindextype ldata;
realtype **cols;

};

These entries of the content field contain the following information:

• M - number of rows

• N - number of columns

• data - pointer to a contiguous block of realtype variables. The elements of the dense matrix are stored
columnwise, i.e. the 𝐴𝑖,𝑗 element of a dense SUNMatrix A (with 0 ≤ 𝑖 < 𝑀 and 0 ≤ 𝑗 < 𝑁 ) may be
accessed via data[j*M+i].

• ldata - length of the data array (= 𝑀 ·𝑁 ).

• cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the array
data. The 𝐴𝑖,𝑗 element of a dense SUNMatrix A (with 0 ≤ 𝑖 < 𝑀 and 0 ≤ 𝑗 < 𝑁 ) may be accessed may
be accessed via cols[j][i].

The header file to be included when using this module is sunmatrix/sunmatrix_dense.h.

The following macros are provided to access the content of a SUNMATRIX_DENSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _D denotes that these are spe-
cific to the dense version.

SM_CONTENT_D(A)
This macro gives access to the contents of the dense SUNMatrix A.

The assignment A_cont = SM_CONTENT_D(A) sets A_cont to be a pointer to the dense SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_D(A) ( (SUNMatrixContent_Dense)(A->content) )

SM_ROWS_D(A)
Access the number of rows in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows =
SM_ROWS_D(A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_ROWS_D(A) = A_rows sets the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_D(A) ( SM_CONTENT_D(A)->M )

SM_COLUMNS_D(A)
Access the number of columns in the dense SUNMatrix A.
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This may be used either to retrieve or to set the value. For example, the assignment A_columns =
SM_COLUMNS_D(A) sets A_columns to be the number of columns in the matrix A. Similarly, the assign-
ment SM_COLUMNS_D(A) = A_columns sets the number of columns in A to equal A_columns

Implementation:

#define SM_COLUMNS_D(A) ( SM_CONTENT_D(A)->N )

SM_LDATA_D(A)
Access the total data length in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_ldata =
SM_LDATA_D(A) sets A_ldata to be the length of the data array in the matrix A. Similarly, the assignment
SM_LDATA_D(A) = A_ldata sets the parameter for the length of the data array in A to equal A_ldata.

Implementation:

#define SM_LDATA_D(A) ( SM_CONTENT_D(A)->ldata )

SM_DATA_D(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_D(A) sets A_data to be a pointer to the first component of the data
array for the dense SUNMatrix A. The assignment SM_DATA_D(A) = A_data sets the data array of A to
be A_data by storing the pointer A_data.

Implementation:

#define SM_DATA_D(A) ( SM_CONTENT_D(A)->data )

SM_COLS_D(A)
This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_D(A) sets A_cols to be a pointer to the array of column pointers
for the dense SUNMatrix A. The assignment SM_COLS_D(A) = A_cols sets the column pointer array
of A to be A_cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_D(A) ( SM_CONTENT_D(A)->cols )

SM_COLUMN_D(A)
This macros gives access to the individual columns of the data array of a dense SUNMatrix.

The assignment col_j = SM_COLUMN_D(A,j) sets col_j to be a pointer to the first entry of the j-th
column of the 𝑀 × 𝑁 dense matrix A (with 0 ≤ 𝑗 < 𝑁 ). The type of the expression SM_COLUMN_D(A,j)
is realtype *. The pointer returned by the call SM_COLUMN_D(A,j) can be treated as an array which is
indexed from 0 to M-1.

Implementation:

#define SM_COLUMN_D(A,j) ( (SM_CONTENT_D(A)->cols)[j] )

SM_ELEMENT_D(A)
This macro gives access to the individual entries of the data array of a dense SUNMatrix.

The assignments SM_ELEMENT_D(A,i,j) = a_ij and a_ij = SM_ELEMENT_D(A,i,j) reference
the 𝐴𝑖,𝑗 element of the 𝑀 ×𝑁 dense matrix A (with 0 ≤ 𝑖 < 𝑀 and 0 ≤ 𝑗 < 𝑁 ).

Implementation:
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#define SM_ELEMENT_D(A,i,j) ( (SM_CONTENT_D(A)->cols)[j][i] )

The SUNMATRIX_DENSE module defines dense implementations of all matrix operations listed in the section De-
scription of the SUNMATRIX operations. Their names are obtained from those in that section by appending the suf-
fix _Dense (e.g. SUNMatCopy_Dense). The module SUNMATRIX_DENSE provides the following additional
user-callable routines:

SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N)
This constructor function creates and allocates memory for a dense SUNMatrix. Its arguments are the num-
ber of rows, M, and columns, N, for the dense matrix.

void SUNDenseMatrix_Print(SUNMatrix A, FILE* outfile)
This function prints the content of a dense SUNMatrix to the output stream specified by outfile. Note:
stdout or stderr may be used as arguments for outfile to print directly to standard output or standard
error, respectively.

sunindextype SUNDenseMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the dense SUNMatrix.

sunindextype SUNDenseMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the dense SUNMatrix.

sunindextype SUNDenseMatrix_LData(SUNMatrix A)
This function returns the length of the data array for the dense SUNMatrix.

realtype* SUNDenseMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the dense SUNMatrix.

realtype** SUNDenseMatrix_Cols(SUNMatrix A)
This function returns a pointer to the cols array for the dense SUNMatrix.

realtype* SUNDenseMatrix_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the first entry of the jth column of the dense SUNMatrix. The resulting
pointer should be indexed over the range 0 to M-1.

Notes

• When looping over the components of a dense SUNMatrix A, the most efficient approaches are to:

– First obtain the component array via A_data = SM_DATA_D(A) or A_data =
SUNDenseMatrix_Data(A) and then access A_data[i] within the loop.

– First obtain the array of column pointers via A_cols = SM_COLS_D(A) or A_cols =
SUNDenseMatrix_Cols(A), and then access A_cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via A_colj =
SUNDenseMatrix_Column(A,j) and then to access the entries within that column using
A_colj[i] within the loop.

All three of these are more efficient than using SM_ELEMENT_D(A,i,j) within a double loop.

• Within the SUNMatMatvec_Dense routine, internal consistency checks are performed to ensure that
the matrix is called with consistent N_Vector implementations. These are currently limited to: NVEC-
TOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector im-
plementations are added to SUNDIALS, these will be included within this compatibility check.

For solvers that include a Fortran interface module, the SUNMATRIX_DENSE module also includes the Fortran-
callable function FSUNDenseMatInit() to initialize this SUNMATRIX_DENSE module for a given SUNDI-
ALS solver.

subroutine FSUNDenseMatInit(CODE, M, N, IER)
Initializes a dense SUNMatrix structure for use in a SUNDIALS solver.
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Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• M (long int, input) – number of matrix rows.

• N (long int, input) – number of matrix columns.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNDenseMassMatInit() initializes this SUNMATRIX_DENSE module for storing the mass matrix.

subroutine FSUNDenseMassMatInit(M, N, IER)
Initializes a dense SUNMatrix structure for use as a mass matrix in ARKode.

Arguments:

• M (long int, input) – number of matrix rows.

• N (long int, input) – number of matrix columns.

• IER (int, output) – return flag (0 success, -1 for failure).

11.5 The SUNMATRIX_MAGMADENSE Module

The SUNMATRIX_MAGMA implementation of the SUNDIALS SUNMatrix module API interfaces to the
MAGMA linear algebra library and can target NVIDIA’s CUDA programming model or AMD’s HIP programming
model [MAGMA2010]. All data stored by this matrix implementation resides on the GPU at all times. The imple-
mentation currently supports a standard LAPACK column-major storage format as well as a low-storage format for
block-diagonal matrices

A =

⎡⎢⎢⎢⎣
A0 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1

⎤⎥⎥⎥⎦
This matrix implementation is best paired with the SUNLINEARSOLVER_MAGMADENSE SUNLinearSolver.

The header file to include when using this module is sunmatrix/sunmatrix_magmadense.h. The installed
library to link to is libsundials_sunmatrixmagmadense.lib where lib is typically .so for shared li-
braries and .a for static libraries.

Warning: The SUNMATRIX_MAGMADENSE module is experimental and subject to change.

11.5.1 SUNMATRIX_MAGMADENSE Functions

The SUNMATRIX_MAGMADENSE module defines GPU-enabled implementations of all matrix operations listed
in Description of the SUNMATRIX operations.

• SUNMatGetID_MagmaDense – returns SUNMATRIX_MAGMADENSE

• SUNMatClone_MagmaDense

• SUNMatDestroy_MagmaDense

• SUNMatZero_MagmaDense
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• SUNMatCopy_MagmaDense

• SUNMatScaleAdd_MagmaDense

• SUNMatScaleAddI_MagmaDense

• SUNMatMatvecSetup_MagmaDense

• SUNMatMatvec_MagmaDense

• SUNMatSpace_MagmaDense

In addition, the SUNMATRIX_MAGMADENSE module defines the following implementation specific functions:

SUNMatrix SUNMatrix_MagmaDense(sunindextype M, sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper memhelper, void* queue)

This constructor function creates and allocates memory for an 𝑀 × 𝑁 SUNMATRIX_MAGMADENSE
SUNMatrix.

Arguments:

• M – the number of matrix rows.

• N – the number of matrix columns.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or
SUNMEMTYPE_DEVICE.

• memhelper – the memory helper used for allocating data.

• queue – a cudaStream_t when using CUDA or a hipStream_t when using HIP.

Return value:

If successful, a SUNMatrix object otherwise NULL.

SUNMatrix SUNMatrix_MagmaDenseBlock(sunindextype nblocks, sunindextype M_block, sunindex-
type N_block, SUNMemoryType memtype, SUNMemory-
Helper memhelper, void* queue)

This constructor function creates and allocates memory for a block diagonal SUNMATRIX_MAGMADENSE
SUNMatrix with nblocks of size 𝑀 ×𝑁 .

Arguments:

• nblocks – the number of matrix rows.

• M_block – the number of matrix rows in each block.

• N_block – the number of matrix columns in each block.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or
SUNMEMTYPE_DEVICE.

• memhelper – the memory helper used for allocating data.

• queue – a cudaStream_t when using CUDA or a hipStream_t when using HIP.

Return value:

If successful, a SUNMatrix object otherwise NULL.

sunindextype SUNMatrix_MagmaDense_Rows(SUNMatrix A)
This function returns the number of rows in the SUNMatrix object. For block diagonal matrices, the number
of rows is computed as 𝑀block × nblocks.

Arguments:

• A – a SUNMatrix object.
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Return value:

If successful, the number of rows in the SUNMatrix object otherwise
SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_Columns(SUNMatrix A)
This function returns the number of columns in the SUNMatrix object. For block diagonal matrices, the
number of columns is computed as 𝑁block × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:

If successful, the number of columns in the SUNMatrix object otherwise
SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_BlockRows(SUNMatrix A)
This function returns the number of rows in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:

If successful, the number of rows in a block of the SUNMatrix object otherwise
SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_BlockColumns(SUNMatrix A)
This function returns the number of columns in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:

If successful, the number of columns in a block of the SUNMatrix object otherwise
SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_LData(SUNMatrix A)
This function returns the length of the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:

If successful, the length of the SUNMatrix data array otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_NumBlocks(SUNMatrix A)
This function returns the number of blocks in the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:

If successful, the number of blocks in the SUNMatrix object otherwise
SUNMATRIX_ILL_INPUT.

11.5. The SUNMATRIX_MAGMADENSE Module 389



User Documentation for ARKode, v4.7.0

realtype* SUNMatrix_MagmaDense_Data(SUNMatrix A)
This function returns the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:

If successful, the SUNMatrix data array otherwise NULL.

realtype** SUNMatrix_MagmaDense_BlockData(SUNMatrix A)
This function returns an array of pointers that point to the start of the data array for each block in the
SUNMatrix.

Arguments:

• A – a SUNMatrix object.

Return value:

If successful, an array of data pointers to each of the SUNMatrix blocks otherwise NULL.

realtype* SUNMatrix_MagmaDense_Block(SUNMatrix A, sunindextype k)
This function returns a pointer to the data array for block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

Return value:

If successful, a pointer to the data array for the SUNMatrix block otherwise NULL.

Note: No bounds-checking is performed by this function, j should be strictly less than nblocks.

realtype* SUNMatrix_MagmaDense_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the data array for column j in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• j – the column index.

Return value:

If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note: No bounds-checking is performed by this function, j should be strictly less than 𝑛𝑏𝑙𝑜𝑐𝑘𝑠 *𝑁block.

realtype* SUNMatrix_MagmaDense_BlockColumn(SUNMatrix A, sunindextype k, sunindextype j)
This function returns a pointer to the data array for column j of block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

• j – the column index.
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Return value:

If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note: No bounds-checking is performed by this function, k should be strictly less than nblocks and j should
be strictly less than 𝑁block.

int SUNMatrix_MagmaDense_CopyToDevice(SUNMatrix A, realtype* h_data)
This function copies the matrix data to the GPU device from the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data from.

Return value:

• SUNMAT_SUCCESS – if the copy is successful.

• SUNMAT_ILL_INPUT – if either the SUNMatrix is not a SUNMATRIX_MAGMADENSE matrix.

• SUNMAT_MEM_FAIL – if the copy fails.

int SUNMatrix_MagmaDense_CopyFromDevice(SUNMatrix A, realtype* h_data)
This function copies the matrix data from the GPU device to the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data to.

Return value:

• SUNMAT_SUCCESS – if the copy is successful.

• SUNMAT_ILL_INPUT – if either the SUNMatrix is not a SUNMATRIX_MAGMADENSE matrix.

• SUNMAT_MEM_FAIL – if the copy fails.

11.5.2 SUNMATRIX_MAGMADENSE Usage Notes

Warning: When using the SUNMATRIX_MAGMADENSE module with a SUNDIALS package (e.g.
CVODE), the stream given to matrix should be the same stream used for the NVECTOR object that is provided
to the package, and the NVECTOR object given to the SUNMatvec operation. If different streams are utilized,
synchronization issues may occur.

11.6 The SUNMATRIX_BAND Module

The banded implementation of the SUNMatrix module provided with SUNDIALS, SUNMATRIX_BAND, defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Band {
sunindextype M;
sunindextype N;
sunindextype mu;
sunindextype ml;
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sunindextype smu;
sunindextype ldim;
realtype *data;
sunindextype ldata;
realtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Figure SUNBandMatrix Diagram. A
more complete description of the parts of this content field is given below:

• M - number of rows

• N - number of columns (N = M)

• mu - upper half-bandwidth, 0 ≤ mu < 𝑁

• ml - lower half-bandwidth, 0 ≤ ml < 𝑁

• smu - storage upper bandwidth, mu ≤ smu < 𝑁 . The LU decomposition routines in the associated SUNLIN-
SOL_BAND and SUNLINSOL_LAPACKBAND modules write the LU factors into the existing storage for
the band matrix. The upper triangular factor U, however, may have an upper bandwidth as big as min(N-1,
mu+ml) because of partial pivoting. The smu field holds the upper half-bandwidth allocated for the band ma-
trix.

• ldim - leading dimension (ldim ≥ 𝑠𝑚𝑢 + 𝑚𝑙 + 1)

• data - pointer to a contiguous block of realtype variables. The elements of the banded matrix are stored
columnwise (i.e. columns are stored one on top of the other in memory). Only elements within the specified
half-bandwidths are stored. data is a pointer to ldata contiguous locations which hold the elements within
the banded matrix.

• ldata - length of the data array (= ldim ·𝑁 )

• cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th column.
This pointer may be treated as an array indexed from smu-mu (to access the uppermost element within the
band in the j-th column) to smu+ml (to access the lowest element within the band in the j-th column). Indices
from 0 to smu-mu-1 give access to extra storage elements required by the LU decomposition function. Fi-
nally, cols[j][i-j+smu] is the (𝑖, 𝑗)-th element with 𝑗 −mu ≤ 𝑖 ≤ 𝑗 + ml.

The header file to be included when using this module is sunmatrix/sunmatrix_band.h.

The following macros are provided to access the content of a SUNMATRIX_BAND matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _B denotes that these are spe-
cific to the banded version.

SM_CONTENT_B(A)
This macro gives access to the contents of the banded SUNMatrix A.

The assignment A_cont = SM_CONTENT_B(A) sets A_cont to be a pointer to the banded SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_B(A) ( (SUNMatrixContent_Band)(A->content) )

SM_ROWS_B(A)
Access the number of rows in the banded SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows =
SM_ROWS_B(A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_ROWS_B(A) = A_rows sets the number of columns in A to equal A_rows.
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Fig. 11.1: Diagram of the storage for the SUNMATRIX_BAND module. Here A is an 𝑁×𝑁 band matrix with upper
and lower half-bandwidths mu and ml, respectively. The rows and columns of A are numbered from 0 to N-1 and the
(𝑖, 𝑗)-th element of A is denoted A(i,j). The greyed out areas of the underlying component storage are used by the
associated SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND linear solver.
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Implementation:

#define SM_ROWS_B(A) ( SM_CONTENT_B(A)->M )

SM_COLUMNS_B(A)
Access the number of columns in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either
to retrieve or to set the value.

Implementation:

#define SM_COLUMNS_B(A) ( SM_CONTENT_B(A)->N )

SM_UBAND_B(A)
Access the mu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to re-
trieve or to set the value.

Implementation:

#define SM_UBAND_B(A) ( SM_CONTENT_B(A)->mu )

SM_LBAND_B(A)
Access the ml parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to re-
trieve or to set the value.

Implementation:

#define SM_LBAND_B(A) ( SM_CONTENT_B(A)->ml )

SM_SUBAND_B(A)
Access the smu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_SUBAND_B(A) ( SM_CONTENT_B(A)->smu )

SM_LDIM_B(A)
Access the ldim parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_LDIM_B(A) ( SM_CONTENT_B(A)->ldim )

SM_LDATA_B(A)
Access the ldata parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_LDATA_B(A) ( SM_CONTENT_B(A)->ldata )

SM_DATA_B(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_B(A) sets A_data to be a pointer to the first component of the data
array for the banded SUNMatrix A. The assignment SM_DATA_B(A) = A_data sets the data array of A
to be A_data by storing the pointer A_data.

Implementation:
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#define SM_DATA_B(A) ( SM_CONTENT_B(A)->data )

SM_COLS_B(A)
This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_B(A) sets A_cols to be a pointer to the array of column pointers
for the banded SUNMatrix A. The assignment SM_COLS_B(A) = A_cols sets the column pointer array
of A to be A_cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_B(A) ( SM_CONTENT_B(A)->cols )

SM_COLUMN_B(A)
This macros gives access to the individual columns of the data array of a banded SUNMatrix.

The assignment col_j = SM_COLUMN_B(A,j) sets col_j to be a pointer to the diagonal element of the
j-th column of the 𝑁 ×𝑁 band matrix A, 0 ≤ 𝑗 ≤ 𝑁 − 1. The type of the expression SM_COLUMN_B(A,j)
is realtype *. The pointer returned by the call SM_COLUMN_B(A,j) can be treated as an array which is
indexed from -mu to ml.

Implementation:

#define SM_COLUMN_B(A,j) ( ((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A) )

SM_ELEMENT_B(A)
This macro gives access to the individual entries of the data array of a banded SUNMatrix.

The assignments SM_ELEMENT_B(A,i,j) = a_ij and a_ij = SM_ELEMENT_B(A,i,j) reference
the (𝑖, 𝑗)-th element of the 𝑁 × 𝑁 band matrix A, where 0 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1. The location (𝑖, 𝑗) should further
satisfy 𝑗 −mu ≤ 𝑖 ≤ 𝑗 + ml.

Implementation:

#define SM_ELEMENT_B(A,i,j) ( (SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(A)] )

SM_COLUMN_ELEMENT_B(A)
This macro gives access to the individual entries of the data array of a banded SUNMatrix.

The assignments SM_COLUMN_ELEMENT_B(col_j,i,j) = a_ij and a_ij =
SM_COLUMN_ELEMENT_B(col_j,i,j) reference the (𝑖, 𝑗)-th entry of the band matrix A when
used in conjunction with SM_COLUMN_B to reference the j-th column through col_j. The index (𝑖, 𝑗) should
satisfy 𝑗 −mu ≤ 𝑖 ≤ 𝑗 + ml.

Implementation:

#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_j[(i)-(j)])

The SUNMATRIX_BAND module defines banded implementations of all matrix operations listed in the section
Description of the SUNMATRIX operations. Their names are obtained from those in that section by appending the
suffix _Band (e.g. SUNMatCopy_Band). The module SUNMATRIX_BAND provides the following additional
user-callable routines:

SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu, sunindextype ml)
This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the
matrix size, N, and the upper and lower half-bandwidths of the matrix, mu and ml. The stored upper band-
width is set to mu+ml to accommodate subsequent factorization in the SUNLINSOL_BAND and SUNLIN-
SOL_LAPACKBAND modules.
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SUNMatrix SUNBandMatrixStorage(sunindextype N, sunindextype mu, sunindextype ml, sunindex-
type smu)

This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the ma-
trix size, N, the upper and lower half-bandwidths of the matrix, mu and ml, and the stored upper bandwidth,
smu. When creating a band SUNMatrix, this value should be

• at least min(N-1,mu+ml) if the matrix will be used by the SUNLinSol_Band module;

• exactly equal to mu+ml if the matrix will be used by the SUNLinSol_LapackBand module;

• at least mu if used in some other manner.

Note: it is strongly recommended that users call the default constructor, :c:func:‘SUNBandMatrix()‘, in all
standard use cases. This advanced constructor is used internally within SUNDIALS solvers, and is provided to
users who require banded matrices for non-default purposes.

void SUNBandMatrix_Print(SUNMatrix A, FILE* outfile)
This function prints the content of a banded SUNMatrix to the output stream specified by outfile. Note:
stdout or stderr may be used as arguments for outfile to print directly to standard output or standard
error, respectively.

sunindextype SUNBandMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the banded SUNMatrix.

sunindextype SUNBandMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the banded SUNMatrix.

sunindextype SUNBandMatrix_LowerBandwidth(SUNMatrix A)
This function returns the lower half-bandwidth for the banded SUNMatrix.

sunindextype SUNBandMatrix_UpperBandwidth(SUNMatrix A)
This function returns the upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_StoredUpperBandwidth(SUNMatrix A)
This function returns the stored upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_LDim(SUNMatrix A)
This function returns the length of the leading dimension of the banded SUNMatrix.

realtype* SUNBandMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the banded SUNMatrix.

realtype** SUNBandMatrix_Cols(SUNMatrix A)
This function returns a pointer to the cols array for the band SUNMatrix.

realtype* SUNBandMatrix_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the diagonal entry of the j-th column of the banded SUNMatrix. The result-
ing pointer should be indexed over the range -mu to ml.

Notes

• When looping over the components of a banded SUNMatrix A, the most efficient approaches are to:

– First obtain the component array via A_data = SM_DATA_B(A) or A_data =
SUNBandMatrix_Data(A) and then access A_data[i] within the loop.

– First obtain the array of column pointers via A_cols = SM_COLS_B(A) or A_cols =
SUNBandMatrix_Cols(A), and then access A_cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via A_colj =
SUNBandMatrix_Column(A,j) and then to access the entries within that column using
SM_COLUMN_ELEMENT_B(A_colj,i,j).

All three of these are more efficient than using SM_ELEMENT_B(A,i,j) within a double loop.
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• Within the SUNMatMatvec_Band routine, internal consistency checks are performed to ensure that
the matrix is called with consistent N_Vector implementations. These are currently limited to: NVEC-
TOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector im-
plementations are added to SUNDIALS, these will be included within this compatibility check.

For solvers that include a Fortran interface module, the SUNMATRIX_BAND module also includes the Fortran-
callable function FSUNBandMatInit() to initialize this SUNMATRIX_BAND module for a given SUNDIALS
solver.

subroutine FSUNBandMatInit(CODE, N, MU, ML, IER)
Initializes a band SUNMatrix structure for use in a SUNDIALS solver.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• N (long int, input) – number of matrix rows (and columns).

• MU (long int, input) – upper half-bandwidth.

• ML (long int, input) – lower half-bandwidth.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNBandMassMatInit() initializes this SUNMATRIX_BAND module for storing the mass matrix.

subroutine FSUNBandMassMatInit(N, MU, ML, IER)
Initializes a band SUNMatrix structure for use as a mass matrix in ARKode.

Arguments:

• N (long int, input) – number of matrix rows (and columns).

• MU (long int, input) – upper half-bandwidth.

• ML (long int, input) – lower half-bandwidth.

• IER (int, output) – return flag (0 success, -1 for failure).

11.7 The SUNMATRIX_CUSPARSE Module

The SUNMATRIX_CUSPARSE implementation of the SUNMatrix module provided with SUNDIALS, is an in-
terface to the NVIDIA cuSPARSE matrix for use on NVIDIA GPUs ([cuSPARSE]). All data stored by this matrix
implementation resides on the GPU at all times.

The header file to be included when using this module is sunmatrix/sunmatrix_cusparse.h. The installed
library to link to is libsundials_sunmatrixcusparse.lib where .lib is typically .so for shared li-
braries and .a for static libraries.

11.7.1 SUNMATRIX_CUSPARSE Description

The implementation currently supports the cuSPARSE CSR matrix format described in the cuSPARSE documenta-
tion as well as a unique low-storage format for block-diagonal matrices of the form

A =

⎡⎢⎢⎢⎣
A0 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1

⎤⎥⎥⎥⎦
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where all the block matrices Aj share the same sparsisty pattern. We will refer to this format as BCSR (not to be
confused with the canonical BSR format where each block is stored as dense). In this format, the CSR column in-
dices and row pointers are only stored for the first block and are computed only as necessary for other blocks. This
can drastically reduce the amount of storage required compared to the regular CSR format when there is a large num-
ber of blocks. This format is well-suited for, and intended to be used with the The SUNLinSol_cuSolverSp_batchQR
Module.

The SUNMATRIX_CUSPARSE module is experimental and subject to change.

11.7.2 SUNMATRIX_CUSPARSE Functions

The SUNMATRIX_CUSPARSE module defines GPU-enabled sparse implementations of all matrix oper-
ations listed in the section Description of the SUNMATRIX operations except for the SUNMatSpace and
SUNMatMatvecSetup operations:

• SUNMatGetID_cuSparse – returns SUNMATRIX_CUSPARSE

• SUNMatClone_cuSparse

• SUNMatDestroy_cuSparse

• SUNMatZero_cuSparse

• SUNMatCopy_cuSparse

• SUNMatScaleAdd_cuSparse – performs 𝐴 = 𝑐𝐴 + 𝐵, where 𝐴 and 𝐵 must have the same sparsity
pattern

• SUNMatScaleAddI_cuSparse – performs 𝐴 = 𝑐𝐴 + 𝐼 , where the diagonal of 𝐴 must be present

• SUNMatMatvec_cuSparse

In addition, the SUNMATRIX_CUSPARSE module defines the following implementation specific functions:

SUNMatrix SUNMatrix_cuSparse_NewCSR(int M, int N, int NNZ, cusparseHandle_t cusp)
This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE SUNMatrix that
uses the CSR storage format. Its arguments are the number of rows and columns of the matrix, M and N, the
number of nonzeros to be stored in the matrix, NNZ, and a valid cusparseHandle_t.

SUNMatrix SUNMatrix_cuSparse_NewBlockCSR(int nblocks, int blockrows, int blockcols,
int blocknnz, cusparseHandle_t cusp)

This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE SUNMatrix object
that leverages the SUNMAT_CUSPARSE_BCSR storage format to store a block diagonal matrix where each
block shares the same sparsity pattern. The blocks must be square. The function arguments are the number of
blocks,‘‘nblocks‘‘, the number of rows, blockrows, the number of columns, blockcols, the number of
nonzeros in each each block, blocknnz, and a valid cuSPARSE handle.

The ‘‘SUNMAT_CUSPARSE_BCSR‘‘ format currently only supports square matrices..

SUNMatrix SUNMatrix_cuSparse_MakeCSR(cusparseMatDescr_t mat_descr, int M, int N, int NNZ,
int *rowptrs, int *colind, realtype *data, cusparseHan-
dle_t cusp)

This constructor function creates a SUNMATRIX_CUSPARSE SUNMatrix object from user
provided pointers. Its arguments are a cusparseMatDescr_t that must have index base
CUSPARSE_INDEX_BASE_ZERO, the number of rows and columns of the matrix, M and N, the number of
nonzeros to be stored in the matrix, NNZ, and a valid cusparseHandle_t.

int SUNMatrix_cuSparse_Rows(SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.
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int SUNMatrix_cuSparse_Columns(SUNMatrix A)
This function returns the number of columns in the sparse SUNMatrix.

int SUNMatrix_cuSparse_NNZ(SUNMatrix A)
This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.

int SUNMatrix_cuSparse_SparseType(SUNMatrix A)
This function returns the storage type (SUNMAT_CUSPARSE_CSR or SUNMAT_CUSPARSE_BCSR) for the
sparse SUNMatrix.

realtype* SUNMatrix_cuSparse_Data(SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMatrix.

int* SUNMatrix_cuSparse_IndexValues(SUNMatrix A)
This function returns a pointer to the index value array for the sparse SUNMatrix: for the CSR format this is
an array of column indices for each nonzero entry. For the BCSR format this is an array of the column indices
for each nonzero entry in the first block only.

int* SUNMatrix_cuSparse_IndexPointers(SUNMatrix A)
This function returns a pointer to the index pointer array for the sparse SUNMatrix: for the CSR format
this is an array of the locations of the first entry of each row in the data and indexvalues arrays, for the
BCSR format this is an array of the locations of each row in the data and indexvalues arrays in the first
block only.

int SUNMatrix_cuSparse_NumBlocks(SUNMatrix A)
This function returns the number of matrix blocks.

int SUNMatrix_cuSparse_BlockRows(SUNMatrix A)
This function returns the number of rows in a matrix block.

int SUNMatrix_cuSparse_BlockColumns(SUNMatrix A)
This function returns the number of columns in a matrix block.

int SUNMatrix_cuSparse_BlockNNZ(SUNMatrix A)
This function returns the number of nonzeros in each matrix block.

realtype* SUNMatrix_cuSparse_BlockData(SUNMatrix A, int blockidx)
This function returns a pointer to the location in the data array where the data for the block, blockidx,
begins. Thus, blockidx must be less than SUNMatrix_cuSparse_NumBlocks(A). The first block in
the SUNMatrix is index 0, the second block is index 1, and so on.

cusparseMatDescr_t SUNMatrix_cuSparse_MatDescr(SUNMatrix A)
This function returns the cusparseMatDescr_t object associated with the matrix.

int SUNMatrix_cuSparse_CopyToDevice(SUNMatrix A, realtype* h_data, int* h_idxptrs,
int* h_idxvals)

This functions copies the matrix information to the GPU device from the provided host arrays. A user may
provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid copying that information.

The function returns SUNMAT_SUCCESS if the copy operation(s) were successful, or a nonzero error code
otherwise.

int SUNMatrix_cuSparse_CopyFromDevice(SUNMatrix A, realtype* h_data, int* h_idxptrs,
int* h_idxvals)

This functions copies the matrix information from the GPU device to the provided host arrays. A user may
provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid copying that information. Other-
wise:

• The h_data array must be at least SUNMatrix_cuSparse_NNZ(A)*sizeof(realtype) bytes.

• The h_idxptrs array must be at least (SUNMatrix_cuSparse_BlockDim(A)+1)*sizeof(int)
bytes.
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• The h_idxvals array must be at least (SUNMatrix_cuSparse_BlockNNZ(A))*sizeof(int)
bytes.

The function returns SUNMAT_SUCCESS if the copy operation(s) were successful, or a nonzero error code
otherwise.

int SUNMatrix_cuSparse_SetFixedPattern(SUNMatrix A, booleantype yesno)
This function changes the behavior of the the SUNMatZero operation on the object A. By default the ma-
trix sparsity pattern is not considered to be fixed, thus, the SUNMatZero operation zeros out all data array
as well as the indexvalues and indexpointers arrays. Providing a value of 1 or SUNTRUE for the
yesno argument changes the behavior of SUNMatZero on A so that only the data is zeroed out, but not the
indexvalues or indexpointers arrays. Providing a value of 0 or SUNFALSE for the yesno argument
is equivalent to the default behavior.

int SUNMatrix_cuSparse_SetKernelExecPolicy(SUNMatrix A, SUNCudaExecPol-
icy* exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the
CUDA kernels. By default the matrix is setup to use a policy which tries to leverage the structure of the ma-
trix. See section The SUNCudaExecPolicy Class for more information about the SUNCudaExecPolicy
class.

11.7.3 SUNMATRIX_CUSPARSE Usage Notes

The SUNMATRIX_CUSPARSE module only supports 32-bit indexing, thus SUNDIALS must be built for 32-bit
indexing to use this module.

The SUNMATRIX_CUSPARSE module can be used with CUDA streams by calling the cuSPARSE function
cusparseSetStream on the the cusparseHandle_t that is provided to the SUNMATRIX_CUSPARSE con-
structor.

Warning: When using the SUNMATRIX_CUSPARSE module with a SUNDIALS package (e.g. ARKODE),
the stream given to cuSPARSE should be the same stream used for the NVECTOR object that is provided to the
package, and the NVECTOR object given to the SUNMatvec operation. If different streams are utilized, syn-
chronization issues may occur.

11.8 The SUNMATRIX_SPARSE Module

The sparse implementation of the SUNMatrix module provided with SUNDIALS, SUNMATRIX_SPARSE, is de-
signed to work with either compressed-sparse-column (CSC) or compressed-sparse-row (CSR) sparse matrix for-
mats. To this end, it defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Sparse {
sunindextype M;
sunindextype N;
sunindextype NNZ;
sunindextype NP;
realtype *data;
int sparsetype;
sunindextype *indexvals;
sunindextype *indexptrs;
/* CSC indices */
sunindextype **rowvals;
sunindextype **colptrs;
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/* CSR indices */
sunindextype **colvals;
sunindextype **rowptrs;

};

A diagram of the underlying data representation in a sparse matrix is shown in Figure SUNSparseMatrix Diagram. A
more complete description of the parts of this content field is given below:

• M - number of rows

• N - number of columns

• NNZ - maximum number of nonzero entries in the matrix (allocated length of data and indexvals arrays)

• NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC matrices NP=N,
and for CSR matrices NP=M. This value is set automatically at construction based the input choice for
sparsetype.

• data - pointer to a contiguous block of realtype variables (of length NNZ), containing the values of the
nonzero entries in the matrix

• sparsetype - type of the sparse matrix (CSC_MAT or CSR_MAT)

• indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices (if
CSC) or column indices (if CSR) of each nonzero matrix entry held in data

• indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each entry
provides the index of the first column entry into the data and indexvals arrays, e.g. if indexptr[3]=7,
then the first nonzero entry in the fourth column of the matrix is located in data[7], and is located in row
indexvals[7] of the matrix. The last entry contains the total number of nonzero values in the matrix and
hence points one past the end of the active data in the data and indexvals arrays. For CSR matrices, each
entry provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the SUNMATRIX_SPARSE content structure for user convenience, to provide a
more intuitive interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating
a sparse SUNMatrix, based on the sparse matrix storage type.

• rowvals - pointer to indexvals when sparsetype is CSC_MAT, otherwise set to NULL.

• colptrs - pointer to indexptrs when sparsetype is CSC_MAT, otherwise set to NULL.

• colvals - pointer to indexvals when sparsetype is CSR_MAT, otherwise set to NULL.

• rowptrs - pointer to indexptrs when sparsetype is CSR_MAT, otherwise set to NULL.

For example, the 5× 4 matrix ⎡⎢⎢⎢⎢⎣
0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5

⎤⎥⎥⎥⎥⎦
could be stored as a CSC matrix in this structure as either

M = 5;
N = 4;
NNZ = 8;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};
sparsetype = CSC_MAT;
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indexvals = {1, 3, 0, 2, 0, 1, 3, 4};
indexptrs = {0, 2, 4, 5, 8};

or

M = 5;
N = 4;
NNZ = 10;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};
indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with * may contain
any values). Note in both cases that the final value in indexptrs is 8, indicating the total number of nonzero en-
tries in the matrix.

Similarly, in CSR format, the same matrix could be stored as

M = 5;
N = 4;
NNZ = 8;
NP = M;
data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};
sparsetype = CSR_MAT;
indexvals = {1, 2, 0, 3, 1, 0, 3, 3};
indexptrs = {0, 2, 4, 5, 7, 8};

The header file to be included when using this module is sunmatrix/sunmatrix_sparse.h.

The following macros are provided to access the content of a SUNMATRIX_SPARSE matrix. The prefix SM_ in
the names denotes that these macros are for SUNMatrix implementations, and the suffix _S denotes that these are
specific to the sparse version.

SM_CONTENT_S(A)
This macro gives access to the contents of the sparse SUNMatrix A.

The assignment A_cont = SM_CONTENT_S(A) sets A_cont to be a pointer to the sparse SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_S(A) ( (SUNMatrixContent_Sparse)(A->content) )

SM_ROWS_S(A)
Access the number of rows in the sparse SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows =
SM_ROWS_S(A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_ROWS_S(A) = A_rows sets the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_S(A) ( SM_CONTENT_S(A)->M )

SM_COLUMNS_S(A)
Access the number of columns in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either to
retrieve or to set the value.
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Fig. 11.2: Diagram of the storage for a compressed-sparse-column matrix of type SUNMATRIX_SPARSE: Here
A is an 𝑀 × 𝑁 sparse CSC matrix with storage for up to NNZ nonzero entries (the allocated length of both data
and indexvals). The entries in indexvals may assume values from 0 to M-1, corresponding to the row index
(zero-based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the row i,
column j entry of A (again, zero-based) denoted as A(i,j). The indexptrs array contains N+1 entries; the first
N denote the starting index of each column within the indexvals and data arrays, while the final entry points
one past the final nonzero entry. Here, although NNZ values are allocated, only nz are actually filled in; the greyed-
out portions of data and indexvals indicate extra allocated space.
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Implementation:

#define SM_COLUMNS_S(A) ( SM_CONTENT_S(A)->N )

SM_NNZ_S(A)
Access the allocated number of nonzeros in the sparse SUNMatrix A. As with SM_ROWS_S, this may be
used either to retrieve or to set the value.

Implementation:

#define SM_NNZ_S(A) ( SM_CONTENT_S(A)->NNZ )

SM_NP_S(A)
Access the number of index pointers NP in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used
either to retrieve or to set the value.

Implementation:

#define SM_NP_S(A) ( SM_CONTENT_S(A)->NP )

SM_SPARSETYPE_S(A)
Access the sparsity type parameter in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used ei-
ther to retrieve or to set the value.

Implementation:

#define SM_SPARSETYPE_S(A) ( SM_CONTENT_S(A)->sparsetype )

SM_DATA_S(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_S(A) sets A_data to be a pointer to the first component of the data
array for the sparse SUNMatrix A. The assignment SM_DATA_S(A) = A_data sets the data array of A
to be A_data by storing the pointer A_data.

Implementation:

#define SM_DATA_S(A) ( SM_CONTENT_S(A)->data )

SM_INDEXVALS_S(A)
This macro gives access to the indexvals pointer for the matrix entries.

The assignment A_indexvals = SM_INDEXVALS_S(A) sets A_indexvals to be a pointer to the
array of index values (i.e. row indices for a CSC matrix, or column indices for a CSR matrix) for the sparse
SUNMatrix A.

Implementation:

#define SM_INDEXVALS_S(A) ( SM_CONTENT_S(A)->indexvals )

SM_INDEXPTRS_S(A)
This macro gives access to the indexptrs pointer for the matrix entries.

The assignment A_indexptrs = SM_INDEXPTRS_S(A) sets A_indexptrs to be a pointer to the ar-
ray of index pointers (i.e. the starting indices in the data/indexvals arrays for each row or column in CSR or
CSC formats, respectively).

Implementation:

#define SM_INDEXPTRS_S(A) ( SM_CONTENT_S(A)->indexptrs )
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The SUNMATRIX_SPARSE module defines sparse implementations of all matrix operations listed in the section
Description of the SUNMATRIX operations. Their names are obtained from those in that section by appending the
suffix _Sparse (e.g. SUNMatCopy_Sparse). The module SUNMATRIX_SPARSE provides the following addi-
tional user-callable routines:

SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N, sunindextype NNZ, int sparsetype)
This constructor function creates and allocates memory for a sparse SUNMatrix. Its arguments are the num-
ber of rows and columns of the matrix, M and N, the maximum number of nonzeros to be stored in the ma-
trix, NNZ, and a flag sparsetype indicating whether to use CSR or CSC format (valid choices are CSR_MAT or
CSC_MAT).

SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, realtype droptol, int sparsetype)
This constructor function creates a new sparse matrix from an existing SUNMATRIX_DENSE object by copy-
ing all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX_DENSE

• droptol must be non-negative

• sparsetype must be either CSC_MAT or CSR_MAT

The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, realtype droptol, int sparsetype)
This constructor function creates a new sparse matrix from an existing SUNMATRIX_BAND object by copy-
ing all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX_BAND

• droptol must be non-negative

• sparsetype must be either CSC_MAT or CSR_MAT.

The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

int SUNSparseMatrix_Realloc(SUNMatrix A)
This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse matrix
has no wasted space (i.e. the space allocated for nonzero entries equals the actual number of nonzeros,
indexptrs[NP]). Returns 0 on success and 1 on failure (e.g. if the input matrix is not sparse).

void SUNSparseMatrix_Print(SUNMatrix A, FILE* outfile)
This function prints the content of a sparse SUNMatrix to the output stream specified by outfile. Note:
stdout or stderr may be used as arguments for outfile to print directly to standard output or standard
error, respectively.

sunindextype SUNSparseMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_NNZ(SUNMatrix A)
This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.

sunindextype SUNSparseMatrix_NP(SUNMatrix A)
This function returns the number of index pointers for the sparse SUNMatrix (the indexptrs array has
NP+1 entries).

int SUNSparseMatrix_SparseType(SUNMatrix A)
This function returns the storage type (CSR_MAT or CSC_MAT) for the sparse SUNMatrix.
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realtype* SUNSparseMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMatrix.

sunindextype* SUNSparseMatrix_IndexValues(SUNMatrix A)
This function returns a pointer to index value array for the sparse SUNMatrix: for CSR format this is the
column index for each nonzero entry, for CSC format this is the row index for each nonzero entry.

sunindextype* SUNSparseMatrix_IndexPointers(SUNMatrix A)
This function returns a pointer to the index pointer array for the sparse SUNMatrix: for CSR format this is
the location of the first entry of each row in the data and indexvalues arrays, for CSC format this is the
location of the first entry of each column.

Note: Within the SUNMatMatvec_Sparse routine, internal consistency checks are performed to ensure that the
matrix is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, NVECTOR_PTHREADS, and NVECTOR_CUDA when using managed memory. As addi-
tional compatible vector implementations are added to SUNDIALS, these will be included within this compatibility
check.

For solvers that include a Fortran interface module, the SUNMATRIX_SPARSE module also includes the Fortran-
callable function FSUNSparseMatInit() to initialize this SUNMATRIX_SPARSE module for a given SUNDI-
ALS solver.

subroutine FSUNSparseMatInit(CODE, M, N, NNZ, SPARSETYPE, IER)
Initializes a sparse SUNMatrix structure for use in a SUNDIALS solver.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• M (long int, input) – number of matrix rows.

• N (long int, input) – number of matrix columns.

• NNZ (long int, input) – amount of nonzero storage to allocate.

• SPARSETYPE (int, input) – matrix sparsity type (CSC_MAT or CSR_MAT)

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNSparseMassMatInit() initializes this SUNMATRIX_SPARSE module for storing the mass matrix.

subroutine FSUNSparseMassMatInit(M, N, NNZ, SPARSETYPE, IER)
Initializes a sparse SUNMatrix structure for use as a mass matrix in ARKode.

Arguments:

• M (long int, input) – number of matrix rows.

• N (long int, input) – number of matrix columns.

• NNZ (long int, input) – amount of nonzero storage to allocate.

• SPARSETYPE (int, input) – matrix sparsity type (CSC_MAT or CSR_MAT)

• IER (int, output) – return flag (0 success, -1 for failure).
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11.9 The SUNMATRIX_SLUNRLOC Module

The SUNMATRIX_SLUNRLOC implementation of the SUNMatrix module provided with SUNDIALS is an
adapter for the SuperMatrix structure provided by the SuperLU_DIST sparse matrix factorization and solver li-
brary written by X. Sherry Li ([SuperLUDIST], [GDL2007], [LD2003], [SLUUG1999]). It is designed to be used
with the SuperLU_DIST SUNLinearSolver discussed in Section The SUNLinSol_SuperLUDIST Module. To this
end, it defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_SLUNRloc {
booleantype own_data;
gridinfo_t *grid;
sunindextype *row_to_proc;
pdgsmv_comm_t *gsmv_comm;
SuperMatrix *A_super;
SuperMatrix *ACS_super;

};

A more complete description of the this content field is given below:

• own_data – a flag which indicates if the SUNMatrix is responsible for freeing A_super

• grid – pointer to the SuperLU_DIST structure that stores the 2D process grid

• row_to_proc – a mapping between the rows in the matrix and the process it resides on; will be NULL until
the SUNMatMatvecSetup routine is called

• gsmv_comm – pointer to the SuperLU_DIST structure that stores the communication information needed for
matrix-vector multiplication; will be NULL until the SUNMatMatvecSetup routine is called

• A_super – pointer to the underlying SuperLU_DIST SuperMatrix with Stype = SLU_NR_loc,
Dtype = SLU_D, Mtype = SLU_GE; must have the full diagonal present to be used with
SUNMatScaleAddI routine

• ACS_super – a column-sorted version of the matrix needed to perform matrix-vector multiplication; will be
NULL until the routine SUNMatMatvecSetup routine is called

The header file to include when using this module is sunmatrix/sunmatrix_slunrloc.h. The installed
module library to link to is libsundials_sunmatrixslunrloc .lib where .lib is typically .so for shared
libraries and .a for static libraries.

