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Abstract

The apparent warming of Earth’s surface during the 20th century may be biased by large

changes in the coverage of surface temperature measurements since 1900. We investigate

this issue using climate model simulations. By imposing observed coverage changes on

simulated surface temperatures, we obtain estimates of 20th-century temperature-change for

both full global coverage and for actual historical coverage. In 10 of 16 simulations

including human climate perturbations, the temperature change from globally complete

model output is significantly larger than that derived from historically-masked model

output. The remaining 6 simulations show no significant difference between complete and

masked model output. Thus, our results do not support the hypothesis that the increase in

Earth’s surface temperature has been overestimated due to incomplete observational data.

Rather, if the simulations we analyzed are realistic, the true temperature increase over the last

century is slightly larger than that estimated from available observations. We also analyzed 8

simulations of natural internal climate variability which omit human climate perturbations.

In none of these simulations does the temperature change during 100 years—whether

obtained from globally complete or masked model output—come close to the observed 20th

century temperature increase.

Introduction

The increase in near-surface air temperature (SAT) since 1900 has been estimated

from observations that do not completely cover the Earth's surface. The fraction of the



surface that is sampled has changed markedly over the past 140 years (Jones, 1994; Jones et

al., 1999; Parker et al., 1994; Nicholls et al., 1996), from roughly 17% in 1860 to 40% in

1900, reaching a maximum of 87% in 1987. These two factors–incomplete measurement

coverage, and large, non-random changes in measurement coverage with time–introduce

uncertainties in estimates of global-scale SAT changes. Singer (1999) has argued that these

effects markedly bias the estimated global-mean trend of ca. 0.6°C over the past century.

Several attempts have been made to quantify the effects of incomplete, time-varying

coverage on the apparent temperature trend. “Frozen grid” methods analyze a limited

subset of grid-points that are continuously available over some stipulated period (Jones et

al., 1986a,b). Such results are then compared to those from grids with time-varying

coverage. This allows estimation of the effects of coverage changes, but does not allow

estimation of errors introduced by neglecting to sample certain geographical regions. Other

methods for estimating sampling errors include optimal averaging techniques (Smith et al.,

1994), or methods that attempt to assess correlation length scales, i.e., the effective spatial

representativeness of measurements in individual grid-boxes (Jones et al. 1997).

Another approach is to estimate near-surface temperature sampling errors using the

globally-complete output from climate models. Such work has focussed mainly on climate

model control integrations, which simulate internal climate variability only (omitting

changes in greenhouse gases, anthropogenic aerosols, solar variability, volcanic dust, and

other forcings). These integrations have been used to verify empirical estimates of

correlation length scales and spatial degrees of freedom (Jones et al., 1997; Madden et al.,

1993). Karl et al. (1994) used a climate model simulation of increasing atmospheric CO2 to

assess the impact of incomplete and time-varying measurement coverage on century

timescale estimates of surface temperature change. Karl et al. estimated that the sampling

error was an order of magnitude smaller than the observed change of roughly 0.6°C since

1900.

Here, we extend the Karl et al. analysis to 24 simulations performed with coupled

atmosphere-ocean General Circulation Models (GCMs; Table 1). Sixteen of these

simulations include effects of estimated historical changes in both greenhouse gases and

anthropogenic sulfate aerosols. Forcing changes due to volcanoes and solar luminosity

variations are not represented. The remaining 8 are unforced “control” simulations. We



analyzed both types of simulations to investigate whether sampling errors are markedly

different in forced and unforced experiments. The use of multiple models, driven by similar

forcing histories, provides information on how sampling errors depend on uncertainties in

the specified climate forcing, the model-predicted climate response, and simulated natural

temperature variability.

Data Analysis

We obtain measurement coverage information from a dataset of sea-surface

temperatures (SSTs) merged with 2m temperatures over land (Jones, 1994; Jones et al.,

1999; Parker et al., 1994). This data set consists of observations in the form of monthly-

mean anomalies (relative to climatological monthly means over 1961-1990) on a 5° by 5°

latitude/longitude grid. They span the period January 1856 through December 1998.