11.9.1 SUNMATRIX_SLUNRLOC Functions

The SUNMATRIX_SLUNRLOC module provides the following user-callable routines:

SUNMatrix SUNMatrix_SLUNRloc(SuperMatrix *Asuper, gridinfo_t *grid)
This constructor function creates and allocates memory for a SUNMatrix_SLUNRloc object. Its arguments
are a fully-allocated SuperLU_DIST SuperMatrix with Stype = SLU_NR_loc, Dtype = SLU_D,
Mtype = SLU_GE and an initialized SuperLU_DIST 2D process grid structure. It returns a SUNMatrix ob-
ject if Asuper is compatible else it returns NULL.

void SUNMatrix_SLUNRloc_Print(SUNMatrix A, FILE *fp)
This function prints the underlying SuperMatrix content. It is useful for debugging. Its arguments are the
SUNMatrix object and a FILE pointer to print to. It returns void.

SuperMatrix* SUNMatrix_SLUNRloc_SuperMatrix(SUNMatrix A)
This function returns the underlying SuperMatrix of A. Its only argument is the SUNMatrix object to
access.
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gridinfo_t* SUNMatrix_SLUNRloc_ProcessGrid(SUNMatrix A)
This function returns the SuperLU_DIST 2D process grid associated with A. Its only argument is the
SUNMatrix object to access.

booleantype SUNMatrix_SLUNRloc_OwnData(SUNMatrix A)
This function returns true if the SUNMatrix object is responsible for freeing the underlying SuperMatrix,
otherwise it returns false. Its only argument is the SUNMatrix object to access.

The SUNMATRIX_SLUNRLOC module also defines implementations of all generic SUNMatrix operations listed
in Table Description of the SUNMATRIX operations:

• SUNMatGetID_SLUNRloc – returns SUNMATRIX_SLUNRLOC

• SUNMatClone_SLUNRloc

• SUNMatDestroy_SLUNRloc

• SUNMatSpace_SLUNRloc – this only returns information for the storage within the matrix interface, i.e.
storage for row_to_proc

• SUNMatZero_SLUNRloc

• SUNMatCopy_SLUNRloc

• SUNMatScaleAdd_SLUNRloc – performs 𝐴 = 𝑐𝐴 + 𝐵, where 𝐴 and 𝐵 must have the same sparsity
pattern

• SUNMatScaleAddI_SLUNRloc – performs 𝐴 = 𝑐𝐴 + 𝐼 , where the diagonal of 𝐴 must be present

• SUNMatMatvecSetup_SLUNRloc – initializes the SuperLU_DIST parallel communication structures
needed to perform a matrix-vector product; only needs to be called before the first call to SUNMatMatvec
or if the matrix changed since the last setup

• SUNMatMatvec_SLUNRloc

11.10 SUNMATRIX Examples

There are SUNMatrix examples that may be installed for each implementation: dense, banded, and sparse. Each
implementation makes use of the functions in test_sunmatrix.c. These example functions show simple usage
of the SUNMatrix family of functions. The inputs to the examples depend on the matrix type, and are output to
stdout if the example is run without the appropriate number of command-line arguments.

The following is a list of the example functions in test_sunmatrix.c:

• Test_SUNMatGetID: Verifies the returned matrix ID against the value that should be returned.

• Test_SUNMatClone: Creates clone of an existing matrix, copies the data, and checks that their values
match.

• Test_SUNMatZero: Zeros out an existing matrix and checks that each entry equals 0.0.

• Test_SUNMatCopy: Clones an input matrix, copies its data to a clone, and verifies that all values match.

• Test_SUNMatScaleAdd: Given an input matrix 𝐴 and an input identity matrix 𝐼 , this test clones and
copies 𝐴 to a new matrix 𝐵, computes 𝐵 = −𝐵 + 𝐵, and verifies that the resulting matrix entries equal 0.
Additionally, if the matrix is square, this test clones and copies 𝐴 to a new matrix 𝐷, clones and copies 𝐼 to a
new matrix 𝐶, computes 𝐷 = 𝐷+𝐼 and 𝐶 = 𝐶+𝐴 using SUNMatScaleAdd, and then verifies that 𝐶 = 𝐷.

• Test_SUNMatScaleAddI: Given an input matrix 𝐴 and an input identity matrix 𝐼 , this clones and copies 𝐼
to a new matrix 𝐵, computes 𝐵 = −𝐵 + 𝐼 using SUNMatScaleAddI, and verifies that the resulting matrix
entries equal 0.
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• Test_SUNMatMatvec Given an input matrix 𝐴 and input vectors 𝑥 and 𝑦 such that 𝑦 = 𝐴𝑥, this test has
different behavior depending on whether 𝐴 is square. If it is square, it clones and copies 𝐴 to a new matrix 𝐵,
computes 𝐵 = 3𝐵 + 𝐼 using SUNMatScaleAddI, clones 𝑦 to new vectors 𝑤 and 𝑧, computes 𝑧 = 𝐵𝑥 using
SUNMatMatvec, computes 𝑤 = 3𝑦+𝑥 using N_VLinearSum, and verifies that 𝑤 == 𝑧. If 𝐴 is not square,
it just clones 𝑦 to a new vector 𝑧, computes :math:‘z=Ax using SUNMatMatvec, and verifies that 𝑦 = 𝑧.

• Test_SUNMatSpace: verifies that SUNMatSpace can be called, and outputs the results to stdout.

11.11 SUNMATRIX functions required by ARKode

In Table List of matrix functions usage by ARKode code modules, we list the matrix functions in the SUNMatrix
module used within the ARKode package. The table also shows, for each function, which of the code modules uses
the function. The main ARKode time step modules, ARKStep and ERKStep, do not call any SUNMatrix functions
directly, so the table columns are specific to the ARKLS interface and the ARKBANDPRE and ARKBBDPRE pre-
conditioner modules. We further note that the ARKLS interface only utilizes these routines when supplied with a
matrix-based linear solver, i.e. the SUNMatrix object (J or M) passed to ARKStepSetLinearSolver() or
ARKStepSetMassLinearSolver() was not NULL.

At this point, we should emphasize that the ARKode user does not need to know anything about the usage of matrix
functions by the ARKode code modules in order to use ARKode. The information is presented as an implementation
detail for the interested reader.

11.11.1 List of matrix functions usage by ARKode code modules

Routine ARKLS ARKBANDPRE ARKBBDPRE
SUNMatGetID X
SUNMatClone X
SUNMatDestroy X X X
SUNMatZero X X X
SUNMatCopy X X X
SUNMatScaleAddI X X X
SUNMatScaleAdd 1
SUNMatMatvec 1
SUNMatMatvecSetup 1,2
SUNMatSpace 2 2 2

1. These matrix functions are only used for problems involving a non-identity mass matrix.

2. These matrix functions are optionally used, in that these are only called if they are implemented in the
SUNMatrix module that is being used (i.e. their function pointers are non-NULL). If not supplied, these mod-
ules will assume that the matrix requires no storage.

We note that both the ARKBANDPRE and ARKBBDPRE preconditioner modules are hard-coded to use the
SUNDIALS-supplied band SUNMatrix type, so the most useful information above for user-supplied SUNMatrix
implementations is the column relating to ARKLS requirements.
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Chapter 12

Description of the SUNLinearSolver module

For problems that require the solution of linear systems of equations, the SUNDIALS packages operate using generic
linear solver modules defined through the SUNLinSol API. This allows SUNDIALS packages to utilize any valid
SUNLinSol implementation that provides a set of required functions. These functions can be divided into three cate-
gories. The first are the core linear solver functions. The second group consists of “set” routines to supply the linear
solver object with functions provided by the SUNDIALS package, or for modification of solver parameters. The last
group consists of “get” routines for retrieving artifacts (statistics, residual vectors, etc.) from the linear solver. All of
these functions are defined in the header file sundials/sundials_linearsolver.h.

The implementations provided with SUNDIALS work in coordination with the SUNDIALS generic N_Vector and
SUNMatrix modules to provide a set of compatible data structures and solvers for the solution of linear systems
using direct or iterative (matrix-based or matrix-free) methods. Moreover, advanced users can provide a customized
SUNLinearSolver implementation to any SUNDIALS package, particularly in cases where they provide their
own N_Vector and/or SUNMatrix modules.

Historically, the SUNDIALS packages have been designed to specifically leverage the use of either direct linear
solvers or matrix-free, scaled, preconditioned, iterative linear solvers. However, matrix-based iterative linear solvers
are also supported.

The iterative linear solvers packaged with SUNDIALS leverage scaling and preconditioning, as applicable, to bal-
ance error between solution components and to accelerate convergence of the linear solver. To this end, instead of
solving the linear system 𝐴𝑥 = 𝑏 directly, these apply the underlying iterative algorithm to the transformed system

𝐴�̃� = �̃� (12.1)

where

𝐴 = 𝑆1𝑃
−1
1 𝐴𝑃−1

2 𝑆−1
2 ,

�̃� = 𝑆1𝑃
−1
1 𝑏,

�̃� = 𝑆2𝑃2𝑥,

(12.2)

and where

• 𝑃1 is the left preconditioner,

• 𝑃2 is the right preconditioner,

• 𝑆1 is a diagonal matrix of scale factors for 𝑃−1
1 𝑏,

• 𝑆2 is a diagonal matrix of scale factors for 𝑃2𝑥.
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SUNDIALS solvers request that iterative linear solvers stop based on the 2-norm of the scaled preconditioned resid-
ual meeting a prescribed tolerance ⃦⃦⃦

�̃�−𝐴�̃�
⃦⃦⃦
2
< tol.

When provided an iterative SUNLinSol implementation that does not support the scaling matrices 𝑆1 and 𝑆2, SUN-
DIALS’ packages will adjust the value of tol accordingly (see the section Iterative linear solver tolerance for more
details). In this case, they instead request that iterative linear solvers stop based on the criteria⃦⃦

𝑃−1
1 𝑏− 𝑃−1

1 𝐴𝑥
⃦⃦
2
< tol.

We note that the corresponding adjustments to tol in this case are non-optimal, in that they cannot balance error be-
tween specific entries of the solution 𝑥, only the aggregate error in the overall solution vector.

We further note that not all of the SUNDIALS-provided iterative linear solvers support the full range of the above
options (e.g., separate left/right preconditioning), and that some of the SUNDIALS packages only utilize a subset of
these options. Further details on these exceptions are described in the documentation for each SUNLinearSolver
implementation, or for each SUNDIALS package.

For users interested in providing their own SUNLinSol module, the following section presents the SUNLinSol API
and its implementation beginning with the definition of SUNLinSol functions in sections SUNLinearSolver core
functions – SUNLinearSolver get functions. This is followed by the definition of functions supplied to a linear solver
implementation in section Functions provided by SUNDIALS packages. The linear solver return codes are described
in section SUNLinearSolver return codes. The SUNLinearSolver type and the generic SUNLinSol module are
defined in section The generic SUNLinearSolver module. The section Compatibility of SUNLinearSolver modules
discusses compatibility between the SUNDIALS-provided SUNLinSol modules and SUNMATRIX modules. Sec-
tion Implementing a custom SUNLinearSolver module lists the requirements for supplying a custom SUNLinSol
module and discusses some intended use cases. Users wishing to supply their own SUNLinSol module are encour-
aged to use the SUNLinSol implementations provided with SUNDIALS as a template for supplying custom linear
solver modules. The SUNLinSol functions required by this SUNDIALS package as well as other package specific
details are given in section ARKode SUNLinearSolver interface. The remaining sections of this chapter present the
SUNLinSol modules provided with SUNDIALS.

12.1 The SUNLinearSolver API

The SUNLinSol API defines several linear solver operations that enable SUNDIALS packages to utilize any SUN-
LinSol implementation that provides the required functions. These functions can be divided into three categories.
The first are the core linear solver functions. The second group of functions consists of set routines to supply the lin-
ear solver with functions provided by the SUNDIALS time integrators and to modify solver parameters. The final
group consists of get routines for retrieving linear solver statistics. All of these functions are defined in the header
file sundials/sundials_linearsolver.h.

12.1.1 SUNLinearSolver core functions

The core linear solver functions consist of two required functions to get the linear solver type
(SUNLinSolGetType()) and solve the linear system 𝐴𝑥 = 𝑏 (SUNLinSolSolve()). The remaining
functions are for getting the solver ID (SUNLinSolGetID()), initializing the linear solver object once all
solver-specific options have been set (SUNLinSolInitialize()), setting up the linear solver object to utilize an
updated matrix 𝐴 (SUNLinSolSetup()), and for destroying the linear solver object (SUNLinSolFree()) are
optional.

SUNLinearSolver_Type SUNLinSolGetType(SUNLinearSolver LS)
Returns the type identifier for the linear solver LS. It is used to determine the solver type (direct, iterative, or
matrix-iterative) from the abstract SUNLinearSolver interface. Returned values are one of the following:
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• SUNLINEARSOLVER_DIRECT – 0, the SUNLinSol module requires a matrix, and computes an ‘exact’
solution to the linear system defined by that matrix.

• SUNLINEARSOLVER_ITERATIVE – 1, the SUNLinSol module does not require a matrix (though
one may be provided), and computes an inexact solution to the linear system using a matrix-free itera-
tive algorithm. That is it solves the linear system defined by the package-supplied ATimes routine (see
SUNLinSolSetATimes() below), even if that linear system differs from the one encoded in the ma-
trix object (if one is provided). As the solver computes the solution only inexactly (or may diverge), the
linear solver should check for solution convergence/accuracy as appropriate.

• SUNLINEARSOLVER_MATRIX_ITERATIVE – 2, the SUNLinSol module requires a matrix, and com-
putes an inexact solution to the linear system defined by that matrix using an iterative algorithm. That
is it solves the linear system defined by the matrix object even if that linear system differs from that en-
coded by the package-supplied ATimes routine. As the solver computes the solution only inexactly (or
may diverge), the linear solver should check for solution convergence/accuracy as appropriate.

Usage:

type = SUNLinSolGetType(LS);

Notes: See section Intended use cases for more information on intended use cases corresponding to the linear
solver type.

SUNLinearSolver_ID SUNLinSolGetID(SUNLinearSolver LS)
Returns the identifier for the linear solver LS. It is recommended that a user-supplied SUNLinearSolver
implementation return the SUNLINEARSOLVER_CUSTOM identifier.

Usage:

id = SUNLinSolGetID(LS);

int SUNLinSolInitialize(SUNLinearSolver LS)
Performs linear solver initialization (assuming that all solver-specific options have been set). This should re-
turn zero for a successful call, and a negative value for a failure, ideally returning one of the generic error
codes listed in section SUNLinearSolver return codes.

Usage:

retval = SUNLinSolInitialize(LS);

int SUNLinSolSetup(SUNLinearSolver LS, SUNMatrix A)
Performs any linear solver setup needed, based on an updated system SUNMatrix A. This may be called fre-
quently (e.g., with a full Newton method) or infrequently (for a modified Newton method), based on the type
of integrator and/or nonlinear solver requesting the solves. This should return zero for a successful call, a pos-
itive value for a recoverable failure and a negative value for an unrecoverable failure, ideally returning one of
the generic error codes listed in section SUNLinearSolver return codes.

Usage:

retval = SUNLinSolSetup(LS, A);

int SUNLinSolSolve(SUNLinearSolver LS, SUNMatrix A, N_Vector x, N_Vector b, realtype tol)
This required function Solves a linear system 𝐴𝑥 = 𝑏.

Arguments:

• LS – a SUNLinSol object.

• A – a SUNMatrix object.
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• x – a N_Vector object containing the initial guess for the solution of the linear system, and the
solution to the linear system upon return.

• b – a N_Vector object containing the linear system right-hand side.

• tol – the desired linear solver tolerance.

Return value: This should return zero for a successful call, a positive value for a recoverable failure and a
negative value for an unrecoverable failure, ideally returning one of the generic error codes listed in section
SUNLinearSolver return codes.

Direct solvers: can ignore the tol argument.

Matrix-free solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE) can ignore the
SUNMatrix input A, and should rely on the matrix-vector product function supplied through the routine
SUNLinSolSetATimes().

Iterative solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE or
SUNLINEARSOLVER_MATRIX_ITERATIVE) should attempt to solve to the specified tolerance tol in
a weighted 2-norm. If the solver does not support scaling then it should just use a 2-norm.

Usage:

retval = SUNLinSolSolve(LS, A, x, b, tol);

int SUNLinSolFree(SUNLinearSolver LS)
Frees memory allocated by the linear solver. This should return zero for a successful call, and a negative value
for a failure.

Usage:

retval = SUNLinSolFree(LS);

12.1.2 SUNLinearSolver set functions

The following set functions are used to supply linear solver modules with functions defined by the SUNDIALS pack-
ages and to modify solver parameters. Only the routine for setting the matrix-vector product routine is required, and
that is only for matrix-free linear solver modules. Otherwise, all other set functions are optional. SUNLinSol im-
plementations that do not provide the functionality for any optional routine should leave the corresponding function
pointer NULL instead of supplying a dummy routine.

int SUNLinSolSetATimes(SUNLinearSolver LS, void* A_data, ATimesFn ATimes)
This function is required for matrix-free linear solvers; otherwise it is optional.

Provides a ATimesFn function pointer, as well as a void* pointer to a data structure used by this routine,
to a linear solver object. SUNDIALS packages will call this function to set the matrix-vector product function
to either a solver-provided difference-quotient via vector operations or a user-supplied solver-specific routine.
This routine should return zero for a successful call, and a negative value for a failure, ideally returning one of
the generic error codes listed in section SUNLinearSolver return codes.

Usage:

retval = SUNLinSolSetATimes(LS, A_data, ATimes);

int SUNLinSolSetPreconditioner(SUNLinearSolver LS, void* P_data, PSetupFn Pset,
PSolveFn Psol)

This optional routine provides PSetupFn and PSolveFn function pointers that implement the precondi-
tioner solves 𝑃−1

1 and 𝑃−1
2 . This routine will be called by a SUNDIALS package, which will provide trans-

lation between the generic Pset and Psol calls and the package- or user-supplied routines. This routine should
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return zero for a successful call, and a negative value for a failure, ideally returning one of the generic error
codes listed in section SUNLinearSolver return codes.

Usage:

retval = SUNLinSolSetPreconditioner(LS, Pdata, Pset, Psol);

int SUNLinSolSetScalingVectors(SUNLinearSolver LS, N_Vector s1, N_Vector s2)
This optional routine provides left/right scaling vectors for the linear system solve. Here, s1 and s2 are
N_Vectors of positive scale factors containing the diagonal of the matrices 𝑆1 and 𝑆2, respectively. Neither
of these vectors need to be tested for positivity, and a NULL argument for either indicates that the correspond-
ing scaling matrix is the identity. This routine should return zero for a successful call, and a negative value for
a failure, ideally returning one of the generic error codes listed in section SUNLinearSolver return codes.

Usage:

retval = SUNLinSolSetScalingVectors(LS, s1, s2);

12.1.3 SUNLinearSolver get functions

The following get functions allow SUNDIALS packages to retrieve results from a linear solve. All routines are op-
tional.

int SUNLinSolNumIters(SUNLinearSolver LS)
This optional routine should return the number of linear iterations performed in the last “solve” call.

Usage:

its = SUNLinSolNumIters(LS);

realtype SUNLinSolResNorm(SUNLinearSolver LS)
This optional routine should return the final residual norm from the last “solve” call.

Usage:

rnorm = SUNLinSolResNorm(LS);

N_Vector SUNLinSolResid(SUNLinearSolver LS)
If an iterative method computes the preconditioned initial residual and returns with a successful solve without
performing any iterations (i.e., either the initial guess or the preconditioner is sufficiently accurate), then this
optional routine may be called by the SUNDIALS package. This routine should return the N_Vector con-
taining the preconditioned initial residual vector.

Usage:

rvec = SUNLinSolResid(LS);

Note: since N_Vector is actually a pointer, and the results are not modified, this routine should not require
additional memory allocation. If the SUNLinSol object does not retain a vector for this purpose, then this
function pointer should be set to NULL in the implementation.

sunindextype SUNLinSolLastFlag(SUNLinearSolver LS)
This optional routine should return the last error flag encountered within the linear solver. This is not called by
the SUNDIALS packages directly; it allows the user to investigate linear solver issues after a failed solve.

Usage:
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lflag = SUNLinLastFlag(LS);

int SUNLinSolSpace(SUNLinearSolver LS, long int *lenrwLS, long int *leniwLS)
This optional routine should return the storage requirements for the linear solver LS. lrw is a long int con-
taining the number of realtype words and liw is a long int containing the number of integer words. The
return value is an integer flag denoting success/failure of the operation.

This function is advisory only, for use by users to help determine their total space requirements.

Usage:

retval = SUNLinSolSpace(LS, &lrw, &liw);

12.1.4 Functions provided by SUNDIALS packages

To interface with SUNLinSol modules, the SUNDIALS packages supply a variety of routines for evaluating the
matrix-vector product, and setting up and applying the preconditioniner. These package-provided routines translate
between the user-supplied ODE, DAE, or nonlinear systems and the generic interfaces to the linear systems of equa-
tions that result in their solution. The types for functions provided to a SUNLinSol module are defined in the header
file sundials/sundials_iterative.h, and are described below.

typedef int (*ATimesFn)(void *A_data, N_Vector v, N_Vector z)
These functions compute the action of a matrix on a vector, performing the operation 𝑧 = 𝐴𝑣. Memory for
z will already be allocated prior to calling this function. The parameter A_data is a pointer to any information
about 𝐴 which the function needs in order to do its job. The vector 𝑣 should be left unchanged. This routine
should return 0 if successful and a non-zero value if unsuccessful.

typedef int (*PSetupFn)(void *P_data)
These functions set up any requisite problem data in preparation for calls to the corresponding PSolveFn.
This routine should return 0 if successful and a non-zero value if unsuccessful.

typedef int (*PSolveFn)(void *P_data, N_Vector r, N_Vector z, realtype tol, int lr)
These functions solve the preconditioner equation 𝑃𝑧 = 𝑟 for the vector 𝑧. Memory for z will already be
allocated prior to calling this function. The parameter P_data is a pointer to any information about 𝑃 which
the function needs in order to do its job (set up by the corresponding PSetupFn). The parameter lr is input,
and indicates whether 𝑃 is to be taken as the left or right preconditioner: lr = 1 for left and lr = 2 for right. If
preconditioning is on one side only, lr can be ignored. If the preconditioner is iterative, then it should strive to
solve the preconditioner equation so that

‖𝑃𝑧 − 𝑟‖wrms < 𝑡𝑜𝑙

where the error weight vector for the WRMS norm may be accessed from the main package memory structure.
The vector r should not be modified by the PSolveFn. This routine should return 0 if successful and a non-zero
value if unsuccessful. On a failure, a negative return value indicates an unrecoverable condition, while a pos-
itive value indicates a recoverable one, in which the calling routine may reattempt the solution after updating
preconditioner data.

12.1.5 SUNLinearSolver return codes

The functions provided to SUNLinSol modules by each SUNDIALS package, and functions within the SUNDIALS-
provided SUNLinSol implementations utilize a common set of return codes, listed below. These adhere to a common
pattern: 0 indicates success, a postitive value corresponds to a recoverable failure, and a negative value indicates a
non-recoverable failure. Aside from this pattern, the actual values of each error code are primarily to provide addi-
tional information to the user in case of a linear solver failure.
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• SUNLS_SUCCESS (0) – successful call or converged solve

• SUNLS_MEM_NULL (-801) – the memory argument to the function is NULL

• SUNLS_ILL_INPUT (-802) – an illegal input has been provided to the function

• SUNLS_MEM_FAIL (-803) – failed memory access or allocation

• SUNLS_ATIMES_NULL (-804) – the Atimes function is NULL

• SUNLS_ATIMES_FAIL_UNREC (-805) – an unrecoverable failure occurred in the ATimes routine

• SUNLS_PSET_FAIL_UNREC (-806) – an unrecoverable failure occurred in the Pset routine

• SUNLS_PSOLVE_NULL (-807) – the preconditioner solve function is NULL

• SUNLS_PSOLVE_FAIL_UNREC (-808) – an unrecoverable failure occurred in the Psolve routine

• SUNLS_PACKAGE_FAIL_UNREC (-809) – an unrecoverable failure occurred in an external linear solver
package

• SUNLS_GS_FAIL (-810) – a failure occurred during Gram-Schmidt orthogonalization (SPGMR/SPFGMR)

• SUNLS_QRSOL_FAIL (-811) – a singular $R$ matrix was encountered in a QR factorization
(SPGMR/SPFGMR)

• SUNLS_VECTOROP_ERR (-812) – a vector operation error occurred

• SUNLS_RES_REDUCED (801) – an iterative solver reduced the residual, but did not converge to the desired
tolerance

• SUNLS_CONV_FAIL (802) – an iterative solver did not converge (80and the residual was not reduced)

• SUNLS_ATIMES_FAIL_REC (803) – a recoverable failure occurred in the ATimes routine

• SUNLS_PSET_FAIL_REC (804) – a recoverable failure occurred in the Pset routine

• SUNLS_PSOLVE_FAIL_REC (805) – a recoverable failure occurred in the Psolve routine

• SUNLS_PACKAGE_FAIL_REC (806) – a recoverable failure occurred in an external linear solver package

• SUNLS_QRFACT_FAIL (807) – a singular matrix was encountered during a QR factorization
(SPGMR/SPFGMR)

• SUNLS_LUFACT_FAIL (808) – a singular matrix was encountered during a LU factorization

12.1.6 The generic SUNLinearSolver module

SUNDIALS packages interact with specific SUNLinSol implementations through the generic SUNLinSol module
on which all other SUNLinSol iplementations are built. The SUNLinearSolver type is a pointer to a structure
containing an implementation-dependent content field, and an ops field. The type SUNLinearSolver is defined as

typedef struct _generic_SUNLinearSolver *SUNLinearSolver;

struct _generic_SUNLinearSolver {
void *content;
struct _generic_SUNLinearSolver_Ops *ops;

};

where the _generic_SUNLinearSolver_Ops structure is a list of pointers to the various actual linear solver
operations provided by a specific implementation. The _generic_SUNLinearSolver_Ops structure is defined
as
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struct _generic_SUNLinearSolver_Ops {
SUNLinearSolver_Type (*gettype)(SUNLinearSolver);
SUNLinearSolver_ID (*getid)(SUNLinearSolver);
int (*setatimes)(SUNLinearSolver, void*, ATimesFn);
int (*setpreconditioner)(SUNLinearSolver, void*,

PSetupFn, PSolveFn);
int (*setscalingvectors)(SUNLinearSolver,

N_Vector, N_Vector);
int (*initialize)(SUNLinearSolver);
int (*setup)(SUNLinearSolver, SUNMatrix);
int (*solve)(SUNLinearSolver, SUNMatrix, N_Vector,

N_Vector, realtype);
int (*numiters)(SUNLinearSolver);
realtype (*resnorm)(SUNLinearSolver);
sunindextype (*lastflag)(SUNLinearSolver);
int (*space)(SUNLinearSolver, long int*, long int*);
N_Vector (*resid)(SUNLinearSolver);
int (*free)(SUNLinearSolver);

};

The generic SUNLinSol module defines and implements the linear solver operations defined in Sections SUNLinear-
Solver core functions through SUNLinearSolver get functions. These routines are in fact only wrappers to the linear
solver operations defined by a particular SUNLinSol implementation, which are accessed through the ops field of the
SUNLinearSolver structure. To illustrate this point we show below the implementation of a typical linear solver
operation from the generic SUNLinearSolver module, namely SUNLinSolInitialize, which initializes a
SUNLinearSolver object for use after it has been created and configured, and returns a flag denoting a successful
or failed operation:

int SUNLinSolInitialize(SUNLinearSolver S)
{

return ((int) S->ops->initialize(S));
}

12.1.7 Compatibility of SUNLinearSolver modules

We note that not all SUNLinearSolver types are compatible with all SUNMatrix and N_Vector types pro-
vided with SUNDIALS. In Table Compatible SUNLinearSolver and SUNMatrix implementations we show the
matrix-based linear solvers available as SUNLinearSolver modules, and the compatible matrix implementations.
Recall that Table SUNDIALS linear solver interfaces and vector implementations that can be used for each shows
the compatibility between all SUNLinearSolver modules and vector implementations.

12.1.7.1 Compatible SUNLinearSolver and SUNMatrix implementations

Linear Solver Dense Banded Sparse User Supplied
Dense X X
LapackDense X X
Band X X
LapackBand X X
KLU X X
SuperLU_MT X X
User supplied X X X X
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12.1.8 Implementing a custom SUNLinearSolver module

A particular implementation of the SUNLinearSolver module must:

• Specify the content field of the SUNLinSol module.

• Define and implement the required linear solver operations. See the section ARKode SUNLinearSolver inter-
face to determine which SUNLinSol operations are required for this SUNDIALS package.

Note that the names of these routines should be unique to that implementation in order to permit using more
than one SUNLinSol module (each with different SUNLinearSolver internal data representations) in the
same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNLinearSolver with the new content field and with ops pointing to the new linear solver operations.

We note that the function pointers for all unsupported optional routines should be set to NULL in the ops structure.
This allows the SUNDIALS package that is using the SUNLinSol object to know that the associated functionality is
not supported.

To aid in the creation of custom SUNLinearSolver modules the generic SUNLinearSolver module provides
the utility function SUNLinSolNewEmpty(). When used in custom SUNLinearSolver constructors this func-
tion will ease the introduction of any new optional linear solver operations to the SUNLinearSolver API by en-
suring only required operations need to be set.

SUNLinearSolver SUNLinSolNewEmpty()
This function allocates a new generic SUNLinearSolver object and initializes its content pointer and the
function pointers in the operations structure to NULL.

Return value: If successful, this function returns a SUNLinearSolver object. If an error occurs when allo-
cating the object, then this routine will return NULL.

void SUNLinSolFreeEmpty(SUNLinearSolver LS)
This routine frees the generic SUNLinearSolver object, under the assumption that any implementation-
specific data that was allocated within the underlying content structure has already been freed. It will addition-
ally test whether the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:

• LS – a SUNLinearSolver object

Additionally, a SUNLinearSolver implementation may do the following:

• Define and implement additional user-callable “set” routines acting on the SUNLinearSolver, e.g., for
setting various configuration options to tune the linear solver to a particular problem.

• Provide additional user-callable “get” routines acting on the SUNLinearSolver object, e.g., for returning
various solve statistics.

12.1.8.1 Intended use cases

The SUNLinSol (and SUNMATRIX) APIs are designed to require a minimal set of routines to ease interfacing with
custom or third-party linear solver libraries. External solvers provide similar routines with the necessary functional-
ity and thus will require minimal effort to wrap within custom SUNMATRIX and SUNLinSol implementations. Sec-
tions SUNMATRIX functions required by ARKode and ARKode SUNLinearSolver interface include a list of the re-
quired set of routines that compatible SUNMATRIX and SUNLinSol implementations must provide. As SUNDIALS
packages utilize generic SUNLinSol modules allowing for user-supplied SUNLinearSolver implementations,
there exists a wide range of possible linear solver combinations. Some intended use cases for both the SUNDIALS-
provided and user-supplied SUNLinSol modules are discussd in the following sections.
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Direct linear solvers

Direct linear solver modules require a matrix and compute an ‘exact’ solution to the linear system defined by the ma-
trix. Multiple matrix formats and associated direct linear solvers are supplied with SUNDIALS through different
SUNMATRIX and SUNLinSol implementations. SUNDIALS packages strive to amortize the high cost of matrix
construction by reusing matrix information for multiple nonlinear iterations. As a result, each package’s linear solver
interface recomputes Jacobian information as infrequently as possible.

Alternative matrix storage formats and compatible linear solvers that are not currently provided by or interfaced with
SUNDIALS can leverage this infrastructure with minimal effort. To do so, a user must implement custom SUNMA-
TRIX and SUNLinSol wrappers for the desired matrix format and/or linear solver following the APIs described in
the sections Matrix Data Structures and Description of the SUNLinearSolver module. This user-supplied SUNLinSol
module must then self-identify as having SUNLINEARSOLVER_DIRECT type.

Matrix-free iterative linear solvers

Matrix-free iterative linear solver modules do not require a matrix and compute an inexact solution to the linear sys-
tem defined by the package-supplied ATimes routine. SUNDIALS supplies multiple scaled, preconditioned itera-
tive linear solver (spils) SUNLinSol modules that support scaling to allow users to handle non-dimensionalization
(as best as possible) within each SUNDIALS package and retain variables and define equations as desired in their
applications. For linear solvers that do not support left/right scaling, the tolerance supplied to the linear solver is ad-
justed to compensate (see section Iterative linear solver tolerance for more details); however, this use case may be
non-optimal and cannot handle situations where the magnitudes of different solution components or equations vary
dramatically within a single problem.

To utilize alternative linear solvers that are not currently provided by or interfaced with SUNDIALS a user must
implement a custom SUNLinSol wrapper for the linear solver following the API described in the section Descrip-
tion of the SUNLinearSolver module. This user-supplied SUNLinSol module must then self-identify as having
SUNLINEARSOLVER_ITERATIVE type.

Matrix-based iterative linear solvers (reusing 𝐴)

Matrix-based iterative linear solver modules require a matrix and compute an inexact solution to the linear system
defined by the matrix. This matrix will be updated infrequently and resued across multiple solves to amortize cost of
matrix construction. As in the direct linear solver case, only wrappers for the matrix and linear solver in SUNMA-
TRIX and SUNLinSol implementations need to be created to utilize a new linear solver. This user-supplied SUNLin-
Sol module must then self-identify as having SUNLINEARSOLVER_MATRIX_ITERATIVE type.

At present, SUNDIALS has one example problem that uses this approach for wrapping a structured-grid matrix, lin-
ear solver, and preconditioner from the hypre library that may be used as a template for other customized implemen-
tations (see examples/arkode/CXX_parhyp/ark_heat2D_hypre.cpp).

Matrix-based iterative linear solvers (current 𝐴)

For users who wish to utilize a matrix-based iterative linear solver module where the matrix is purely for precondi-
tioning and the linear system is defined by the package-supplied ATimes routine, we envision two current possibili-
ties.

The preferred approach is for users to employ one of the SUNDIALS scaled, preconditioned iterative linear solver
(spils) implementations (SUNLinSol_SPGMR(), SUNLinSol_SPFGMR(), SUNLinSol_SPBCGS(),
SUNLinSol_SPTFQMR(), or SUNLinSol_PCG()) as the outer solver. The creation and storage of the precon-
ditioner matrix, and interfacing with the corresponding linear solver, can be handled through a package’s precondi-
tioner ‘setup’ and ‘solve’ functionality (see the sections Preconditioner setup (iterative linear solvers) and Precondi-
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tioner solve (iterative linear solvers), respectively) without creating SUNMATRIX and SUNLinSol implementations.
This usage mode is recommended primarily because the SUNDIALS-provided spils modules support the scaling as
described above.

A second approach supported by the linear solver APIs is as follows. If the SUNLinSol implementation is
matrix-based, self-identifies as having SUNLINEARSOLVER_ITERATIVE type, and also provides a non-NULL
:c:func:‘SUNLinSolSetATimes()‘ routine, then each SUNDIALS package will call that routine to attach its package-
specific matrix-vector product routine to the SUNLinSol object. The SUNDIALS package will then call the
SUNLinSol-provided SUNLinSolSetup() routine (infrequently) to update matrix information, but will provide
current matrix-vector products to the SUNLinSol implementation through the package-supplied ATimesFn routine.

12.2 ARKode SUNLinearSolver interface

In the table below, we list the SUNLinSol module linear solver functions used within the ARKLS interface. As with
the SUNMATRIX module, we emphasize that the ARKode user does not need to know detailed usage of linear
solver functions by the ARKode code modules in order to use ARKode. The information is presented as an imple-
mentation detail for the interested reader.

The linear solver functions listed below are marked with “X” to indicate that they are required, or with “O” to indi-
cate that they are only called if they are non-NULL in the SUNLinearSolver implementation that is being used.
Note:

1. SUNLinSolNumIters() is only used to accumulate overall iterative linear solver statistics. If it is not im-
plemented by the SUNLinearSolver module, then ARKLS will consider all solves as requiring zero itera-
tions.

2. Although SUNLinSolResNorm() is optional, if it is not implemented by the SUNLinearSolver then
ARKLS will consider all solves a being exact.

3. Although ARKLS does not call SUNLinSolLastFlag() directly, this routine is available for users to
query linear solver failure modes directly.

4. Although ARKLS does not call SUNLinSolFree() directly, this routine should be available for users to
call when cleaning up from a simulation.

Routine DIRECT ITERATIVE MATRIX_ITERATIVE
SUNLinSolGetType X X X
SUNLinSolSetATimes O X O
SUNLinSolSetPreconditioner O O O
SUNLinSolSetScalingVectors O O O
SUNLinSolInitialize X X X
SUNLinSolSetup X X X
SUNLinSolSolve X X X
SUNLinSolNumIters1 O O
SUNLinSolResNorm2 O O
SUNLinSolLastFlag3

SUNLinSolFree4

SUNLinSolSpace O O O

Since there are a wide range of potential SUNLinSol use cases, the following subsections describe some details of
the ARKLS interface, in the case that interested users wish to develop custom SUNLinSol modules.
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12.2.1 Lagged matrix information

If the SUNLinSol identifies as having type SUNLINEARSOLVER_DIRECT or
SUNLINEARSOLVER_MATRIX_ITERATIVE, then the SUNLinSol object solves a linear system defined by
a SUNMATRIX object. ARKLS will update the matrix information infrequently according to the strategies outlined
in the section Updating the linear solver. To this end, we differentiate between the desired linear system 𝒜𝑥 = 𝑏
with 𝒜 = (𝑀 − 𝛾𝐽) and the actual linear system

𝒜�̃� = 𝑏 ⇔ (𝑀 − 𝛾𝐽)�̃� = 𝑏.

Since ARKLS updates the SUNMATRIX object infrequently, it is likely that 𝛾 ̸= 𝛾, and in turn 𝒜 ≠ 𝒜. Therefore,
after calling the SUNLinSol-provided SUNLinSolSolve() routine, we test whether 𝛾/𝛾 ̸= 1, and if this is the
case we scale the solution �̃� to obtain the desired linear system solution 𝑥 via

𝑥 =
2

1 + 𝛾/𝛾
�̃�. (12.3)

The motivation for this selection of the scaling factor 𝑐 = 2/(1 + 𝛾/𝛾) follows the derivation in [BBH1989] and
[H2000]. In short, if we consider a stationary iteration for the linear system as consisting of a solve with 𝒜 followed
by scaling by 𝑐, then for a linear constant-coefficient problem, the error in the solution vector will be reduced at each
iteration by the error matrix 𝐸 = 𝐼 − 𝑐𝒜−1𝒜, with a convergence rate given by the spectral radius of 𝐸. Assuming
that stiff systems have a spectrum spread widely over the left half-plane, 𝑐 is chosen to minimize the magnitude of
the eigenvalues of 𝐸.

12.2.2 Iterative linear solver tolerance

If the SUNLinSol object self-identifies as having type SUNLINEARSOLVER_ITERATIVE or
SUNLINEARSOLVER_MATRIX_ITERATIVE, then ARKLS will set the input tolerance delta as described
in Linear iteration error control. However, if the iterative linear solver does not support scaling matrices (i.e., the
SUNLinSolSetScalingVectors() routine is NULL), then ARKLS will attempt to adjust the linear solver
tolerance to account for this lack of functionality. To this end, the following assumptions are made:

• All solution components have similar magnitude; hence the residual weight vector 𝑤 used in the WRMS norm
(see the section Error norms), corresponding to the left scaling matrix 𝑆1, should satisfy the assumption

𝑤𝑖 ≈ 𝑤𝑚𝑒𝑎𝑛, for 𝑖 = 0, . . . , 𝑛− 1.

• The SUNLinSol object uses a standard 2-norm to measure convergence.

Under these assumptions, ARKLS adjusts the linear solver convergence requirement as follows (using the notation
from the beginning of this chapter): ⃦⃦⃦

�̃�−𝐴�̃�
⃦⃦⃦
2
< tol

⇔
⃦⃦
𝑆1𝑃

−1
1 𝑏− 𝑆1𝑃

−1
1 𝐴𝑥

⃦⃦
2
< tol

⇔
𝑛−1∑︁
𝑖=0

[︀
𝑤𝑖

(︀
𝑃−1
1 (𝑏−𝐴𝑥)

)︀
𝑖

]︀2
< tol2

⇔ 𝑤2
𝑚𝑒𝑎𝑛

𝑛−1∑︁
𝑖=0

[︀(︀
𝑃−1
1 (𝑏−𝐴𝑥)

)︀
𝑖

]︀2
< tol2

⇔
𝑛−1∑︁
𝑖=0

[︀(︀
𝑃−1
1 (𝑏−𝐴𝑥)

)︀
𝑖

]︀2
<

(︂
tol

𝑤𝑚𝑒𝑎𝑛

)︂2

⇔
⃦⃦
𝑃−1
1 (𝑏−𝐴𝑥)

⃦⃦
2
<

tol
𝑤𝑚𝑒𝑎𝑛
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Therefore the tolerance scaling factor

𝑤𝑚𝑒𝑎𝑛 = ‖𝑤‖2/
√
𝑛

is computed and the scaled tolerance delta = tol/𝑤𝑚𝑒𝑎𝑛 is supplied to the SUNLinSol object.

12.2.3 Providing a custom SUNLinearSolver

In certain instances, users may wish to provide a custom SUNLinearSolver implementation to ARKode in order to
leverage the structure of a problem. While the ‘standard’ API for these routines is typically sufficient for most users,
others may need additional ARKode-specific information on top of what is provided. For these purposes, we note the
following advanced ouptut functions available in ARKStep and MRIStep:

ARKStep advanced outputs: when solving the Newton nonlinear system of equations in predictor-corrector form,

𝐺(𝑧𝑐𝑜𝑟) ≡ 𝑧𝑐𝑜𝑟 − 𝛾𝑓 𝐼
(︀
𝑡𝐼𝑛,𝑖, 𝑧𝑖

)︀
− �̃�𝑖 = 0 [𝑀 = 𝐼],

𝐺(𝑧𝑐𝑜𝑟) ≡𝑀𝑧𝑐𝑜𝑟 − 𝛾𝑓 𝐼
(︀
𝑡𝐼𝑛,𝑖, 𝑧𝑖

)︀
− �̃�𝑖 = 0 [𝑀 static],

𝐺(𝑧𝑐𝑜𝑟) ≡𝑀(𝑡𝐼𝑛,𝑖)(𝑧𝑐𝑜𝑟 − �̃�𝑖)− 𝛾𝑓 𝐼
(︀
𝑡𝐼𝑛,𝑖, 𝑧𝑖

)︀
= 0 [𝑀 time-dependent].

• ARKStepGetCurrentTime() – when called within the computation of a step (i.e., within a solve) this
returns 𝑡𝐼𝑛,𝑖. Otherwise the current internal solution time is returned.

• ARKStepGetCurrentState() – when called within the computation of a step (i.e., within a solve) this
returns the current stage vector 𝑧𝑖 = 𝑧𝑐𝑜𝑟 + 𝑧𝑝𝑟𝑒𝑑. Otherwise the current internal solution is returned.

• ARKStepGetCurrentGamma() – returns 𝛾.

• ARKStepGetCurrentMassMatrix() – returns 𝑀(𝑡).

• ARKStepGetNonlinearSystemData() – returns 𝑧𝑖, 𝑧𝑝𝑟𝑒𝑑, 𝑓 𝐼(𝑡𝐼𝑛,𝑖, 𝑦𝑐𝑢𝑟), �̃�𝑖, and 𝛾.

MRIStep advanced outputs: when solving the Newton nonlinear system of equations in predictor-corrector form,

𝐺(𝑧𝑐𝑜𝑟) ≡ 𝑧𝑐𝑜𝑟 − 𝛾𝑓𝑆
(︀
𝑡𝑆𝑛,𝑖, 𝑧𝑖

)︀
− �̃�𝑖 = 0

• MRIStepGetCurrentTime() – when called within the computation of a step (i.e., within a solve) this
returns 𝑡𝑆𝑛,𝑖. Otherwise the current internal solution time is returned.

• MRIStepGetCurrentState() – when called within the computation of a step (i.e., within a solve) this
returns the current stage vector 𝑧𝑖 = 𝑧𝑐𝑜𝑟 + 𝑧𝑝𝑟𝑒𝑑. Otherwise the current internal solution is returned.

• MRIStepGetCurrentGamma() – returns 𝛾.

• MRIStepGetNonlinearSystemData() – returns 𝑧𝑖, 𝑧𝑝𝑟𝑒𝑑, 𝑓 𝐼(𝑡𝐼𝑛,𝑖, 𝑦𝑐𝑢𝑟), �̃�𝑖, and 𝛾.

12.3 The SUNLinSol_Dense Module

The dense implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLinSol_Dense,
is designed to be used with the corresponding SUNMATRIX_DENSE matrix type, and one of the serial or shared-
memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).

12.3.1 SUNLinSol_Dense Usage

The header file to be included when using this module is sunlinsol/sunlinsol_dense.
h. The SUNLinSol_Dense module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsoldense module library.
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The module SUNLinSol_Dense provides the following user-callable constructor routine:

SUNLinearSolver SUNLinSol_Dense(N_Vector y, SUNMatrix A)
This function creates and allocates memory for a dense SUNLinearSolver. Its arguments are an
N_Vector and SUNMatrix, that it uses to determine the linear system size and to assess compatibility with
the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and
the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

If either A or y are incompatible then this routine will return NULL.

For backwards compatibility, we also provide the wrapper function,

SUNLinearSolver SUNDenseLinearSolver(N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_Dense(), with identical input and output arguments

For solvers that include a Fortran interface module, the SUNLinSol_Dense module also includes the Fortran-callable
function FSUNDenseLinSolInit() to initialize this SUNLinSol_Dense module for a given SUNDIALS solver.

subroutine FSUNDenseLinSolInit(CODE, IER)
Initializes a dense SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassDenseLinSolInit() initializes this SUNLinSol_Dense module for solving mass matrix linear sys-
tems.

subroutine FSUNMassDenseLinSolInit(IER)
Initializes a dense SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• IER (int, output) – return flag (0 success, -1 for failure).

12.3.2 SUNLinSol_Dense Description

The SUNLinSol_Dense module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,
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• last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

• The “setup” call performs a 𝐿𝑈 factorization with partial (row) pivoting (𝒪(𝑁3) cost), 𝑃𝐴 = 𝐿𝑈 , where 𝑃
is a permutation matrix, 𝐿 is a lower triangular matrix with 1’s on the diagonal, and 𝑈 is an upper triangular
matrix. This factorization is stored in-place on the input SUNMATRIX_DENSE object 𝐴, with pivoting infor-
mation encoding 𝑃 stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and
the 𝐿𝑈 factors held in the SUNMATRIX_DENSE object (𝒪(𝑁2) cost).

The SUNLinSol_Dense module defines dense implementations of all “direct” linear solver operations listed in the
section The SUNLinearSolver API:

• SUNLinSolGetType_Dense

• SUNLinSolInitialize_Dense – this does nothing, since all consistency checks are performed at solver
creation.

• SUNLinSolSetup_Dense – this performs the 𝐿𝑈 factorization.

• SUNLinSolSolve_Dense – this uses the 𝐿𝑈 factors and pivots array to perform the solve.

• SUNLinSolLastFlag_Dense

• SUNLinSolSpace_Dense – this only returns information for the storage within the solver object, i.e. stor-
age for N, last_flag, and pivots.

• SUNLinSolFree_Dense

12.4 The SUNLinSol_Band Module

The band implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLinSol_Band, is de-
signed to be used with the corresponding SUNMATRIX_BAND matrix type, and one of the serial or shared-memory
N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).

12.4.1 SUNLinSol_Band Usage

The header file to be included when using this module is sunlinsol/sunlinsol_band.
h. The SUNLinSol_Band module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolband module library.

The module SUNLinSol_Band provides the following user-callable constructor routine:

SUNLinearSolver SUNLinSol_Band(N_Vector y, SUNMatrix A)
This function creates and allocates memory for a band SUNLinearSolver. Its arguments are an
N_Vector and SUNMatrix, that it uses to determine the linear system size and to assess compatibility with
the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional com-
patible matrix and vector implementations are added to SUNDIALS, these will be included within this com-
patibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth stor-
age for the 𝐿𝑈 factorization.
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If either A or y are incompatible then this routine will return NULL.

For backwards compatibility, we also provide the wrapper function,

SUNLinearSolver SUNBandLinearSolver(N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_Band(), with identical input and output arguments.

For solvers that include a Fortran interface module, the SUNLinSol_Band module also includes the Fortran-callable
function FSUNBandLinSolInit() to initialize this SUNLinSol_Band module for a given SUNDIALS solver.

subroutine FSUNBandLinSolInit(CODE, IER)
Initializes a banded SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassBandLinSolInit() initializes this SUNLinSol_Band module for solving mass matrix linear sys-
tems.

subroutine FSUNMassBandLinSolInit(IER)
Initializes a banded SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• IER (int, output) – return flag (0 success, -1 for failure).

12.4.2 SUNLinSol_Band Description

The SUNLinSol_Band module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

• The “setup” call performs a 𝐿𝑈 factorization with partial (row) pivoting, 𝑃𝐴 = 𝐿𝑈 , where 𝑃 is a permutation
matrix, 𝐿 is a lower triangular matrix with 1’s on the diagonal, and 𝑈 is an upper triangular matrix. This fac-
torization is stored in-place on the input SUNMATRIX_BAND object 𝐴, with pivoting information encoding
𝑃 stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and
the 𝐿𝑈 factors held in the SUNMATRIX_BAND object.
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• 𝐴 must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if 𝐴 is a band matrix with upper bandwidth mu and lower bandwidth ml, then the upper triangular
factor 𝑈 can have upper bandwidth as big as smu = MIN(N-1,mu+ml). The lower triangular factor 𝐿 has
lower bandwidth ml.

The SUNLinSol_Band module defines band implementations of all “direct” linear solver operations listed in the sec-
tion The SUNLinearSolver API:

• SUNLinSolGetType_Band

• SUNLinSolInitialize_Band – this does nothing, since all consistency checks are performed at solver
creation.

• SUNLinSolSetup_Band – this performs the 𝐿𝑈 factorization.

• SUNLinSolSolve_Band – this uses the 𝐿𝑈 factors and pivots array to perform the solve.

• SUNLinSolLastFlag_Band

• SUNLinSolSpace_Band – this only returns information for the storage within the solver object, i.e. storage
for N, last_flag, and pivots.

• SUNLinSolFree_Band

12.5 The SUNLinSol_LapackDense Module

The LAPACK dense implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLin-
Sol_LapackDense, is designed to be used with the corresponding SUNMATRIX_DENSE matrix type, and one of
the serial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVEC-
TOR_PTHREADS).

12.5.1 SUNLinSol_LapackDense Usage

The header file to be included when using this module is sunlinsol/sunlinsol_lapackdense.h. The in-
stalled module library to link to is libsundials_sunlinsollapackdense .lib where .lib is typically .so for
shared libraries and .a for static libraries.

The module SUNLinSol_LapackDense provides the following additional user-callable constructor routine:

SUNLinearSolver SUNLinSol_LapackDense(N_Vector y, SUNMatrix A)
This function creates and allocates memory for a LAPACK dense SUNLinearSolver. Its arguments are an
N_Vector and SUNMatrix, that it uses to determine the linear system size and to assess compatibility with
the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and
the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

If either A or y are incompatible then this routine will return NULL.

For backwards compatibility, we also provide the wrapper function,

SUNLinearSolver SUNLapackDense(N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_LapackDense(), with identical input and output arguments.
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For solvers that include a Fortran interface module, the SUNLinSol_LapackDense module also includes the Fortran-
callable function FSUNLapackDenseInit() to initialize this SUNLinSol_LapackDense module for a given
SUNDIALS solver.

subroutine FSUNLapackDenseInit(CODE, IER)
Initializes a dense LAPACK SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassLapackDenseInit() initializes this SUNLinSol_LapackDense module for solving mass matrix lin-
ear systems.

subroutine FSUNMassLapackDenseInit(IER)
Initializes a dense LAPACK SUNLinearSolver structure for use in solving mass matrix systems in
ARKode.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• IER (int, output) – return flag (0 success, -1 for failure).

12.5.2 SUNLinSol_LapackDense Description

The SUNLinSol_LapackDense module defines the content field of a SUNLinearSolver to be the following struc-
ture:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

The SUNLinSol_LapackDense module is a SUNLinearSolver wrapper for the LAPACK dense matrix factor-
ization and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether SUNDIALS was
configured to have realtype set to double or single, respectively (see section Data Types for details). In or-
der to use the SUNLinSol_LapackDense module it is assumed that LAPACK has been installed on the system prior
to installation of SUNDIALS, and that SUNDIALS has been configured appropriately to link with LAPACK (see
section Working with external Libraries for details). We note that since there do not exist 128-bit floating-point fac-
torization and solve routines in LAPACK, this interface cannot be compiled when using extended precision for
realtype. Similarly, since there do not exist 64-bit integer LAPACK routines, the SUNLinSol_LapackDense mod-
ule also cannot be compiled when using int64_t for the sunindextype.

This solver is constructed to perform the following operations:
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• The “setup” call performs a 𝐿𝑈 factorization with partial (row) pivoting (𝒪(𝑁3) cost), 𝑃𝐴 = 𝐿𝑈 , where 𝑃
is a permutation matrix, 𝐿 is a lower triangular matrix with 1’s on the diagonal, and 𝑈 is an upper triangular
matrix. This factorization is stored in-place on the input SUNMATRIX_DENSE object 𝐴, with pivoting infor-
mation encoding 𝑃 stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and
the 𝐿𝑈 factors held in the SUNMATRIX_DENSE object (𝒪(𝑁2) cost).

The SUNLinSol_LapackDense module defines dense implementations of all “direct” linear solver operations listed
in the section The SUNLinearSolver API:

• SUNLinSolGetType_LapackDense

• SUNLinSolInitialize_LapackDense – this does nothing, since all consistency checks are performed
at solver creation.

• SUNLinSolSetup_LapackDense – this calls either DGETRF or SGETRF to perform the 𝐿𝑈 factoriza-
tion.

• SUNLinSolSolve_LapackDense – this calls either DGETRS or SGETRS to use the 𝐿𝑈 factors and
pivots array to perform the solve.

• SUNLinSolLastFlag_LapackDense

• SUNLinSolSpace_LapackDense – this only returns information for the storage within the solver object,
i.e. storage for N, last_flag, and pivots.

• SUNLinSolFree_LapackDense

12.6 The SUNLinSol_LapackBand Module

The LAPACK band implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLin-
Sol_LapackBand, is designed to be used with the corresponding SUNMATRIX_BAND matrix type, and one of the
serial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVEC-
TOR_PTHREADS). The

12.6.1 SUNLinSol_LapackBand Usage

The header file to be included when using this module is sunlinsol/sunlinsol_lapackband.h. The in-
stalled module library to link to is libsundials_sunlinsollapackband .lib where .lib is typically .so for
shared libraries and .a for static libraries.

The module SUNLinSol_LapackBand provides the following user-callable routine:

SUNLinearSolver SUNLinSol_LapackBand(N_Vector y, SUNMatrix A)
This function creates and allocates memory for a LAPACK band SUNLinearSolver. Its arguments are an
N_Vector and SUNMatrix, that it uses to determine the linear system size and to assess compatibility with
the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional com-
patible matrix and vector implementations are added to SUNDIALS, these will be included within this com-
patibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth stor-
age for the 𝐿𝑈 factorization.
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If either A or y are incompatible then this routine will return NULL.

For backwards compatibility, we also provide the wrapper function,

SUNLinearSolver SUNLapackBand(N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_LapackBand(), with identical input and output arguments.

For solvers that include a Fortran interface module, the SUNLinSol_LapackBand module also includes the Fortran-
callable function FSUNLapackBandInit() to initialize this SUNLinSol_LapackBand module for a given SUN-
DIALS solver.

subroutine FSUNLapackBandInit(CODE, IER)
Initializes a banded LAPACK SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassLapackBandInit() initializes this SUNLinSol_LapackBand module for solving mass matrix linear
systems.

subroutine FSUNMassLapackBandInit(IER)
Initializes a banded LAPACK SUNLinearSolver structure for use in solving mass matrix systems in
ARKode.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• IER (int, output) – return flag (0 success, -1 for failure).

12.6.2 SUNLinSol_LapackBand Description

SUNLinSol_LapackBand module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

The SUNLinSol_LapackBand module is a SUNLinearSolver wrapper for the LAPACK band matrix factoriza-
tion and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether SUNDIALS was
configured to have realtype set to double or single, respectively (see section Data Types for details). In or-
der to use the SUNLinSol_LapackBand module it is assumed that LAPACK has been installed on the system prior
to installation of SUNDIALS, and that SUNDIALS has been configured appropriately to link with LAPACK (see
section Working with external Libraries for details). We note that since there do not exist 128-bit floating-point fac-
torization and solve routines in LAPACK, this interface cannot be compiled when using extended precision for
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realtype. Similarly, since there do not exist 64-bit integer LAPACK routines, the SUNLinSol_LapackBand mod-
ule also cannot be compiled when using int64_t for the sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs a 𝐿𝑈 factorization with partial (row) pivoting, 𝑃𝐴 = 𝐿𝑈 , where 𝑃 is a permutation
matrix, 𝐿 is a lower triangular matrix with 1’s on the diagonal, and 𝑈 is an upper triangular matrix. This fac-
torization is stored in-place on the input SUNMATRIX_BAND object 𝐴, with pivoting information encoding
𝑃 stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and
the 𝐿𝑈 factors held in the SUNMATRIX_BAND object.

• 𝐴 must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if 𝐴 is a band matrix with upper bandwidth mu and lower bandwidth ml, then the upper triangular
factor 𝑈 can have upper bandwidth as big as smu = MIN(N-1,mu+ml). The lower triangular factor 𝐿 has
lower bandwidth ml.

The SUNLinSol_LapackBand module defines band implementations of all “direct” linear solver operations listed in
the section The SUNLinearSolver API:

• SUNLinSolGetType_LapackBand

• SUNLinSolInitialize_LapackBand – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup_LapackBand – this calls either DGBTRF or SGBTRF to perform the 𝐿𝑈 factorization.

• SUNLinSolSolve_LapackBand – this calls either DGBTRS or SGBTRS to use the 𝐿𝑈 factors and
pivots array to perform the solve.

• SUNLinSolLastFlag_LapackBand

• SUNLinSolSpace_LapackBand – this only returns information for the storage within the solver object,
i.e. storage for N, last_flag, and pivots.

• SUNLinSolFree_LapackBand

12.7 The SUNLinSol_KLU Module

The KLU implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLinSol_KLU, is
designed to be used with the corresponding SUNMATRIX_SPARSE matrix type, and one of the serial or shared-
memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS).

12.7.1 SUNLinSol_KLU Usage

The header file to be included when using this module is sunlinsol/sunlinsol_klu.h. The installed module
library to link to is libsundials_sunlinsolklu .lib where .lib is typically .so for shared libraries and .a
for static libraries.

The module SUNLinSol_KLU provides the following additional user-callable routines:

SUNLinearSolver SUNLinSol_KLU(N_Vector y, SUNMatrix A)
This constructor function creates and allocates memory for a SUNLinSol_KLU object. Its arguments are an
N_Vector and SUNMatrix, that it uses to determine the linear system size and to assess compatibility with
the linear solver implementation.
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This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (us-
ing either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added to
SUNDIALS, these will be included within this compatibility check.

If either A or y are incompatible then this routine will return NULL.

int SUNLinSol_KLUReInit(SUNLinearSolver S, SUNMatrix A, sunindextype nnz, int reinit_type)
This function reinitializes memory and flags for a new factorization (symbolic and numeric) to be conducted
at the next solver setup call. This routine is useful in the cases where the number of nonzeroes has changed or
if the structure of the linear system has changed which would require a new symbolic (and numeric factoriza-
tion).

The reinit_type argument governs the level of reinitialization. The allowed values are:

1. The Jacobian matrix will be destroyed and a new one will be allocated based on the nnz value passed to
this call. New symbolic and numeric factorizations will be completed at the next solver setup.

2. Only symbolic and numeric factorizations will be completed. It is assumed that the Jacobian size has not
exceeded the size of nnz given in the sparse matrix provided to the original constructor routine (or the
previous SUNKLUReInit call).

This routine assumes no other changes to solver use are necessary.

The return values from this function are SUNLS_MEM_NULL (either S or A are NULL), SUNLS_ILL_INPUT
(A does not have type SUNMATRIX_SPARSE or reinit_type is invalid), SUNLS_MEM_FAIL (realloca-
tion of the sparse matrix failed) or SUNLS_SUCCESS.

int SUNLinSol_KLUSetOrdering(SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by KLU for reducing fill in the linear solve. Options for
ordering_choice are:

0. AMD,

1. COLAMD, and

2. the natural ordering.

The default is 1 for COLAMD.

The return values from this function are SUNLS_MEM_NULL (S is NULL), SUNLS_ILL_INPUT (invalid
ordering_choice), or SUNLS_SUCCESS.

sun_klu_symbolic* SUNLinSol_KLUGetSymbolic(SUNLinearSolver S)
This function returns a pointer to the KLU symbolic factorization stored in the SUNLinSol_KLU content
structure.

When SUNDIALS is compiled with 32-bit indices (SUNDIALS_INDEX_SIZE=32), sun_klu_symbolic
is mapped to the KLU type klu_symbolic; when SUNDIALS compiled with 64-bit indices
(SUNDIALS_INDEX_SIZE=64) this is mapped to the KLU type klu_l_symbolic.

sun_klu_numeric* SUNLinSol_KLUGetNumeric(SUNLinearSolver S)
This function returns a pointer to the KLU numeric factorization stored in the SUNLinSol_KLU content
structure.

When SUNDIALS is compiled with 32-bit indices (SUNDIALS_INDEX_SIZE=32), sun_klu_numeric
is mapped to the KLU type klu_numeric; when SUNDIALS is compiled with 64-bit indices
(SUNDIALS_INDEX_SIZE=64) this is mapped to the KLU type klu_l_numeric.

sun_klu_common* SUNLinSol_KLUGetCommon(SUNLinearSolver S)
This function returns a pointer to the KLU common structure stored in the SUNLinSol_KLU content struc-
ture.
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When SUNDIALS is compiled with 32-bit indices (SUNDIALS_INDEX_SIZE=32), sun_klu_common
is mapped to the KLU type klu_common; when SUNDIALS is compiled with 64-bit indices
(SUNDIALS_INDEX_SIZE=64) this is mapped to the KLU type klu_l_common.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

SUNLinearSolver SUNKLU(N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_KLU()

int SUNKLUReInit(SUNLinearSolver S, SUNMatrix A, sunindextype nnz, int reinit_type)
Wrapper function for SUNLinSol_KLUReInit()

int SUNKLUSetOrdering(SUNLinearSolver S, int ordering_choice)
Wrapper function for SUNLinSol_KLUSetOrdering()

For solvers that include a Fortran interface module, the SUNLinSol_KLU module also includes the Fortran-callable
function FSUNKLUInit() to initialize this SUNLinSol_KLU module for a given SUNDIALS solver.

subroutine FSUNKLUInit(CODE, IER)
Initializes a KLU sparse SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassKLUInit() initializes this SUNLinSol_KLU module for solving mass matrix linear systems.

subroutine FSUNMassKLUInit(IER)
Initializes a KLU sparse SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_KLUReInit() and SUNLinSol_KLUSetOrdering() routines also support Fortran inter-
faces for the system and mass matrix solvers:

subroutine FSUNKLUReInit(CODE, NNZ, REINIT_TYPE, IER)
Fortran interface to SUNLinSol_KLUReInit() for system linear solvers.

This routine must be called after FSUNKLUInit() has been called.

Arguments: NNZ should have type long int, all others should have type int; all arguments have mean-
ings identical to those listed above.

subroutine FSUNMassKLUReInit(NNZ, REINIT_TYPE, IER)
Fortran interface to SUNLinSol_KLUReInit() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassKLUInit() has been called.

Arguments: NNZ should have type long int, all others should have type int; all arguments have mean-
ings identical to those listed above.

subroutine FSUNKLUSetOrdering(CODE, ORDERING, IER)
Fortran interface to SUNLinSol_KLUSetOrdering() for system linear solvers.

This routine must be called after FSUNKLUInit() has been called.
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Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassKLUSetOrdering(ORDERING, IER)
Fortran interface to SUNLinSol_KLUSetOrdering() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassKLUInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

12.7.2 SUNLinSol_KLU Description

The SUNLinSol_KLU module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_KLU {
int last_flag;
int first_factorize;
sun_klu_symbolic *symbolic;
sun_klu_numeric *numeric;
sun_klu_common common;
sunindextype (*klu_solver)(sun_klu_symbolic*, sun_klu_numeric*,

sunindextype, sunindextype,
double*, sun_klu_common*);

};

These entries of the content field contain the following information:

• last_flag - last error return flag from internal function evaluations,

• first_factorize - flag indicating whether the factorization has ever been performed,

• Symbolic - KLU storage structure for symbolic factorization components, with underlying type
klu_symbolic or klu_l_symbolic, depending on whether SUNDIALS was installed with 32-bit ver-
sus 64-bit indices, respectively,

• Numeric - KLU storage structure for numeric factorization components, with underlying type
klu_numeric or klu_l_numeric, depending on whether SUNDIALS was installed with 32-bit versus
64-bit indices, respectively,

• Common - storage structure for common KLU solver components, with underlying type klu_common or
klu_l_common, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respec-
tively,

• klu_solver – pointer to the appropriate KLU solver function (depending on whether it is using a CSR or
CSC sparse matrix, and on whether SUNDIALS was installed with 32-bit or 64-bit indices).

The SUNLinSol_KLU module is a SUNLinearSolver wrapper for the KLU sparse matrix factorization and
solver library written by Tim Davis ([KLU], [DP2010]). In order to use the SUNLinSol_KLU interface to KLU,
it is assumed that KLU has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS
has been configured appropriately to link with KLU (see section Working with external Libraries for details). Addi-
tionally, this wrapper only supports double-precision calculations, and therefore cannot be compiled if SUNDIALS
is configured to have realtype set to either extended or single (see section Data Types for details). Since
the KLU library supports both 32-bit and 64-bit integers, this interface will be compiled for either of the available
sunindextype options.

The KLU library has a symbolic factorization routine that computes the permutation of the linear system matrix to
block triangular form and the permutations that will pre-order the diagonal blocks (the only ones that need to be fac-
tored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural, or an ordering given by the user). Of these
ordering choices, the default value in the SUNLinSol_KLU module is the COLAMD ordering.
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KLU breaks the factorization into two separate parts. The first is a symbolic factorization and the second is a nu-
meric factorization that returns the factored matrix along with final pivot information. KLU also has a refactor rou-
tine that can be called instead of the numeric factorization. This routine will reuse the pivot information. This routine
also returns diagnostic information that a user can examine to determine if numerical stability is being lost and a full
numerical factorization should be done instead of the refactor.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical spar-
sity patterns, the SUNLinSol_KLU module is constructed to perform the following operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

• On subsequent calls to the “setup” routine, it calls the appropriate KLU “refactor” routine, followed by esti-
mates of the numerical conditioning using the relevant “rcond”, and if necessary “condest”, routine(s). If these
estimates of the condition number are larger than 𝜀−2/3 (where 𝜀 is the double-precision unit roundoff), then a
new factorization is performed.

• The module includes the routine SUNKLUReInit, that can be called by the user to force a full refactorization
at the next “setup” call.

• The “solve” call performs pivoting and forward and backward substitution using the stored KLU data struc-
tures. We note that in this solve KLU operates on the native data arrays for the right-hand side and solution
vectors, without requiring costly data copies.

The SUNLinSol_KLU module defines implementations of all “direct” linear solver operations listed in the section
The SUNLinearSolver API:

• SUNLinSolGetType_KLU

• SUNLinSolInitialize_KLU – this sets the first_factorize flag to 1, forcing both symbolic and
numerical factorizations on the subsequent “setup” call.

• SUNLinSolSetup_KLU – this performs either a 𝐿𝑈 factorization or refactorization of the input matrix.

• SUNLinSolSolve_KLU – this calls the appropriate KLU solve routine to utilize the 𝐿𝑈 factors to solve the
linear system.

• SUNLinSolLastFlag_KLU

• SUNLinSolSpace_KLU – this only returns information for the storage within the solver interface, i.e. stor-
age for the integers last_flag and first_factorize. For additional space requirements, see the KLU
documentation.

• SUNLinSolFree_KLU

12.8 The SUNLinSol_SuperLUDIST Module

The SuperLU_DIST implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLin-
sol_SuperLUDIST, is designed to be used with the SUNMatrix_SLUNRloc SUNMatrix, and one of the se-
rial, threaded or parallel N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, NVEC-
TOR_PTHREADS, NVECTOR_PARALLEL, NVECTOR_PARHYP).

12.8.1 SUNLinSol_SuperLUDIST Usage

The header file to be included when using this module is sunlinsol/sunlinsol_superludist.h. The in-
stalled module library to link to is libsundials_sunlinsolsuperludist .lib where .lib is typically .so for
shared libraries and .a for static libraries.
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The module SUNLinSol_SuperLUDIST provides the following user-callable routines:

.. warning: Starting with SuperLU_DIST version 6.3.0, some structures were

renamed to have a prefix for the floating point type. The double precision API functions have the prefix ‘d’. To
maintain backwards compatibility with the unprefixed types, SUNDIALS provides macros to these SuperLU_DIST
types with an ‘x’ prefix that expand to the correct prefix. E.g., the SUNDIALS macro xLUstruct_t expands to
dLUstruct_t or LUstruct_t based on the SuperLU_DIST version.

SUNLinearSolver SUNLinSol_SuperLUDIST(N_Vector y, SuperMatrix *A, gridinfo_t *grid,
xLUstruct_t *lu, xScalePermstruct_t *scaleperm,
xSOLVEstruct_t *solve, SuperLUStat_t *stat, su-
perlu_dist_options_t *options)

This constructor function creates and allocates memory for a SUNLinSol_SuperLUDIST ob-
ject. Its arguments are an N_Vector, a SUNMatrix, and SuperLU_DIST gridinfo_t*,
LUstuct_t*, xScalePermstruct_t*, xSOLVEstruct_t*, SuperLUStat_t*, and
superlu_dist_options_t* pointers. This routine analyzes the input matrix and vector to determine
the linear system size and to assess the compatibility with the SuperLU_DIST library.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUNMa-
trix implementations. These are currently limited to the SUNMatrix_SLUNRloc matrix type and the NVEC-
TOR_SERIAL, NVECTOR_OPENMP, NVECTOR_PTHREADS, NVECTOR_PARALLEL, and NVEC-
TOR_PARHYP vector types. As additional compatible matrix and vector implementations are added to SUN-
DIALS, these will be included within this compatibility check.

The grid, lu, scaleperm, solve, and options arguments are not checked and are passed directly to
SuperLU_DIST routines.

Some struct members of the options argument are modified internally by the SUNLinSol_SuperLUDIST
solver. Specifically, the member Fact is modified in the setup and solve routines.

realtype SUNLinSol_SuperLUDIST_GetBerr(SUNLinearSolver LS)
This function returns the componentwise relative backward error of the computed solution. It takes one argu-
ment, the SUNLinearSolver object. The return type is realtype.

gridinfo_t* SUNLinSol_SuperLUDIST_GetGridinfo(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the 2D process grid. It takes one
argument, the SUNLinearSolver object.

xLUstruct_t* SUNLinSol_SuperLUDIST_GetLUstruct(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the distributed L and U structures.
It takes one argument, the SUNLinearSolver object.

superlu_dist_options_t* SUNLinSol_SuperLUDIST_GetSuperLUOptions(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the options which control how the
linear system is factorized and solved. It takes one argument, the SUNLinearSolver object.

xScalePermstruct_t* SUNLinSol_SuperLUDIST_GetScalePermstruct(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the vectors that describe the trans-
formations done to the matrix A. It takes one argument, the SUNLinearSolver object.

xSOLVEstruct_t* SUNLinSol_SuperLUDIST_GetSOLVEstruct(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains information for communication
during the solution phase. It takes one argument the SUNLinearSolver object.

SuperLUStat_t* SUNLinSol_SuperLUDIST_GetSuperLUStat(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that stores information about runtime and flop
count. It takes one argument, the SUNLinearSolver object.
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12.8.2 SUNLinSol_SuperLUDIST Description

The SUNLinSol_SuperLUDIST module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_SuperLUDIST {
booleantype first_factorize;
int last_flag;
realtype berr;
gridinfo_t *grid;
xLUstruct_t *lu;
superlu_dist_options_t *options;
xScalePermstruct_t *scaleperm;
xSOLVEstruct_t *solve;
SuperLUStat_t *stat;
sunindextype N;

};

These entries of the content field contain the following information:

• first_factorize – flag indicating whether the factorization has ever been performed,

• last_flag – last error return flag from internal function evaluations,

• berr – the componentwise relative backward error of the computed solution,

• grid – pointer to the SuperLU_DIST structure that strores the 2D process grid

• lu – pointer to the SuperLU_DIST structure that stores the distributed L and U factors,

• scaleperm – pointer to the SuperLU_DIST structure that stores vectors describing the transformations done
to the matrix A,

• options – pointer to the SuperLU_DIST stucture which contains options that control how the linear system
is factorized and solved,

• solve – pointer to the SuperLU_DIST solve structure,

• stat – pointer to the SuperLU_DIST structure that stores information about runtime and flop count,

• N – the number of equations in the system.

The SUNLinSol_SuperLUDIST module is a SUNLinearSolver adapter for the SuperLU_DIST sparse matrix fac-
torization and solver library written by X. Sherry Li ([SuperLUDIST], [GDL2007], [LD2003], [SLUUG1999]).
The package uses a SPMD parallel programming model and multithreading to enhance efficiency in distributed-
memory parallel environments with multicore nodes and possibly GPU accelerators. It uses MPI for communica-
tion, OpenMP for threading, and CUDA for GPU support. In order to use the SUNLinSol_SuperLUDIST inter-
face to SuperLU_DIST, it is assumed that SuperLU_DIST has been installed on the system prior to installation of
SUNDIALS, and that SUNDIALS has been configured appropriately to link with SuperLU_DIST (see Appendix
Working with external Libraries for details). Additionally, the wrapper only supports double-precision calculations,
and therefore cannot be compiled if SUNDIALS is configured to use single or extended precision. Moreover, since
the SuperLU_DIST library may be installed to support either 32-bit or 64-bit integers, it is assumed that the Su-
perLU_DIST library is installed using the same integer size as SUNDIALS.

The SuperLU_DIST library provides many options to control how a linear system will be factorized and solved.
These options may be set by a user on an instance of the superlu_dist_options_t struct, and then it may
be provided as an argument to the SUNLinSol_SuperLUDIST constructor. The SUNLinSol_SuperLUDIST module
will respect all options set except for Fact – this option is necessarily modified by the SUNLinSol_SuperLUDIST
module in the setup and solve routines.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical spar-
sity patterns, the SUNLinSol_SuperLUDIST module is constructed to perform the following operations:
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• The first time that the “setup” routine is called, it sets the SuperLU_DIST option Fact to DOFACT so that a
subsequent call to the “solve” routine will perform a symbolic factorization, followed by an initial numerical
factorization before continuing to solve the system.

• On subsequent calls to the “setup” routine, it sets the SuperLU_DIST option Fact to SamePattern so that
a subsequent call to “solve” will perform factorization assuming the same sparsity pattern as prior, i.e. it will
reuse the column permutation vector.

• If “setup” is called prior to the “solve” routine, then the “solve” routine will perform a symbolic factorization,
followed by an initial numerical factorization before continuing to the sparse triangular solves, and, potentially,
iterative refinement. If “setup” is not called prior, “solve” will skip to the triangular solve step. We note that
in this solve SuperLU_DIST operates on the native data arrays for the right-hand side and solution vectors,
without requiring costly data copies.

The SUNLinSol_SuperLUDIST module defines implementations of all “direct” linear solver operations listed in the
section The SUNLinearSolver API:

• SUNLinSolGetType_SuperLUDIST

• SUNLinSolInitialize_SuperLUDIST – this sets the first_factorize flag to 1 and resets the
internal SuperLU_DIST statistics variables.

• SUNLinSolSetup_SuperLUDIST – this sets the appropriate SuperLU_DIST options so that a subsequent
solve will perform a symbolic and numerical factorization before proceeding with the triangular solves

• SUNLinSolSolve_SuperLUDIST – this calls the SuperLU_DIST solve routine to perform factorization
(if the setup routine was called prior) and then use the $LU$ factors to solve the linear system.

• SUNLinSolLastFlag_SuperLUDIST

• SUNLinSolSpace_SuperLUDIST – this only returns information for the storage within the solver inter-
face, i.e. storage for the integers last_flag and first_factorize. For additional space requirements,
see the SuperLU_DIST documentation.

• SUNLinSolFree_SuperLUDIST

12.9 The SUNLinSol_SuperLUMT Module

The SuperLU_MT implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLin-
Sol_SuperLUMT, is designed to be used with the corresponding SUNMATRIX_SPARSE matrix type, and one of
the serial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVEC-
TOR_PTHREADS). While these are compatible, it is not recommended to use a threaded vector module with SUN-
LinSol_SuperLUMT unless it is the NVECTOR_OPENMP module and the SuperLU_MT library has also been
compiled with OpenMP.

12.9.1 SUNLinSol_SuperLUMT Usage

The header file to be included when using this module is sunlinsol/sunlinsol_superlumt.h. The in-
stalled module library to link to is libsundials_sunlinsolsuperlumt .lib where .lib is typically .so for
shared libraries and .a for static libraries.

The module SUNLinSol_SuperLUMT provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SuperLUMT(N_Vector y, SUNMatrix A, int num_threads)
This constructor function creates and allocates memory for a SUNLinSol_SuperLUMT object. Its arguments
are an N_Vector, a SUNMatrix, and a desired number of threads (OpenMP or Pthreads, depending on how
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SuperLU_MT was installed) to use during the factorization steps. This routine analyzes the input matrix and
vector to determine the linear system size and to assess compatibility with the SuperLU_MT library.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (us-
ing either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added to
SUNDIALS, these will be included within this compatibility check.

If either A or y are incompatible then this routine will return NULL. The num_threads argument is not
checked and is passed directly to SuperLU_MT routines.

int SUNLinSol_SuperLUMTSetOrdering(SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by SuperLU_MT for reducing fill in the linear solve. Options for
ordering_choice are:

0. natural ordering

1. minimal degree ordering on 𝐴𝑇𝐴

2. minimal degree ordering on 𝐴𝑇 + 𝐴

3. COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

The return values from this function are SUNLS_MEM_NULL (S is NULL), SUNLS_ILL_INPUT (invalid
ordering_choice), or SUNLS_SUCCESS.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

SUNLinearSolver SUNSuperLUMT(N_Vector y, SUNMatrix A, int num_threads)
Wrapper for SUNLinSol_SuperLUMT().

and

int SUNSuperLUMTSetOrdering(SUNLinearSolver S, int ordering_choice)
Wrapper for SUNLinSol_SuperLUMTSetOrdering().

For solvers that include a Fortran interface module, the SUNLinSol_SuperLUMT module also includes the Fortran-
callable function FSUNSuperLUMTInit() to initialize this SUNLinSol_SuperLUMT module for a given SUNDI-
ALS solver.

subroutine FSUNSuperLUMTInit(CODE, NUM_THREADS, IER)
Initializes a SuperLU_MT sparse SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• NUM_THREADS (int, input) – desired number of OpenMP/Pthreads threads to use in the factor-
ization.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSuperLUMTInit() initializes this SUNLinSol_SuperLUMT module for solving mass matrix linear
systems.
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subroutine FSUNMassSuperLUMTInit(NUM_THREADS, IER)
Initializes a SuperLU_MT sparse SUNLinearSolver structure for use in solving mass matrix systems in
ARKode.

This routine must be called after both the N_Vector and the mass SUNMatrix objects have been initial-
ized.

Arguments:

• NUM_THREADS (int, input) – desired number of OpenMP/Pthreads threads to use in the factor-
ization.

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_SuperLUMTSetOrdering() routine also supports Fortran interfaces for the system and mass
matrix solvers:

subroutine FSUNSuperLUMTSetOrdering(CODE, ORDERING, IER)
Fortran interface to SUNLinSol_SuperLUMTSetOrdering() for system linear solvers.

This routine must be called after FSUNSuperLUMTInit() has been called

Arguments: all should have type int and have meanings identical to those listed above

subroutine FSUNMassSuperLUMTSetOrdering(ORDERING, IER)
Fortran interface to SUNLinSol_SuperLUMTSetOrdering() for mass matrix linear solves in ARKode.

This routine must be called after FSUNMassSuperLUMTInit() has been called

Arguments: all should have type int and have meanings identical to those listed above

12.9.2 SUNLinSol_SuperLUMT Description

The SUNLinSol_SuperLUMT module defines the content field of a SUNLinearSolver to be the following struc-
ture:

struct _SUNLinearSolverContent_SuperLUMT {
int last_flag;
int first_factorize;
SuperMatrix *A, *AC, *L, *U, *B;
Gstat_t *Gstat;
sunindextype *perm_r, *perm_c;
sunindextype N;
int num_threads;
realtype diag_pivot_thresh;
int ordering;
superlumt_options_t *options;

};

These entries of the content field contain the following information:

• last_flag - last error return flag from internal function evaluations,

• first_factorize - flag indicating whether the factorization has ever been performed,

• A, AC, L, U, B - SuperMatrix pointers used in solve,

• Gstat - GStat_t object used in solve,

• perm_r, perm_c - permutation arrays used in solve,

• N - size of the linear system,
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• num_threads - number of OpenMP/Pthreads threads to use,

• diag_pivot_thresh - threshold on diagonal pivoting,

• ordering - flag for which reordering algorithm to use,

• options - pointer to SuperLU_MT options structure.

The SUNLinSol_SuperLUMT module is a SUNLinearSolver wrapper for the SuperLU_MT sparse matrix fac-
torization and solver library written by X. Sherry Li ([SuperLUMT], [L2005], [DGL1999]). The package performs
matrix factorization using threads to enhance efficiency in shared memory parallel environments. It should be noted
that threads are only used in the factorization step. In order to use the SUNLinSol_SuperLUMT interface to Su-
perLU_MT, it is assumed that SuperLU_MT has been installed on the system prior to installation of SUNDIALS,
and that SUNDIALS has been configured appropriately to link with SuperLU_MT (see section Working with exter-
nal Libraries for details). Additionally, this wrapper only supports single- and double-precision calculations, and
therefore cannot be compiled if SUNDIALS is configured to have realtype set to extended (see section Data
Types for details). Moreover, since the SuperLU_MT library may be installed to support either 32-bit or 64-bit in-
tegers, it is assumed that the SuperLU_MT library is installed using the same integer precision as the SUNDIALS
sunindextype option.

The SuperLU_MT library has a symbolic factorization routine that computes the permutation of the linear system
matrix to reduce fill-in on subsequent 𝐿𝑈 factorizations (using COLAMD, minimal degree ordering on 𝐴𝑇 * 𝐴,
minimal degree ordering on 𝐴𝑇 + 𝐴, or natural ordering). Of these ordering choices, the default value in the SUN-
LinSol_SuperLUMT module is the COLAMD ordering.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical spar-
sity patterns, the SUNLinSol_SuperLUMT module is constructed to perform the following operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

• On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors the input ma-
trix.

• The “solve” call performs pivoting and forward and backward substitution using the stored SuperLU_MT data
structures. We note that in this solve SuperLU_MT operates on the native data arrays for the right-hand side
and solution vectors, without requiring costly data copies.

The SUNLinSol_SuperLUMT module defines implementations of all “direct” linear solver operations listed in the
section The SUNLinearSolver API:

• SUNLinSolGetType_SuperLUMT

• SUNLinSolInitialize_SuperLUMT – this sets the first_factorize flag to 1 and resets the inter-
nal SuperLU_MT statistics variables.

• SUNLinSolSetup_SuperLUMT – this performs either a 𝐿𝑈 factorization or refactorization of the input
matrix.

• SUNLinSolSolve_SuperLUMT – this calls the appropriate SuperLU_MT solve routine to utilize the 𝐿𝑈
factors to solve the linear system.

• SUNLinSolLastFlag_SuperLUMT

• SUNLinSolSpace_SuperLUMT – this only returns information for the storage within the solver interface,
i.e. storage for the integers last_flag and first_factorize. For additional space requirements, see
the SuperLU_MT documentation.

• SUNLinSolFree_SuperLUMT
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12.10 The SUNLinSol_cuSolverSp_batchQR Module

The SUNLinearSolver_cuSolverSp_batchQR implementation of the SUNLinearSolver API is designed to
be used with the SUNMATRIX_CUSPARSE matrix, and the NVECTOR_CUDA vector. The header file to include
when using this module is sunlinsol/sunlinsol_cusolversp_batchqr.h. The installed library to link
to is libsundials_sunlinsolcusolversp.lib where .lib is typically .so for shared libraries and .a
for static libraries.

The SUNLinearSolver_cuSolverSp_batchQR module is experimental and subject to change.

12.10.1 SUNLinSol_cuSolverSp_batchQR description

The SUNLinearSolver_cuSolverSp_batchQR implementation provides an interface to the batched sparse QR fac-
torization method provided by the NVIDIA cuSOLVER library ([cuSOLVER]). The module is designed for solving
block diagonal linear systems of the form ⎡⎢⎢⎢⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

⎤⎥⎥⎥⎦𝑥𝑗 = 𝑏𝑗

where all block matrices Aj share the same sparsisty pattern. The matrix must be the The SUNMATRIX_CUSPARSE
Module.

12.10.2 SUNLinSol_cuSolverSp_batchQR functions

The SUNLinearSolver_cuSolverSp_batchQR module defines implementations of all “direct” linear solver
operations listed in The SUNLinearSolver API:

• SUNLinSolGetType_cuSolverSp_batchQR

• SUNLinSolInitialize_cuSolverSp_batchQR – this sets the first_factorize flag to 1

• SUNLinSolSetup_cuSolverSp_batchQR – this always copies the relevant SUNMATRIX_SPARSE
data to the GPU; if this is the first setup it will perform symbolic analysis on the system

• SUNLinSolSolve_cuSolverSp_batchQR – this calls the cusolverSpXcsrqrsvBatched routine
to perform factorization

• SUNLinSolLastFlag_cuSolverSp_batchQR

• SUNLinSolFree_cuSolverSp_batchQR

In addition, the module provides the following user-callable routines:

SUNLinearSolver SUNLinSol_cuSolverSp_batchQR(N_Vector y, SUNMatrix A, cusolverHan-
dle_t cusol)

The function SUNLinSol_cuSolverSp_batchQR creates and allocates memory for a SUNLinearSolver
object.

This returns a SUNLinearSolver object. If either A or y are incompatible then this routine will return NULL.

This routine analyzes the input matrix and vector to determine the linear system size and to assess compatibil-
ity with the solver.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_CUSPARSE matrix type
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and the NVECTOR_CUDA vector type. Since the SUNMATRIX_CUSPARSE matrix type is only compati-
ble with the NVECTOR_CUDA the restriction is also in place for the linear solver. As additional compatible
matrix and vector implementations are added to SUNDIALS, these will be included within this compatibility
check.

void SUNLinSol_cuSolverSp_batchQR_GetDescription(SUNLinearSolver LS, char **desc)
The function SUNLinSol_cuSolverSp_batchQR_GetDescription accesses the string description
of the object (empty by default).

void SUNLinSol_cuSolverSp_batchQR_SetDescription(SUNLinearSolver LS, const
char *desc)

The function SUNLinSol_cuSolverSp_batchQR_SetDescription sets the string description of the
object (empty by default).

void SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace(SUNLinearSolver S, size_t* cuSolver-
Internal, size_t* cuSolverWorkspace)

The function SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace returns the cuSOLVER batch
QR method internal buffer size, in bytes, in the argument cuSolverInternal and the cuSOLVER batch
QR workspace buffer size, in bytes, in the agrument cuSolverWorkspace. The size of the internal buffer
is proportional to the number of matrix blocks while the size of the workspace is almost independent of the
number of blocks.

12.10.3 SUNLinSol_cuSolverSp_batchQR content

The SUNLinSol_cuSolverSp_batchQR module defines the content field of a SUNLinearSolver to be the follow-
ing structure:

struct _SUNLinearSolverContent_cuSolverSp_batchQR {
int last_flag; /* last return flag */
booleantype first_factorize; /* is this the first factorization? */
size_t internal_size; /* size of cusolver buffer for Q and R */
size_t workspace_size; /* size of cusolver memory for factorization */
cusolverSpHandle_t cusolver_handle; /* cuSolverSp context */
csrqrInfo_t info; /* opaque cusolver data structure */
void* workspace; /* memory block used by cusolver */
const char* desc; /* description of this linear solver */

};

12.11 The SUNLinSol_MagmaDense Module

The SUNLinearSolver_MagmaDense implementation of the SUNLinearSolver API is designed to be used
with the SUNMATRIX_MAGMADENSE matrix, and a GPU-enabled vector. The header file to include
when using this module is sunlinsol/sunlinsol_magmadense.h. The installed library to link to is
libsundials_sunlinsolmagmadense.lib where lib is typically .so for shared libraries and .a for
static libraries.