Annual-mean anomalies were calculated from the monthly-mean observed data. Simulated

SATs were processed in a way analogous to the observations, yielding annual-mean

anomalies. Simulated temperature anomalies were interpolated to the same 5° by 5° grid as

the observations. One difference between the observed and simulated temperatures is that

the number of observations within a 5° by 5° grid varies in space and time; in our analyses

of simulated temperatures, we have not represented any effect this might have on global-

mean temperature anomalies. From the grid-transformed model annual anomaly data we

computed both ‘true’ spatial averages, 〈Mt〉  based on globally complete model output, and

‘masked’ spatial averages 〈Mt
*〉  based on the imposed observed coverage. Figure 1 shows

both ‘true’ and ‘masked’ spatial averages for one specific climate-change integration.

Next, we operate on the difference time series 〈∆Dt〉 = 〈Mt
*〉− 〈Mt〉  for each model

integration. We fit least-squares linear trends β̂1 to 〈∆D t〉, on timescales ranging from 30

years to the total length of each model simulation. Thus β̂1 and its estimated standard error

se provide estimates of the difference trend (and its attendant statistical uncertainty) arising

from incomplete and time-varying observational coverage. Since there is much variability

common to 〈Mt〉 and 〈Mt
*〉 , the difference time series 〈∆D t〉  is relatively noise-free; it thus

provides an accurate measure of the effects of coverage changes on the apparent

temperature trend.



Results

Figure 2 shows values of β̂1 and associated 95% confidence intervals, adjusted for

autocorrelation effects (as in Santer et al., 2000) for climate change and control

simulations. For each climate-change simulation, we derive temperature difference trends

for the period 1899-1998 (except for the CCCMA simulations, which start in 1900). In

addition, for simulations which start as far back as 1860, we analyze the period 1860-1998

(Table 1). For each control simulation, we analyze segment(s) having the same length as the

climate change simulation performed with the same model (Table 1). If the line of zero

difference trend in Figure 2 is encompassed by the adjusted 95% confidence interval, we

conclude that the imposed observational coverage does not have a significant impact on the

estimate of the ‘true’ trend.

Six of 16 climate-change simulations yield trend errors that are consistent with zero.

These comparatively small values are in good agreement with earlier error estimates of

roughly 0.05°C/100 years obtained by Karl et al. (1994). However, we also find that missing

data leads to significant underestimates of the true global trend in 10 of the 16 climate

change simulations we analyzed. None of the 16 climate change simulations show a

significant overestimate of the true temperature trend.

The largest possible trend errors in the climate change simulations are +0.06 ±

0.07°C/100 years (MPI) and -0.13 ± 0.04°C/100 years (CCCMA GS3). Thus, if the

simulations analyzed here provide credible estimates of human effects on historical climate,

it is unlikely that missing observational data have significantly biased the observed near-

surface temperature trend of ca. 0.6°C over the past century. It is possible that the true

global-scale temperature change over the past century was larger than the change estimated

from incomplete observations. Our analyses of data over the period 1860-1998 suggest that

similar conclusions hold for this longer period.

We also investigated coverage effects on trends for the 30-year and 50-year periods

ending in 1998. For both periods, only 3 of 16 perturbation simulations had significant

trends in the temperature differences (masked vs. globally complete model output). It is

expected that difference trends will be smaller for these analysis periods than for 1899-



1998, since coverage is greater and coverage changes are smaller in the second half of the

20th century.

For the control simulations we find that 4 of 8 simulations have temperature

difference trends that are consistent with zero, and three simulations have difference trends

which are significantly less than zero (meaning that the ‘true’ global-mean trend is greater

than that estimated from incomplete data). The difference trend is significantly greater than

zero in only one simulation. The largest possible trend errors in the control simulations are

+0.14 ± 0.04°C/100 years (MPI) and -0.08 ± 0.06°C/100 years (CSM). From this small

sample of control run results, there is no compelling evidence that coverage changes

introduce an overall bias in century-timescale temperature trend estimates. This is in

apparent contrast to results from perturbed runs. Temperature trends in the control

simulations never exceed ca. +0.25°C/140 years, regardless of whether they are computed

from full coverage or masked model data. This suggests that natural internal variability

alone (as simulated in the models considered here) cannot fully explain the observed

global-scale temperature changes over the last century. This, confirms earlier work (e.g.

Wigley and Raper, 1990; Stouffer et al., 1994).

In the climate change experiments, therefore, incomplete coverage leads to a larger

fraction of significant trend underestimates (63%) than in the control integrations (38%).