Warning: The SUNLinearSolver_MagmaDense module is experimental and subject to change.

12.11.1 SUNLinearSolver_MagmaDense Description

The SUNLinearSolver_MagmaDense implementation provides an interface to the dense LU and dense batched LU
methods in the MAGMA linear algebra library [MAGMA2010]. The batched LU methods are leveraged when solv-
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ing block diagonal linear systems of the form⎡⎢⎢⎢⎣
A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · An−1

⎤⎥⎥⎥⎦𝑥𝑗 = 𝑏𝑗 .

12.11.2 SUNLinearSolver_MagmaDense Functions

The SUNLinearSolver_MagmaDense module defines implementations of all “direct” linear solver operations listed
in The SUNLinearSolver API:

• SUNLinSolGetType_MagmaDense

• SUNLinSolInitialize_MagmaDense

• SUNLinSolSetup_MagmaDense

• SUNLinSolSolve_MagmaDense

• SUNLinSolLastFlag_MagmaDense

• SUNLinSolFree_MagmaDense

In addition, the module provides the following user-callable routines:

SUNLinearSolver SUNLinSol_MagmaDense(N_Vector y, SUNMatrix A)
This constructor function creates and allocates memory for a SUNLinearSolver object.

Arguments:

• y – a vector for checking compatibility with the solver

• A – a SUNMATRIX_MAGMADENSE matrix for checking compatibility with the solver

Return value:

If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will
return NULL. This routine analyzes the input matrix and vector to determine the linear system size
and to assess compatibility with the solver.

int SUNLinSol_MagmaDense_SetAsync(SUNLinearSolver LS, booleantype onoff)
This function can be used to toggle the linear solver between asynchronous and synchronous modes. In asyn-
chronous mode (default), SUNLinearSolver operations are asynchronous with respect to the host. In syn-
chronous mode, the host and GPU device are synchronized prior to the operation returning.

Arguments:

• LS – a SUNLinSol_MagmaDense object

• onoff – 0 for synchronous mode or 1 for asynchronous mode (default 1)

Return value:

• SUNLS_SUCCESS if successful

• SUNLS_MEM_NULL if LS is NULL

12.11.3 SUNLinearSolver_MagmaDense Content

The SUNLinearSolver_MagmaDense module defines the object content field of a SUNLinearSolver to be the
following structure:
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struct _SUNLinearSolverContent_MagmaDense {
int last_flag;
booleantype async;
sunindextype N;
SUNMemory pivots;
SUNMemory pivotsarr;
SUNMemory dpivotsarr;
SUNMemory infoarr;
SUNMemory rhsarr;
SUNMemoryHelper memhelp;
magma_queue_t q;

};

12.12 The SUNLinSol_SPGMR Module

The SPGMR (Scaled, Preconditioned, Generalized Minimum Residual [SS1986]) implementation of the
SUNLinearSolver module provided with SUNDIALS, SUNLinSol_SPGMR, is an iterative linear solver that
is designed to be compatible with any N_Vector implementation (serial, threaded, parallel, and user-supplied) that
supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(),
N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()).

12.12.1 SUNLinSol_SPGMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spgmr.h.
The SUNinSol_SPGMR module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolspgmr module library.

The module SUNLinSol_SPGMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPGMR(N_Vector y, int pretype, int maxl)
This constructor function creates and allocates memory for a SPGMR SUNLinearSolver. Its arguments
are an N_Vector, the desired type of preconditioning, and the number of Krylov basis vectors to use.

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations). If y is incompatible, then this routine will re-
turn NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Allowable inputs for pretype are PREC_NONE (0), PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some SUNDIALS
solvers are designed to only work with left preconditioning (IDA and IDAS) and others with only right pre-
conditioning (KINSOL). While it is possible to configure a SUNLinSol_SPGMR object to use any of the pre-
conditioning options with these solvers, this use mode is not supported and may result in inferior performance.

int SUNLinSol_SPGMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the type of preconditioning to use. Supported values are PREC_NONE (0), PREC_LEFT
(1), PREC_RIGHT (2) and PREC_BOTH (3).

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype),
SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNLinSol_SPGMRSetGSType(SUNLinearSolver S, int gstype)
This function sets the type of Gram-Schmidt orthogonalization to use. Supported values are MODIFIED_GS
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(1) and CLASSICAL_GS (2). Any other integer input will result in a failure, returning error code
SUNLS_ILL_INPUT.

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal gstype),
SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNLinSol_SPGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
This function sets the number of GMRES restarts to allow. A negative input will result in the default of 0.

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNLinSolSetInfoFile_SPGMR(SUNLinearSolver LS, FILE* info_file)
The function SUNLinSolSetInfoFile_SPGMR() sets the output file where all informative (non-error)
messages should be directed.

Arguments:

• LS – a SUNLinSol object

• info_file – pointer to output file (stdout by default); a NULL input will disable output

Return value:

• SUNLS_SUCCESS if successful

• SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

• SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled

Notes: This function is intended for users that wish to monitor the linear solver progress. By default, the file
pointer is set to stdout.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

int SUNLinSolSetPrintLevel_SPGMR(SUNLinearSolver LS, int print_level)
The function SUNLinSolSetPrintLevel_SPGMR() specifies the level of verbosity of the output.

Arguments:

• LS – a SUNLinSol object

• print_level – flag indicating level of verbosity; must be one of:

– 0, no information is printed (default)

– 1, for each linear iteration the residual norm is printed

Return value:

• SUNLS_SUCCESS if successful

• SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

• SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled, or if the print level value
was invalid

Notes: This function is intended for users that wish to monitor the linear solver progress. By default, the print
level is 0.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:
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SUNLinearSolver SUNSPGMR(N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_SPGMR()

int SUNSPGMRSetPrecType(SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_SPGMRSetPrecType()

int SUNSPGMRSetGSType(SUNLinearSolver S, int gstype)
Wrapper function for SUNLinSol_SPGMRSetGSType()

int SUNSPGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
Wrapper function for SUNLinSol_SPGMRSetMaxRestarts()

For solvers that include a Fortran interface module, the SUNLinSol_SPGMR module also includes the Fortran-
callable function FSUNSPGMRInit() to initialize this SUNLinSol_SPGMR module for a given SUNDIALS
solver.

subroutine FSUNSPGMRInit(CODE, PRETYPE, MAXL, IER)
Initializes a SPGMR SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• PRETYPE (int, input) – flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

• MAXL (int, input) – number of GMRES basis vectors to use.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSPGMRInit() initializes this SUNLinSol_SPGMR module for solving mass matrix linear systems.

subroutine FSUNMassSPGMRInit(PRETYPE, MAXL, IER)
Initializes a SPGMR SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• PRETYPE (int, input) – flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

• MAXL (int, input) – number of GMRES basis vectors to use.

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_SPGMRSetGSType(), SUNLinSol_SPGMRSetPrecType() and
SUNLinSol_SPGMRSetMaxRestarts() routines also support Fortran interfaces for the system and mass
matrix solvers:

subroutine FSUNSPGMRSetGSType(CODE, GSTYPE, IER)
Fortran interface to SUNLinSol_SPGMRSetGSType() for system linear solvers.

This routine must be called after FSUNSPGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPGMRSetGSType(GSTYPE, IER)
Fortran interface to SUNLinSol_SPGMRSetGSType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPGMRInit() has been called.
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Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPGMRSetPrecType(CODE, PRETYPE, IER)
Fortran interface to SUNLinSol_SPGMRSetPrecType() for system linear solvers.

This routine must be called after FSUNSPGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPGMRSetPrecType(PRETYPE, IER)
Fortran interface to SUNLinSol_SPGMRSetPrecType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPGMRSetMaxRS(CODE, MAXRS, IER)
Fortran interface to SUNLinSol_SPGMRSetMaxRS() for system linear solvers.

This routine must be called after FSUNSPGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPGMRSetMaxRS(MAXRS, IER)
Fortran interface to SUNLinSol_SPGMRSetMaxRS() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

12.12.2 SUNLinSol_SPGMR Description

The SUNLinSol_SPGMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
int numiters;
realtype resnorm;
int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
realtype **Hes;
realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;
int print_level;
FILE* info_file;

};

These entries of the content field contain the following information:

• maxl - number of GMRES basis vectors to use (default is 5),
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• pretype - flag for type of preconditioning to employ (default is none),

• gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

• max_restarts - number of GMRES restarts to allow (default is 0),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform 𝐴𝑣 product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• V - the array of Krylov basis vectors 𝑣1, . . . , 𝑣maxl+1, stored in V[0], ... V[maxl]. Each 𝑣𝑖 is a vector of
type N_Vector,

• Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[i][j],

• givens - a length 2 maxl array which represents the Givens rotation matrices that arise in the GMRES algo-
rithm. These matrices are 𝐹0, 𝐹1, . . . , 𝐹𝑗 , where

𝐹𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
𝑐𝑖 −𝑠𝑖
𝑠𝑖 𝑐𝑖

1
. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

are represented in the givens vector as givens[0] = 𝑐0, givens[1] = 𝑠0, givens[2] = 𝑐1,
givens[3] = 𝑠1, . . ., givens[2j] = 𝑐𝑗 , givens[2j+1] = 𝑠𝑗 ,

• xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

• yg - a length (maxl + 1) array of realtype values used to hold “short” vectors (e.g. 𝑦 and 𝑔),

• vtemp - temporary vector storage.

• print_level - controls the amount of information to be printed to the info file

• info_file - the file where all informative (non-error) messages will be directed

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and
default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPGMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

12.12. The SUNLinSol_SPGMR Module 449



User Documentation for ARKode, v4.7.0

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

• In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning, and restarts
if those options have been supplied.

The SUNLinSol_SPGMR module defines implementations of all “iterative” linear solver operations listed in the sec-
tion The SUNLinearSolver API:

• SUNLinSolGetType_SPGMR

• SUNLinSolInitialize_SPGMR

• SUNLinSolSetATimes_SPGMR

• SUNLinSolSetPreconditioner_SPGMR

• SUNLinSolSetScalingVectors_SPGMR

• SUNLinSolSetup_SPGMR

• SUNLinSolSolve_SPGMR

• SUNLinSolNumIters_SPGMR

• SUNLinSolResNorm_SPGMR

• SUNLinSolResid_SPGMR

• SUNLinSolLastFlag_SPGMR

• SUNLinSolSpace_SPGMR

• SUNLinSolFree_SPGMR

12.13 The SUNLinSol_SPFGMR Module

The SPFGMR (Scaled, Preconditioned, Flexible, Generalized Minimum Residual [S1993]) implementation of the
SUNLinearSolver module provided with SUNDIALS, SUNLinSol_SPFGMR, is an iterative linear solver that
is designed to be compatible with any N_Vector implementation (serial, threaded, parallel, and user-supplied) that
supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(),
N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()). Unlike the other Krylov iterative linear solvers
supplied with SUNDIALS, FGMRES is specifically designed to work with a changing preconditioner (e.g. from an
iterative method).

12.13.1 SUNLinSol_SPFGMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spfgmr.h.
The SUNLinSol_SPFGMR module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolspfgmr module library.

The module SUNLinSol_SPFGMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPFGMR(N_Vector y, int pretype, int maxl)
This constructor function creates and allocates memory for a SPFGMR SUNLinearSolver. Its arguments
are an N_Vector, a flag indicating to use preconditioning, and the number of Krylov basis vectors to use.
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This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations). If y is incompatible, then this routine will re-
turn NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Since the FGMRES algorithm is designed to only support right preconditioning, then any of the pretype
inputs PREC_LEFT (1), PREC_RIGHT (2), or PREC_BOTH (3) will result in use of PREC_RIGHT; any
other integer input will result in the default (no preconditioning). We note that some SUNDIALS solvers
are designed to only work with left preconditioning (IDA and IDAS). While it is possible to use a right-
preconditioned SUNLinSol_SPFGMR object for these packages, this use mode is not supported and may re-
sult in inferior performance.

int SUNLinSol_SPFGMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning. Since the FGMRES algorithm is designed
to only support right preconditioning, then any of the pretype inputs PREC_LEFT (1), PREC_RIGHT (2),
or PREC_BOTH (3) will result in use of PREC_RIGHT; any other integer input will result in the default (no
preconditioning).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNLinSol_SPFGMRSetGSType(SUNLinearSolver S, int gstype)
This function sets the type of Gram-Schmidt orthogonalization to use. Supported values are MODIFIED_GS
(1) and CLASSICAL_GS (2). Any other integer input will result in a failure, returning error code
SUNLS_ILL_INPUT.

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal gstype),
SUNLS_MEM_NULL (S is NULL), or SUNLS_SUCCESS.

int SUNLinSol_SPFGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
This function sets the number of FGMRES restarts to allow. A negative input will result in the default of 0.

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNLinSolSetInfoFile_SPFGMR(SUNLinearSolver LS, FILE* info_file)
The function SUNLinSolSetInfoFile_SPFGMR() sets the output file where all informative (non-error)
messages should be directed.

Arguments:

• LS – a SUNLinSol object

• info_file – pointer to output file (stdout by default); a NULL input will disable output

Return value:

• SUNLS_SUCCESS if successful

• SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

• SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled

Notes: This function is intended for users that wish to monitor the linear solver progress. By default, the file
pointer is set to stdout.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

int SUNLinSolSetPrintLevel_SPFGMR(SUNLinearSolver LS, int print_level)
The function SUNLinSolSetPrintLevel_SPFGMR() specifies the level of verbosity of the output.

Arguments:

• LS – a SUNLinSol object
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• print_level – flag indicating level of verbosity; must be one of:

– 0, no information is printed (default)

– 1, for each linear iteration the residual norm is printed

Return value:

• SUNLS_SUCCESS if successful

• SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

• SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled, or if the print level value
was invalid

Notes: This function is intended for users that wish to monitor the linear solver progress. By default, the print
level is 0.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

SUNLinearSolver SUNSPFGMR(N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_SPFGMR()

int SUNSPFGMRSetPrecType(SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_SPFGMRSetPrecType()

int SUNSPFGMRSetGSType(SUNLinearSolver S, int gstype)
Wrapper function for SUNLinSol_SPFGMRSetGSType()

int SUNSPFGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
Wrapper function for SUNLinSol_SPFGMRSetMaxRestarts()

For solvers that include a Fortran interface module, the SUNLinSol_SPFGMR module also includes the Fortran-
callable function FSUNSPFGMRInit() to initialize this SUNLinSol_SPFGMR module for a given SUNDIALS
solver.

subroutine FSUNSPFGMRInit(CODE, PRETYPE, MAXL, IER)
Initializes a SPFGMR SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• PRETYPE (int, input) – flag denoting whether to use preconditioning: no=0, yes=1.

• MAXL (int, input) – number of FGMRES basis vectors to use.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSPFGMRInit() initializes this SUNLinSol_SPFGMR module for solving mass matrix linear systems.

subroutine FSUNMassSPFGMRInit(PRETYPE, MAXL, IER)
Initializes a SPFGMR SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• PRETYPE (int, input) – flag denoting whether to use preconditioning: no=0, yes=1.
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• MAXL (int, input) – number of FGMRES basis vectors to use.

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_SPFGMRSetGSType(), SUNLinSol_SPFGMRSetPrecType() and
SUNLinSol_SPFGMRSetMaxRestarts() routines also support Fortran interfaces for the system and
mass matrix solvers:

subroutine FSUNSPFGMRSetGSType(CODE, GSTYPE, IER)
Fortran interface to SUNLinSol_SPFGMRSetGSType() for system linear solvers.

This routine must be called after FSUNSPFGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPFGMRSetGSType(GSTYPE, IER)
Fortran interface to SUNLinSol_SPFGMRSetGSType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPFGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPFGMRSetPrecType(CODE, PRETYPE, IER)
Fortran interface to SUNLinSol_SPFGMRSetPrecType() for system linear solvers.

This routine must be called after FSUNSPFGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPFGMRSetPrecType(PRETYPE, IER)
Fortran interface to SUNLinSol_SPFGMRSetPrecType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPFGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPFGMRSetMaxRS(CODE, MAXRS, IER)
Fortran interface to SUNLinSol_SPFGMRSetMaxRS() for system linear solvers.

This routine must be called after FSUNSPFGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPFGMRSetMaxRS(MAXRS, IER)
Fortran interface to SUNLinSol_SPFGMRSetMaxRS() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPFGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

12.13.2 SUNLinSol_SPFGMR Description

The SUNLinSol_SPFGMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPFGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
int numiters;
realtype resnorm;
int last_flag;
ATimesFn ATimes;
void* ATData;
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PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
N_Vector *Z;
realtype **Hes;
realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;
int print_level;
FILE* info_file;

};

These entries of the content field contain the following information:

• maxl - number of FGMRES basis vectors to use (default is 5),

• pretype - flag for use of preconditioning (default is none),

• gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

• max_restarts - number of FGMRES restarts to allow (default is 0),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform 𝐴𝑣 product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• V - the array of Krylov basis vectors 𝑣1, . . . , 𝑣maxl+1, stored in V[0], ..., V[maxl]. Each 𝑣𝑖 is a vector
of type N_Vector,

• Z - the array of preconditioned Krylov basis vectors 𝑧1, . . . , 𝑧maxl+1, stored in Z[0], ..., Z[maxl].
Each 𝑧𝑖 is a vector of type N_Vector,

• Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[i][j],

• givens - a length 2 maxl array which represents the Givens rotation matrices that arise in the FGMRES algo-
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rithm. These matrices are 𝐹0, 𝐹1, . . . , 𝐹𝑗 , where

𝐹𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
𝑐𝑖 −𝑠𝑖
𝑠𝑖 𝑐𝑖

1
. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

are represented in the givens vector as givens[0] = 𝑐0, givens[1] = 𝑠0, givens[2] = 𝑐1,
givens[3] = 𝑠1, . . ., givens[2j] = 𝑐𝑗 , givens[2j+1] = 𝑠𝑗 ,

• xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

• yg - a length (maxl + 1) array of realtype values used to hold “short” vectors (e.g. 𝑦 and 𝑔),

• vtemp - temporary vector storage.

• print_level - controls the amount of information to be printed to the info file

• info_file - the file where all informative (non-error) messages will be directed

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and
default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPFGMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

• In the “solve” call, the FGMRES iteration is performed. This will include scaling, preconditioning, and restarts
if those options have been supplied.

The SUNLinSol_SPFGMR module defines implementations of all “iterative” linear solver operations listed in the
section The SUNLinearSolver API:

• SUNLinSolGetType_SPFGMR

• SUNLinSolInitialize_SPFGMR

• SUNLinSolSetATimes_SPFGMR

• SUNLinSolSetPreconditioner_SPFGMR

• SUNLinSolSetScalingVectors_SPFGMR

• SUNLinSolSetup_SPFGMR

• SUNLinSolSolve_SPFGMR

• SUNLinSolNumIters_SPFGMR

• SUNLinSolResNorm_SPFGMR

• SUNLinSolResid_SPFGMR
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• SUNLinSolLastFlag_SPFGMR

• SUNLinSolSpace_SPFGMR

• SUNLinSolFree_SPFGMR

12.14 The SUNLinSol_SPBCGS Module

The SPBCGS (Scaled, Preconditioned, Bi-Conjugate Gradient, Stabilized [V1992]) implementation of the
SUNLinearSolver module provided with SUNDIALS, SUNLinSol_SPBCGS, is an iterative linear solver that
is designed to be compatible with any N_Vector implementation (serial, threaded, parallel, and user-supplied) that
supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(),
N_VProd(), N_VDiv(), and N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms, SPBCGS requires
a fixed amount of memory that does not increase with the number of allowed iterations.

12.14.1 SUNLinSol_SPBCGS Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spbcgs.h.
The SUNLinSol_SPBCGS module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolspbcgs module library.

The module SUNLinSol_SPBCGS provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPBCGS(N_Vector y, int pretype, int maxl)
This constructor function creates and allocates memory for a SPBCGS SUNLinearSolver. Its arguments
are an N_Vector, the desired type of preconditioning, and the number of linear iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations). If y is incompatible, then this routine will re-
turn NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Allowable inputs for pretype are PREC_NONE (0), PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some SUNDIALS
solvers are designed to only work with left preconditioning (IDA and IDAS) and others with only right pre-
conditioning (KINSOL). While it is possible to configure a SUNLinSol_SPBCGS object to use any of the pre-
conditioning options with these solvers, this use mode is not supported and may result in inferior performance.

int SUNLinSol_SPBCGSSetPrecType(SUNLinearSolver S, int pretype)
This function updates the type of preconditioning to use. Supported values are PREC_NONE (0), PREC_LEFT
(1), PREC_RIGHT (2), and PREC_BOTH (3).

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype),
SUNLS_MEM_NULL (S is NULL), or SUNLS_SUCCESS.

int SUNLinSol_SPBCGSSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

A maxl argument that is ≤ 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNLinSolSetInfoFile_SPBCGS(SUNLinearSolver LS, FILE* info_file)
The function SUNLinSolSetInfoFile_SPBCGS() sets the output file where all informative (non-error)
messages should be directed.

Arguments:
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• LS – a SUNLinSol object

• info_file – pointer to output file (stdout by default); a NULL input will disable output

Return value:

• SUNLS_SUCCESS if successful

• SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

• SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled

Notes: This function is intended for users that wish to monitor the linear solver progress. By default, the file
pointer is set to stdout.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

int SUNLinSolSetPrintLevel_SPBCGS(SUNLinearSolver LS, int print_level)
The function SUNLinSolSetPrintLevel_SPBCGS() specifies the level of verbosity of the output.

Arguments:

• LS – a SUNLinSol object

• print_level – flag indicating level of verbosity; must be one of:

– 0, no information is printed (default)

– 1, for each linear iteration the residual norm is printed

Return value:

• SUNLS_SUCCESS if successful

• SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

• SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled, or if the print level value
was invalid

Notes: This function is intended for users that wish to monitor the linear solver progress. By default, the print
level is 0.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

SUNLinearSolver SUNSPBCGS(N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_SPBCGS()

int SUNSPBCGSSetPrecType(SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_SPBCGSSetPrecType()

int SUNSPBCGSSetMaxl(SUNLinearSolver S, int maxl)
Wrapper function for SUNLinSol_SPBCGSSetMaxl()

For solvers that include a Fortran interface module, the SUNLinSol_SPBCGS module also includes the Fortran-
callable function FSUNSPBCGSInit() to initialize this SUNLinSol_SPBCGS module for a given SUNDIALS
solver.

subroutine FSUNSPBCGSInit(CODE, PRETYPE, MAXL, IER)
Initializes a SPBCGS SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.
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Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• PRETYPE (int, input) – flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

• MAXL (int, input) – number of SPBCGS iterations to allow.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSPBCGSInit() initializes this SUNLinSol_SPBCGS module for solving mass matrix linear systems.

subroutine FSUNMassSPBCGSInit(PRETYPE, MAXL, IER)
Initializes a SPBCGS SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• PRETYPE (int, input) – flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

• MAXL (int, input) – number of SPBCGS iterations to allow.

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_SPBCGSSetPrecType() and SUNLinSol_SPBCGSSetMaxl() routines also support For-
tran interfaces for the system and mass matrix solvers:

subroutine FSUNSPBCGSSetPrecType(CODE, PRETYPE, IER)
Fortran interface to SUNLinSol_SPBCGSSetPrecType() for system linear solvers.

This routine must be called after FSUNSPBCGSInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPBCGSSetPrecType(PRETYPE, IER)
Fortran interface to SUNLinSol_SPBCGSSetPrecType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPBCGSInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPBCGSSetMaxl(CODE, MAXL, IER)
Fortran interface to SUNLinSol_SPBCGSSetMaxl() for system linear solvers.

This routine must be called after FSUNSPBCGSInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPBCGSSetMaxl(MAXL, IER)
Fortran interface to SUNLinSol_SPBCGSSetMaxl() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPBCGSInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

12.14.2 SUNLinSol_SPBCGS Description

The SUNLinSol_SPBCGS module defines the content field of a SUNLinearSolver to be the following structure:
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struct _SUNLinearSolverContent_SPBCGS {
int maxl;
int pretype;
int numiters;
realtype resnorm;
int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r;
N_Vector r_star;
N_Vector p;
N_Vector q;
N_Vector u;
N_Vector Ap;
N_Vector vtemp;
int print_level;
FILE* info_file;

};

These entries of the content field contain the following information:

• maxl - number of SPBCGS iterations to allow (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform 𝐴𝑣 product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• r - a N_Vector which holds the current scaled, preconditioned linear system residual,

• r_star - a N_Vector which holds the initial scaled, preconditioned linear system residual,

• p, q, u, Ap, vtemp - N_Vector used for workspace by the SPBCGS algorithm.

• print_level - controls the amount of information to be printed to the info file

• info_file - the file where all informative (non-error) messages will be directed

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector
that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.
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• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPBCGS to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

• In the “solve” call the SPBCGS iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The SUNLinSol_SPBCGS module defines implementations of all “iterative” linear solver operations listed in the
section The SUNLinearSolver API:

• SUNLinSolGetType_SPBCGS

• SUNLinSolInitialize_SPBCGS

• SUNLinSolSetATimes_SPBCGS

• SUNLinSolSetPreconditioner_SPBCGS

• SUNLinSolSetScalingVectors_SPBCGS

• SUNLinSolSetup_SPBCGS

• SUNLinSolSolve_SPBCGS

• SUNLinSolNumIters_SPBCGS

• SUNLinSolResNorm_SPBCGS

• SUNLinSolResid_SPBCGS

• SUNLinSolLastFlag_SPBCGS

• SUNLinSolSpace_SPBCGS

• SUNLinSolFree_SPBCGS

12.15 The SUNLinSol_SPTFQMR Module

The SPTFQMR (Scaled, Preconditioned, Transpose-Free Quasi-Minimum Residual [F1993]) implementation of the
SUNLinearSolver module provided with SUNDIALS, SUNLinSol_SPTFQMR, is an iterative linear solver that
is designed to be compatible with any N_Vector implementation (serial, threaded, parallel, and user-supplied) that
supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(),
N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms,
SPTFQMR requires a fixed amount of memory that does not increase with the number of allowed iterations.

12.15.1 SUNLinSol_SPTFQMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_sptfqmr.h.
The SUNLinSol_SPTFQMR module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolsptfqmr module library.

The module SUNLinSol_SPTFQMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPTFQMR(N_Vector y, int pretype, int maxl)
This constructor function creates and allocates memory for a SPTFQMR SUNLinearSolver. Its arguments
are an N_Vector, the desired type of preconditioning, and the number of linear iterations to allow.
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This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations). If y is incompatible, then this routine will re-
turn NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Allowable inputs for pretype are PREC_NONE (0), PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some SUNDIALS
solvers are designed to only work with left preconditioning (IDA and IDAS) and others with only right pre-
conditioning (KINSOL). While it is possible to configure a SUNLinSol_SPTFQMR object to use any of the
preconditioning options with these solvers, this use mode is not supported and may result in inferior perfor-
mance.

int SUNLinSol_SPTFQMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the type of preconditioning to use. Supported values are PREC_NONE (0), PREC_LEFT
(1), PREC_RIGHT (2), and PREC_BOTH (3).

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype),
SUNLS_MEM_NULL (S is NULL), or SUNLS_SUCCESS.

int SUNLinSol_SPTFQMRSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

A maxl argument that is ≤ 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNLinSolSetInfoFile_SPTFQMR(SUNLinearSolver LS, FILE* info_file)
The function SUNLinSolSetInfoFile_SPTFQMR() sets the output file where all informative (non-error)
messages should be directed.

Arguments:

• LS – a SUNLinSol object

• info_file – pointer to output file (stdout by default); a NULL input will disable output

Return value:

• SUNLS_SUCCESS if successful

• SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

• SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled

Notes: This function is intended for users that wish to monitor the linear solver progress. By default, the file
pointer is set to stdout.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

int SUNLinSolSetPrintLevel_SPTFQMR(SUNLinearSolver LS, int print_level)
The function SUNLinSolSetPrintLevel_SPTFQMR() specifies the level of verbosity of the output.

Arguments:

• LS – a SUNLinSol object

• print_level – flag indicating level of verbosity; must be one of:

– 0, no information is printed (default)

– 1, for each linear iteration the residual norm is printed

Return value:
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• SUNLS_SUCCESS if successful

• SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

• SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled, or if the print level value
was invalid

Notes: This function is intended for users that wish to monitor the linear solver progress. By default, the print
level is 0.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

SUNLinearSolver SUNSPTFQMR(N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_SPTFQMR()

int SUNSPTFQMRSetPrecType(SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_SPTFQMRSetPrecType()

int SUNSPTFQMRSetMaxl(SUNLinearSolver S, int maxl)
Wrapper function for SUNLinSol_SPTFQMRSetMaxl()

For solvers that include a Fortran interface module, the SUNLinSol_SPTFQMR module also includes the Fortran-
callable function FSUNSPTFQMRInit() to initialize this SUNLinSol_SPTFQMR module for a given SUNDIALS
solver.

subroutine FSUNSPTFQMRInit(CODE, PRETYPE, MAXL, IER)
Initializes a SPTFQMR SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• PRETYPE (int, input) – flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

• MAXL (int, input) – number of SPTFQMR iterations to allow.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSPTFQMRInit() initializes this SUNLinSol_SPTFQMR module for solving mass matrix linear sys-
tems.

subroutine FSUNMassSPTFQMRInit(PRETYPE, MAXL, IER)
Initializes a SPTFQMR SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• PRETYPE (int, input) – flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

• MAXL (int, input) – number of SPTFQMR iterations to allow.

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_SPTFQMRSetPrecType() and SUNLinSol_SPTFQMRSetMaxl() routines also support
Fortran interfaces for the system and mass matrix solvers:
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subroutine FSUNSPTFQMRSetPrecType(CODE, PRETYPE, IER)
Fortran interface to SUNLinSol_SPTFQMRSetPrecType() for system linear solvers.

This routine must be called after FSUNSPTFQMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPTFQMRSetPrecType(PRETYPE, IER)
Fortran interface to SUNLinSol_SPTFQMRSetPrecType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPTFQMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPTFQMRSetMaxl(CODE, MAXL, IER)
Fortran interface to SUNLinSol_SPTFQMRSetMaxl() for system linear solvers.

This routine must be called after FSUNSPTFQMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPTFQMRSetMaxl(MAXL, IER)
Fortran interface to SUNLinSol_SPTFQMRSetMaxl() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPTFQMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

12.15.2 SUNLinSol_SPTFQMR Description

The SUNLinSol_SPTFQMR module defines the content field of a SUNLinearSolver to be the following struc-
ture:

struct _SUNLinearSolverContent_SPTFQMR {
int maxl;
int pretype;
int numiters;
realtype resnorm;
int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r_star;
N_Vector q;
N_Vector d;
N_Vector v;
N_Vector p;
N_Vector *r;
N_Vector u;
N_Vector vtemp1;
N_Vector vtemp2;
N_Vector vtemp3;
int print_level;
FILE* info_file;

};

These entries of the content field contain the following information:
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• maxl - number of TFQMR iterations to allow (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform 𝐴𝑣 product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• r_star - a N_Vector which holds the initial scaled, preconditioned linear system residual,

• q, d, v, p, u - N_Vector used for workspace by the SPTFQMR algorithm,

• r - array of two N_Vector used for workspace within the SPTFQMR algorithm,

• vtemp1, vtemp2, vtemp3 - temporary vector storage.

• print_level - controls the amount of information to be printed to the info file

• info_file - the file where all informative (non-error) messages will be directed

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector
that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPTFQMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

• In the “solve” call the TFQMR iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The SUNLinSol_SPTFQMR module defines implementations of all “iterative” linear solver operations listed in the
section The SUNLinearSolver API:

• SUNLinSolGetType_SPTFQMR

• SUNLinSolInitialize_SPTFQMR

• SUNLinSolSetATimes_SPTFQMR

• SUNLinSolSetPreconditioner_SPTFQMR

• SUNLinSolSetScalingVectors_SPTFQMR

• SUNLinSolSetup_SPTFQMR

• SUNLinSolSolve_SPTFQMR
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• SUNLinSolNumIters_SPTFQMR

• SUNLinSolResNorm_SPTFQMR

• SUNLinSolResid_SPTFQMR

• SUNLinSolLastFlag_SPTFQMR

• SUNLinSolSpace_SPTFQMR

• SUNLinSolFree_SPTFQMR

12.16 The SUNLinSol_PCG Module

The PCG (Preconditioned Conjugate Gradient [HS1952] implementation of the SUNLinearSolver mod-
ule provided with SUNDIALS, SUNLinSol_PCG, is an iterative linear solver that is designed to be compatible
with any N_Vector implementation (serial, threaded, parallel, and user-supplied) that supports a minimal sub-
set of operations (N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(), N_VProd(), and
N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms, PCG requires a fixed amount of memory that does
not increase with the number of allowed iterations.

Unlike all of the other iterative linear solvers supplied with SUNDIALS, PCG should only be used on symmetric
linear systems (e.g. mass matrix linear systems encountered in ARKode). As a result, the explanation of the role of
scaling and preconditioning matrices given in general must be modified in this scenario. The PCG algorithm solves
a linear system 𝐴𝑥 = 𝑏 where 𝐴 is a symmetric (𝐴𝑇 = 𝐴), real-valued matrix. Preconditioning is allowed, and is
applied in a symmetric fashion on both the right and left. Scaling is also allowed and is applied symmetrically. We
denote the preconditioner and scaling matrices as follows:

• 𝑃 is the preconditioner (assumed symmetric),

• 𝑆 is a diagonal matrix of scale factors.

The matrices 𝐴 and 𝑃 are not required explicitly; only routines that provide 𝐴 and 𝑃−1 as operators are required.
The diagonal of the matrix 𝑆 is held in a single N_Vector, supplied by the user.

In this notation, PCG applies the underlying CG algorithm to the equivalent transformed system

𝐴�̃� = �̃� (12.4)

where

𝐴 = 𝑆𝑃−1𝐴𝑃−1𝑆,

�̃� = 𝑆𝑃−1𝑏,

�̃� = 𝑆−1𝑃𝑥.

(12.5)

The scaling matrix must be chosen so that the vectors 𝑆𝑃−1𝑏 and 𝑆−1𝑃𝑥 have dimensionless components.

The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

‖�̃�−𝐴�̃�‖2 < 𝛿

⇔
‖𝑆𝑃−1𝑏− 𝑆𝑃−1𝐴𝑥‖2 < 𝛿

⇔
‖𝑃−1𝑏− 𝑃−1𝐴𝑥‖𝑆 < 𝛿

where ‖𝑣‖𝑆 =
√
𝑣𝑇𝑆𝑇𝑆𝑣, with an input tolerance 𝛿.
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12.16.1 SUNLinSol_PCG Usage

The header file to be included when using this module is sunlinsol/sunlinsol_pcg.h.
The SUNLinSol_PCG module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolpcg module library.

The module SUNLinSol_PCG provides the following user-callable routines:

SUNLinearSolver SUNLinSol_PCG(N_Vector y, int pretype, int maxl)
This constructor function creates and allocates memory for a PCG SUNLinearSolver. Its arguments are an
N_Vector, a flag indicating to use preconditioning, and the number of linear iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations). If y is incompatible then this routine will return
NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Since the PCG algorithm is designed to only support symmetric preconditioning, then any of the pretype
inputs PREC_LEFT (1), PREC_RIGHT (2), or PREC_BOTH (3) will result in use of the symmetric precon-
ditioner; any other integer input will result in the default (no preconditioning). Although some SUNDIALS
solvers are designed to only work with left preconditioning (IDA and IDAS) and others with only right precon-
ditioning (KINSOL), PCG should only be used with these packages when the linear systems are known to be
symmetric. Since the scaling of matrix rows and columns must be identical in a symmetric matrix, symmet-
ric preconditioning should work appropriately even for packages designed with one-sided preconditioning in
mind.

int SUNLinSol_PCGSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning. As above, any one of the input values,
PREC_LEFT (1), PREC_RIGHT (2), or PREC_BOTH (3) will enable preconditioning; PREC_NONE (0) dis-
ables preconditioning.

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype),
SUNLS_MEM_NULL (S is NULL), or SUNLS_SUCCESS.

int SUNLinSol_PCGSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

A maxl argument that is ≤ 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNLinSolSetInfoFile_PCG(SUNLinearSolver LS, FILE* info_file)
The function SUNLinSolSetInfoFile_PCG() sets the output file where all informative (non-error) mes-
sages should be directed.

Arguments:

• LS – a SUNLinSol object

• info_file – pointer to output file (stdout by default); a NULL input will disable output

Return value:

• SUNLS_SUCCESS if successful

• SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

• SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled

Notes: This function is intended for users that wish to monitor the linear solver progress. By default, the file
pointer is set to stdout.

466 Chapter 12. Description of the SUNLinearSolver module



User Documentation for ARKode, v4.7.0

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

int SUNLinSolSetPrintLevel_PCG(SUNLinearSolver LS, int print_level)
The function SUNLinSolSetPrintLevel_PCG() specifies the level of verbosity of the output.

Arguments:

• LS – a SUNLinSol object

• print_level – flag indicating level of verbosity; must be one of:

– 0, no information is printed (default)

– 1, for each linear iteration the residual norm is printed

Return value:

• SUNLS_SUCCESS if successful

• SUNLS_MEM_NULL if the SUNLinearSolver memory was NULL

• SUNLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled, or if the print level value
was invalid

Notes: This function is intended for users that wish to monitor the linear solver progress. By default, the print
level is 0.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

SUNLinearSolver SUNPCG(N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_PCG()

int SUNPCGSetPrecType(SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_PCGSetPrecType()

int SUNPCGSetMaxl(SUNLinearSolver S, int maxl)
Wrapper function for SUNLinSol_PCGSetMaxl()

For solvers that include a Fortran interface module, the SUNLinSol_PCG module also includes the Fortran-callable
function FSUNPCGInit() to initialize this SUNLinSol_PCG module for a given SUNDIALS solver.

subroutine FSUNPCGInit(CODE, PRETYPE, MAXL, IER)
Initializes a PCG SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• PRETYPE (int, input) – flag denoting whether to use symmetric preconditioning: no=0, yes=1.

• MAXL (int, input) – number of PCG iterations to allow.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassPCGInit() initializes this SUNLinSol_PCG module for solving mass matrix linear systems.
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subroutine FSUNMassPCGInit(PRETYPE, MAXL, IER)
Initializes a PCG SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• PRETYPE (int, input) – flag denoting whether to use symmetric preconditioning: no=0, yes=1.

• MAXL (int, input) – number of PCG iterations to allow.

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_PCGSetPrecType() and SUNLinSol_PCGSetMaxl() routines also support Fortran inter-
faces for the system and mass matrix solvers:

subroutine FSUNPCGSetPrecType(CODE, PRETYPE, IER)
Fortran interface to SUNLinSol_PCGSetPrecType() for system linear solvers.

This routine must be called after FSUNPCGInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassPCGSetPrecType(PRETYPE, IER)
Fortran interface to SUNLinSol_PCGSetPrecType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassPCGInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNPCGSetMaxl(CODE, MAXL, IER)
Fortran interface to SUNLinSol_PCGSetMaxl() for system linear solvers.

This routine must be called after FSUNPCGInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassPCGSetMaxl(MAXL, IER)
Fortran interface to SUNLinSol_PCGSetMaxl() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassPCGInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

12.16.2 SUNLinSol_PCG Description

The SUNLinSol_PCG module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_PCG {
int maxl;
int pretype;
int numiters;
realtype resnorm;
int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s;
N_Vector r;
N_Vector p;
N_Vector z;
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N_Vector Ap;
int print_level;
FILE* info_file;

};

These entries of the content field contain the following information:

• maxl - number of PCG iterations to allow (default is 5),

• pretype - flag for use of preconditioning (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform 𝐴𝑣 product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s - vector pointer for supplied scaling matrix (default is NULL),

• r - a N_Vector which holds the preconditioned linear system residual,

• p, z, Ap - N_Vector used for workspace by the PCG algorithm.

• print_level - controls the amount of information to be printed to the info file

• info_file - the file where all informative (non-error) messages will be directed

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector
that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_PCG to supply
the ATimes, PSetup, and Psolve function pointers and s scaling vector.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

• In the “solve” call the PCG iteration is performed. This will include scaling and preconditioning if those op-
tions have been supplied.

The SUNLinSol_PCG module defines implementations of all “iterative” linear solver operations listed in the section
The SUNLinearSolver API:

• SUNLinSolGetType_PCG

• SUNLinSolInitialize_PCG

• SUNLinSolSetATimes_PCG

• SUNLinSolSetPreconditioner_PCG
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• SUNLinSolSetScalingVectors_PCG – since PCG only supports symmetric scaling, the second
N_Vector argument to this function is ignored

• SUNLinSolSetup_PCG

• SUNLinSolSolve_PCG

• SUNLinSolNumIters_PCG

• SUNLinSolResNorm_PCG

• SUNLinSolResid_PCG

• SUNLinSolLastFlag_PCG

• SUNLinSolSpace_PCG

• SUNLinSolFree_PCG

12.17 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make use of the
functions in test_sunlinsol.c. These example functions show simple usage of the SUNLinearSolver fam-
ily of modules. The inputs to the examples depend on the linear solver type, and are output to stdout if the exam-
ple is run without the appropriate number of command-line arguments.

The following is a list of the example functions in test_sunlinsol.c:

• Test_SUNLinSolGetType: Verifies the returned solver type against the value that should be returned.

• Test_SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns suc-
cessfully.

• Test_SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

• Test_SUNLinSolSolve: Given a SUNMatrix object 𝐴, N_Vector objects 𝑥 and 𝑏 (where 𝐴𝑥 = 𝑏) and
a desired solution tolerance tol, this routine clones 𝑥 into a new vector 𝑦, calls SUNLinSolSolve to fill 𝑦
as the solution to 𝐴𝑦 = 𝑏 (to the input tolerance), verifies that each entry in 𝑥 and 𝑦 match to within 10*tol,
and overwrites 𝑥 with 𝑦 prior to returning (in case the calling routine would like to investigate further).

• Test_SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be
called and returns successfully.

• Test_SUNLinSolSetPreconditioner (iterative solvers only): Verifies that
SUNLinSolSetPreconditioner can be called and returns successfully.

• Test_SUNLinSolSetScalingVectors (iterative solvers only): Verifies that
SUNLinSolSetScalingVectors can be called and returns successfully.

• Test_SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the result
to stdout.

• Test_SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be called,
and outputs the result to stdout.

• Test_SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called,
and that the result is non-negative.

• Test_SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.

• Test_SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to
stdout.
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We’ll note that these tests should be performed in a particular order. For either direct or iterative linear solvers,
Test_SUNLinSolInitialize must be called before Test_SUNLinSolSetup, which must be called be-
fore Test_SUNLinSolSolve. Additionally, for iterative linear solvers Test_SUNLinSolSetATimes,
Test_SUNLinSolSetPreconditioner and Test_SUNLinSolSetScalingVectors
should be called before Test_SUNLinSolInitialize; similarly Test_SUNLinSolNumIters,
Test_SUNLinSolResNorm and Test_SUNLinSolResid should be called after Test_SUNLinSolSolve.
These are called in the appropriate order in all of the example problems.
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Chapter 13

Description of the SUNNonlinearSolver
Module

SUNDIALS time integration packages are written in terms of generic nonlinear solver operations defined by the
SUNNonlinSol API and implemented by a particular SUNNonlinSol module of type SUNNonlinearSolver.
Users can supply their own SUNNonlinSol module, or use one of the modules provided with SUNDIALS. Depend-
ing on the package, nonlinear solver modules can either target system presented in a rootfinding (𝐹 (𝑦) = 0) or fixed-
point (𝐺(𝑦) = 𝑦) formulation. For more information on the formulation of the nonlinear system(s) see the ARKode
SUNNonlinearSolver interface section.

The time integrators in SUNDIALS specify a default nonlinear solver module and as such this chapter is intended for
users that wish to use a non-default nonlinear solver module or would like to provide their own nonlinear solver im-
plementation. Users interested in using a non-default solver module may skip the description of the SUNNonlinSol
API in section The SUNNonlinearSolver API and proceeded to the subsequent sections in this chapter that describe
the SUNNonlinSol modules provided with SUNDIALS.

For users interested in providing their own SUNNonlinSol module, the following section presents the SUNNonlinSol
API and its implementation beginning with the definition of SUNNonlinSol functions in the sections SUNNonlinear-
Solver core functions, SUNNonlinearSolver set functions and SUNNonlinearSolver get functions. This is followed by
the definition of functions supplied to a nonlinear solver implementation in the section Functions provided by SUN-
DIALS integrators. The nonlinear solver return codes are given in the section SUNNonlinearSolver return codes. The
SUNNonlinearSolver type and the generic SUNNonlinSol module are defined in the section The generic SUN-
NonlinearSolver module. Finally, the section Implementing a Custom SUNNonlinearSolver Module lists the require-
ments for supplying a custom SUNNonlinSol module. Users wishing to supply their own SUNNonlinSol module
are encouraged to use the SUNNonlinSol implementations provided with SUNDIALS as a template for supplying
custom nonlinear solver modules.

13.1 The SUNNonlinearSolver API

The SUNNonlinSol API defines several nonlinear solver operations that enable SUNDIALS integrators to utilize
any SUNNonlinSol implementation that provides the required functions. These functions can be divided into three
categories. The first are the core nonlinear solver functions. The second group of functions consists of set routines
to supply the nonlinear solver with functions provided by the SUNDIALS time integrators and to modify solver pa-
rameters. The final group consists of get routines for retrieving nonlinear solver statistics. All of these functions are
defined in the header file sundials/sundials_nonlinearsolver.h.
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13.1.1 SUNNonlinearSolver core functions

The core nonlinear solver functions consist of two required functions to get the nonlinear solver type
(SUNNonlinsSolGetType) and solve the nonlinear system (SUNNonlinSolSolve). The remain-
ing three functions for nonlinear solver initialization (SUNNonlinSolInitialization), setup
(SUNNonlinSolSetup), and destruction (SUNNonlinSolFree) are optional.

SUNNonlinearSolver_Type SUNNonlinSolGetType(SUNNonlinearSolver NLS)
The required function SUNNonlinSolGetType() returns the nonlinear solver type.

Arguments:

• NLS – a SUNNonlinSol object

Return value: the SUNNonlinSol type identifier (of type int) will be one of the following:

• SUNNONLINEARSOLVER_ROOTFIND – 0, the SUNNonlinSol module solves 𝐹 (𝑦) = 0.

• SUNNONLINEARSOLVER_FIXEDPOINT – 1, the SUNNonlinSol module solves 𝐺(𝑦) = 𝑦.

int SUNNonlinSolInitialize(SUNNonlinearSolver NLS)
The optional function SUNNonlinSolInitialize() performs nonlinear solver initialization and may
perform any necessary memory allocations.

Arguments:

• NLS – a SUNNonlinSol object

Return value: the return value is zero for a successful call and a negative value for a failure.

Notes: It is assumed all solver-specific options have been set prior to calling
SUNNonlinSolInitialize(). SUNNonlinSol implementations that do not require initialization
may set this operation to NULL.

int SUNNonlinSolSetup(SUNNonlinearSolver NLS, N_Vector y, void* mem)
The optional function SUNNonlinSolSetup() performs any solver setup needed for a nonlinear solve.

Arguments:

• NLS – a SUNNonlinSol object

• y – the initial iteration passed to the nonlinear solver.

• mem – the SUNDIALS integrator memory structure.

Return value: the return value is zero for a successful call and a negative value for a failure.

Notes: SUNDIALS integrators call SUNonlinSolSetup() before each step attempt. SUNNonlinSol im-
plementations that do not require setup may set this operation to NULL.

int SUNNonlinSolSolve(SUNNonlinearSolver NLS, N_Vector y0, N_Vector ycor, N_Vector w, real-
type tol, booleantype callLSetup, void *mem)

The required function SUNNonlinSolSolve() solves the nonlinear system 𝐹 (𝑦) = 0 or 𝐺(𝑦) = 𝑦.

Arguments:

• NLS – a SUNNonlinSol object

• y0 – the predicted value for the new solution state. This must remain unchanged throughout the solu-
tion process. See the ARKode SUNNonlinearSolver interface section for more detail on the nonlinear
system formulation.

• ycor – on input the initial guess for the correction to the predicted state (zero) and on output the final
correction to the predicted state. See the ARKode SUNNonlinearSolver interface section for more
detail on the nonlinear system formulation.
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• w – the solution error weight vector used for computing weighted error norms.

• tol – the requested solution tolerance in the weighted root-mean-squared norm.

• callLSetup – a flag indicating that the integrator recommends for the linear solver setup function to
be called.

• mem – the SUNDIALS integrator memory structure.

Return value: the return value is zero for a successul solve, a positive value for a recoverable error (i.e., the
solve failed and the integrator should reduce the step size and reattempt the step), and a negative value for an
unrecoverable error (i.e., the solve failed the and the integrator should halt and return an error to the user).

int SUNNonlinSolFree(SUNNonlinearSolver NLS)
The optional function SUNNonlinSolFree() frees any memory allocated by the nonlinear solver.

Arguments:

• NLS – a SUNNonlinSol object

Return value: the return value should be zero for a successful call, and a negative value for a failure. SUN-
NonlinSol implementations that do not allocate data may set this operation to NULL.

13.1.2 SUNNonlinearSolver set functions

The following set functions are used to supply nonlinear solver modules with functions defined by the SUNDIALS
integrators and to modify solver parameters. Only the routine for setting the nonlinear system defining function
(SUNNonlinSolSetSysFn) is required. All other set functions are optional.

int SUNNonlinSolSetSysFn(SUNNonlinearSolver NLS, SUNNonlinSolSysFn SysFn)
The required function SUNNonlinSolSetSysFn() is used to provide the nonlin-
ear solver with the function defining the nonlinear system. This is the function 𝐹 (𝑦) in
𝐹 (𝑦) = 0 for SUNNONLINEARSOLVER_ROOTFIND modules or 𝐺(𝑦) in 𝐺(𝑦) = 𝑦 for
SUNNONLINEARSOLVER_FIXEDPOINT modules.

Arguments:

• NLS – a SUNNonlinSol object

• SysFn – the function defining the nonlinear system. See the section Functions provided by SUNDI-
ALS integrators for the definition of SUNNonlinSolSysFn().

Return value: the return value should be zero for a successful call, and a negative value for a failure.

int SUNNonlinSolSetLSetupFn(SUNNonlinearSolver NLS, SUNNonlinSolLSetupFn SetupFn)
The optional function SUNNonlinSolLSetupFn() is called by SUNDIALS integrators to provide the
nonlinear solver with access to its linear solver setup function.

Arguments:

• NLS – a SUNNonlinSol object

• SetupFn – a wrapper function to the SUNDIALS integrator’s linear solver setup func-
tion. See the section Functions provided by SUNDIALS integrators for the definition of
SUNNonlinSolLSetupFn.

Return value: the return value should be zero for a successful call, and a negative value for a failure.

Notes: The SUNNonlinSolLSetupFn function sets up the linear system 𝐴𝑥 = 𝑏 where 𝐴 = 𝜕𝐹
𝜕𝑦 is the lin-

earization of the nonlinear residual function 𝐹 (𝑦) = 0 (when using SUNLinSol direct linear solvers) or calls
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the user-defined preconditioner setup function (when using SUNLinSol iterative linear solvers). SUNNonlin-
Sol implementations that do not require solving this system, do not utilize SUNLinSol linear solvers, or use
SUNLinSol linear solvers that do not require setup may set this operation to NULL.

int SUNNonlinSolSetLSolveFn(SUNNonlinearSolver NLS, SUNNonlinSolLSolveFn SolveFn)
The optional function SUNNonlinSolSetLSolveFn() is called by SUNDIALS integrators to provide the
nonlinear solver with access to its linear solver solve function.

Arguments:

• NLS – a SUNNonlinSol object

• SolveFn – a wrapper function to the SUNDIALS integrator’s linear solver solve func-
tion. See the section Functions provided by SUNDIALS integrators for the definition of
SUNNonlinSolLSolveFn.

Return value: the return value should be zero for a successful call, and a negative value for a failure.

Notes: The SUNNonlinSolLSolveFn function solves the linear system 𝐴𝑥 = 𝑏 where 𝐴 = 𝜕𝐹
𝜕𝑦 is the

linearization of the nonlinear residual function 𝐹 (𝑦) = 0. SUNNonlinSol implementations that do not require
solving this system or do not use SUNLinSol linear solvers may set this operation to NULL.

int SUNNonlinSolSetConvTestFn(SUNNonlinearSolver NLS, SUNNonlinSolConvTestFn CTestFn,
void* ctest_data)

The optional function SUNNonlinSolSetConvTestFn() is used to provide the nonlinear solver with a
function for determining if the nonlinear solver iteration has converged. This is typically called by SUNDIALS
integrators to define their nonlinear convergence criteria, but may be replaced by the user.

Arguments:

• NLS – a SUNNonlinSol object

• CTestFn – a SUNDIALS integrator’s nonlinear solver convergence test function.
See the section Functions provided by SUNDIALS integrators for the definition of
SUNNonlinSolConvTestFn().

• ctest_data – is a data pointer passed to CTestFn every time it is called.

Return value: the return value should be zero for a successful call, and a negative value for a failure.

Notes: SUNNonlinSol implementations utilizing their own convergence test criteria may set this function to
NULL.

int SUNNonlinSolSetMaxIters(SUNNonlinearSolver NLS, int maxiters)
The optional function SUNNonlinSolSetMaxIters() sets the maximum number of nonlinear solver
iterations. This is typically called by SUNDIALS integrators to define their default iteration limit, but may be
adjusted by the user.

Arguments:

• NLS – a SUNNonlinSol object

• maxiters – the maximum number of nonlinear iterations.

Return value: the return value should be zero for a successful call, and a negative value for a failure (e.g.,
𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑠 < 1).

13.1.3 SUNNonlinearSolver get functions

The following get functions allow SUNDIALS integrators to retrieve nonlinear solver statistics. The routines to get
the number of iterations in the most recent solve (SUNNonlinSolGetNumIters) and number of convergence
failures are optional. The routine to get the current nonlinear solver iteration (SUNNonlinSolGetCurIter) is
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required when using the convergence test provided by the SUNDIALS integrator or when using a SUNLinSol spils
linear solver otherwise, SUNNonlinSolGetCurIter is optional.

int SUNNonlinSolGetNumIters(SUNNonlinearSolver NLS, long int *niters)
The optional function SUNNonlinSolGetNumIters() returns the number of nonlinear solver iterations
in the most recent solve. This is typically called by the SUNDIALS integrator to store the nonlinear solver
statistics, but may also be called by the user.

Arguments:

• NLS – a SUNNonlinSol object

• niters – the total number of nonlinear solver iterations.

Return value: the return value should be zero for a successful call, and a negative value for a failure.

int SUNNonlinSolGetCurIter(SUNNonlinearSolver NLS, int *iter)

The function SUNNonlinSolGetCurIter() returns the iteration index of the current nonlinear
solve. This function is required when using SUNDIALS integrator-provided convergence tests or
when using a SUNLinSol spils linear solver; otherwise it is optional.

Arguments:

• NLS – a SUNNonlinSol object

• iter – the nonlinear solver iteration in the current solve starting from zero.

Return value: the return value should be zero for a successful call, and a negative value for a fail-
ure.

int SUNNonlinSolGetNumConvFails(SUNNonlinearSolver NLS, long int *nconvfails)
The optional function SUNNonlinSolGetNumConvFails() returns the number of nonlinear solver
convergence failures in the most recent solve. This is typically called by the SUNDIALS integrator to
store the nonlinear solver statistics, but may also be called by the user.

Arguments:

• NLS – a SUNNonlinSol object

• nconvfails – the total number of nonlinear solver convergence failures.

Return value: the return value should be zero for a successful call, and a negative value for a failure.

13.1.4 Functions provided by SUNDIALS integrators

To interface with SUNNonlinSol modules, the SUNDIALS integrators supply a variety of routines for evaluating the
nonlinear system, calling the SUNLinSol setup and solve functions, and testing the nonlinear iteration for conver-
gence. These integrator-provided routines translate between the user-supplied ODE or DAE systems and the generic
interfaces to the nonlinear or linear systems of equations that result in their solution. The types for functions pro-
vided to a SUNNonlinSol module are defined in the header file sundials/sundials_nonlinearsolver.h,
and are described below.

typedef int (*SUNNonlinSolSysFn)(N_Vector ycor, N_Vector F, void* mem)
These functions evaluate the nonlinear system 𝐹 (𝑦) for SUNNONLINEARSOLVER_ROOTFIND type modules
or 𝐺(𝑦) for SUNNONLINEARSOLVER_FIXEDPOINT type modules. Memory for F must by be allocated
prior to calling this function. The vector ycor will be left unchanged.

Arguments:

• ycor – is the current correction to the predicted state at which the nonlinear system should be evalu-
ated. See the ARKode SUNNonlinearSolver interface section for more detail on the nonlinear system
function.
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• F – is the output vector containing 𝐹 (𝑦) or 𝐺(𝑦), depending on the solver type.

• mem – is the SUNDIALS integrator memory structure.

Return value: The return value is zero for a successul solve, a positive value for a recoverable error, and a
negative value for an unrecoverable error.

As discussed in section ARKode SUNNonlinearSolver interface, SUNDIALS integrators formulate nonlinear
systems as a function of the correction to the predicted solution. On each call to the nonlinear system function
the integrator will compute and store the current solution based on the input correction. Additionally, the resid-
ual will store the value of the ODE right-hand side function or DAE residual used in computing the nonlinear
system. These stored values are then directly used in the integrator-supplied linear solver setup and solve func-
tions as applicable.

typedef int (*SUNNonlinSolLSetupFn)(booleantype jbad, booleantype* jcur, void* mem)
These functions are wrappers to the SUNDIALS integrator’s function for setting up linear solves with SUN-
LinSol modules.

Arguments:

• jbad – is an input indicating whether the nonlinear solver believes that 𝐴 has gone stale (SUNTRUE)
or not (SUNFALSE).

• jcur – is an output indicating whether the routine has updated the Jacobian 𝐴 (SUNTRUE) or not
(SUNFALSE).

• mem – is the SUNDIALS integrator memory structure.

Return value: The return value is zero for a successul solve, a positive value for a recoverable error, and a
negative value for an unrecoverable error.

Notes: The SUNNonlinSolLSetupFn function sets up the linear system 𝐴𝑥 = 𝑏 where 𝐴 = 𝜕𝐹
𝜕𝑦 is the lin-

earization of the nonlinear residual function 𝐹 (𝑦) = 0 (when using SUNLinSol direct linear solvers) or calls
the user-defined preconditioner setup function (when using SUNLinSol iterative linear solvers). SUNNonlin-
Sol implementations that do not require solving this system, do not utilize SUNLinSol linear solvers, or use
SUNLinSol linear solvers that do not require setup may ignore these functions.

As discussed in the description of SUNNonlinSolSysFn(), the linear solver setup function assumes that
the nonlinear system function has been called prior to the linear solver setup function as the setup will utilize
saved values from the nonlinear system evaluation (e.g., the updated solution).

typedef int (*SUNNonlinSolLSolveFn)(N_Vector b, void* mem)
These functions are wrappers to the SUNDIALS integrator’s function for solving linear systems with SUNLin-
Sol modules.

Arguments:

• b – contains the right-hand side vector for the linear solve on input and the solution to the linear sys-
tem on output.

• mem – is the SUNDIALS integrator memory structure.

Return value: The return value is zero for a successul solve, a positive value for a recoverable error, and a
negative value for an unrecoverable error.

Notes: The SUNNonlinSolLSolveFn function solves the linear system 𝐴𝑥 = 𝑏 where 𝐴 = 𝜕𝐹
𝜕𝑦 is the

linearization of the nonlinear residual function 𝐹 (𝑦) = 0. SUNNonlinSol implementations that do not require
solving this system or do not use SUNLinSol linear solvers may ignore these functions.

As discussed in the description of SUNNonlinSolSysFn(), the linear solver solve function assumes that
the nonlinear system function has been called prior to the linear solver solve function as the setup may utilize
saved values from the nonlinear system evaluation (e.g., the updated solution).
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int (*SUNNonlinSolConvTestFn)(SUNNonlinearSolver NLS, N_Vector ycor, N_Vector del, real-
type tol, N_Vector ewt, void* ctest_data)

These functions are SUNDIALS integrator-specific convergence tests for nonlinear solvers and are typically
supplied by each SUNDIALS integrator, but users may supply custom problem-specific versions as desired.

Arguments:

• NLS – is the SUNNonlinSol object.

• ycor – is the current correction (nonlinear iterate).

• del – is the difference between the current and prior nonlinear iterates.

• tol – is the nonlinear solver tolerance.

• ewt – is the weight vector used in computing weighted norms.

• ctest_data – is the data pointer provided to SUNNonlinSolSetConvTestFn().

Return value: The return value of this routine will be a negative value if an unrecoverable error occurred or
one of the following:

• SUN_NLS_SUCCESS – the iteration is converged.

• SUN_NLS_CONTINUE – the iteration has not converged, keep iterating.

• SUN_NLS_CONV_RECVR – the iteration appears to be diverging, try to recover.

Notes: The tolerance passed to this routine by SUNDIALS integrators is the tolerance in a weighted root-
mean-squared norm with error weight vector ewt. SUNNonlinSol modules utilizing their own convergence
criteria may ignore these functions.

13.1.5 SUNNonlinearSolver return codes

The functions provided to SUNNonlinSol modules by each SUNDIALS integrator, and functions within the
SUNDIALS-provided SUNNonlinSol implementations utilize a common set of return codes, shown in the table be-
low. Here, negative values correspond to non-recoverable failures, positive values to recoverable failures, and zero to
a successful call.

Description of the SUNNonlinearSolver return codes:

Name Value Description
SUN_NLS_SUCCESS 0 successful call or converged solve
SUN_NLS_CONTINUE 901 the nonlinear solver is not converged, keep iterating
SUN_NLS_CONV_RECVR 902 the nonlinear solver appears to be diverging, try to recover
SUN_NLS_MEM_NULL -901 a memory argument is NULL
SUN_NLS_MEM_FAIL -902 a memory access or allocation failed
SUN_NLS_ILL_INPUT -903 an illegal input option was provided
SUN_NLS_VECTOROP_ERR -904 a NVECTOR operation failed
SUN_NLS_EXT_FAIL -905 an external library call returned an error

13.1.6 The generic SUNNonlinearSolver module

SUNDIALS integrators interact with specific SUNNonlinSol implementations through the generic SUNNon-
linSol module on which all other SUNNonlinSol implementations are built. The SUNNonlinearSolver
type is a pointer to a structure containing an implementation-dependent content field and an ops field. The type
SUNNonlinearSolver is defined as follows:
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typedef struct _generic_SUNNonlinearSolver *SUNNonlinearSolver;

struct _generic_SUNNonlinearSolver {
void *content;
struct _generic_SUNNonlinearSolver_Ops *ops;

};

where the _generic_SUNNonlinearSolver_Ops structure is a list of pointers to the various actual nonlinear
solver operations provided by a specific implementation. The _generic_SUNNonlinearSolver_Ops struc-
ture is defined as

struct _generic_SUNNonlinearSolver_Ops {
SUNNonlinearSolver_Type (*gettype)(SUNNonlinearSolver);
int (*initialize)(SUNNonlinearSolver);
int (*setup)(SUNNonlinearSolver, N_Vector, void*);
int (*solve)(SUNNonlinearSolver, N_Vector, N_Vector,

N_Vector, realtype, booleantype, void*);
int (*free)(SUNNonlinearSolver);
int (*setsysfn)(SUNNonlinearSolver, SUNNonlinSolSysFn);
int (*setlsetupfn)(SUNNonlinearSolver, SUNNonlinSolLSetupFn);
int (*setlsolvefn)(SUNNonlinearSolver, SUNNonlinSolLSolveFn);
int (*setctestfn)(SUNNonlinearSolver, SUNNonlinSolConvTestFn,

void*);
int (*setmaxiters)(SUNNonlinearSolver, int);
int (*getnumiters)(SUNNonlinearSolver, long int*);
int (*getcuriter)(SUNNonlinearSolver, int*);
int (*getnumconvfails)(SUNNonlinearSolver, long int*);

};

The generic SUNNonlinSol module defines and implements the nonlinear solver operations defined in Sections
SUNNonlinearSolver core functions through SUNNonlinearSolver get functions. These routines are in fact only
wrappers to the nonlinear solver operations provided by a particular SUNNonlinSol implementation, which are
accessed through the ops field of the SUNNonlinearSolver structure. To illustrate this point we show be-
low the implementation of a typical nonlinear solver operation from the generic SUNNonlinSol module, namely
SUNNonlinSolSolve, which solves the nonlinear system and returns a flag denoting a successful or failed solve:

int SUNNonlinSolSolve(SUNNonlinearSolver NLS,
N_Vector y0, N_Vector y,
N_Vector w, realtype tol,
booleantype callLSetup, void* mem)

{
return((int) NLS->ops->solve(NLS, y0, y, w, tol, callLSetup, mem));

}

13.1.7 Implementing a Custom SUNNonlinearSolver Module

A SUNNonlinSol implementation must do the following:

• Specify the content of the SUNNonlinSol module.

• Define and implement the required nonlinear solver operations defined in Sections SUNNonlinearSolver core
functions through SUNNonlinearSolver get functions. Note that the names of the module routines should be
unique to that implementation in order to permit using more than one SUNNonlinSol module (each with dif-
ferent SUNNonlinearSolver internal data representations) in the same code.

• Define and implement a user-callable constructor to create a SUNNonlinearSolver object.
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To aid in the creation of custom SUNNonlinearSolver modules the generic SUNNonlinearSolver module
provides the utility functions SUNNonlinSolNewEmpty() and SUNNonlinsolFreeEmpty(). When used in
custom SUNNonlinearSolver constructors this function will ease the introduction of any new optional nonlinear
solver operations to the SUNNonlinearSolver API by ensuring only required operations need to be set.

SUNNonlinearSolver SUNNonlinSolNewEmpty()
This function allocates a new generic SUNNonlinearSolver object and initializes its content pointer and
the function pointers in the operations structure to NULL.

Return value: If successful, this function returns a SUNNonlinearSolver object. If an error occurs when
allocating the object, then this routine will return NULL.

void SUNNonlinSolFreeEmpty(SUNNonlinearSolver NLS)
This routine frees the generic SUNNonlinearSolver object, under the assumption that any
implementation-specific data that was allocated within the underlying content structure has already been freed.
It will additionally test whether the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:

• NLS – a SUNNonlinearSolver object

Additionally, a SUNNonlinearSolver implementation may do the following:

• Define and implement additional user-callable “set” routines acting on the SUNNonlinearSolver object,
e.g., for setting various configuration options to tune the performance of the nonlinear solve algorithm.

• Provide additional user-callable “get” routines acting on the SUNNonlinearSolver object, e.g., for return-
ing various solve statistics.

13.2 ARKode SUNNonlinearSolver interface

As discussed in Mathematical Considerations integration steps often require the (approximate) solution of a nonlin-
ear system. This system can be formulated as the rootfinding problem

𝐺(𝑧𝑖) ≡ 𝑧𝑖 − 𝛾𝑓 𝐼
(︀
𝑡𝐼𝑛,𝑖, 𝑧𝑖

)︀
− 𝑎𝑖 = 0 [𝑀 = 𝐼],

𝐺(𝑧𝑖) ≡𝑀𝑧𝑖 − 𝛾𝑓 𝐼
(︀
𝑡𝐼𝑛,𝑖, 𝑧𝑖

)︀
− 𝑎𝑖 = 0 [𝑀 static],

𝐺(𝑧𝑖) ≡𝑀(𝑡𝐼𝑛,𝑖)(𝑧𝑖 − 𝑎𝑖)− 𝛾𝑓 𝐼
(︀
𝑡𝐼𝑛,𝑖, 𝑧𝑖

)︀
= 0 [𝑀 time-dependent],

where 𝑧𝑖 is the i-th stage at time 𝑡𝑖 and 𝑎𝑖 is known data that depends on the integration method.

Alternately, the nonlinear system above may be formulated as the fixed-point problem

𝑧𝑖 = 𝑧𝑖 −𝑀(𝑡𝐼𝑛,𝑖)
−1𝐺(𝑧𝑖),

where 𝐺(𝑧𝑖) is the variant of the rootfinding problem listed above, and 𝑀(𝑡𝐼𝑛,𝑖) may equal either 𝑀 or 𝐼 , as applica-
ble.

Rather than solving the above nonlinear systems for the stage value 𝑧𝑖 directly, ARKode modules solve for the cor-
rection 𝑧𝑐𝑜𝑟 to the predicted stage value 𝑧𝑝𝑟𝑒𝑑 so that 𝑧𝑖 = 𝑧𝑝𝑟𝑒𝑑 + 𝑧𝑐𝑜𝑟. Thus these nonlinear systems rewritten in
terms of 𝑧𝑐𝑜𝑟 are

𝐺(𝑧𝑐𝑜𝑟) ≡ 𝑧𝑐𝑜𝑟 − 𝛾𝑓 𝐼
(︀
𝑡𝐼𝑛,𝑖, 𝑧𝑖

)︀
− �̃�𝑖 = 0 [𝑀 = 𝐼],

𝐺(𝑧𝑐𝑜𝑟) ≡𝑀𝑧𝑐𝑜𝑟 − 𝛾𝑓 𝐼
(︀
𝑡𝐼𝑛,𝑖, 𝑧𝑖

)︀
− �̃�𝑖 = 0 [𝑀 static],

𝐺(𝑧𝑐𝑜𝑟) ≡𝑀(𝑡𝐼𝑛,𝑖)(𝑧𝑐𝑜𝑟 − �̃�𝑖)− 𝛾𝑓 𝐼
(︀
𝑡𝐼𝑛,𝑖, 𝑧𝑖

)︀
= 0 [𝑀 time-dependent],

(13.1)

for the rootfinding problem and
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𝑧𝑐𝑜𝑟 = 𝑧𝑐𝑜𝑟 −𝑀(𝑡𝐼𝑛,𝑖)
−1𝐺(𝑧𝑖), (13.2)

for the fixed-point problem.

Similarly, in MRIStep (that always assumes 𝑀 = 𝐼), we have the nonlinear residual in predictor-corrector form,

𝐺(𝑧𝑐𝑜𝑟) ≡ 𝑧𝑐𝑜𝑟 − 𝛾𝑓𝑆
(︀
𝑡𝑆𝑛,𝑖, 𝑧𝑖

)︀
− �̃�𝑖 = 0, (13.3)

and the corresponding fixed-point problem,

𝑧𝑐𝑜𝑟 = 𝑧𝑐𝑜𝑟 −𝐺(𝑧𝑖). (13.4)

The nonlinear system functions provided by ARKode modules to the nonlinear solver module internally update the
current value of the stage based on the input correction vector i.e., 𝑧𝑖 = 𝑧𝑝𝑟𝑒𝑑 + 𝑧𝑐𝑜𝑟. The updated vector 𝑧𝑖 is used
when calling the ODE right-hand side function and when setting up linear solves (e.g., updating the Jacobian or pre-
conditioner).

ARKode modules also provide several advanced functions that will not be needed by most users, but might be useful
for users who choose to provide their own SUNNonlinearSolver implementation for use by ARKode. These routines
provide access to the internal integrator data required to evaluate (13.1) or (13.2) for ARKStep and (13.3) or (13.4)
for MRIStep.

13.2.1 ARKStep advanced output functions

int ARKStepGetCurrentState(void* arkode_mem, N_Vector* state)
Returns the current state vector. When called within the computation of a step (i.e., during a nonlinear
solve) this is the current stage state vector 𝑧𝑖 = 𝑧𝑝𝑟𝑒𝑑 + 𝑧𝑐𝑜𝑟. Otherwise this is the current internal
solution state vector 𝑦(𝑡). In either case the corresponding stage or solution time can be obtained from
ARKStepGetCurrentTime().

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• state – N_Vector pointer that will get set to the current stage or 𝑧𝑖 or solution state vector 𝑦(𝑡).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentGamma(void* arkode_mem, realtype* gamma)
Returns the current value of the scalar 𝛾

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• gamma – the current value of the scalar 𝛾 appearing in the Newton equation 𝐴 = 𝑀 − 𝛾𝐽 .

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL
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int ARKStepGetCurrentMassMatrix(void* arkode_mem, SUNMatrix* M)
Returns the current mass matrix. For a time dependent mass matrix the corresponding time can be obtained
from ARKStepGetCurrentTime().

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• M – SUNMatrix pointer that will get set to the current mass matrix 𝑀(𝑡). If a matrix-free method is
used the output is NULL.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNonlinearSystemData(void* arkode_mem, realtype *tcur, N_Vector *zpred,
N_Vector *z, N_Vector *Fi, realtype *gamma,
N_Vector *sdata, void **user_data)

Returns all internal data required to construct the current nonlinear implicit system (13.1) or (13.2):

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tcur – value of the independent variable corresponding to implicit stage, 𝑡𝐼𝑛,𝑖.

• zpred – the predicted stage vector 𝑧𝑝𝑟𝑒𝑑 at 𝑡𝐼𝑛,𝑖. This vector must not be changed.

• z – the stage vector 𝑧𝑖 above. This vector may be not current and may need to be filled (see the note
below).

• Fi – the implicit function evaluated at the current time and state, 𝑓 𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖). This vector may be not
current and may need to be filled (see the note below).

• gamma – current 𝛾 for implicit stage calculation.

• sdata – accumulated data from previous solution and stages, �̃�𝑖. This vector must not be changed.

• user_data – pointer to the user-defined data structure (as specified through
ARKStepSetUserData(), or NULL otherwise)

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Note: This routine is intended for users who whish to attach a custom SUNNonlinSolSysFn to an existing
SUNNonlinearSolver object (through a call to SUNNonlinSolSetSysFn()) or who need access to nonlin-
ear system data to compute the nonlinear system fucntion as part of a custom SUNNonlinearSolver object.

When supplying a custom SUNNonlinSolSysFn to an existing SUNNonlinearSolver ob-
ject, the user should call ARKStepGetNonlinearSystemData() inside the nonlinear
system function to access the requisite data for evaluting the nonlinear systen function of their
choosing. Additionlly, if the SUNNonlinearSolver object (existing or custom) leverages the
SUNNonlinSolLSetupFn and/or SUNNonlinSolLSolveFn functions supplied by ARKStep (through
calls to SUNNonlinSolSetLSetupFn() and SUNNonlinSolSetLSolveFn() respectively) the vec-
tors z and Fi must be filled in by the user’s SUNNonlinSolSysFn with the current state and corresponding
evaluation of the right-hand side function respectively i.e.,

𝑧 = 𝑧𝑝𝑟𝑒𝑑 + 𝑧𝑐𝑜𝑟,

𝐹 𝑖 = 𝑓 𝐼
(︀
𝑡𝐼𝑛,𝑖, 𝑧𝑖

)︀
,
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where 𝑧𝑐𝑜𝑟 was the first argument supplied to the SUNNonlinSolSysFn.

If this function is called as part of a custom linear solver (i.e., the default SUNNonlinSolSysFn is used)
then the vectors z and Fi are only current when ARKStepGetNonlinearSystemData() is called after an
evaluation of the nonlinear system function.

int ARKStepComputeState(void* arkode_mem, N_Vector zcor, N_Vector z)
Computes the current stage state vector using the stored prediction and the supplied correction from the non-
linear solver i.e., 𝑧𝑖(𝑡) = 𝑧𝑝𝑟𝑒𝑑 + 𝑧𝑐𝑜𝑟.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• zcor – the correction from the nonlinear solver

• z – on output, the current stage state vector 𝑧𝑖

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

13.2.2 MRIStep advanced output functions

int MRIStepGetCurrentState(void* arkode_mem, N_Vector* state)
Returns the current state vector. When called within the computation of a step (i.e., during a nonlinear
solve) this is the current stage state vector 𝑧𝑖 = 𝑧𝑝𝑟𝑒𝑑 + 𝑧𝑐𝑜𝑟. Otherwise this is the current internal
solution state vector 𝑦(𝑡). In either case the corresponding stage or solution time can be obtained from
ARKStepGetCurrentTime().

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• state – N_Vector pointer that will get set to the current stage 𝑧𝑖 or solution state vector 𝑦(𝑡).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetCurrentGamma(void* arkode_mem, realtype* gamma)
Returns the current value of the scalar 𝛾

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• gamma – the current value of the scalar 𝛾 appearing in the Newton equation 𝐴 = 𝐼 − 𝛾𝐽 .

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int MRIStepGetNonlinearSystemData(void* arkode_mem, realtype *tcur, N_Vector *zpred,
N_Vector *z, N_Vector *F, realtype *gamma,
N_Vector *sdata, void **user_data)

Returns all internal data required to construct the current nonlinear implicit system (13.3) or (13.4):
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Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• tcur – value of independent variable corresponding to slow stage (𝑡𝑆𝑛,𝑖 above).

• zpred – predicted nonlinear solution (𝑧𝑝𝑟𝑒𝑑 above). This vector must not be changed.

• z – stage vector (𝑧𝑖 above). This vector may be not current and may need to be filled (see the note
below).

• F – memory available for evaluating the slow RHS (𝑓𝑆(𝑡𝑆𝑛,𝑖, 𝑧𝑖) above). This vector may be not cur-
rent and may need to be filled (see the note below).

• gamma – current 𝛾 for slow stage calculation.

• sdata – accumulated data from previous solution and stages (�̃�𝑖 above). This vector must not be
changed.

• user_data – pointer to the user-defined data structure (as specified through
MRIStepSetUserData(), or NULL otherwise).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

Note: This routine is intended for users who whish to attach a custom SUNNonlinSolSysFn to an existing
SUNNonlinearSolver object (through a call to SUNNonlinSolSetSysFn()) or who need access to nonlin-
ear system data to compute the nonlinear system fucntion as part of a custom SUNNonlinearSolver object.

When supplying a custom SUNNonlinSolSysFn to an existing SUNNonlinearSolver ob-
ject, the user should call MRIStepGetNonlinearSystemData() inside the nonlinear
system function to access the requisite data for evaluting the nonlinear systen function of their
choosing. Additionlly, if the SUNNonlinearSolver object (existing or custom) leverages the
SUNNonlinSolLSetupFn and/or SUNNonlinSolLSolveFn functions supplied by MRIStep (through
calls to SUNNonlinSolSetLSetupFn() and SUNNonlinSolSetLSolveFn() respectively) the vec-
tors z and F must be filled in by the user’s SUNNonlinSolSysFn with the current state and corresponding
evaluation of the right-hand side function respectively i.e.,

𝑧 = 𝑧𝑝𝑟𝑒𝑑 + 𝑧𝑐𝑜𝑟,

𝐹 = 𝑓𝑆
(︀
𝑡𝑆𝑛,𝑖, 𝑧𝑖

)︀
,

where 𝑧𝑐𝑜𝑟 was the first argument supplied to the SUNNonlinSolSysFn.

If this function is called as part of a custom linear solver (i.e., the default SUNNonlinSolSysFn is used)
then the vectors z and F are only current when MRIStepGetNonlinearSystemData() is called after an
evaluation of the nonlinear system function.

int MRIStepComputeState(void* arkode_mem, N_Vector zcor, N_Vector z)
Computes the current stage state vector using the stored prediction and the supplied correction from the non-
linear solver i.e., 𝑧𝑖 = 𝑧𝑝𝑟𝑒𝑑 + 𝑧𝑐𝑜𝑟.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• zcor – the correction from the nonlinear solver

• z – on output, the current stage state vector 𝑧𝑖
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Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

13.3 The SUNNonlinearSolver_Newton implementation

This section describes the SUNNonlinSol implementation of Newton’s method. To access the SUNNonlin-
Sol_Newton module, include the header file sunnonlinsol/sunnonlinsol_newton.h. We note that
the SUNNonlinSol_Newton module is accessible from SUNDIALS integrators without separately linking to the
libsundials_sunnonlinsolnewton module library.

13.3.1 SUNNonlinearSolver_Newton description

To find the solution to

𝐹 (𝑦) = 0 (13.5)

given an initial guess 𝑦(0), Newton’s method computes a series of approximate solutions

𝑦(𝑚+1) = 𝑦(𝑚) + 𝛿(𝑚+1)

where 𝑚 is the Newton iteration index, and the Newton update 𝛿(𝑚+1) is the solution of the linear system

𝐴(𝑦(𝑚))𝛿(𝑚+1) = −𝐹 (𝑦(𝑚)) , (13.6)

in which 𝐴 is the Jacobian matrix

𝐴 ≡ 𝜕𝐹/𝜕𝑦 . (13.7)

Depending on the linear solver used, the SUNNonlinSol_Newton module will employ either a Modified Newton
method, or an Inexact Newton method [B1987], [BS1990], [DES1982], [DS1996], [K1995]. When used with a di-
rect linear solver, the Jacobian matrix 𝐴 is held constant during the Newton iteration, resulting in a Modified Newton
method. With a matrix-free iterative linear solver, the iteration is an Inexact Newton method.

In both cases, calls to the integrator-supplied SUNNonlinSolLSetupFn() function are made infrequently
to amortize the increased cost of matrix operations (updating 𝐴 and its factorization within direct linear solvers,
or updating the preconditioner within iterative linear solvers). Specifically, SUNNonlinSol_Newton will call the
SUNNonlinSolLSetupFn() function in two instances:

1. when requested by the integrator (the input callLSetSetup is SUNTRUE) before attempting the Newton
iteration, or

2. when reattempting the nonlinear solve after a recoverable failure occurs in the Newton iteration with stale Ja-
cobian information (jcur is SUNFALSE). In this case, SUNNonlinSol_Newton will set jbad to SUNTRUE
before calling the SUNNonlinSolLSetupFn() function.
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Whether the Jacobian matrix 𝐴 is fully or partially updated depends on logic unique to each integrator-supplied
SUNNonlinSolSetupFn() routine. We refer to the discussion of nonlinear solver strategies provided in Chap-
ter Mathematical Considerations for details on this decision.

The default maximum number of iterations and the stopping criteria for the Newton iteration are supplied by the
SUNDIALS integrator when SUNNonlinSol_Newton is attached to it. Both the maximum number of iterations
and the convergence test function may be modified by the user by calling the SUNNonlinSolSetMaxIters()
and/or SUNNonlinSolSetConvTestFn() functions after attaching the SUNNonlinSol_Newton object to the
integrator.

13.3.2 SUNNonlinearSolver_Newton functions

The SUNNonlinSol_Newton module provides the following constructor for creating the SUNNonlinearSolver
object.

SUNNonlinearSolver SUNNonlinSol_Newton(N_Vector y)
The function SUNNonlinSol_Newton() creates a SUNNonlinearSolver object for use with SUNDI-
ALS integrators to solve nonlinear systems of the form 𝐹 (𝑦) = 0 using Newton’s method.

Arguments:

• y – a template for cloning vectors needed within the solver.

Return value: a SUNNonlinSol object if the constructor exits successfully, otherwise it will be NULL.

The SUNNonlinSol_Newton module implements all of the functions defined in sections SUNNonlinearSolver core
functions through SUNNonlinearSolver get functions except for the SUNNonlinSolSetup() function. The
SUNNonlinSol_Newton functions have the same names as those defined by the generic SUNNonlinSol API with
_Newton appended to the function name. Unless using the SUNNonlinSol_Newton module as a standalone non-
linear solver the generic functions defined in sections SUNNonlinearSolver core functions through SUNNonlinear-
Solver get functions should be called in favor of the SUNNonlinSol_Newton-specific implementations.

The SUNNonlinSol_Newton module also defines the following additional user-callable function.

int SUNNonlinSolGetSysFn_Newton(SUNNonlinearSolver NLS, SUNNonlinSolSysFn *SysFn)
The function SUNNonlinSolGetSysFn_Newton() returns the residual function that defines the nonlin-
ear system.

Arguments:

• NLS – a SUNNonlinSol object

• SysFn – the function defining the nonlinear system.

Return value: the return value should be zero for a successful call, and a negative value for a failure.

Notes: This function is intended for users that wish to evaluate the nonlinear residual in a custom convergence
test function for the SUNNonlinSol_Newton module. We note that SUNNonlinSol_Newton will not leverage
the results from any user calls to SysFn.

int SUNNonlinSolSetInfoFile_Newton(SUNNonlinearSolver NLS, FILE* info_file)
The function SUNNonlinSolSetInfoFile_Newton() sets the output file where all informative (non-
error) messages should be directed.

Arguments:

• NLS – a SUNNonlinSol object

• info_file – pointer to output file (stdout by default); a NULL input will disable output

Return value:

• SUN_NLS_SUCCESS if successful
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• SUN_NLS_MEM_NULL if the SUNNonlinearSolver memory was NULL

• SUN_NLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled

Notes: This function is intended for users that wish to monitor the nonlinear solver progress. By default, the
file pointer is set to stdout.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

int SUNNonlinSolSetPrintLevel_Newton(SUNNonlinearSolver NLS, int print_level)
The function SUNNonlinSolSetPrintLevel_Newton() specifies the level of verbosity of the output.

Arguments:

• NLS – a SUNNonlinSol object

• print_level – flag indicating level of verbosity; must be one of:

– 0, no information is printed (default)

– 1, for each nonlinear iteration the residual norm is printed

Return value:

• SUN_NLS_SUCCESS if successful

• SUN_NLS_MEM_NULL if the SUNNonlinearSolver memory was NULL

• SUN_NLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled, or the print level
value was invalid

Notes: This function is intended for users that wish to monitor the nonlinear solver progress. By default, the
print level is 0.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

13.3.3 SUNNonlinearSolver_Newton content

The content field of the SUNNonlinSol_Newton module is the following structure.

struct _SUNNonlinearSolverContent_Newton {

SUNNonlinSolSysFn Sys;
SUNNonlinSolLSetupFn LSetup;
SUNNonlinSolLSolveFn LSolve;
SUNNonlinSolConvTestFn CTest;

N_Vector delta;
booleantype jcur;
int curiter;
int maxiters;
long int niters;
long int nconvfails;
void* ctest_data;

int print_level;
FILE* info_file;

};

These entries of the content field contain the following information:
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• Sys – the function for evaluating the nonlinear system,

• LSetup – the package-supplied function for setting up the linear solver,

• LSolve – the package-supplied function for performing a linear solve,

• CTest – the function for checking convergence of the Newton iteration,

• delta – the Newton iteration update vector,

• jcur – the Jacobian status (SUNTRUE = current, SUNFALSE = stale),

• curiter – the current number of iterations in the solve attempt,

• maxiters – the maximum number of Newton iterations allowed in a solve,

• niters – the total number of nonlinear iterations across all solves,

• nconvfails – the total number of nonlinear convergence failures across all solves,

• ctest_data – the data pointer passed to the convergence test function.

• print_level - controls the amount of information to be printed to the info file

• info_file - the file where all informative (non-error) messages will be directed

13.3.4 SUNNonlinearSolver_Newton Fortran interface

For SUNDIALS integrators that include a Fortran interface, the SUNNonlinSol_Newton module also includes a
Fortran-callable function for creating a SUNNonlinearSolver object.

subroutine FSUNNewtonInit(CODE, IER)
The function FSUNNewtonInit() can be called for Fortran programs to create a
SUNNonlinearSolver object for use with SUNDIALS integrators to solve nonlinear systems of the
form 𝐹 (𝑦) = 0 with Newton’s method.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, ARKode=4.

• IER (int, output) – return flag (0 success, -1 for failure). See printed message for details in case of
failure.

13.4 The SUNNonlinearSolver_FixedPoint implementation

This section describes the SUNNonlinSol implementation of a fixed point (functional) iteration with optional An-
derson acceleration. To access the SUNNonlinSol_FixedPoint module, include the header file sunnonlinsol/
sunnonlinsol_fixedpoint.h. We note that the SUNNonlinSol_FixedPoint module is accessible from SUN-
DIALS integrators without separately linking to the libsundials_sunnonlinsolfixedpoint module li-
brary.

13.4.1 SUNNonlinearSolver_FixedPoint description

To find the solution to
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𝐺(𝑦) = 𝑦 (13.8)

given an initial guess 𝑦(0), the fixed point iteration computes a series of approximate solutions

𝑦(𝑛+1) = 𝐺(𝑦(𝑛)) (13.9)

where 𝑛 is the iteration index. The convergence of this iteration may be accelerated using Anderson’s method
[A1965], [WN2011], [FS2009], [LWWY2012]. With Anderson acceleration using subspace size 𝑚, the series of ap-
proximate solutions can be formulated as the linear combination

𝑦(𝑛+1) = 𝛽

𝑚𝑛∑︁
𝑖=0

𝛼
(𝑛)
𝑖 𝐺(𝑦(𝑛−𝑚𝑛+𝑖)) + (1− 𝛽)

𝑚𝑛∑︁
𝑖=0

𝛼
(𝑛)
𝑖 𝑦𝑛−𝑚𝑛+𝑖 (13.10)

where 𝑚𝑛 = min {𝑚,𝑛} and the factors

𝛼(𝑛) = (𝛼
(𝑛)
0 , . . . , 𝛼(𝑛)

𝑚𝑛
)

solve the minimization problem min𝛼 ‖𝐹𝑛𝛼
𝑇 ‖2 under the constraint that

∑︀𝑚𝑛

𝑖=0 𝛼𝑖 = 1 where

𝐹𝑛 = (𝑓𝑛−𝑚𝑛
, . . . , 𝑓𝑛)

with 𝑓𝑖 = 𝐺(𝑦(𝑖)) − 𝑦(𝑖). Due to this constraint, in the limit of 𝑚 = 0 the accelerated fixed point iteration formula
(13.10) simplifies to the standard fixed point iteration (13.9).

Following the recommendations made in [WN2011], the SUNNonlinSol_FixedPoint implementation computes the
series of approximate solutions as

𝑦(𝑛+1) = 𝐺(𝑦(𝑛))−
𝑚𝑛−1∑︁
𝑖=0

𝛾
(𝑛)
𝑖 ∆𝑔𝑛−𝑚𝑛+𝑖 − (1− 𝛽)(𝑓(𝑦(𝑛))−

𝑚𝑛−1∑︁
𝑖=0

𝛾
(𝑛)
𝑖 ∆𝑓𝑛−𝑚𝑛+𝑖) (13.11)

with ∆𝑔𝑖 = 𝐺(𝑦(𝑖+1))−𝐺(𝑦(𝑖)) and where the factors

𝛾(𝑛) = (𝛾
(𝑛)
0 , . . . , 𝛾

(𝑛)
𝑚𝑛−1)

solve the unconstrained minimization problem min𝛾 ‖𝑓𝑛 −∆𝐹𝑛𝛾
𝑇 ‖2 where

∆𝐹𝑛 = (∆𝑓𝑛−𝑚𝑛 , . . . ,∆𝑓𝑛−1),

with ∆𝑓𝑖 = 𝑓𝑖+1 − 𝑓𝑖. The least-squares problem is solved by applying a QR factorization to ∆𝐹𝑛 = 𝑄𝑛𝑅𝑛 and
solving 𝑅𝑛𝛾 = 𝑄𝑇

𝑛𝑓𝑛.

The acceleration subspace size 𝑚 is required when constructing the SUNNonlinSol_FixedPoint object. The de-
fault maximum number of iterations and the stopping criteria for the fixed point iteration are supplied by the SUN-
DIALS integrator when SUNNonlinSol_FixedPoint is attached to it. Both the maximum number of iterations and
the convergence test function may be modified by the user by calling SUNNonlinSolSetMaxIters() and
SUNNonlinSolSetConvTestFn() functions after attaching the SUNNonlinSol_FixedPoint object to the in-
tegrator.
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13.4.2 SUNNonlinearSolver_FixedPoint functions

The SUNNonlinSol_FixedPoint module provides the following constructor for creating the
SUNNonlinearSolver object.

SUNNonlinearSolver SUNNonlinSol_FixedPoint(N_Vector y, int m)
The function SUNNonlinSol_FixedPoint() creates a SUNNonlinearSolver object for use with
SUNDIALS integrators to solve nonlinear systems of the form 𝐺(𝑦) = 𝑦.

Arguments:

• y – a template for cloning vectors needed within the solver.

• m – the number of acceleration vectors to use.

Return value: a SUNNonlinSol object if the constructor exits successfully, otherwise it will be NULL.

Since the accelerated fixed point iteration (13.9) does not require the setup or solution of any linear systems,
the SUNNonlinSol_FixedPoint module implements all of the functions defined in sections SUNNonlinear-
Solver core functions through SUNNonlinearSolver get functions except for the SUNNonlinSolSetup(),
SUNNonlinSolSetLSetupFn(), and SUNNonlinSolSetLSolveFn() functions, that are set to NULL.
The SUNNonlinSol_FixedPoint functions have the same names as those defined by the generic SUNNonlinSol API
with _FixedPoint appended to the function name. Unless using the SUNNonlinSol_FixedPoint module as a stan-
dalone nonlinear solver the generic functions defined in sections SUNNonlinearSolver core functions through SUN-
NonlinearSolver get functions should be called in favor of the SUNNonlinSol_FixedPoint-specific implementations.

The SUNNonlinSol_FixedPoint module also defines the following additional user-callable functions.

int SUNNonlinSolGetSysFn_FixedPoint(SUNNonlinearSolver NLS, SUNNonlinSolSysFn *SysFn)
The function SUNNonlinSolGetSysFn_FixedPoint() returns the fixed-point function that defines the
nonlinear system.

Arguments:

• NLS – a SUNNonlinSol object.

• SysFn – the function defining the nonlinear system.

Return value: The return value is zero for a successful call, and a negative value for a failure.

Notes: This function is intended for users that wish to evaluate the fixed-point function in a custom conver-
gence test function for the SUNNonlinSol_FixedPoint module. We note that SUNNonlinSol_FixedPoint will
not leverage the results from any user calls to SysFn.

int SUNNonlinSolSetDamping_FixedPoint(SUNNonlinearSolver NLS, realtype beta)
The function SUNNonlinSolSetDamping_FixedPoint() sets the damping parameter 𝛽 to use with
Anderson acceleration. By default damping is disabled i.e., 𝛽 = 1.0.

Arguments:

• NLS – a SUNNonlinSol object.

• beta – the damping parameter 0 < 𝛽 ≤ 1.

Return value: The return value is zero for a successful call, SUN_NLS_MEM_NULL if NLS is NULL, or
SUN_NLS_ILL_INPUT if beta is negative.

Notes: A beta value should be great than zero and less than one if damping is to be used. A value of one or
more will disable damping.

int SUNNonlinSolSetInfoFile_FixedPoint(SUNNonlinearSolver NLS, FILE* info_file)
The function SUNNonlinSolSetInfoFile_FixedPoint() sets the output file where all informative
(non-error) messages should be directed.
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Arguments:

• NLS – a SUNNonlinSol object

• info_file – pointer to output file (stdout by default); a NULL input will disable output

Return value:

• SUN_NLS_SUCCESS if successful

• SUN_NLS_MEM_NULL if the SUNNonlinearSolver memory was NULL

• SUN_NLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled

Notes: This function is intended for users that wish to monitor the nonlinear solver progress. By default, the
file pointer is set to stdout.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

int SUNNonlinSolSetPrintLevel_FixedPoint(SUNNonlinearSolver NLS, int print_level)
The function SUNNonlinSolSetPrintLevel_FixedPoint() specifies the level of verbosity of the
output.

Arguments:

• NLS – a SUNNonlinSol object

• print_level – flag indicating level of verbosity; must be one of:

– 0, no information is printed (default)

– 1, for each nonlinear iteration the residual norm is printed

Return value:

• SUN_NLS_SUCCESS if successful

• SUN_NLS_MEM_NULL if the SUNNonlinearSolver memory was NULL

• SUN_NLS_ILL_INPUT if SUNDIALS was not built with monitoring enabled, or the print level
value was invalid

Notes: This function is intended for users that wish to monitor the nonlinear solver progress. By default, the
print level is 0.

SUNDIALS must be built with the CMake option ‘‘SUNDIALS_BUILD_WITH_MONITORING‘‘, to
utilize this function. See section Configuration options (Unix/Linux) for more information.

13.4.3 SUNNonlinearSolver_FixedPoint content

The content field of the SUNNonlinSol_FixedPoint module is the following structure.

struct _SUNNonlinearSolverContent_FixedPoint {

SUNNonlinSolSysFn Sys;
SUNNonlinSolConvTestFn CTest;

int m;
int *imap;
realtype *R;
booleantype damping
realtype beta
realtype *gamma;
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realtype *cvals;
N_Vector *df;
N_Vector *dg;
N_Vector *q;
N_Vector *Xvecs;
N_Vector yprev;
N_Vector gy;
N_Vector fold;
N_Vector gold;
N_Vector delta;
int curiter;
int maxiters;
long int niters;
long int nconvfails;
void *ctest_data;
int print_level;
FILE* info_file;

};

The following entries of the content field are always allocated:

• Sys – function for evaluating the nonlinear system,

• CTest – function for checking convergence of the fixed point iteration,

• yprev – N_Vector used to store previous fixed-point iterate,

• gy – N_Vector used to store 𝐺(𝑦) in fixed-point algorithm,

• delta – N_Vector used to store difference between successive fixed-point iterates,

• curiter – the current number of iterations in the solve attempt,

• maxiters – the maximum number of fixed-point iterations allowed in a solve,

• niters – the total number of nonlinear iterations across all solves,

• nconvfails – the total number of nonlinear convergence failures across all solves,

• ctest_data – the data pointer passed to the convergence test function, and

• m – number of acceleration vectors.

• print_level - controls the amount of information to be printed to the info file

• info_file - the file where all informative (non-error) messages will be directed

If Anderson acceleration is requested (i.e., 𝑚 > 0 in the call to SUNNonlinSol_FixedPoint()), then the fol-
lowing items are also allocated within the content field:

• imap – index array used in acceleration algorithm (length m),

• damping – a flag indicating if damping is enabled,

• beta – the damping parameter,

• R – small matrix used in acceleration algorithm (length m*m),

• gamma – small vector used in acceleration algorithm (length m),

• cvals – small vector used in acceleration algorithm (length m+1),

• df – array of N_Vectors used in acceleration algorithm (length m),

• dg – array of N_Vectors used in acceleration algorithm (length m),
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• q – array of N_Vectors used in acceleration algorithm (length m),

• Xvecs – N_Vector pointer array used in acceleration algorithm (length m+1),

• fold – N_Vector used in acceleration algorithm, and

• gold – N_Vector used in acceleration algorithm.

13.4.4 SUNNonlinearSolver_FixedPoint Fortran interface

For SUNDIALS integrators that include a Fortran interface, the SUNNonlinSol_FixedPoint module also includes a
Fortran-callable function for creating a SUNNonlinearSolver object.

subroutine FSUNFixedPointInit(CODE, M, IER)
The function FSUNFixedPointInit() can be called for Fortran programs to create a
SUNNonlinearSolver object for use with SUNDIALS integrators to solve nonlinear systems of the form
𝐺(𝑦) = 𝑦.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, ARKode=4.

• M (int, input) – the number of acceleration vectors.

• IER (int, output) – return flag (0 success, -1 for failure). See printed message for details in case of
failure.

13.5 The SUNNonlinearSolver_PetscSNES implementation

This section describes the SUNNonlinSol interface to the PETSc SNES nonlinear solver(s).To enable the
SUNonlinSol_PetscSNES module, SUNDIALS must be configured to use PETSc. Instructions on how
to do thus are given in Chapter Building with PETSc. To access the SUNNonlinSol_PetscSNES module,
include the header file sunnonlinsol/sunnonlinsol_petscsnes.h. The library to link to is
libsundials_sunnonlinsolpetsc.lib where .lib is typically .so for shared libaries and .a for static
libraries. Users of the SUNNonlinearSolver_PetscSNES should also see the section The NVECTOR_PETSC
Module which discusses the NVECTOR interface to the PETSc Vec API.

13.5.1 SUNNonlinearSolver_PetscSNES description

The SUNNonlinearSolver_PetscSNES implementation allows users to utilize a PETSc SNES nonlinear
solver to solve the nonlinear systems that arise in the SUNDIALS integrators. Since SNES uses the KSP linear
solver interface underneath it, the SUNNonlinearSolver_PetscSNES implementation does not interface with
SUNDIALS linear solvers. Instead, users should set nonlinear solver options, linear solver options, and precondi-
tioner options through the PETSc SNES, KSP, and PC APIs.

Important usage notes for the ‘‘SUNNonlinearSolver_PetscSNES‘‘ implementation are provided below:

• The SUNNonlinearSolver_PetscSNES implementation handles calling SNESSetFunction
at construction. The actual residual function 𝐹 (𝑦) is set by the SUNDIALS integrator when the
SUNNonlinearSolver_PetscSNES object is attached to it. Therefore, a user should not call
SNESSetFunction on a SNES object that is being used with SUNNonlinearSolver_PetscSNES.
For these reasons, it is recommended, although not always necessary, that the user calls
SUNNonlinSol_PetscSNES with the new SNES object immediately after calling SNESCreate.
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• The number of nonlinear iterations is tracked by SUNDIALS separately from the count kept by SNES. As
such, the function SUNNonlinSolGetNumIters reports the cumulative number of iterations across the
lifetime of the SUNNonlinearSolver object.

• Some “converged” and “diverged” convergence reasons returned by SNES are treated as recover-
able convergence failures by SUNDIALS. Therefore, the count of convergence failures returned by
SUNNonlinSolGetNumConvFails will reflect the number of recoverable convergence failures as deter-
mined by SUNDIALS, and may differ from the count returned by SNESGetNonlinearStepFailures.

• The SUNNonlinearSolver_PetscSNES module is not currently compatible with the CVODES or IDAS
staggered or simultaneous sensitivity strategies.

13.5.2 SUNNonlinearSolver_PetscSNES functions

The SUNNonlinearSolver_PetscSNES module provides the following constructor for creating a
SUNNonlinearSolver object.

SUNNonlinearSolver SUNNonlinSol_PetscSNES(N_Vector y, SNES snes)
The function SUNNonlinSol_PetscSNES creates a SUNNonlinearSolver object that wraps a PETSc
SNES object for use with SUNDIALS. This will call SNESSetFunction on the provided SNES object.

Arguments:

• snes – a PETSc SNES object

• y – a N_Vector object of type NVECTOR_PETSC that is used as a template for the residual vector

Return value: a SUNNonlinSol object if the constructor exits successfully, otherwise it will be NULL.

This function calls ‘‘SNESSetFunction‘‘ and will overwrite whatever function was previously set. Users should
not call ‘‘SNESSetFunction‘‘ on the ‘‘SNES‘‘ object provided to the constructor.

The SUNNonlinSol_PetscSNES module implements all of the functions defined in sections SUNNon-
linearSolver core functions through SUNNonlinearSolver get functions except for SUNNonlinSolSetup,
SUNNonlinSolSetLSetupFn, SUNNonlinSolSetLSolveFn, SUNNonlinSolSetConvTestFn, and
SUNNonlinSolSetMaxIters.

The SUNNonlinSol_PetscSNES functions have the same names as those defined by the generic
SUNNonlinearSolver API with _PetscSNES appended to the function name. Unless using the
SUNNonlinSol_PetscSNES module as a standalone nonlinear solver the generic functions defined in sections
SUNNonlinearSolver core functions through SUNNonlinearSolver get functions should be called in favor of the
SUNNonlinSol_PetscSNES specific implementations.

The SUNNonlinSol_PetscSNES module also defines the following additional user-callable functions.

int SUNNonlinSolGetSNES_PetscSNES(SUNNonlinearSolver NLS, SNES* snes)
The function SUNNonlinSolGetSNES_PetscSNES gets the SNES object that was wrapped.

Arguments:

• NLS – a SUNNonlinearSolver object

• snes – a pointer to a PETSc SNES object that will be set upon return

Return value: The return value (of type int) should be zero for a successful call, and a negative value for a
failure.

int SUNNonlinSolGetPetscError_PetscSNES(SUNNonlinearSolver NLS, PestcErrorCode* error)
The function SUNNonlinSolGetPetscError_PetscSNES gets the last error code returned by the last
internal call to a PETSc API function.

Arguments:
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• NLS – a SUNNonlinearSolver object

• error – a pointer to a PETSc error integer that will be set upon return

Return value: The return value (of type int) should be zero for a successful call, and a negative value for a
failure.

int SUNNonlinSolGetSysFn_PetscSNES(SUNNonlinearSolver NLS, SUNNonlinSolSysFn* SysFn)
The function SUNNonlinSolGetSysFn_PetscSNES returns the residual function that defines the nonlin-
ear system.

Arguments:

• NLS – a SUNNonlinearSolver object

• SysFn – the function defining the nonlinear system

Return value: The return value (of type int) should be zero for a successful call, and a negative value for a
failure.

13.5.3 SUNNonlinearSolver_PetscSNES content

The content field of the SUNNonlinSol_Newton module is the following structure.

struct _SUNNonlinearSolverContent_PetscSNES {
int sysfn_last_err;
PetscErrorCode petsc_last_err;
long int nconvfails;
long int nni;
void *imem;
SNES snes;
Vec r;
N_Vector y, f;
SUNNonlinSolSysFn Sys;

};

These entries of the content field contain the following information:

• sysfn_last_err – last error returned by the system defining function,

• petsc_last_err – last error returned by PETSc

• nconvfails – number of nonlinear converge failures (recoverable or not),

• nni – number of nonlinear iterations,

• imem – SUNDIALS integrator memory,

• snes – PETSc SNES object,

• r – the nonlinear residual,

• y – wrapper for PETSc vectors used in the system function,

• f – wrapper for PETSc vectors used in the system function,

• Sys – nonlinear system definining function.
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Chapter 14

Tools for Memory Management

To support applications which leverage memory pools, or utilize a memory abstraction layer, sundials provides a
set of utilities we will collectively refer to as the SUNMemoryHelper API. The goal of this API is to allow users to
leverage operations defined by native sundials data structures while allowing the user to have finer-grained control of
the memory management.

14.1 The SUNMemoryHelper API

This API consists of three new sundials types: SUNMemoryType, SUNMemory, and SUNMemoryHelper, which
we now define.

The SUNMemory structure wraps a pointer to actual data. This structure is defined as

typedef struct _SUNMemory
{

void* ptr;
SUNMemoryType type;
booleantype own;

} *SUNMemory;

The SUNMemoryType type is an enumeration that defines the four supported memory types:

typedef enum
{

SUNMEMTYPE_HOST, /* pageable memory accessible on the host */
SUNMEMTYPE_PINNED, /* page-locked memory accesible on the host */
SUNMEMTYPE_DEVICE, /* memory accessible from the device */
SUNMEMTYPE_UVM /* memory accessible from the host or device */

} SUNMemoryType;

Finally, the SUNMemoryHelper structure is defined as

struct _SUNMemoryHelper
{

void* content;
SUNMemoryHelper_Ops ops;

} *SUNMemoryHelper;

where SUNMemoryHelper_Ops is defined as
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typedef struct _SUNMemoryHelper_Ops
{

/* operations that implementations are required to provide */
int (*alloc)(SUNMemoryHelper, SUNMemory* memptr

size_t mem_size, SUNMemoryType mem_type);
int (*dealloc)(SUNMemoryHelper, SUNMemory mem);
int (*copy)(SUNMemoryHelper, SUNMemory dst, SUNMemory src,

size_t mem_size);

/* operations that provide default implementations */
int (*copyasync)(SUNMemoryHelper, SUNMemory dst, SUNMemory src,

size_t mem_size, void* ctx);
SUNMemoryHelper (*clone)(SUNMemoryHelper);
int (*destroy)(SUNMemoryHelper);

} *SUNMemoryHelper_Ops;

14.1.1 Implementation defined operations

The SUNMemory API also defines the following operations which do require a SUNMemoryHelper instance and
require the implementation to define them:

SUNMemory SUNMemoryHelper_Alloc(SUNMemoryHelper helper, SUNMemory* memptr,
size_t mem_size, SUNMemoryType mem_type)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type.
The new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc is
called.

Arguments:

• helper – the SUNMemoryHelper object

• memptr – pointer to the allocated SUNMemory

• mem_size – the size in bytes of the ptr

• mem_type – the SUNMemoryType of the ptr

Returns:

An int flag indicating success (zero) or failure (non-zero).

int SUNMemoryHelper_Dealloc(SUNMemoryHelper helper, SUNMemory mem)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments:

• helper – the SUNMemoryHelper object

• mem – the SUNMemory object

Returns:

An int flag indicating success (zero) or failure (non-zero).

int SUNMemoryHelper_Copy(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
should use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:
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• helper – the SUNMemoryHelper object

• dst – the destination memory to copy to

• src – the source memory to copy from

• mem_size – the number of bytes to copy

Returns:

An int flag indicating success (zero) or failure (non-zero).

14.1.2 Utility Functions

The SUNMemoryHelper API defines the following functions which do not require a SUNMemoryHelper instance:

SUNMemory SUNMemoryHelper_Alias(SUNMemory mem1)
Returns a SUNMemory object whose ptr field points to the same address as mem1. The new object will not
have ownership of ptr, therefore, it will not free ptr when SUNMemoryHelper_Dealloc is called.

Arguments:

• mem1 – a SUNMemory object

Returns:

A SUNMemory object.

SUNMemory SUNMemoryHelper_Wrap(void* ptr, SUNMemoryType mem_type)
Returns a SUNMemory object whose ptr field points to the ptr argument passed to the function. The new
object will not have ownership of ptr, therefore, it will not free ptr when SUNMemoryHelper_Dealloc
is called.

Arguments:

• ptr – the data pointer to wrap in a SUNMemory object

• mem_type – the SUNMemoryType of the ptr

Returns:

A SUNMemory object.

SUNMemoryHelper SUNMemoryHelper_NewEmpty()
Returns an empty SUNMemoryHelper. This is useful for building custom SUNMemoryHelper implemen-
tations.

Returns:

A SUNMemoryHelper object.

int SUNMemoryHelper_CopyOps(SUNMemoryHelper src, SUNMemoryHelper dst)
Copies the ops field of src to the ops field of dst. This is useful for building custom
SUNMemoryHelper implementations.

Arguments:

• src – the object to copy from

• dst – the object to copy to

Returns:

An int flag indicating success (zero) or failure (non-zero).
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14.1.3 Implementation overridable operations with defaults

In addition, the SUNMemoryHelper API defines the following optionally overridable operations which do require a
SUNMemoryHelper instance:

int SUNMemoryHelper_CopyAsync(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void* ctx)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy
can be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper
object should use the memory types of dst and src to determine the appropriate transfer type necessary. The
ctx argument is used when a different execution stream needs to be provided to perform the copy in, e.g. with
CUDA this would be a cudaStream_t.

Arguments:

• helper – the SUNMemoryHelper object

• dst – the destination memory to copy to

• src – the source memory to copy from

• mem_size – the number of bytes to copy

• ctx – typically a handle for an object representing an alternate execution stream, but it can be any imple-
mentation specific data

Returns:

An int flag indicating success (zero) or failure (non-zero).

Note: If this operation is not defined by the implementation, then SUNMemoryHelper_Copy will be used.

SUNMemoryHelper SUNMemoryHelper_Clone(SUNMemoryHelper helper)
Clones the SUNMemoryHelper object itself.

Arguments:

• helper – the SUNMemoryHelper object to clone

Returns:

A SUNMemoryHelper object.

Note: If this operation is not defined by the implementation, then the default clone will only copy the
SUNMemoryHelper_Ops structure stored in helper->ops, and not the helper->content field.

int SUNMemoryHelper_Destroy(SUNMemoryHelper helper)
Destroys (frees) the SUNMemoryHelper object itself.

Arguments:

• helper – the SUNMemoryHelper object to destroy

Returns:

An int flag indicating success (zero) or failure (non-zero).

Note: If this operation is not defined by the implementation, then the default destroy will only free the
helper->ops field and the helper itself. The helper->content field will not be freed.
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14.1.4 Implementing a custom SUNMemoryHelper

A particular implementation of the SUNMemoryHelper API must:

• Define and implement the required operations. Note that the names of these routines should be unique to that
implementation in order to permit using more than one SUNMemoryHelper module in the same code.

• Optionally, specify the content field of SUNMemoryHelper.

• Optionally, define and implement additional user-callable routines acting on the newly defined SUNMemory-
Helper.

An example of a custom SUNMemoryHelper is given in examples/utilities/custom_memory_helper.h.

14.2 The SUNMemoryHelper_Cuda Implementation

The SUNMemoryHelper_Cuda module is an implementation of the SUNMemoryHelper API that interfaces to
the NVIDIA [CUDA] library. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Cuda()
Allocates and returns a SUNMemoryHelper object for handling CUDA memory if successful. Otherwise it
returns NULL.

14.2.1 SUNMemoryHelper API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemory SUNMemoryHelper_Alloc_Cuda(SUNMemoryHelper helper, SUNMemory memptr,
size_t mem_size, SUNMemoryType mem_type)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type.
The new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc is
called.

The SUNMemoryType supported are

• SUNMEMTYPE_HOST – memory is allocated with a call to malloc

• SUNMEMTYPE_PINNED – memory is allocated with a call to cudaMallocHost

• SUNMEMTYPE_DEVICE – memory is allocated with a call to cudaMalloc

• SUNMEMTYPE_UVM – memory is allocated with a call to cudaMallocManaged

Arguments:

• helper – the SUNMemoryHelper object

• memptr – pointer to the allocated SUNMemory

• mem_size – the size in bytes of the ptr

• mem_type – the SUNMemoryType of the ptr

Returns:

An int flag indicating success (zero) or failure (non-zero).

int SUNMemoryHelper_Dealloc_Cuda(SUNMemoryHelper helper, SUNMemory mem)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments:
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• helper – the SUNMemoryHelper object

• mem – the SUNMemory object

Returns:

An int flag indicating success (zero) or failure (non-zero).

int SUNMemoryHelper_Copy_Cuda(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object

• dst – the destination memory to copy to

• src – the source memory to copy from

• mem_size – the number of bytes to copy

Returns:

An int flag indicating success (zero) or failure (non-zero).

int SUNMemoryHelper_CopyAsync(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void* ctx)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy
can be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper
object will use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object

• dst – the destination memory to copy to

• src – the source memory to copy from

• mem_size – the number of bytes to copy

• ctx – the cudaStream_t handle for the stream that the copy will be performed on

Returns:

An int flag indicating success (zero) or failure (non-zero).

14.3 The SUNMemoryHelper_Hip Implementation

The SUNMemoryHelper_Hip module is an implementation of the SUNMemoryHelper API that interfaces to
the AMD ROCm HIP library. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Hip()
Allocates and returns a SUNMemoryHelper object for handling HIP memory if successful. Otherwise it re-
turns NULL.
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14.3.1 SUNMemoryHelper API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemory SUNMemoryHelper_Alloc_Hip(SUNMemoryHelper helper, SUNMemory memptr,
size_t mem_size, SUNMemoryType mem_type)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type.
The new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc is
called.

The SUNMemoryType supported are

• SUNMEMTYPE_HOST – memory is allocated with a call to malloc

• SUNMEMTYPE_PINNED – memory is allocated with a call to hipMallocHost

• SUNMEMTYPE_DEVICE – memory is allocated with a call to hipMalloc

• SUNMEMTYPE_UVM – memory is allocated with a call to hipMallocManaged

Arguments:

• helper – the SUNMemoryHelper object

• memptr – pointer to the allocated SUNMemory

• mem_size – the size in bytes of the ptr

• mem_type – the SUNMemoryType of the ptr

Returns:

An int flag indicating success (zero) or failure (non-zero).

int SUNMemoryHelper_Dealloc_Hip(SUNMemoryHelper helper, SUNMemory mem)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments:

• helper – the SUNMemoryHelper object

• mem – the SUNMemory object

Returns:

An int flag indicating success (zero) or failure (non-zero).

int SUNMemoryHelper_Copy_Hip(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object

• dst – the destination memory to copy to

• src – the source memory to copy from

• mem_size – the number of bytes to copy

Returns:

An int flag indicating success (zero) or failure (non-zero).
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int SUNMemoryHelper_CopyAsync(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void* ctx)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy
can be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper
object will use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object

• dst – the destination memory to copy to

• src – the source memory to copy from

• mem_size – the number of bytes to copy

• ctx – the hipStream_t handle for the stream that the copy will be performed on

Returns:

An int flag indicating success (zero) or failure (non-zero).

14.4 The SUNMemoryHelper_Sycl Implementation

The SUNMemoryHelper_Sycl module is an implementation of the SUNMemoryHelper API that interfaces to
the SYCL abstraction layer. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Sycl(sycl::queue *Q)
Allocates and returns a SUNMemoryHelper object for handling SYCL memory using the provided queue.
Otherwise it returns NULL.

14.4.1 SUNMemoryHelper API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemory SUNMemoryHelper_Alloc_Sycl(SUNMemoryHelper helper, SUNMemory memptr,
size_t mem_size, SUNMemoryType mem_type)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type.
The new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc is
called.

The SUNMemoryType supported are

• SUNMEMTYPE_HOST – memory is allocated with a call to malloc

• SUNMEMTYPE_PINNED – memory is allocated with a call to sycl::malloc_host

• SUNMEMTYPE_DEVICE – memory is allocated with a call to sycl::malloc_device

• SUNMEMTYPE_UVM – memory is allocated with a call to sycl::malloc_shared

Arguments:

• helper – the SUNMemoryHelper object

• memptr – pointer to the allocated SUNMemory

• mem_size – the size in bytes of the ptr

• mem_type – the SUNMemoryType of the ptr

Returns:
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An int flag indicating success (zero) or failure (non-zero).

int SUNMemoryHelper_Dealloc_Sycl(SUNMemoryHelper helper, SUNMemory mem)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments:

• helper – the SUNMemoryHelper object

• mem – the SUNMemory object

Returns:

An int flag indicating success (zero) or failure (non-zero).

int SUNMemoryHelper_Copy_Sycl(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object

• dst – the destination memory to copy to

• src – the source memory to copy from

• mem_size – the number of bytes to copy

Returns:

An int flag indicating success (zero) or failure (non-zero).

int SUNMemoryHelper_CopyAsync(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void* ctx)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy
can be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper
object will use the memory types of dst and src to determine the appropriate transfer type necessary.

Arguments:

• helper – the SUNMemoryHelper object

• dst – the destination memory to copy to

• src – the source memory to copy from

• mem_size – the number of bytes to copy

• ctx – is unused in this function

Returns:

An int flag indicating success (zero) or failure (non-zero).
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Chapter 15

ARKode Installation Procedure

The installation of any SUNDIALS package is accomplished by installing the SUNDIALS suite as a whole, accord-
ing to the instructions that follow. The same procedure applies whether or not the downloaded file contains one or all
solvers in SUNDIALS.

The SUNDIALS suite (or individual solvers) are distributed as compressed archives (.tar.gz). The name of the
distribution archive is of the form SOLVER-X.Y.Z.tar.gz, where SOLVER is one of: sundials, cvode,
cvodes, arkode, ida, idas, or kinsol, and X.Y.Z represents the version number (of the SUNDIALS suite
or of the individual solver). To begin the installation, first uncompress and expand the sources, by issuing

% tar -zxf SOLVER-X.Y.Z.tar.gz

This will extract source files under a directory SOLVER-X.Y.Z.

Starting with version 2.6.0 of SUNDIALS, CMake is the only supported method of installation. The explanations of
the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

SOLVERDIR is the directory SOLVER-X.Y.Z created above; i.e. the directory containing the SUNDIALS
sources.

BUILDDIR is the (temporary) directory under which SUNDIALS is built.

INSTDIR is the directory under which the SUNDIALS exported header files and libraries will be installed.
Typically, header files are exported under a directory INSTDIR/include while libraries are installed
under INSTDIR/lib, with INSTDIR specified at configuration time.

• For SUNDIALS’ CMake-based installation, in-source builds are prohibited; in other words, the build direc-
tory BUILDDIR can not be the same as SOLVERDIR and such an attempt will lead to an error. This prevents
“polluting” the source tree and allows efficient builds for different configurations and/or options.

• The installation directory INSTDIR can not be the same as the source directory SOLVERDIR.

• By default, only the libraries and header files are exported to the installation directory INSTDIR. If enabled
by the user (with the appropriate toggle for CMake), the examples distributed with SUNDIALS will be built
together with the solver libraries but the installation step will result in exporting (by default in a subdirectory
of the installation directory) the example sources and sample outputs together with automatically generated
configuration files that reference the installed SUNDIALS headers and libraries. As such, these configura-
tion files for the SUNDIALS examples can be used as “templates” for your own problems. CMake installs
CMakeLists.txt files and also (as an option available only under Unix/Linux) Makefile files. Note this
installation approach also allows the option of building the SUNDIALS examples without having to install
them. (This can be used as a sanity check for the freshly built libraries.)
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• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX modules. Be-
cause of the use of fixed names for the Fortran user-provided subroutines, FCMIX shared libraries would result
in “undefined symbol” errors at link time.

Further details on the CMake-based installation procedures, instructions for manual compilation, and a roadmap of
the resulting installed libraries and exported header files, are provided in the following subsections:

• CMake-based installation

• Installed libraries and exported header files

15.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix and Linux
Makefiles, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the same configuration file.
In addition, CMake also provides a GUI front end and which allows an interactive build and installation process.

The SUNDIALS build process requires CMake version 3.0.2 or higher and a working C compiler. On Unix-like op-
erating systems, it also requires Make (and curses, including its development libraries, for the GUI front end to
CMake, ccmake or cmake-gui), while on Windows it requires Visual Studio. While many Linux distributions of-
fer CMake, the version included may be out of date. Many new CMake features have been added recently, and you
should download the latest version from http://www.cmake.org. Build instructions for CMake (only necessary for
Unix-like systems) can be found on the CMake website. Once CMake is installed, Linux/Unix users will be able
to use ccmake or cmake-gui (depending on the version of CMake), while Windows users will be able to use
CMakeSetup.

As previously noted, when using CMake to configure, build and install SUNDIALS, it is always required to use
a separate build directory. While in-source builds are possible, they are explicitly prohibited by the SUNDIALS
CMake scripts (one of the reasons being that, unlike autotools, CMake does not provide a make distclean pro-
cedure and it is therefore difficult to clean-up the source tree after an in-source build). By ensuring a separate build
directory, it is an easy task for the user to clean-up all traces of the build by simply removing the build directory.
CMake does generate a make clean which will remove files generated by the compiler and linker.

15.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The INSTDIR defaults to /usr/local and can be changed by setting the
CMAKE_INSTALL_PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based GUI by using the
ccmake command, or from a wxWidgets or QT based GUI by using the cmake-gui command. Examples for us-
ing both text and graphical methods will be presented. For the examples shown it is assumed that there is a top level
SUNDIALS directory with appropriate source, build and install directories:

$ mkdir (...)/INSTDIR
$ mkdir (...)/BUILDDIR
$ cd (...)/BUILDDIR

15.1.1.1 Building with the GUI

Using CMake with the ccmake GUI follows the general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk
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• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string

– For file and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

Using CMake with the cmake-gui GUI follows a similar process:

• Select and modify values, click Configure

• The first time you click Configure, make sure to pick the appropriate generator (the following will ssume
generation of Unix Makfiles).

• New values are highlighted in red

• To set a variable, click on or move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will check/uncheck the box

– If it is string or file, it will allow editing of the string. Additionally, an ellipsis button will appear ... on
the far right of the entry. Clicking this button will bring up the file or directory selection dialog.

– For files and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and click the Generate button

• Some variables (advanced variables) are not visible right away

• To see advanced variables, click the advanced button

To build the default configuration using the curses GUI, from the BUILDDIR enter the ccmake command and point
to the SOLVERDIR:

$ ccmake (...)/SOLVERDIR

Similarly, to build the default configuration using the wxWidgets GUI, from the BUILDDIR enter the cmake-gui
command and point to the SOLVERDIR:

$ cmake-gui (...)/SOLVERDIR

The default curses configuration screen is shown in the following figure.

The default INSTDIR for both SUNDIALS and corresponding examples can be changed by setting the
CMAKE_INSTALL_PREFIX and the EXAMPLES_INSTALL_PATH as shown in the following figure.

Pressing the g key or clicking generate will generate makefiles including all dependencies and all rules to build
SUNDIALS on this system. Back at the command prompt, you can now run:

$ make

or for a faster parallel build (e.g. using 4 threads), you can run

$ make -j 4

To install SUNDIALS in the installation directory specified in the configuration, simply run:
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Fig. 15.1: Default configuration screen. Note: Initial screen is empty. To get this default configuration, press ‘c’ re-
peatedly (accepting default values denoted with asterisk) until the ‘g’ option is available.
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Fig. 15.2: Changing the INSTDIR for SUNDIALS and corresponding EXAMPLES.
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$ make install

15.1.1.2 Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with the cmake
command. The following will build the default configuration:

$ cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> ../srcdir
$ make
$ make install

15.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based SUNDIALS configuration is provide below. Note that the
default values shown are for a typical configuration on a Linux system and are provided as illustration only.

BUILD_ARKODE Build the ARKODE library

Default: ON

BUILD_CVODE Build the CVODE library

Default: ON

BUILD_CVODES Build the CVODES library

Default: ON

BUILD_IDA Build the IDA library

Default: ON

BUILD_IDAS Build the IDAS library

Default: ON

BUILD_KINSOL Build the KINSOL library

Default: ON

BUILD_SHARED_LIBS Build shared libraries

Default: ON

BUILD_STATIC_LIBS Build static libraries

Default: ON

CMAKE_BUILD_TYPE Choose the type of build, options are: None (CMAKE_C_FLAGS used), Debug,
Release, RelWithDebInfo, and MinSizeRel

Default:

Note: Specifying a build type will trigger the corresponding build type specific compiler flag options below
which will be appended to the flags set by CMAKE_<language>_FLAGS.
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CMAKE_C_COMPILER C compiler

Default: /usr/bin/cc

CMAKE_C_FLAGS Flags for C compiler

Default:

CMAKE_C_FLAGS_DEBUG Flags used by the C compiler during debug builds

Default: -g

CMAKE_C_FLAGS_MINSIZEREL Flags used by the C compiler during release minsize builds

Default: -Os -DNDEBUG

CMAKE_C_FLAGS_RELEASE Flags used by the C compiler during release builds

Default: -O3 -DNDEBUG

CMAKE_CXX_COMPILER C++ compiler

Default: /usr/bin/c++

Note: A C++ compiler (and all related options) are only are triggered if C++ examples are enabled
(EXAMPLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ applications by default
without setting any additional configuration options.

CMAKE_CXX_FLAGS Flags for C++ compiler

Default:

CMAKE_CXX_FLAGS_DEBUG Flags used by the C++ compiler during debug builds

Default: -g

CMAKE_CXX_FLAGS_MINSIZEREL Flags used by the C++ compiler during release minsize builds

Default: -Os -DNDEBUG

CMAKE_CXX_FLAGS_RELEASE Flags used by the C++ compiler during release builds

Default: -O3 -DNDEBUG

CMAKE_CXX_STANDARD The C++ standard to build C++ parts of SUNDIALS with.

Default: 11

Note: Options are 98, 11, 14, 17, 20. This option is only used when a C++ compiler is required.

CMAKE_Fortran_COMPILER Fortran compiler

Default: /usr/bin/gfortran

Note: Fortran support (and all related options) are triggered only if either Fortran-C support is
(FCMIX_ENABLE is ON) or LAPACK support is enabled (ENABLE_LAPACK is ON).

CMAKE_Fortran_FLAGS Flags for Fortran compiler

Default:

CMAKE_Fortran_FLAGS_DEBUG Flags used by the Fortran compiler during debug builds

Default: -g
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CMAKE_Fortran_FLAGS_MINSIZEREL Flags used by the Fortran compiler during release minsize builds

Default: -Os

CMAKE_Fortran_FLAGS_RELEASE Flags used by the Fortran compiler during release builds

Default: -O3

CMAKE_INSTALL_PREFIX Install path prefix, prepended onto install directories

Default: /usr/local

Note:

The user must have write access to the location specified through this option. Exported SUNDIALS header
files and libraries will be installed under subdirectories include and lib of

CMAKE_INSTALL_PREFIX, respectively.

ENABLE_CUDA Build the SUNDIALS CUDA modules.

Default: OFF

CMAKE_CUDA_ARCHITECTURES Specifies the CUDA architecture to compile for.

Default: sm_30

ENABLE_XBRAID Enable or disable the ARKStep + XBraid interface.

Default: OFF

Note: See additional information on building with XBraid enabled in Working with external Libraries.

EXAMPLES_ENABLE_C Build the SUNDIALS C examples

Default: ON

EXAMPLES_ENABLE_CXX Build the SUNDIALS C++ examples

Default: OFF

EXAMPLES_ENABLE_CUDA Build the SUNDIALS CUDA examples

Default: OFF

Note: You need to enable CUDA support to build these examples.

EXAMPLES_ENABLE_F77 Build the SUNDIALS Fortran77 examples

Default: ON (if FCMIX_ENABLE is ON)

EXAMPLES_ENABLE_F90 Build the SUNDIALS Fortran90 examples

Default: ON (if BUILD_FORTRAN77_INTERFACE is ON)

EXAMPLES_ENABLE_F2003 Build the SUNDIALS Fortran2003 examples

Default: ON (if BUILD_FORTRAN_MODULE_INTERFACE is ON)

EXAMPLES_INSTALL Install example files

Default: ON
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Note: This option is triggered when any of the SUNDIALS example programs are enabled
(EXAMPLES_ENABLE_<language> is ON). If the user requires installation of example programs then the
sources and sample output files for all SUNDIALS modules that are currently enabled will be exported to the
directory specified by EXAMPLES_INSTALL_PATH. A CMake configuration script will also be automati-
cally generated and exported to the same directory. Additionally, if the configuration is done under a Unix-like
system, makefiles for the compilation of the example programs (using the installed SUNDIALS libraries) will
be automatically generated and exported to the directory specified by EXAMPLES_INSTALL_PATH.

EXAMPLES_INSTALL_PATH Output directory for installing example files

Default: /usr/local/examples

Note: The actual default value for this option will be an examples subdirectory created under
CMAKE_INSTALL_PREFIX.

BUILD_FORTRAN77_INTERFACE Enable Fortran77-C interface

Default: OFF

BUILD_FORTRAN_MODULE_INTERFACE Enable Fortran2003 interface

Default: OFF

ENABLE_HYPRE Flag to enable hypre support

Default: OFF

Note: See additional information on building with hypre enabled in Working with external Libraries.

HYPRE_INCLUDE_DIR Path to hypre header files

Default: none

HYPRE_LIBRARY Path to hypre installed library files

Default: none

ENABLE_KLU Enable KLU support

Default: OFF

Note: See additional information on building with KLU enabled in Working with external Libraries.

KLU_INCLUDE_DIR Path to SuiteSparse header files

Default: none

KLU_LIBRARY_DIR Path to SuiteSparse installed library files

Default: none

ENABLE_LAPACK Enable LAPACK support

Default: OFF
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Note: Setting this option to ON will trigger additional CMake options. See additional information on building
with LAPACK enabled in Working with external Libraries.

LAPACK_LIBRARIES LAPACK (and BLAS) libraries

Default: /usr/lib/liblapack.so;/usr/lib/libblas.so

Note: CMake will search for libraries in your LD_LIBRARY_PATH prior to searching default system paths.

ENABLE_MPI Enable MPI support. This will build the parallel nvector and the MPI-aware version of the
ManyVector library.

Default: OFF

Note: Setting this option to ON will trigger several additional options related to MPI.

MPI_C_COMPILER mpicc program

Default:

MPI_CXX_COMPILER mpicxx program

Default:

Note: This option is triggered only if MPI is enabled (ENABLE_MPI is ON) and C++ examples are enabled
(EXAMPLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ MPI applications by de-
fault without setting any additional configuration options other than ENABLE_MPI.

MPI_Fortran_COMPILER mpif77 or mpif90 program

Default:

Note: This option is triggered only if MPI is enabled (ENABLE_MPI is ON) and Fortran-C support is enabled
(EXAMPLES_ENABLE_F77 or EXAMPLES_ENABLE_F90 are ON).

MPIEXEC_EXECUTABLE Specify the executable for running MPI programs

Default: mpirun

Note: This option is triggered only if MPI is enabled (ENABLE_MPI is ON).

ENABLE_OPENMP Enable OpenMP support (build the OpenMP NVector)

Default: OFF

ENABLE_PETSC Enable PETSc support

Default: OFF

Note: See additional information on building with PETSc enabled in Working with external Libraries.
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PETSC_DIR Path to PETSc installation

Default: none

PETSC_LIBRARIES (advanced option) Semi-colon separated list of PETSc link libraries. Unless provided by
the user, this is autopopulated based on the PETSc installation found in PETSC_DIR.

Default: none

PETSC_INCLUDES (advanced option) Semi-colon separated list of PETSc include directroies. Unless provided
by the user, this is autopopulated based on the PETSc installation found in PETSC_DIR.

Default: none

ENABLE_PTHREAD Enable Pthreads support (build the Pthreads NVector)

Default: OFF

ENABLE_RAJA Enable RAJA support.

Default: OFF

Note: You need to enable CUDA or HIP in order to build the RAJA vector module.

SUNDIALS_RAJA_BACKENDS If building SUNDIALS with RAJA support, this sets the RAJA backend to tar-
get. Values supported are CUDA and HIP.

Default: CUDA

ENABLE_SUPERLUDIST Enable SuperLU_DIST support

Default: OFF

Note: See additional information on building wtih SuperLU_DIST enabled in Working with external Li-
braries.

SUPERLUDIST_INCLUDE_DIR Path to SuperLU_DIST header files (under a typical SuperLU_DIST install,
this is typically the SuperLU_DIST SRC directory)

Default: none

SUPERLUDIST_LIBRARY_DIR Path to SuperLU_DIST installed library files

Default: none

SUPERLUDIST_LIBRARIES Semi-colon separated list of libraries needed for SuperLU_DIST

Default: none

SUPERLUDIST_OpenMP Enable SUNDIALS support for SuperLU_DIST built with OpenMP

Default: none

Note: SuperLU_DIST must be built with OpenMP support for this option to function. Additionally the envi-
ronment variable OMP_NUM_THREADS must be set to the desired number of threads.

ENABLE_SUPERLUMT Enable SuperLU_MT support

Default: OFF

Note: See additional information on building with SuperLU_MT enabled in Working with external Libraries.
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SUPERLUMT_INCLUDE_DIR Path to SuperLU_MT header files (under a typical SuperLU_MT install, this is
typically the SuperLU_MT SRC directory)

Default: none

SUPERLUMT_LIBRARY_DIR Path to SuperLU_MT installed library files

Default: none

SUPERLUMT_THREAD_TYPE Must be set to Pthread or OpenMP, depending on how SuperLU_MT was com-
piled.

Default: Pthread

ENABLE_SYCL Enable SYCL support.

Default: OFF

Note: At present the only supported SYCL compiler is the DPC++ (Intel oneAPI) compiler. CMake does
not currently support autodetection of SYCL compilers and CMAKE_CXX_COMPILER must be set to a valid
SYCL compiler i.e., dpcpp in order to build with SYCL support.

SUNDIALS_BUILD_WITH_MONITORING Build SUNDIALS with capabilties for fine-grained monitoring of
solver progress and statistics. This is primarily useful for debugging.

Default: OFF

Note: Building with monitoring may result in minor performance degradation even if monitoring is not uti-
lized.

SUNDIALS_F77_FUNC_CASE Specify the case to use in the Fortran name-mangling scheme, options are:
lower or upper

Default:

Note: The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler.
This option should only be used if a Fortran compiler is not available or to override the inferred or default
(lower) scheme if one can not be determined. If used, SUNDIALS_F77_FUNC_UNDERSCORES must also
be set.

SUNDIALS_F77_FUNC_UNDERSCORES Specify the number of underscores to append in the Fortran name-
mangling scheme, options are: none, one, or two

Default:

Note: The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler.
This option should only be used if a Fortran compiler is not available or to override the inferred or default
(one) scheme if one can not be determined. If used, SUNDIALS_F77_FUNC_CASE must also be set.

SUNDIALS_INDEX_TYPE (advanced) Integer type used for SUNDIALS indices. The size must match the size
provided for the SUNDIALS_INDEX_SIZE option.

Default:

Note: In past SUNDIALS versions, a user could set this option to INT64_T to use 64-bit integers, or
INT32_T to use 32-bit integers. Starting in SUNDIALS 3.2.0, these special values are deprecated. For SUN-
DIALS 3.2.0 and up, a user will only need to use the SUNDIALS_INDEX_SIZE option in most cases.

SUNDIALS_INDEX_SIZE Integer size (in bits) used for indices in SUNDIALS, options are: 32 or 64

Default: 64
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Note: The build system tries to find an integer type of appropriate size. Candidate 64-bit integer types are (in
order of preference): int64_t, __int64, long long, and long. Candidate 32-bit integers are (in order
of preference): int32_t, int, and long. The advanced option, SUNDIALS_INDEX_TYPE can be used to
provide a type not listed here.

SUNDIALS_PRECISION Precision used in SUNDIALS, options are: double, single or extended

Default: double

SUNDIALS_INSTALL_CMAKEDIR Installation directory for the SUNDIALS cmake files (relative to
CMAKE_INSTALL_PREFIX).

Default: CMAKE_INSTALL_PREFIX/cmake/sundials

USE_GENERIC_MATH Use generic (stdc) math libraries

Default: ON

XBRAID_DIR The root directory of the XBraid installation.

Default: OFF

XBRAID_INCLUDES Semi-colon separated list of XBraid include directories. Unless provided by the user, this is
autopopulated based on the XBraid installation found in XBRAID_DIR.

Default: none

XBRAID_LIBRARIES Semi-colon separated list of XBraid link libraries. Unless provided by the user, this is au-
topopulated based on the XBraid installation found in XBRAID_DIR.

Default: none

USE_XSDK_DEFAULTS Enable xSDK (see https://xsdk.info for more information) default configura-
tion settings. This sets CMAKE_BUILD_TYPE to Debug, SUNDIALS_INDEX_SIZE to 32 and
SUNDIALS_PRECISION to double.

Default: OFF

15.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.

To configure SUNDIALS using the default C and Fortran compilers, and default mpicc and mpif77 parallel com-
pilers, enable compilation of examples, and install libraries, headers, and example sources under subdirectories of
/home/myname/sundials/, use:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DENABLE_MPI=ON \
> -DFCMIX_ENABLE=ON \
> /home/myname/sundials/srcdir

% make install

To disable installation of the examples, use:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DENABLE_MPI=ON \
> -DFCMIX_ENABLE=ON \
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> -DEXAMPLES_INSTALL=OFF \
> /home/myname/sundials/srcdir

% make install

15.1.4 Working with external Libraries

The SUNDIALS suite contains many options to enable implementation flexibility when developing solutions. The
following are some notes addressing specific configurations when using the supported third party libraries.

15.1.4.1 Building with LAPACK

To enable LAPACK, set the ENABLE_LAPACK option to ON. If the directory containing the LAPACK library is in
the LD_LIBRARY_PATH environment variable, CMake will set the LAPACK_LIBRARIES variable accordingly,
otherwise CMake will attempt to find the LAPACK library in standard system locations. To explicitly tell CMake
what library to use, the LAPACK_LIBRARIES variable can be set to the desired libraries required for LAPACK.

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DENABLE_LAPACK=ON \
> -DLAPACK_LIBRARIES=/mylapackpath/lib/libblas.so;/mylapackpath/lib/liblapack.so \
> /home/myname/sundials/srcdir

% make install

Note: If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the options
SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES must be set in order to bypass the
check for a Fortran compiler and define the name-mangling scheme. The defaults for these options in earlier versions
of SUNDIALS were lower and one, respectively.

15.1.4.2 Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas A&M Univer-
sity website: http://faculty.cse.tamu.edu/davis/suitesparse.html .

SUNDIALS has been tested with SuiteSparse version 5.7.2. To enable KLU, set ENABLE_KLU to ON, set
KLU_INCLUDE_DIR to the include path of the KLU installation and set KLU_LIBRARY_DIR to the lib path
of the KLU installation. The CMake configure will result in populating the following variables: AMD_LIBRARY,
AMD_LIBRARY_DIR, BTF_LIBRARY, BTF_LIBRARY_DIR, COLAMD_LIBRARY, COLAMD_LIBRARY_DIR,
and KLU_LIBRARY.

15.1.4.3 Building with SuperLU_DIST

The SuperLU_DIST libraries are available for download from the Lawrence Berkeley National Laboratory website:
http://crd-legacy.lbl.gov/\protect\T1\textdollarsim\protect\T1\textdollarxiaoye/SuperLU/#superlu_dist.

SUNDIALS has been tested with SuperLU_DIST 6.1.1. To enable SuperLU_DIST, set ENABLE_SUPERLUDIST
to ON, set SUPERLUDIST_INCLUDE_DIR to the SRC path of the SuperLU_DIST installation, and set the vari-
able SUPERLUMT_LIBRARY_DIR to the lib path of the SuperLU_DIST installation. At the same time, the vari-
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able SUPERLUDIST_LIBRARIES must be set to a semi-colon separated list of other libraries SuperLU_DIST de-
pends on. For example, if SuperLU_DIST was built with LAPACK, then include the LAPACK library in this list.
If SuperLU_DIST was built with OpenMP support, then you may set SUPERLUDIST_OpenMP to ON utilize the
OpenMP functionality of SuperLU_DIST.

15.1.4.4 Building with SuperLU_MT

The SuperLU_MT libraries are available for download from the Lawrence Berkeley National Laboratory website:
http://crd-legacy.lbl.gov/\protect\T1\textdollarsim\protect\T1\textdollarxiaoye/SuperLU/#superlu_mt .

SUNDIALS has been tested with SuperLU_MT version 3.1. To enable SuperLU_MT, set ENABLE_SUPERLUMT
to ON, set SUPERLUMT_INCLUDE_DIR to the SRC path of the SuperLU_MT installation, and set the variable
SUPERLUMT_LIBRARY_DIR to the lib path of the SuperLU_MT installation. At the same time, the variable
SUPERLUMT_LIBRARIES must be set to a semi-colon separated list of other libraries SuperLU_MT depends on.
For example, if SuperLU_MT was build with an external blas library, then include the full path to the blas library in
this list. Additionally, the variable SUPERLUMT_THREAD_TYPE must be set to either Pthread or OpenMP.

Do not mix thread types when building SUNDIALS solvers. If threading is enabled for SUNDIALS by having either
ENABLE_OPENMP or ENABLE_PTHREAD set to ON then SuperLU_MT should be set to use the same threading
type.

15.1.4.5 Building with PETSc

The PETSc libraries are available for download from the Argonne National Laboratory website: http://www.mcs.anl.
gov/petsc .

SUNDIALS has been tested with PETSc version 3.10.0 - 3.14.0. To enable PETSc, set ENABLE_PETSC to ON,
and set PETSC_DIR to the path of the PETSc installation. Alternatively, a user can provide a list of inlcude paths
in PETSC_INCLUDES and a list of complete paths to the PETSc libraries in PETSC_LIBRARIES.

15.1.4.6 Building with hypre

The hypre libraries are available for download from the Lawrence Livermore National Laboratory website: http:
//computing.llnl.gov/projects/hypre. SUNDIALS has been tested with hypre version 2.19.0. To enable hypre, set
ENABLE_HYPRE to ON, set HYPRE_INCLUDE_DIR to the include path of the hypre installation, and set the
variable HYPRE_LIBRARY_DIR to the lib path of the hypre installation.

Note: SUNDIALS must be configured so that SUNDIALS_INDEX_SIZE (or equivalently, XSDK_INDEX_SIZE)
equals the precision of HYPRE_BigInt in the corresponding hypre installation.

15.1.4.7 Building with CUDA

SUNDIALS CUDA modules and examples have been tested with version 10 and 11 of the CUDA toolkit.
To build them, you need to install the Toolkit and compatible NVIDIA drivers. Both are available for down-
load from the NVIDIA website: https://developer.nvidia.com/cuda-downloads. To enable CUDA, set
ENABLE_CUDA to ON. If CUDA is installed in a nonstandard location, you may be prompted to set the vari-
able CUDA_TOOLKIT_ROOT_DIR with your CUDA Toolkit installation path. To enable CUDA examples, set
EXAMPLES_ENABLE_CUDA to ON.
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15.1.4.8 Building with RAJA

RAJA is a performance portability layer developed by Lawrence Livermore National Laboratory and can be obtained
from https://github.com/LLNL/RAJA. SUNDIALS RAJA modules and examples have been tested with RAJA ver-
sion 0.12.1. Building SUNDIALS RAJA modules requires a CUDA-enabled RAJA installation. To enable RAJA, set
ENABLE_CUDA and ENABLE_RAJA to ON. If RAJA is installed in a nonstandard location you will be prompted to
set the variable RAJA_DIR with the path to the RAJA CMake configuration file. To enable building the RAJA exam-
ples set EXAMPLES_ENABLE_CUDA to ON.

15.1.4.9 Building with XBraid

The XBraid library is available for download from the XBraid GitHub: https://github.com/XBraid/xbraid. SUNDI-
ALS has been tested with XBraid version 3.0.0. To enable XBraid, set ENABLE_XBRAID to ON, set XBRAID_DIR
to the root install location of XBraid or the location of the clone of the XBraid repository.

Note: At this time the XBraid types braid_Int and braid_Real are hard-coded to int and double
respectively. As such SUNDIALS must be configured with SUNDIALS_INDEX_SIZE set to 32 and
SUNDIALS_PRECISION set to double. Additionally, SUNDIALS must be configured with ENABLE_MPI set
to ON.

15.1.5 Testing the build and installation

If SUNDIALS was configured with EXAMPLES_ENABLE_<language> options to ON, then a set of regression
tests can be run after building with the make command by running:

% make test

Additionally, if EXAMPLES_INSTALL was also set to ON, then a set of smoke tests can be run after installing with
the make install command by running:

% make test_install

15.1.6 Building and Running Examples

Each of the SUNDIALS solvers is distributed with a set of examples demonstrating basic usage. To
build and install the examples, set at least of the EXAMPLES_ENABLE_<language> options to ON,
and set EXAMPLES_INSTALL to ON. Specify the installation path for the examples with the variable
EXAMPLES_INSTALL_PATH. CMake will generate CMakeLists.txt configuration files (and Makefile files
if on Linux/Unix) that reference the installed SUNDIALS headers and libraries.

Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as well as serve
as a template for creating user developed solutions. To use the supplied Makefile simply run make to compile
and generate the executables. To use CMake from within the installed example directory, run cmake (or ccmake
or cmake-gui to use the GUI) followed by make to compile the example code. Note that if CMake is used, it will
overwrite the traditional Makefile with a new CMake-generated Makefile.

The resulting output from running the examples can be compared with example output bundled in the SUNDIALS
distribution.

NOTE: There will potentially be differences in the output due to machine architecture, compiler versions, use of
third party libraries etc.
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15.1.7 Configuring, building, and installing on Windows

CMake can also be used to build SUNDIALS on Windows. To build SUNDIALS for use with Visual Studio the fol-
lowing steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the SOLVERDIR

2. Create a separate BUILDDIR

3. Open a Visual Studio Command Prompt and cd to BUILDDIR

4. Run cmake-gui ../SOLVERDIR

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE_INSTALL_PREFIX to INSTDIR

(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL_BUILD.vcxproj

(b) Run msbuild INSTALL.vcxproj

The resulting libraries will be in the INSTDIR.

The SUNDIALS project can also now be opened in Visual Studio. Double click on the ALL_BUILD.vcxproj file
to open the project. Build the whole solution to create the SUNDIALS libraries. To use the SUNDIALS libraries in
your own projects, you must set the include directories for your project, add the SUNDIALS libraries to your project
solution, and set the SUNDIALS libraries as dependencies for your project.

15.2 Installed libraries and exported header files

Using the CMake SUNDIALS build system, the command

$ make install

will install the libraries under LIBDIR and the public header files under INCLUDEDIR. The values for these di-
rectories are INSTDIR/lib and INSTDIR/include, respectively. The location can be changed by setting the
CMake variable CMAKE_INSTALL_PREFIX. Although all installed libraries reside under LIBDIR/lib, the pub-
lic header files are further organized into subdirectories under INCLUDEDIR/include.

The installed libraries and exported header files are listed for reference in the Table: SUNDIALS libraries and header
files. The file extension .LIB is typically .so for shared libraries and .a for static libraries. Note that, in this table
names are relative to LIBDIR for libraries and to INCLUDEDIR for header files.

A typical user program need not explicitly include any of the shared SUNDIALS header files from under the
INCLUDEDIR/include/sundials directory since they are explicitly included by the appropriate solver header
files (e.g., cvode_dense.h includes sundials_dense.h). However, it is both legal and safe to do so, and
would be useful, for example, if the functions declared in sundials_dense.h are to be used in building a pre-
conditioner.
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15.2.1 Using SUNDIALS as a Third Party Library in other CMake Projects

The make install command will also install a CMake package configuration file that other CMake projects can
load to get all the information needed to build against SUNDIALS. In the consuming project’s CMake code, the
find_package command may be used to search for the configuration file, which will be installed to instdir/
SUNDIALS_INSTALL_CMAKEDIR/SUNDIALSConfig.cmake alongside a package version file instdir/
SUNDIALS_INSTALL_CMAKEDIR/SUNDIALSConfigVersion.cmake. Together these files contain all the
information the consuming project needs to use SUNDIALS, including exported CMake targets. The SUNDIALS
exported CMake targets follow the same naming convention as the generated library binaries, e.g. the exported tar-
get for CVODE is SUNDIALS::cvode. The CMake code snipped below shows how a consuming project might
leverage the SUNDIALS package configuration file to build against SUNDIALS in their own CMake project.

project(MyProject)

# Set the variable SUNDIALS_DIR to the SUNDIALS instdir.
# When using the cmake CLI command, this can be done like so:
# cmake -D SUNDIALS_DIR=/path/to/sundials/installation

find_project(SUNDIALS REQUIRED)

add_executable(myexec main.c)

# Link to SUNDIALS libraries through the exported targets.
# This is just an example, users should link to the targets appropriate
# for their use case.
target_link_libraries(myexec PUBLIC SUNDIALS::cvode SUNDIALS::nvecpetsc)

Table 15.1: SUNDIALS shared libraries and header files
Shared Headers sundials/sundials_band.h

sundials/sundials_config.h
sundials/sundials_cuda_policies.hpp
sundials/sundials_dense.h
sundials/sundials_direct.h
sundials/sundials_fconfig.h
sundials/sundials_fnvector.h
sundials/sundials_iterative.h
sundials/sundials_linearsolver.h
sundials/sundials_nonlinearsolver.h
sundials/sundials_matrix.h
sundials/sundials_math.h
sundials/sundials_nvector.h
sundials/sundials_types.h
sundials/sundials_version.h
sundials/sundials_xbraid.h

NVECTOR Modules
SERIAL Libraries libsundials_nvecserial.LIB

libsundials_fnvecserial.a
Headers nvector/nvector_serial.h

PARALLEL Libraries libsundials_nvecparallel.LIB
libsundials_fnvecparallel.a

Headers nvector/nvector_parallel.h
OPENMP Libraries libsundials_nvecopenmp.LIB

libsundials_fnvecopenmp.a
Continued on next page
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Table 15.1 – continued from previous page
Headers nvector/nvector_openmp.h

PTHREADS Libraries libsundials_nvecpthreads.LIB
libsundials_fnvecpthreads.a

Headers nvector/nvector_pthreads.h
PARHYP Libraries libsundials_nvecparhyp.LIB

Headers nvector/nvector_parhyp.h
PETSC Libraries libsundials_nvecpetsc.LIB

Headers nvector/nvector_petsc.h
CUDA Libraries libsundials_nveccuda.LIB

Headers nvector/nvector_cuda.h
HIP Libraries libsundials_nvechip.LIB

Headers nvector/nvector_hip.h
RAJA Libraries libsundials_nveccudaraja.LIB

libsundials_nvechipraja.LIB
Headers nvector/nvector_raja.h

SYCL Libraries libsundials_nvecsycl.LIB
Headers nvector/nvector_sycl.h

MANYVECTOR Libraries libsundials_nvecmanyvector.LIB
Headers nvector/nvector_manyvector.h

MPIMANYVECTOR Libraries libsundials_nvecmpimanyvector.LIB
Headers nvector/nvector_mpimanyvector.h

MPIPLUSX Libraries libsundials_nvecmpiplusx.LIB
Headers nvector/nvector_mpiplusx.h

SUNMATRIX Modules
BAND Libraries libsundials_sunmatrixband.LIB

libsundials_fsunmatrixband.a
Headers sunmatrix/sunmatrix_band.h

DENSE Libraries libsundials_sunmatrixdense.LIB
libsundials_fsunmatrixdense.a

Headers sunmatrix/sunmatrix_dense.h
SPARSE Libraries libsundials_sunmatrixsparse.LIB

libsundials_fsunmatrixsparse.a
Headers sunmatrix/sunmatrix_sparse.h

SLUNRLOC Libraries libsundials_sunmatrixslunrloc.LIB
Headers sunmatrix/sunmatrix_slunrloc.h

CUSPARSE Libraries libsundials_sunmatrixcusparse.LIB
Headers sunmatrix/sunmatrix_cusparse.h

SUNLINSOL Modules
BAND Libraries libsundials_sunlinsolband.LIB

libsundials_fsunlinsolband.a
Headers sunlinsol/sunlinsol_band.h

DENSE Libraries libsundials_sunlinsoldense.LIB
libsundials_fsunlinsoldense.a

Headers sunlinsol/sunlinsol_dense.h
KLU Libraries libsundials_sunlinsolklu.LIB

libsundials_fsunlinsolklu.a
Headers sunlinsol/sunlinsol_klu.h

LAPACKBAND Libraries libsundials_sunlinsollapackband.LIB
libsundials_fsunlinsollapackband.a

Headers sunlinsol/sunlinsol_lapackband.h
LAPACKDENSE Libraries libsundials_sunlinsollapackdense.LIB

libsundials_fsunlinsollapackdense.a
Continued on next page

15.2. Installed libraries and exported header files 525



User Documentation for ARKode, v4.7.0

Table 15.1 – continued from previous page
Headers sunlinsol/sunlinsol_lapackdense.h

PCG Libraries libsundials_sunlinsolpcg.LIB
libsundials_fsunlinsolpcg.a

Headers sunlinsol/sunlinsol_pcg.h
SPBCGS Libraries libsundials_sunlinsolspbcgs.LIB

libsundials_fsunlinsolspbcgs.a
Headers sunlinsol/sunlinsol_spbcgs.h

SPFGMR Libraries libsundials_sunlinsolspfgmr.LIB
libsundials_fsunlinsolspfgmr.a

Headers sunlinsol/sunlinsol_spfgmr.h
SPGMR Libraries libsundials_sunlinsolspgmr.LIB

libsundials_fsunlinsolspgmr.a
Headers sunlinsol/sunlinsol_spgmr.h

SPTFQMR Libraries libsundials_sunlinsolsptfqmr.LIB
libsundials_fsunlinsolsptfqmr.a

Headers sunlinsol/sunlinsol_sptfqmr.h
SUPERLUMT Libraries libsundials_sunlinsolsuperlumt.LIB

libsundials_fsunlinsolsuperlumt.a
Headers sunlinsol/sunlinsol_superlumt.h

SUPERLUDIST Libraries libsundials_sunlinsolsuperludist.LIB
Headers sunlinsol/sunlinsol_superludist.h

CUSOLVERSP_BATCHQR Libraries libsundials_sunlinsolcusolversp.LIB
Headers sunlinsol/sunlinsol_cusolversp_batchqr.h

SUNNONLINSOL Modules
NEWTON Libraries libsundials_sunnonlinsolnewton.LIB

libsundials_fsunnonlinsolnewton.a
Headers sunnonlinsol/sunnonlinsol_newton.h

FIXEDPOINT Libraries libsundials_sunnonlinsolfixedpoint.LIB
libsundials_fsunnonlinsolfixedpoint.a

Headers sunnonlinsol/sunnonlinsol_fixedpoint.h
PETSCSNES Libraries libsundials_sunnonlinsolpetscsnes.LIB

Headers sunnonlinsol/sunnonlinsol_petscsnes.h
SUNDIALS Packages
CVODE Libraries libsundials_cvode.LIB

libsundials_fcvode.a
Headers cvode/cvode.h

cvode/cvode_bandpre.h
cvode/cvode_bbdpre.h
cvode/cvode_diag.h
cvode/cvode_direct.h
cvode/cvode_impl.h
cvode/cvode_ls.h
cvode/cvode_spils.h

CVODES Libraries libsundials_cvodes.LIB
Headers cvodes/cvodes.h

cvodes/cvodes_bandpre.h
cvodes/cvodes_bbdpre.h
cvodes/cvodes_diag.h
cvodes/cvodes_direct.h
cvodes/cvodes_impl.h
cvodes/cvodes_spils.h

ARKODE Libraries libsundials_arkode.LIB
Continued on next page
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Table 15.1 – continued from previous page
libsundials_farkode.a
libsundials_xbraid.LIB

Headers arkode/arkode.h
arkode/arkode_arkstep.h
arkode/arkode_bandpre.h
arkode/arkode_bbdpre.h
arkode/arkode_butcher.h
arkode/arkode_butcher_dirk.h
arkode/arkode_butcher_erk.h
arkode/arkode_erkstep.h
arkode/arkode_impl.h
arkode/arkode_ls.h
arkode/arkode_xbraid.h

IDA Libraries libsundials_ida.LIB
libsundials_fida.a

Headers ida/ida.h
ida/ida_bbdpre.h
ida/ida_direct.h
ida/ida_impl.h
ida/ida_ls.h
ida/ida_spils.h

IDAS Libraries libsundials_idas.LIB
Headers idas/idas.h

idas/idas_bbdpre.h
idas/idas_direct.h
idas/idas_impl.h
idas/idas_spils.h

KINSOL Libraries libsundials_kinsol.LIB
libsundials_fkinsol.a

Headers kinsol/kinsol.h
kinsol/kinsol_bbdpre.h
kinsol/kinsol_direct.h
kinsol/kinsol_impl.h
kinsol/kinsol_ls.h
kinsol/kinsol_spils.h
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Chapter 16

Appendix: ARKode Constants

Below we list all input and output constants used by the main solver, timestepper, and linear solver modules, together
with their numerical values and a short description of their meaning.

16.1 ARKode input constants

16.1.1 Shared ARKode input constants

ARK_NORMAL (1): Solver returns at a specified output time.

ARK_ONE_STEP (2): Solver returns after each successful step.

16.1.2 Interpolation module input constants

ARK_INTERP_MAX_DEGREE (5): Maximum possible interpolating polynomial degree.

ARK_INTERP_HERMITE (0): Specifies use of the Hermite polynomial interpolation module (for non-stiff prob-
lems)

ARK_INTERP_LAGRANGE (1): Specifies use of the Lagrange polynomial interpolation module (for stiff prob-
lems)

16.1.3 Explicit Butcher table specification

HEUN_EULER_2_1_2 (0): Use the Heun-Euler-2-1-2 ERK method

BOGACKI_SHAMPINE_4_2_3 (1): Use the Bogacki-Shampine-4-2-3 ERK method

ARK324L2SA_ERK_4_2_3 (2): Use the ARK-4-2-3 ERK method

ZONNEVELD_5_3_4 (3): Use the Zonneveld-5-3-4 ERK method

ARK436L2SA_ERK_6_3_4 (4): Use the ARK-6-3-4 ERK method

SAYFY_ABURUB_6_3_4 (5): Use the Sayfy-Aburub-6-3-4 ERK method

CASH_KARP_6_4_5 (6): Use the Cash-Karp-6-4-5 ERK method

FEHLBERG_6_4_5 (7): Use the Fehlberg-6-4-5 ERK method
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DORMAND_PRINCE_7_4_5 (8): Use the Dormand-Prince-7-4-5 ERK method

ARK548L2SA_ERK_8_4_5 (9): Use the ARK-8-4-5 ERK method

VERNER_8_5_6 (10): Use the Verner-8-5-6 ERK method

FEHLBERG_13_7_8 (11): Use the Fehlberg-13-7-8 ERK method

KNOTH_WOLKE_3_3 (12): Use the Knoth-Wolke-3-3 ERK method

DEFAULT_ERK_2 (HEUN_EULER_2_1_2): Use the default second-order ERK method

DEFAULT_ERK_3 (BOGACKI_SHAMPINE_4_2_3): Use the default third-order ERK method

DEFAULT_ERK_4 (ZONNEVELD_5_3_4): Use the default fourth-order ERK method

DEFAULT_ERK_5 (CASH_KARP_6_4_5): Use the default fifth-order ERK method

DEFAULT_ERK_6 (VERNER_8_5_6): Use the default sixth-order ERK method

DEFAULT_ERK_8 (FEHLBERG_13_7_8): Use the default eighth-order ERK method

16.1.4 Implicit Butcher table specification

SDIRK_2_1_2 (100): Use the SDIRK-2-1-2 SDIRK method

BILLINGTON_3_3_2 (101): Use the Billington-3-3-2 SDIRK method

TRBDF2_3_3_2 (102): Use the TRBDF2-3-3-2 ESDIRK method

KVAERNO_4_2_3 (103): Use the Kvaerno-4-2-3 ESDIRK method

ARK324L2SA_DIRK_4_2_3 (104): Use the ARK-4-2-3 ESDIRK method

CASH_5_2_4 (105): Use the Cash-5-2-4 SDIRK method

CASH_5_3_4 (106): Use the Cash-5-3-4 SDIRK method

SDIRK_5_3_4 (107): Use the SDIRK-5-3-4 SDIRK method

KVAERNO_5_3_4 (108): Use the Kvaerno-5-3-4 ESDIRK method

ARK436L2SA_DIRK_6_3_4 (109): Use the ARK-6-3-4 ESDIRK method

KVAERNO_7_4_5 (110): Use the Kvaerno-7-4-5 ESDIRK method

ARK548L2SA_DIRK_8_4_5 (111): Use the ARK-8-4-5 ESDIRK method

ARK437L2SA_DIRK_7_3_4 (112): Use the ARK-7-3-4 ESDIRK method

ARK548L2SAb_DIRK_8_4_5 (113): Use the ARK-8-4-5b ESDIRK method

DEFAULT_DIRK_2 (SDIRK_2_1_2): Use the default second-order DIRK method

DEFAULT_DIRK_3 (ARK324L2SA_DIRK_4_2_3): Use the default third-order DIRK method

DEFAULT_DIRK_4 (SDIRK_5_3_4): Use the default fourth-order DIRK method

DEFAULT_DIRK_5 (ARK548L2SA_DIRK_8_4_5): Use the default fifth-order DIRK method

16.1.5 ImEx Butcher table specification

ARK324L2SA_ERK_4_2_3 and ARK324L2SA_DIRK_4_2_3 (2 and 16): Use the ARK-4-2-3 ARK method

ARK436L2SA_ERK_6_3_4 and ARK436L2SA_DIRK_6_3_4 (4 and 21): Use the ARK-6-3-4 ARK method

ARK548L2SA_ERK_8_4_5 and ARK548L2SA_DIRK_8_4_5 (9 and 23): Use the ARK-8-4-5 ARK method
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DEFAULT_ARK_ETABLE_3 and DEFAULT_ARK_ITABLE_3 (ARK324L2SA_[ERK,DIRK]_4_2_3): Use
the default third-order ARK method

DEFAULT_ARK_ETABLE_4 and DEFAULT_ARK_ITABLE_4 (ARK436L2SA_[ERK,DIRK]_6_3_4): Use
the default fourth-order ARK method

DEFAULT_ARK_ETABLE_5 and DEFAULT_ARK_ITABLE_5 (ARK548L2SA_[ERK,DIRK]_8_4_5): Use
the default fifth-order ARK method

16.2 ARKode output constants

16.2.1 Shared ARKode output constants

ARK_SUCCESS (0): Successful function return.

ARK_TSTOP_RETURN (1): ARKode succeeded by reaching the specified stopping point.

ARK_ROOT_RETURN (2): ARKode succeeded and found one more more roots.

ARK_WARNING (99): ARKode succeeded but an unusual situation occurred.

ARK_TOO_MUCH_WORK (-1): The solver took mxstep internal steps but could not reach tout.

ARK_TOO_MUCH_ACC (-2): The solver could not satisfy the accuracy demanded by the user for some internal
step.

ARK_ERR_FAILURE (-3): Error test failures occurred too many times during one internal time step, or the mini-
mum step size was reached.

ARK_CONV_FAILURE (-4): Convergence test failures occurred too many times during one internal time step, or
the minimum step size was reached.

ARK_LINIT_FAIL (-5): The linear solver’s initialization function failed.

ARK_LSETUP_FAIL (-6): The linear solver’s setup function failed in an unrecoverable manner.

ARK_LSOLVE_FAIL (-7): The linear solver’s solve function failed in an unrecoverable manner.

ARK_RHSFUNC_FAIL (-8): The right-hand side function failed in an unrecoverable manner.

ARK_FIRST_RHSFUNC_ERR (-9): The right-hand side function failed at the first call.

ARK_REPTD_RHSFUNC_ERR (-10): The right-hand side function had repeated recoverable errors.

ARK_UNREC_RHSFUNC_ERR (-11): The right-hand side function had a recoverable error, but no recovery is
possible.

ARK_RTFUNC_FAIL (-12): The rootfinding function failed in an unrecoverable manner.

ARK_LFREE_FAIL (-13): The linear solver’s memory deallocation function failed.

ARK_MASSINIT_FAIL (-14): The mass matrix linear solver’s initialization function failed.

ARK_MASSSETUP_FAIL (-15): The mass matrix linear solver’s setup function failed in an unrecoverable man-
ner.

ARK_MASSSOLVE_FAIL (-16): The mass matrix linear solver’s solve function failed in an unrecoverable man-
ner.

ARK_MASSFREE_FAIL (-17): The mass matrix linear solver’s memory deallocation function failed.

ARK_MASSMULT_FAIL (-18): The mass matrix-vector product function failed.

ARK_CONSTR_FAIL (-19): The inequality constraint test failed repeatedly or failed with the minimum step size.
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ARK_MEM_FAIL (-20): A memory allocation failed.

ARK_MEM_NULL (-21): The arkode_mem argument was NULL.

ARK_ILL_INPUT (-22): One of the function inputs is illegal.

ARK_NO_MALLOC (-23): The ARKode memory block was not allocated by a call to ARKodeMalloc().

ARK_BAD_K (-24): The derivative order 𝑘 is larger than allowed.

ARK_BAD_T (-25): The time 𝑡 is outside the last step taken.

ARK_BAD_DKY (-26): The output derivative vector is NULL.

ARK_TOO_CLOSE (-27): The output and initial times are too close to each other.

ARK_VECTOROP_ERR (-28): An error occurred when calling an NVECTOR routine.

ARK_NLS_INIT_FAIL (-29): An error occurred when initializing a SUNNonlinearSolver module.

ARK_NLS_SETUP_FAIL (-30): A non-recoverable error occurred when setting up a SUNNonlinearSolver mod-
ule.

ARK_NLS_SETUP_RECVR (-31): A recoverable error occurred when setting up a SUNNonlinearSolver module.

ARK_NLS_OP_ERR (-32): An error occurred when calling a set/get routine in a SUNNonlinearSolver module.

ARK_INNERSTEP_ATTACH_ERR (-33): An error occurred when attaching the inner stepper module.

ARK_INNERSTEP_FAIL (-34): An error occurred in the inner stepper module.

ARK_PREINNERFN_FAIL (-35): An error occurred in the MRIStep pre inner integrator function.

ARK_POSTINNERFN_FAIL (-36): An error occurred in the MRIStep post inner integrator function.

ARK_INTERP_FAIL (-40): An error occurred in the ARKode polynomial interpolation module.

ARK_INVALID_TABLE (-41): An invalid Butcher or MRI table was encountered.

ARK_UNRECOGNIZED_ERROR (-99): An unknown error was encountered.

16.2.2 ARKLS linear solver modules

ARKLS_SUCCESS (0): Successful function return.

ARKLS_MEM_NULL (-1): The arkode_mem argument was NULL.

ARKLS_LMEM_NULL (-2): The ARKLS linear solver interface has not been initialized.

ARKLS_ILL_INPUT (-3): The ARKLS solver interface is not compatible with the current NVECTOR module, or
an input value was illegal.

ARKLS_MEM_FAIL (-4): A memory allocation request failed.

ARKLS_PMEM_NULL (-5): The preconditioner module has not been initialized.

ARKLS_MASSMEM_NULL (-6): The ARKLS mass-matrix linear solver interface has not been initialized.

ARKLS_JACFUNC_UNRECVR (-7): The Jacobian function failed in an unrecoverable manner.

ARKLS_JACFUNC_RECVR (-8): The Jacobian function had a recoverable error.

ARKLS_MASSFUNC_UNRECVR (-9): The mass matrix function failed in an unrecoverable manner.

ARKLS_MASSFUNC_RECVR (-10): The mass matrix function had a recoverable error.

ARKLS_SUNMAT_FAIL (-11): An error occurred with the current SUNMATRIX module.

ARKLS_SUNLS_FAIL (-12): An error occurred with the current SUNLINSOL module.
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Chapter 17

Appendix: Butcher tables

Here we catalog the full set of Butcher tables included in ARKode. We group these into three categories: explicit,
implicit and additive. However, since the methods that comprise an additive Runge Kutta method are themselves
explicit and implicit, their component Butcher tables are listed within their separate sections, but are referenced to-
gether in the additive section.

In each of the following tables, we use the following notation (shown for a 3-stage method):

𝑐1 𝑎1,1 𝑎1,2 𝑎1,3
𝑐2 𝑎2,1 𝑎2,2 𝑎2,3
𝑐3 𝑎3,1 𝑎3,2 𝑎3,3
𝑞 𝑏1 𝑏2 𝑏3
𝑝 �̃�1 �̃�2 �̃�3

where here the method and embedding share stage 𝐴 and 𝑐 values, but use their stages 𝑧𝑖 differently through the co-
efficients 𝑏 and �̃� to generate methods of orders 𝑞 (the main method) and 𝑝 (the embedding, typically 𝑞 = 𝑝 + 1,
though sometimes this is reversed).

Method authors often use different naming conventions to categorize their methods. For each of the methods below
with an embedding, we follow the uniform naming convention:

NAME-S-P-Q

where here

• NAME is the author or the name provided by the author (if applicable),

• S is the number of stages in the method,

• P is the global order of accuracy for the embedding,

• Q is the global order of accuracy for the method.

For methods without an embedding (e.g., fixed-step methods) P is omitted so that methods follow the naming con-
vention NAME-S-Q.

In the code, unique integer IDs are defined inside arkode_butcher_erk.h and arkode_butcher_dirk.h
for each method, which may be used by calling routines to specify the desired method. These names are specified in
fixed width font at the start of each method’s section below.

Additionally, for each method we provide a plot of the linear stability region in the complex plane. These have been
computed via the following approach. For any Runge Kutta method as defined above, we may define the stability
function

𝑅(𝜂) = 1 + 𝜂𝑏[𝐼 − 𝜂𝐴]−1𝑒,
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where 𝑒 ∈ R𝑠 is a column vector of all ones, 𝜂 = ℎ𝜆 and ℎ is the time step size. If the stability function satisfies
|𝑅(𝜂)| ≤ 1 for all eigenvalues, 𝜆, of 𝜕

𝜕𝑦𝑓(𝑡, 𝑦) for a given IVP, then the method will be linearly stable for that prob-
lem and step size. The stability region

𝑆 = {𝜂 ∈ C : |𝑅(𝜂)| ≤ 1}

is typically given by an enclosed region of the complex plane, so it is standard to search for the border of that region
in order to understand the method. Since all complex numbers with unit magnitude may be written as 𝑒𝑖𝜃 for some
value of 𝜃, we perform the following algorithm to trace out this boundary.

1. Define an array of values Theta. Since we wish for a smooth curve, and since we wish to trace out the entire
boundary, we choose 10,000 linearly-spaced points from 0 to 16𝜋. Since some angles will correspond to mul-
tiple locations on the stability boundary, by going beyond 2𝜋 we ensure that all boundary locations are plotted,
and by using such a fine discretization the Newton method (next step) is more likely to converge to the root
closest to the previous boundary point, ensuring a smooth plot.

2. For each value 𝜃 ∈ Theta, we solve the nonlinear equation

0 = 𝑓(𝜂) = 𝑅(𝜂)− 𝑒𝑖𝜃

using a finite-difference Newton iteration, using tolerance 10−7, and differencing parameter
√
𝜀 (≈ 10−8).

In this iteration, we use as initial guess the solution from the previous value of 𝜃, starting with an initial-initial
guess of 𝜂 = 0 for 𝜃 = 0.

3. We then plot the resulting 𝜂 values that trace the stability region boundary.

We note that for any stable IVP method, the value 𝜂0 = −𝜀 + 0𝑖 is always within the stability region. So in each of
the following pictures, the interior of the stability region is the connected region that includes 𝜂0. Resultingly, meth-
ods whose linear stability boundary is located entirely in the right half-plane indicate an A-stable method.

17.1 Explicit Butcher tables

In the category of explicit Runge-Kutta methods, ARKode includes methods that have orders 2 through 6, with em-
beddings that are of orders 1 through 5.

17.1.1 Heun-Euler-2-1-2

Accessible via the constant HEUN_EULER_2_1_2 to ARKStepSetTableNum(), ERKStepSetTableNum()
or ARKodeButcherTable_LoadERK(). This is the default 2nd order explicit method.

0 0 0

1 1 0

2 1
2

1
2

1 1 0

17.1.2 Bogacki-Shampine-4-2-3

Accessible via the constant BOGACKI_SHAMPINE_4_2_3 to ARKStepSetTableNum(),
ERKStepSetTableNum() or ARKodeButcherTable_LoadERK(). This is the default 3rd order ex-
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Fig. 17.1: Linear stability region for the Heun-Euler method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

plicit method (from [BS1989]).
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17.1.3 ARK-4-2-3 (explicit)

Accessible via the constant ARK324L2SA_ERK_4_2_3 to ARKStepSetTableNum(),
ERKStepSetTableNum() or ARKodeButcherTable_LoadERK(). This is the explicit portion of the
default 3rd order additive method (from [KC2003]).

0 0 0 0 0

1767732205903
2027836641118

1767732205903
2027836641118 0 0 0

3
5

5535828885825
10492691773637

788022342437
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1 6485989280629
16251701735622 − 4246266847089

9704473918619
10755448449292
10357097424841 0

3 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

2 2756255671327
12835298489170 − 10771552573575

22201958757719
9247589265047
10645013368117

2193209047091
5459859503100
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Fig. 17.2: Linear stability region for the Bogacki-Shampine method. The method’s region is outlined in blue; the
embedding’s region is in red.

Fig. 17.3: Linear stability region for the explicit ARK-4-2-3 method. The method’s region is outlined in blue; the
embedding’s region is in red.
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17.1.4 Knoth-Wolke-3-3

Accessible via the constant KNOTH_WOLKE_3_3 to MRIStepSetMRITableNum() and
ARKodeButcherTable_LoadERK(). This is the default 3th order slow and fast MRIStep method (from
[KW1998]).
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Fig. 17.4: Linear stability region for the Knoth-Wolke method

17.1.5 Zonneveld-5-3-4

Accessible via the constant ZONNEVELD_5_3_4 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK(). This is the default 4th order explicit method (from [Z1963]).
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17.1.6 ARK-6-3-4 (explicit)

Accessible via the constant ARK436L2SA_ERK_6_3_4 to ARKStepSetTableNum(),
ERKStepSetTableNum() or ARKodeButcherTable_LoadERK(). This is the explicit portion of the
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Fig. 17.5: Linear stability region for the Zonneveld method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

default 4th order additive method (from [KC2003]).
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17.1.7 ARK-7-3-4 (explicit)

Accessible via the constant ARK437L2SA_ERK_7_3_4 to ARKStepSetTableNum(),
ERKStepSetTableNum() or ARKodeButcherTable_LoadERK(). This is the explicit portion of the
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Fig. 17.6: Linear stability region for the explicit ARK-6-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

4th order additive method (from [KC2019]).
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17.1.8 Sayfy-Aburub-6-3-4

Accessible via the constant SAYFY_ABURUB_6_3_4 to ARKStepSetTableNum(),
ERKStepSetTableNum() or ARKodeButcherTable_LoadERK() (from [SA2002]).
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Fig. 17.7: Linear stability region for the Sayfy-Aburub-6-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.
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17.1.9 Cash-Karp-6-4-5

Accessible via the constant CASH_KARP_6_4_5 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK(). This is the default 5th order explicit method (from [CK1990]).

0 0 0 0 0 0 0

1
5

1
5 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0

3
5

3
10 − 9

10
6
5 0 0 0

1 − 11
54

5
2 − 70

27
35
27 0 0

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096 0

5 37
378 0 250

621
125
594 0 512

1771

4 2825
27648 0 18575

48384
13525
55296

277
14336

1
4

Fig. 17.8: Linear stability region for the Cash-Karp method. The method’s region is outlined in blue; the embed-
ding’s region is in red.
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17.1.10 Fehlberg-6-4-5

Accessible via the constant FEHLBERG_6_4_5 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK() (from [F1969]).
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Fig. 17.9: Linear stability region for the Fehlberg method. The method’s region is outlined in blue; the embedding’s
region is in red.
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17.1.11 Dormand-Prince-7-4-5

Accessible via the constant DORMAND_PRINCE_7_4_5 to ARKStepSetTableNum(),
ERKStepSetTableNum() or ARKodeButcherTable_LoadERK() (from [DP1980]).
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Fig. 17.10: Linear stability region for the Dormand-Prince method. The method’s region is outlined in blue; the em-
bedding’s region is in red.

17.1.12 ARK-8-4-5 (explicit)

Accessible via the constant ARK548L2SA_ERK_8_4_5 to ARKStepSetTableNum(),
ERKStepSetTableNum() or ARKodeButcherTable_LoadERK(). This is the explicit portion of the
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default 5th order additive method (from [KC2003]).
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Fig. 17.11: Linear stability region for the explicit ARK-8-4-5 method. The method’s region is outlined in blue; the
embedding’s region is in red.

17.1.13 ARK-8-4-5b (explicit)

Accessible via the constant ARK548L2SAb_ERK_8_4_5 to ARKStepSetTableNum(),
ERKStepSetTableNum() or ARKodeButcherTable_LoadERK(). This is the explicit portion of the
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5th order additive method from [KC2019].

0 0 0 0 0 0 0 0 0

4
9

4
9 0 0 0 0 0 0 0

6456083330201
8509243623797

1
9

1183333538310
1827251437969 0 0 0 0 0 0

1632083962415
14158861528103

895379019517
9750411845327

477606656805
13473228687314

−112564739183
9373365219272 0 0 0 0 0

6365430648612
17842476412687

−4458043123994
13015289567637

−2500665203865
9342069639922

983347055801
8893519644487

2185051477207
2551468980502 0 0 0 0

18
25

−167316361917
17121522574472

1605541814917
7619724128744

991021770328
13052792161721

2342280609577
11279663441611

3012424348531
12792462456678 0 0 0

191
200

6680998715867
14310383562358

5029118570809
3897454228471

2415062538259
6382199904604

−3924368632305
6964820224454

−4331110370267
15021686902756

−3944303808049
11994238218192 0 0

1 2193717860234
3570523412979

2193717860234
3570523412979

5952760925747
18750164281544

−4412967128996
6196664114337

4151782504231
36106512998704

572599549169
6265429158920

−457874356192
11306498036315 0

5 0 0 3517720773327
20256071687669

4569610470461
17934693873752

2819471173109
11655438449929

3296210113763
10722700128969

−1142099968913
5710983926999

2
9

4 0 0 520639020421
8300446712847

4550235134915
17827758688493

1482366381361
6201654941325

5551607622171
13911031047899

−5266607656330
36788968843917

1074053359553
5740751784926

17.1.14 Verner-8-5-6

Accessible via the constant VERNER_8_5_6 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK(). This is the default 6th order explicit method (from [V1978]).
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Fig. 17.12: Linear stability region for the Verner-8-5-6 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

17.1.15 Fehlberg-13-7-8

Accessible via the constant FEHLBERG_13_7_8 to ARKStepSetTableNum(), ERKStepSetTableNum() or
ARKodeButcherTable_LoadERK(). This is the default 8th order explicit method (from [B2008]).

0 0 0 0 0 0 0 0 0 0 0 0 0 0

2
27

2
27 0 0 0 0 0 0 0 0 0 0 0 0

1
9

1
36

1
12 0 0 0 0 0 0 0 0 0 0 0

1
6

1
24 0 1

8 0 0 0 0 0 0 0 0 0 0

5
12

5
12 0 − 25

16
25
16 0 0 0 0 0 0 0 0 0

1
2

1
20 0 0 1

4
1
5 0 0 0 0 0 0 0 0

5
6 − 25

108 0 0 125
108 − 65

27
125
54 0 0 0 0 0 0 0

1
6

31
300 0 0 0 61

225 − 2
9

13
900 0 0 0 0 0 0

2
3 2 0 0 − 53

6
704
45 − 107

9
67
90 3 0 0 0 0 0

1
3 − 91

108 0 0 23
108 − 976

135
311
54 − 19

60
17
6 − 1

12 0 0 0 0

1 2383
4100 0 0 − 341

164
4496
1025 − 301

82
2133
4100

45
82

45
164

18
41 0 0 0

0 3
205 0 0 0 0 − 6

41 − 3
205 − 3

41
3
41

6
41 0 0 0

1 − 1777
4100 0 0 − 341

164
4496
1025 − 289

82
2193
4100

51
82

33
164

12
41 0 1 0

8 0 0 0 0 0 34
105

9
35

9
35

9
280

9
280 0 41

840
41
840

7 41
840 0 0 0 0 34

105
9
35

9
35

9
280

9
280

41
840 0 0

546 Chapter 17. Appendix: Butcher tables



User Documentation for ARKode, v4.7.0

Fig. 17.13: Linear stability region for the Fehlberg-13-7-8 method. The method’s region is outlined in blue; the em-
bedding’s region is in red.

17.2 Implicit Butcher tables

In the category of diagonally implicit Runge-Kutta methods, ARKode includes methods that have orders 2 through 5,
with embeddings that are of orders 1 through 4.

17.2.1 SDIRK-2-1-2

Accessible via the constant SDIRK_2_1_2 to ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). This is the default 2nd order implicit method. Both the method
and embedding are A- and B-stable.

1 1 0

0 −1 1

2 1
2

1
2

1 1 0

17.2.2 Billington-3-3-2

Accessible via the constant BILLINGTON_3_3_2 to ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). Here, the higher-order embedding is less stable than the lower-order
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Fig. 17.14: Linear stability region for the SDIRK-2-1-2 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

method (from [B1983]).

0.292893218813 0.292893218813 0 0

1.091883092037 0.798989873223 0.292893218813 0

1.292893218813 0.740789228841 0.259210771159 0.292893218813

2 0.740789228840 0.259210771159 0

3 0.691665115992 0.503597029883 −0.195262145876

17.2.3 TRBDF2-3-3-2

Accessible via the constant TRBDF2_3_3_2 to ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). As with Billington, here the higher-order embedding is less stable
than the lower-order method (from [B1985]).
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17.2.4 Kvaerno-4-2-3

Accessible via the constant KVAERNO_4_2_3 to ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). Both the method and embedding are A-stable; additionally the
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Fig. 17.15: Linear stability region for the Billington method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

Fig. 17.16: Linear stability region for the TRBDF2 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.
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method is L-stable (from [K2004]).

0 0 0 0 0

0.871733043 0.4358665215 0.4358665215 0 0

1 0.490563388419108 0.073570090080892 0.4358665215 0

1 0.308809969973036 1.490563388254106 −1.235239879727145 0.4358665215

3 0.308809969973036 1.490563388254106 −1.235239879727145 0.4358665215

2 0.490563388419108 0.073570090080892 0.4358665215 0

Fig. 17.17: Linear stability region for the Kvaerno-4-2-3 method. The method’s region is outlined in blue; the em-
bedding’s region is in red.

17.2.5 ARK-4-2-3 (implicit)

Accessible via the constant ARK324L2SA_DIRK_4_2_3 to ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). This is the default 3rd order implicit method, and the implicit por-
tion of the default 3rd order additive method. Both the method and embedding are A-stable; additionally the method
is L-stable (from [KC2003]).

0 0 0 0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236 0 0

3
5

2746238789719
10658868560708 − 640167445237

6845629431997
1767732205903
4055673282236 0

1 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

3 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

2 2756255671327
12835298489170 − 10771552573575

22201958757719
9247589265047
10645013368117

2193209047091
5459859503100
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Fig. 17.18: Linear stability region for the implicit ARK-4-2-3 method. The method’s region is outlined in blue; the
embedding’s region is in red.

17.2.6 Cash-5-2-4

Accessible via the constant CASH_5_2_4 to ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). Both the method and embedding are A-stable; additionally the
method is L-stable (from [C1979]).

0.435866521508 0.435866521508 0 0 0 0

−0.7 −1.13586652150 0.435866521508 0 0 0

0.8 1.08543330679 −0.721299828287 0.435866521508 0 0

0.924556761814 0.416349501547 0.190984004184 −0.118643265417 0.435866521508 0

1 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508

4 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508

2 1.05646216107052 −0.0564621610705236 0 0 0

17.2.7 Cash-5-3-4

Accessible via the constant CASH_5_3_4 to ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). Both the method and embedding are A-stable; additionally the
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Fig. 17.19: Linear stability region for the Cash-5-2-4 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

method is L-stable (from [C1979]).

0.435866521508 0.435866521508 0 0 0 0

−0.7 −1.13586652150 0.435866521508 0 0 0

0.8 1.08543330679 −0.721299828287 0.435866521508 0 0

0.924556761814 0.416349501547 0.190984004184 −0.118643265417 0.435866521508 0

1 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508

4 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508

3 0.776691932910 0.0297472791484 −0.0267440239074 0.220304811849 0

17.2.8 SDIRK-5-3-4

Accessible via the constant SDIRK_5_3_4 to ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). This is the default 4th order implicit method. Here, the method is
both A- and L-stable, although the embedding has reduced stability (from [HW1996]).
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Fig. 17.20: Linear stability region for the Cash-5-3-4 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

Fig. 17.21: Linear stability region for the SDIRK-5-3-4 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.
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17.2.9 Kvaerno-5-3-4

Accessible via the constant KVAERNO_5_3_4 to ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). Both the method and embedding are A-stable (from [K2004]).

0 0 0 0 0 0

0.871733043 0.4358665215 0.4358665215 0 0 0

0.468238744853136 0.140737774731968 −0.108365551378832 0.4358665215 0 0

1 0.102399400616089 −0.376878452267324 0.838612530151233 0.4358665215 0

1 0.157024897860995 0.117330441357768 0.61667803039168 −0.326899891110444 0.4358665215

4 0.157024897860995 0.117330441357768 0.61667803039168 −0.326899891110444 0.4358665215

3 0.102399400616089 −0.376878452267324 0.838612530151233 0.4358665215 0

Fig. 17.22: Linear stability region for the Kvaerno-5-3-4 method. The method’s region is outlined in blue; the em-
bedding’s region is in red.

17.2.10 ARK-6-3-4 (implicit)

Accessible via the constant ARK436L2SA_DIRK_6_3_4 to ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). This is the implicit portion of the default 4th order additive method.
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Both the method and embedding are A-stable; additionally the method is L-stable (from [KC2003]).
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Fig. 17.23: Linear stability region for the implicit ARK-6-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

17.2.11 ARK-7-3-4 (implicit)

Accessible via the constant ARK437L2SA_DIRK_7_3_4 to ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). This is the implicit portion of the 4th order additive method from
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[KC2019].
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17.2.12 Kvaerno-7-4-5

Accessible via the constant KVAERNO_7_4_5 to ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). Both the method and embedding are A-stable; additionally the
method is L-stable (from [K2004]).

0 0 0 0 0 0 0 0

0.52 0.26 0.26 0 0 0 0 0

1.230333209967908 0.13 0.84033320996790809 0.26 0 0 0 0

0.895765984350076 0.22371961478320505 0.47675532319799699 −0.06470895363112615 0.26 0 0 0

0.436393609858648 0.16648564323248321 0.10450018841591720 0.03631482272098715 −0.13090704451073998 0.26 0 0

1 0.13855640231268224 0 −0.04245337201752043 0.02446657898003141 0.61943039072480676 0.26 0

1 0.13659751177640291 0 −0.05496908796538376 −0.04118626728321046 0.62993304899016403 0.06962479448202728 0.26

5 0.13659751177640291 0 −0.05496908796538376 −0.04118626728321046 0.62993304899016403 0.06962479448202728 0.26

4 0.13855640231268224 0 −0.04245337201752043 0.02446657898003141 0.61943039072480676 0.26 0

17.2.13 ARK-8-4-5 (implicit)

Accessible via the constant ARK548L2SA_DIRK_8_4_5 for ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). This is the default 5th order implicit method, and the implicit portion
of the default 5th order additive method. Both the method and embedding are A-stable; additionally the method is
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Fig. 17.24: Linear stability region for the Kvaerno-7-4-5 method. The method’s region is outlined in blue; the em-
bedding’s region is in red.

L-stable (from [KC2003]).
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Fig. 17.25: Linear stability region for the implicit ARK-8-4-5 method. The method’s region is outlined in blue; the
embedding’s region is in red.

17.2.14 ARK-8-4-5b (implicit)

Accessible via the constant ARK548L2SAb_DIRK_8_4_5 for ARKStepSetTableNum() or
ARKodeButcherTable_LoadDIRK(). This is the 5th order implicit method from [KC2019].
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17.3 Additive Butcher tables

In the category of additive Runge-Kutta methods for split implicit and explicit calculations, ARKode includes meth-
ods that have orders 3 through 5, with embeddings that are of orders 2 through 4. These Butcher table pairs are as
follows:

• 3rd-order pair: ARK-4-2-3 (explicit) with ARK-4-2-3 (implicit), corresponding to Butcher tables
ARK324L2SA_ERK_4_2_3 and ARK324L2SA_DIRK_4_2_3 for ARKStepSetTableNum().
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• 4th-order pair: ARK-6-3-4 (explicit) with ARK-6-3-4 (implicit), corresponding to Butcher tables
ARK436L2SA_ERK_6_3_4 and ARK436L2SA_DIRK_6_3_4 for ARKStepSetTableNum().

• 4th-order pair: ARK-7-3-4 (explicit) with ARK-7-3-4 (implicit), corresponding to Butcher tables
ARK437L2SA_ERK_7_3_4 and ARK437L2SA_DIRK_7_3_4 for ARKStepSetTableNum().

• 5th-order pair: ARK-8-4-5 (explicit) with ARK-8-4-5 (implicit), corresponding to Butcher tables
ARK548L2SA_ERK_8_4_5 and ARK548L2SA_ERK_8_4_5 for ARKStepSetTableNum().

• 5th-order pair: ARK-8-4-5b (explicit) with ARK-8-4-5b (implicit), corresponding to Butcher tables
ARK548L2SAb_ERK_8_4_5 and ARK548L2SAb_ERK_8_4_5 for ARKStepSetTableNum().
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Appendix: SUNDIALS Release History

Date SUNDIALS ARKode CVODE CVODES IDA IDAS KINSOL
Jan 2021 5.7.0 4.7.0 5.7.0 5.7.0 5.7.0 4.7.0 5.7.0
Dec 2020 5.6.1 4.6.1 5.6.1 5.6.1 5.6.1 4.6.1 5.6.1
Dec 2020 5.6.0 4.6.0 5.6.0 5.6.0 5.6.0 4.6.0 5.6.0
Oct 2020 5.5.0 4.5.0 5.5.0 5.5.0 5.5.0 4.5.0 5.5.0
Sep 2020 5.4.0 4.4.0 5.4.0 5.4.0 5.4.0 4.4.0 5.4.0
May 2020 5.3.0 4.3.0 5.3.0 5.3.0 5.3.0 4.3.0 5.3.0
Mar 2020 5.2.0 4.2.0 5.2.0 5.2.0 5.2.0 4.2.0 5.2.0
Jan 2020 5.1.0 4.1.0 5.1.0 5.1.0 5.1.0 4.1.0 5.1.0
Oct 2019 5.0.0 4.0.0 5.0.0 5.0.0 5.0.0 4.0.0 5.0.0
Feb 2019 4.1.0 3.1.0 4.1.0 4.1.0 4.1.0 3.1.0 4.1.0
Jan 2019 4.0.2 3.0.2 4.0.2 4.0.2 4.0.2 3.0.2 4.0.2
Dec 2018 4.0.1 3.0.1 4.0.1 4.0.1 4.0.1 3.0.1 4.0.1
Dec 2018 4.0.0 3.0.0 4.0.0 4.0.0 4.0.0 3.0.0 4.0.0
Oct 2018 3.2.1 2.2.1 3.2.1 3.2.1 3.2.1 2.2.1 3.2.1
Sep 2018 3.2.0 2.2.0 3.2.0 3.2.0 3.2.0 2.2.0 3.2.0
Jul 2018 3.1.2 2.1.2 3.1.2 3.1.2 3.1.2 2.1.2 3.1.2
May 2018 3.1.1 2.1.1 3.1.1 3.1.1 3.1.1 2.1.1 3.1.1
Nov 2017 3.1.0 2.1.0 3.1.0 3.1.0 3.1.0 2.1.0 3.1.0
Sep 2017 3.0.0 2.0.0 3.0.0 3.0.0 3.0.0 2.0.0 3.0.0
Sep 2016 2.7.0 1.1.0 2.9.0 2.9.0 2.9.0 1.3.0 2.9.0
Aug 2015 2.6.2 1.0.2 2.8.2 2.8.2 2.8.2 1.2.2 2.8.2
Mar 2015 2.6.1 1.0.1 2.8.1 2.8.1 2.8.1 1.2.1 2.8.1
Mar 2015 2.6.0 1.0.0 2.8.0 2.8.0 2.8.0 1.2.0 2.8.0
Mar 2012 2.5.0 – 2.7.0 2.7.0 2.7.0 1.1.0 2.7.0
May 2009 2.4.0 – 2.6.0 2.6.0 2.6.0 1.0.0 2.6.0
Nov 2006 2.3.0 – 2.5.0 2.5.0 2.5.0 – 2.5.0
Mar 2006 2.2.0 – 2.4.0 2.4.0 2.4.0 – 2.4.0
May 2005 2.1.1 – 2.3.0 2.3.0 2.3.0 – 2.3.0
Apr 2005 2.1.0 – 2.3.0 2.2.0 2.3.0 – 2.3.0
Mar 2005 2.0.2 – 2.2.2 2.1.2 2.2.2 – 2.2.2
Jan 2005 2.0.1 – 2.2.1 2.1.1 2.2.1 – 2.2.1
Dec 2004 2.0.0 – 2.2.0 2.1.0 2.2.0 – 2.2.0
Jul 2002 1.0.0 – 2.0.0 1.0.0 2.0.0 – 2.0.0
Mar 2002 – – 1.0.03 – – – –

Continued on next page
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Table 18.1 – continued from previous page
Date SUNDIALS ARKode CVODE CVODES IDA IDAS KINSOL
Feb 1999 – – – – 1.0.04 – –
Aug 1998 – – – – – – 1.0.05

Jul 1997 – – 1.0.02 – – – –
Sep 1994 – – 1.0.01 – – – –

CVODE and PVODE combined
IDA written
KINSOL written
PVODE written
CVODE written
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356

N_VEnableLinearSumVectorArray_Serial (C function),
326

N_VEnableLinearSumVectorArray_Sycl (C function),
359

N_VEnableScaleAddMulti_Cuda (C function), 347
N_VEnableScaleAddMulti_Hip (C function), 351
N_VEnableScaleAddMulti_ManyVector (C function),

368
N_VEnableScaleAddMulti_MPIManyVector (C func-

tion), 371
N_VEnableScaleAddMulti_OpenMP (C function), 334
N_VEnableScaleAddMulti_OpenMPDEV (C function),

363
N_VEnableScaleAddMulti_Parallel (C function), 330
N_VEnableScaleAddMulti_ParHyp (C function), 341
N_VEnableScaleAddMulti_Petsc (C function), 343
N_VEnableScaleAddMulti_Pthreads (C function), 338
N_VEnableScaleAddMulti_Raja (C function), 355
N_VEnableScaleAddMulti_Serial (C function), 326
N_VEnableScaleAddMulti_Sycl (C function), 359
N_VEnableScaleAddMultiVectorArray_Cuda (C func-

tion), 347
N_VEnableScaleAddMultiVectorArray_Hip (C func-

tion), 352
N_VEnableScaleAddMultiVectorArray_OpenMP (C

function), 334
N_VEnableScaleAddMultiVectorArray_OpenMPDEV

(C function), 364
N_VEnableScaleAddMultiVectorArray_Parallel (C func-

tion), 331
N_VEnableScaleAddMultiVectorArray_ParHyp (C func-

tion), 341
N_VEnableScaleAddMultiVectorArray_Petsc (C func-

tion), 344
N_VEnableScaleAddMultiVectorArray_Pthreads (C

function), 338
N_VEnableScaleAddMultiVectorArray_Raja (C func-

tion), 356
N_VEnableScaleAddMultiVectorArray_Serial (C func-

tion), 327
N_VEnableScaleAddMultiVectorArray_Sycl (C func-

tion), 359

N_VEnableScaleVectorArray_Cuda (C function), 347
N_VEnableScaleVectorArray_Hip (C function), 351
N_VEnableScaleVectorArray_ManyVector (C function),

368
N_VEnableScaleVectorArray_MPIManyVector (C func-

tion), 372
N_VEnableScaleVectorArray_OpenMP (C function),

334
N_VEnableScaleVectorArray_OpenMPDEV (C func-

tion), 364
N_VEnableScaleVectorArray_Parallel (C function), 330
N_VEnableScaleVectorArray_ParHyp (C function), 341
N_VEnableScaleVectorArray_Petsc (C function), 343
N_VEnableScaleVectorArray_Pthreads (C function), 338
N_VEnableScaleVectorArray_Raja (C function), 356
N_VEnableScaleVectorArray_Serial (C function), 326
N_VEnableScaleVectorArray_Sycl (C function), 359
N_VEnableWrmsNormMaskVectorArray_Cuda (C func-

tion), 347
N_VEnableWrmsNormMaskVectorArray_Hip (C func-

tion), 351
N_VEnableWrmsNormMaskVectorArray_ManyVector

(C function), 368
N_VEnableWrmsNormMaskVectorArray_MPIManyVector

(C function), 372
N_VEnableWrmsNormMaskVectorArray_OpenMP (C

function), 334
N_VEnableWrmsNormMaskVectorArray_OpenMPDEV

(C function), 364
N_VEnableWrmsNormMaskVectorArray_Parallel (C

function), 331
N_VEnableWrmsNormMaskVectorArray_ParHyp (C

function), 341
N_VEnableWrmsNormMaskVectorArray_Petsc (C func-

tion), 343
N_VEnableWrmsNormMaskVectorArray_Pthreads (C

function), 338
N_VEnableWrmsNormMaskVectorArray_Serial (C

function), 327
N_VEnableWrmsNormVectorArray_Cuda (C function),

347
N_VEnableWrmsNormVectorArray_Hip (C function),

351
N_VEnableWrmsNormVectorArray_ManyVector (C

function), 368
N_VEnableWrmsNormVectorArray_MPIManyVector (C

function), 372
N_VEnableWrmsNormVectorArray_OpenMP (C func-

tion), 334
N_VEnableWrmsNormVectorArray_OpenMPDEV (C

function), 364
N_VEnableWrmsNormVectorArray_Parallel (C func-

tion), 330
N_VEnableWrmsNormVectorArray_ParHyp (C func-
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tion), 341
N_VEnableWrmsNormVectorArray_Petsc (C function),

343
N_VEnableWrmsNormVectorArray_Pthreads (C func-

tion), 338
N_VEnableWrmsNormVectorArray_Serial (C function),

327
N_VFreeEmpty (C function), 312
N_VGetArrayPointer (C function), 314
N_VGetArrayPointer_MPIPlusX (C function), 373
N_VGetCommunicator (C function), 315
N_VGetDeviceArrayPointer (C function), 315
N_VGetDeviceArrayPointer_Cuda (C function), 345
N_VGetDeviceArrayPointer_Hip (C function), 350
N_VGetDeviceArrayPointer_OpenMPDEV (C function),

363
N_VGetDeviceArrayPointer_Raja (C function), 354
N_VGetDeviceArrayPointer_Sycl (C function), 358
N_VGetHostArrayPointer_Cuda (C function), 345
N_VGetHostArrayPointer_Hip (C function), 350
N_VGetHostArrayPointer_OpenMPDEV (C function),

363
N_VGetHostArrayPointer_Raja (C function), 354
N_VGetHostArrayPointer_Sycl (C function), 358
N_VGetLength (C function), 315
N_VGetLocal_MPIPlusX (C function), 373
N_VGetLocalLength_Parallel (C function), 330
N_VGetNumSubvectors_ManyVector (C function), 367
N_VGetNumSubvectors_MPIManyVector (C function),

371
N_VGetSubvector_ManyVector (C function), 367
N_VGetSubvector_MPIManyVector (C function), 371
N_VGetSubvectorArrayPointer_ManyVector (C func-

tion), 367
N_VGetSubvectorArrayPointer_MPIManyVector (C

function), 371
N_VGetVector_ParHyp (C function), 340
N_VGetVector_Petsc (C function), 342
N_VGetVector_Trilinos (C++ function), 365
N_VGetVectorID (C function), 314
N_VInv (C function), 316
N_VInvTest (C function), 318
N_VInvTestLocal (C function), 323
N_VIsManagedMemory_Cuda (C function), 345
N_VIsManagedMemory_Hip (C function), 350
N_VIsManagedMemory_Raja (C function), 354
N_VIsManagedMemory_Sycl (C function), 358
N_VL1Norm (C function), 318
N_VL1NormLocal (C function), 322
N_VLinearCombination (C function), 319
N_VLinearCombinationVectorArray (C function), 321
N_VLinearSum (C function), 315
N_VLinearSumVectorArray (C function), 320
N_VMake_Cuda (C function), 345

N_VMake_Hip (C function), 350
N_VMake_MPIManyVector (C function), 370
N_VMake_MPIPlusX (C function), 373
N_VMake_OpenMP (C function), 333
N_VMake_OpenMPDEV (C function), 363
N_VMake_Parallel (C function), 330
N_VMake_ParHyp (C function), 340
N_VMake_Petsc (C function), 342
N_VMake_Pthreads (C function), 337
N_VMake_Raja (C function), 355
N_VMake_Serial (C function), 326
N_VMake_Sycl (C function), 357
N_VMake_Trilinos (C++ function), 365
N_VMakeManaged_Cuda (C function), 346
N_VMakeManaged_Hip (C function), 350
N_VMakeManaged_Raja (C function), 355
N_VMakeManaged_Sycl (C function), 357
N_VMakeWithManagedAllocator_Cuda (C function),

346
N_VMaxNorm (C function), 317
N_VMaxNormLocal (C function), 322
N_VMin (C function), 318
N_VMinLocal (C function), 322
N_VMinQuotient (C function), 319
N_VMinQuotientLocal (C function), 324
N_VNew_Cuda (C function), 345
N_VNew_Hip (C function), 350
N_VNew_ManyVector (C function), 367
N_VNew_MPIManyVector (C function), 370
N_VNew_OpenMP (C function), 333
N_VNew_OpenMPDEV (C function), 362
N_VNew_Parallel (C function), 329
N_VNew_Pthreads (C function), 337
N_VNew_Raja (C function), 355
N_VNew_Serial (C function), 326
N_VNew_Sycl (C function), 357
N_VNewEmpty (C function), 312
N_VNewEmpty_Cuda (C function), 345
N_VNewEmpty_Hip (C function), 350
N_VNewEmpty_OpenMP (C function), 333
N_VNewEmpty_OpenMPDEV (C function), 362
N_VNewEmpty_Parallel (C function), 329
N_VNewEmpty_ParHyp (C function), 340
N_VNewEmpty_Petsc (C function), 342
N_VNewEmpty_Pthreads (C function), 337
N_VNewEmpty_Raja (C function), 355
N_VNewEmpty_Serial (C function), 326
N_VNewEmpty_Sycl (C function), 357
N_VNewManaged_Cuda (C function), 345
N_VNewManaged_Hip (C function), 350
N_VNewManaged_Raja (C function), 355
N_VNewManaged_Sycl (C function), 357
N_VNewWithMemHelp_Cuda (C function), 345
N_VNewWithMemHelp_Hip (C function), 350
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N_VNewWithMemHelp_Raja (C function), 355
N_VNewWithMemHelp_Sycl (C function), 357
N_VPrint_Cuda (C function), 346
N_VPrint_Hip (C function), 351
N_VPrint_OpenMP (C function), 334
N_VPrint_OpenMPDEV (C function), 363
N_VPrint_Parallel (C function), 330
N_VPrint_ParHyp (C function), 340
N_VPrint_Petsc (C function), 343
N_VPrint_Pthreads (C function), 337
N_VPrint_Raja (C function), 355
N_VPrint_Serial (C function), 326
N_VPrint_Sycl (C function), 358
N_VPrintFile_Cuda (C function), 346
N_VPrintFile_Hip (C function), 351
N_VPrintFile_OpenMP (C function), 334
N_VPrintFile_OpenMPDEV (C function), 363
N_VPrintFile_Parallel (C function), 330
N_VPrintFile_ParHyp (C function), 340
N_VPrintFile_Petsc (C function), 343
N_VPrintFile_Pthreads (C function), 337
N_VPrintFile_Raja (C function), 355
N_VPrintFile_Serial (C function), 326
N_VPrintFile_Sycl (C function), 358
N_VProd (C function), 316
N_VScale (C function), 316
N_VScaleAddMulti (C function), 319
N_VScaleAddMultiVectorArray (C function), 321
N_VScaleVectorArray (C function), 320
N_VSetArrayPointer (C function), 315
N_VSetArrayPointer_MPIPlusX (C function), 373
N_VSetCudaStream_Cuda (C function), 346
N_VSetDeviceArrayPointer_Sycl (C function), 358
N_VSetHostArrayPointer_Sycl (C function), 358
N_VSetKernelExecPolicy_Cuda (C function), 346
N_VSetKernelExecPolicy_Hip (C function), 350
N_VSetKernelExecPolicy_Sycl (C function), 358
N_VSetSubvectorArrayPointer_ManyVector (C func-

tion), 367
N_VSetSubvectorArrayPointer_MPIManyVector (C

function), 371
N_VSpace (C function), 314
N_VWl2Norm (C function), 318
N_VWrmsNorm (C function), 317
N_VWrmsNormMask (C function), 317
N_VWrmsNormMaskVectorArray (C function), 321
N_VWrmsNormVectorArray (C function), 321
N_VWSqrSumLocal (C function), 323
N_VWSqrSumMaskLocal (C function), 323
Newton linear system, 34
Newton update, 34
Newton’s method, 34
NV_COMM_P (C macro), 329
NV_CONTENT_OMP (C macro), 332

NV_CONTENT_OMPDEV (C macro), 361
NV_CONTENT_P (C macro), 328
NV_CONTENT_PT (C macro), 336
NV_CONTENT_S (C macro), 325
NV_DATA_DEV_OMPDEV (C macro), 362
NV_DATA_HOST_OMPDEV (C macro), 362
NV_DATA_OMP (C macro), 332
NV_DATA_P (C macro), 328
NV_DATA_PT (C macro), 336
NV_DATA_S (C macro), 325
NV_GLOBLENGTH_P (C macro), 329
NV_Ith_OMP (C macro), 333
NV_Ith_P (C macro), 329
NV_Ith_PT (C macro), 337
NV_Ith_S (C macro), 325
NV_LENGTH_OMP (C macro), 332
NV_LENGTH_OMPDEV (C macro), 362
NV_LENGTH_PT (C macro), 336
NV_LENGTH_S (C macro), 325
NV_LOCLENGTH_P (C macro), 329
NV_NUM_THREADS_OMP (C macro), 333
NV_NUM_THREADS_PT (C macro), 336
NV_OWN_DATA_OMP (C macro), 332
NV_OWN_DATA_OMPDEV (C macro), 362
NV_OWN_DATA_P (C macro), 328
NV_OWN_DATA_PT (C macro), 336
NV_OWN_DATA_S (C macro), 325

optional input
generic linear solver interface (ARKStep), 87
generic linear solver interface (MRIStep), 222
Jacobian update frequency (ARKStep), 89
Jacobian update frequency (MRIStep), 223
linear solver setup frequency (ARKStep), 88
linear solver setup frequency (MRIStep), 223
preconditioner update frequency (ARKStep), 89
preconditioner update frequency (MRIStep), 223

PETSC_DIR (CMake option), 517
PETSC_INCLUDES (CMake option), 517
PETSC_LIBRARIES (CMake option), 517
PSetupFn (C type), 416
PSolveFn (C type), 416

RCONST, 52, 158, 198
realtype, 52, 158, 198
residual weight vector, 28

Sayfy-Aburub-6-3-4 ERK method, 529, 540
SDIRK-2-1-2 method, 530, 547
SDIRK-5-3-4 method, 530, 552
SM_COLS_B (C macro), 395
SM_COLS_D (C macro), 385
SM_COLUMN_B (C macro), 395
SM_COLUMN_D (C macro), 385
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SM_COLUMN_ELEMENT_B (C macro), 395
SM_COLUMNS_B (C macro), 394
SM_COLUMNS_D (C macro), 384
SM_COLUMNS_S (C macro), 402
SM_CONTENT_B (C macro), 392
SM_CONTENT_D (C macro), 384
SM_CONTENT_S (C macro), 402
SM_DATA_B (C macro), 394
SM_DATA_D (C macro), 385
SM_DATA_S (C macro), 404
SM_ELEMENT_B (C macro), 395
SM_ELEMENT_D (C macro), 385
SM_INDEXPTRS_S (C macro), 404
SM_INDEXVALS_S (C macro), 404
SM_LBAND_B (C macro), 394
SM_LDATA_B (C macro), 394
SM_LDATA_D (C macro), 385
SM_LDIM_B (C macro), 394
SM_NNZ_S (C macro), 404
SM_NP_S (C macro), 404
SM_ROWS_B (C macro), 392
SM_ROWS_D (C macro), 384
SM_ROWS_S (C macro), 402
SM_SPARSETYPE_S (C macro), 404
SM_SUBAND_B (C macro), 394
SM_UBAND_B (C macro), 394
SMALL_REAL, 52, 158, 198
SUNBandLinearSolver (C function), 426
SUNBandMatrix (C function), 395
SUNBandMatrix_Cols (C function), 396
SUNBandMatrix_Column (C function), 396
SUNBandMatrix_Columns (C function), 396
SUNBandMatrix_Data (C function), 396
SUNBandMatrix_LDim (C function), 396
SUNBandMatrix_LowerBandwidth (C function), 396
SUNBandMatrix_Print (C function), 396
SUNBandMatrix_Rows (C function), 396
SUNBandMatrix_StoredUpperBandwidth (C function),

396
SUNBandMatrix_UpperBandwidth (C function), 396
SUNBandMatrixStorage (C function), 395
SUNBraidApp_FreeEmpty (C function), 144
SUNBraidApp_GetVecTmpl (C function), 143
SUNBraidApp_NewEmpty (C function), 143
SUNBraidVector_BufPack (C function), 146
SUNBraidVector_BufSize (C function), 146
SUNBraidVector_BufUnpack (C function), 147
SUNBraidVector_Clone (C function), 145
SUNBraidVector_Free (C function), 145
SUNBraidVector_GetNVector (C function), 145
SUNBraidVector_New (C function), 144
SUNBraidVector_SpatialNorm (C function), 146
SUNBraidVector_Sum (C function), 146
SUNDenseLinearSolver (C function), 424

SUNDenseMatrix (C function), 386
SUNDenseMatrix_Cols (C function), 386
SUNDenseMatrix_Column (C function), 386
SUNDenseMatrix_Columns (C function), 386
SUNDenseMatrix_Data (C function), 386
SUNDenseMatrix_LData (C function), 386
SUNDenseMatrix_Print (C function), 386
SUNDenseMatrix_Rows (C function), 386
SUNDIALS_BUILD_WITH_MONITORING (CMake

option), 518
SUNDIALS_F77_FUNC_CASE (CMake option), 518
SUNDIALS_F77_FUNC_UNDERSCORES (CMake

option), 518
SUNDIALS_INDEX_SIZE (CMake option), 518
SUNDIALS_INDEX_TYPE (CMake option), 518
SUNDIALS_INSTALL_CMAKEDIR (CMake option),

519
SUNDIALS_PRECISION (CMake option), 519
SUNDIALS_RAJA_BACKENDS (CMake option), 517
SUNDIALSGetVersion (C function), 99, 181, 231
SUNDIALSGetVersionNumber (C function), 99, 181,

231
SUNKLU (C function), 433
SUNKLUReInit (C function), 433
SUNKLUSetOrdering (C function), 433
SUNLapackBand (C function), 430
SUNLapackDense (C function), 427
SUNLinSol_Band (C function), 425
SUNLinSol_cuSolverSp_batchQR (C function), 442
SUNLinSol_cuSolverSp_batchQR_GetDescription (C

function), 443
SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace (C

function), 443
SUNLinSol_cuSolverSp_batchQR_SetDescription (C

function), 443
SUNLinSol_Dense (C function), 424
SUNLinSol_KLU (C function), 431
SUNLinSol_KLUGetCommon (C function), 432
SUNLinSol_KLUGetNumeric (C function), 432
SUNLinSol_KLUGetSymbolic (C function), 432
SUNLinSol_KLUReInit (C function), 432
SUNLinSol_KLUSetOrdering (C function), 432
SUNLinSol_LapackBand (C function), 429
SUNLinSol_LapackDense (C function), 427
SUNLinSol_MagmaDense (C function), 444
SUNLinSol_MagmaDense_SetAsync (C function), 444
SUNLinSol_PCG (C function), 466
SUNLinSol_PCGSetMaxl (C function), 466
SUNLinSol_PCGSetPrecType (C function), 466
SUNLinSol_SPBCGS (C function), 456
SUNLinSol_SPBCGSSetMaxl (C function), 456
SUNLinSol_SPBCGSSetPrecType (C function), 456
SUNLinSol_SPFGMR (C function), 450
SUNLinSol_SPFGMRSetGSType (C function), 451
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SUNLinSol_SPFGMRSetMaxRestarts (C function), 451
SUNLinSol_SPFGMRSetPrecType (C function), 451
SUNLinSol_SPGMR (C function), 445
SUNLinSol_SPGMRSetGSType (C function), 445
SUNLinSol_SPGMRSetMaxRestarts (C function), 446
SUNLinSol_SPGMRSetPrecType (C function), 445
SUNLinSol_SPTFQMR (C function), 460
SUNLinSol_SPTFQMRSetMaxl (C function), 461
SUNLinSol_SPTFQMRSetPrecType (C function), 461
SUNLinSol_SuperLUDIST (C function), 436
SUNLinSol_SuperLUDIST_GetBerr (C function), 436
SUNLinSol_SuperLUDIST_GetGridinfo (C function),

436
SUNLinSol_SuperLUDIST_GetLUstruct (C function),

436
SUNLinSol_SuperLUDIST_GetScalePermstruct (C

function), 436
SUNLinSol_SuperLUDIST_GetSOLVEstruct (C func-

tion), 436
SUNLinSol_SuperLUDIST_GetSuperLUOptions (C

function), 436
SUNLinSol_SuperLUDIST_GetSuperLUStat (C func-

tion), 436
SUNLinSol_SuperLUMT (C function), 438
SUNLinSol_SuperLUMTSetOrdering (C function), 439
SUNLinSolFree (C function), 414
SUNLinSolFreeEmpty (C function), 419
SUNLinSolGetID (C function), 413
SUNLinSolGetType (C function), 412
SUNLinSolInitialize (C function), 413
SUNLinSolLastFlag (C function), 415
SUNLinSolNewEmpty (C function), 419
SUNLinSolNumIters (C function), 415
SUNLinSolResid (C function), 415
SUNLinSolResNorm (C function), 415
SUNLinSolSetATimes (C function), 414
SUNLinSolSetInfoFile_PCG (C function), 466
SUNLinSolSetInfoFile_SPBCGS (C function), 456
SUNLinSolSetInfoFile_SPFGMR (C function), 451
SUNLinSolSetInfoFile_SPGMR (C function), 446
SUNLinSolSetInfoFile_SPTFQMR (C function), 461
SUNLinSolSetPreconditioner (C function), 414
SUNLinSolSetPrintLevel_PCG (C function), 467
SUNLinSolSetPrintLevel_SPBCGS (C function), 457
SUNLinSolSetPrintLevel_SPFGMR (C function), 451
SUNLinSolSetPrintLevel_SPGMR (C function), 446
SUNLinSolSetPrintLevel_SPTFQMR (C function), 461
SUNLinSolSetScalingVectors (C function), 415
SUNLinSolSetup (C function), 413
SUNLinSolSolve (C function), 413
SUNLinSolSpace (C function), 416
SUNMatClone (C function), 381
SUNMatCopy (C function), 382
SUNMatCopyOps (C function), 380

SUNMatDestroy (C function), 381
SUNMatFreeEmpty (C function), 381
SUNMatGetID (C function), 381
SUNMatMatvec (C function), 383
SUNMatMatvecSetup (C function), 382
SUNMatNewEmpty (C function), 380
SUNMatrix_cuSparse_BlockColumns (C function), 399
SUNMatrix_cuSparse_BlockData (C function), 399
SUNMatrix_cuSparse_BlockNNZ (C function), 399
SUNMatrix_cuSparse_BlockRows (C function), 399
SUNMatrix_cuSparse_Columns (C function), 398
SUNMatrix_cuSparse_CopyFromDevice (C function),

399
SUNMatrix_cuSparse_CopyToDevice (C function), 399
SUNMatrix_cuSparse_Data (C function), 399
SUNMatrix_cuSparse_IndexPointers (C function), 399
SUNMatrix_cuSparse_IndexValues (C function), 399
SUNMatrix_cuSparse_MakeCSR (C function), 398
SUNMatrix_cuSparse_MatDescr (C function), 399
SUNMatrix_cuSparse_NewBlockCSR (C function), 398
SUNMatrix_cuSparse_NewCSR (C function), 398
SUNMatrix_cuSparse_NNZ (C function), 399
SUNMatrix_cuSparse_NumBlocks (C function), 399
SUNMatrix_cuSparse_Rows (C function), 398
SUNMatrix_cuSparse_SetFixedPattern (C function), 400
SUNMatrix_cuSparse_SetKernelExecPolicy (C func-

tion), 400
SUNMatrix_cuSparse_SparseType (C function), 399
SUNMatrix_MagmaDense (C function), 388
SUNMatrix_MagmaDense_Block (C function), 390
SUNMatrix_MagmaDense_BlockColumn (C function),

390
SUNMatrix_MagmaDense_BlockColumns (C function),

389
SUNMatrix_MagmaDense_BlockData (C function), 390
SUNMatrix_MagmaDense_BlockRows (C function),

389
SUNMatrix_MagmaDense_Column (C function), 390
SUNMatrix_MagmaDense_Columns (C function), 389
SUNMatrix_MagmaDense_CopyFromDevice (C func-

tion), 391
SUNMatrix_MagmaDense_CopyToDevice (C function),

391
SUNMatrix_MagmaDense_Data (C function), 389
SUNMatrix_MagmaDense_LData (C function), 389
SUNMatrix_MagmaDense_NumBlocks (C function),

389
SUNMatrix_MagmaDense_Rows (C function), 388
SUNMatrix_MagmaDenseBlock (C function), 388
SUNMatrix_SLUNRloc (C function), 407
SUNMatrix_SLUNRloc_OwnData (C function), 408
SUNMatrix_SLUNRloc_Print (C function), 407
SUNMatrix_SLUNRloc_ProcessGrid (C function), 407
SUNMatrix_SLUNRloc_SuperMatrix (C function), 407
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SUNMatScaleAdd (C function), 382
SUNMatScaleAddI (C function), 382
SUNMatSpace (C function), 382
SUNMatZero (C function), 382
SUNMemoryHelper_Alias (C function), 499
SUNMemoryHelper_Alloc (C function), 498
SUNMemoryHelper_Alloc_Cuda (C function), 501
SUNMemoryHelper_Alloc_Hip (C function), 503
SUNMemoryHelper_Alloc_Sycl (C function), 504
SUNMemoryHelper_Clone (C function), 500
SUNMemoryHelper_Copy (C function), 498
SUNMemoryHelper_Copy_Cuda (C function), 502
SUNMemoryHelper_Copy_Hip (C function), 503
SUNMemoryHelper_Copy_Sycl (C function), 505
SUNMemoryHelper_CopyAsync (C function), 500, 502,

503, 505
SUNMemoryHelper_CopyOps (C function), 499
SUNMemoryHelper_Cuda (C function), 501
SUNMemoryHelper_Dealloc (C function), 498
SUNMemoryHelper_Dealloc_Cuda (C function), 501
SUNMemoryHelper_Dealloc_Hip (C function), 503
SUNMemoryHelper_Dealloc_Sycl (C function), 505
SUNMemoryHelper_Destroy (C function), 500
SUNMemoryHelper_Hip (C function), 502
SUNMemoryHelper_NewEmpty (C function), 499
SUNMemoryHelper_Sycl (C function), 504
SUNMemoryHelper_Wrap (C function), 499
SUNNonlinSol_FixedPoint (C function), 491
SUNNonlinSol_Newton (C function), 487
SUNNonlinSol_PetscSNES (C function), 495
SUNNonlinSolConvTestFn (C type), 478
SUNNonlinSolFree (C function), 475
SUNNonlinSolFreeEmpty (C function), 481
SUNNonlinSolGetCurIter (C function), 477
SUNNonlinSolGetNumConvFails (C function), 477
SUNNonlinSolGetNumIters (C function), 477
SUNNonlinSolGetPetscError_PetscSNES (C function),

495
SUNNonlinSolGetSNES_PetscSNES (C function), 495
SUNNonlinSolGetSysFn_FixedPoint (C function), 491
SUNNonlinSolGetSysFn_Newton (C function), 487
SUNNonlinSolGetSysFn_PetscSNES (C function), 496
SUNNonlinSolGetType (C function), 474
SUNNonlinSolInitialize (C function), 474
SUNNonlinSolLSetupFn (C type), 478
SUNNonlinSolLSolveFn (C type), 478
SUNNonlinSolNewEmpty (C function), 481
SUNNonlinSolSetConvTestFn (C function), 476
SUNNonlinSolSetDamping_FixedPoint (C function),

491
SUNNonlinSolSetInfoFile_FixedPoint (C function), 491
SUNNonlinSolSetInfoFile_Newton (C function), 487
SUNNonlinSolSetLSetupFn (C function), 475
SUNNonlinSolSetLSolveFn (C function), 476

SUNNonlinSolSetMaxIters (C function), 476
SUNNonlinSolSetPrintLevel_FixedPoint (C function),

492
SUNNonlinSolSetPrintLevel_Newton (C function), 488
SUNNonlinSolSetSysFn (C function), 475
SUNNonlinSolSetup (C function), 474
SUNNonlinSolSolve (C function), 474
SUNNonlinSolSysFn (C type), 477
SUNPCG (C function), 467
SUNPCGSetMaxl (C function), 467
SUNPCGSetPrecType (C function), 467
SUNSparseFromBandMatrix (C function), 405
SUNSparseFromDenseMatrix (C function), 405
SUNSparseMatrix (C function), 405
SUNSparseMatrix_Columns (C function), 405
SUNSparseMatrix_Data (C function), 405
SUNSparseMatrix_IndexPointers (C function), 406
SUNSparseMatrix_IndexValues (C function), 406
SUNSparseMatrix_NNZ (C function), 405
SUNSparseMatrix_NP (C function), 405
SUNSparseMatrix_Print (C function), 405
SUNSparseMatrix_Realloc (C function), 405
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