The significance of this difference is difficult to evaluate given the small sample sizes (16

and 8, respectively). One possible explanation for this result is that the significant difference

trends found in most of the climate change simulations we analyzed are due to

geographically varying responses to human-induced climate perturbations. Most climate

models show enhanced warming at high latitudes in response to increases in greenhouse

gases (Kattenberg et al., 1996). These regions are systematically undersampled by historical

coverage of surface temperature observations, so that simulated temperature increases

derived using observed coverage tend to underestimate the “true” simulated global-mean

temperature increase.

We also looked at the issue of how missing observational data affects estimates of

rank-ordering of years by temperature – i.e., which year was the warmest globally, second

warmest, etc. (Karl et al., 1999). For each of the 16 climate change simulations considered



here, we ranked the years in order of decreasing global-mean annual-mean temperature

anomaly. This was done using both globally complete and masked model output.

In 10 out of 16 simulations, the estimate of the warmest year in the last century

based on the masked model output agrees with the “true” answer obtained from the

globally complete model data. However, estimates of the three (five) warmest years

(including their relative ranking) in the masked and globally-complete model output agree

in only 3 (2) of 16 simulations. In two cases, the year that is the warmest based on globally

complete model output is not among the three warmest when estimates are made from

masked model output. Thus, even though the warmest years occurred during the last 1-2

decades, when observational coverage was relatively good, estimates of the relative ranking

of the warmest years are still sensitive to sampling errors induced by incomplete and time-

varying coverage of observational data.

Discussion and Conclusions

The causes of the range of difference trends (masked minus global coverage) shown

in Figure 2 include differences in the applied forcings, in the simulated response to these

forcings, and in the models’ natural internal variability. Response and internal variability

differences are likely related to differences in model physics, resolution, spin-up, and flux

correction procedures. It may be significant that the two models that show the largest

positive difference trends in Figure 2a (CCSR and MPI) also show similar areas of rapid

cooling in the Southern Ocean and parts of Antarctica. This cooling may represent low-

frequency internal climate variability, or may be an artifact of incomplete model spinup.

The evidence presented here suggests that the observed near-surface temperature

trend of ca. 0.6°C over 1900 to 1998 is unlikely to have been significantly overestimated by

incomplete and time-varying observed data coverage. This conclusion is consistent with the

results of earlier analyses (Jones et al., 1997; Karl et al., 1994). Based on the climate-change

experiments considered here, a slight underestimate of the true trend is a more probable

result. This conclusion depends on the realism of the applied forcings, the simulated

response to these forcings, and the models’ representation of natural internal climate

variability.
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Figure 1: Near-surface temperature anomalies from the CCCMA GS3 integration. Model

results are shown for both globally-complete results and for model results masked  to

„exclude areas where observations are missing. The temperature change during 1900-

1998 obtained using historical observational coverage is slightly smaller than the "true"

trend computed with globally complete model output (see Fig. 2).
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Figure 2: Difference trends (masked minus globally complete model output) and 95%

confidence intervals for the climate change simulations (upper panel) and control

simulations (lower panel) given in Table 1. Confidence intervals are adjusted for

temporal autocorrelation effects, as in Santer et al., (2000). We show difference trends

over the period 1899-1998 (except for the CCCMA simulations, where only 99 years

were available; see Table 1). For 11 simulations we also considered the 139-year

period 1860-1998 (open circles). All difference trends are expressed in degrees C/100

years. Integrations with confidence intervals completely below the zero line have "true"

global trends that are significantly larger than the trends estimated with historical

coverage.



Table 1: Climate Model Simulations Analyzed.

Institution* Model Simulation Forcings ⁄ Dates
Analyzed

Reference

CCCMA CGCM1 control present climate 99 years Boer et al.
GS1 GHG + SO4  1900 - 1998 (2000a,b)
GS2 GHG + SO4 1900 - 1998
GS3 GHG + SO4 1900 - 1998

CCSR CCSR-98 control present climate 100 years Emori et al.
GHG + SO4 1899 - 1998 (1999)

CSIRO Mk2 control present climate 100 years Hirst et al.
(2000); Gordon
and O Farrell

GS GHG + SO4 1899 - 1998 (1997)
NCAR CSM control present climate 100 years Boville and Gent

GHG + SO4 1899 - 1998 (1998)
GFDL control present climate 100 years

139 years
Manabe and

Stouffer (1996);
GS GHG + SO4 1899 - 1998

1860 - 1998
Haywood et al.

(1997)
UKMO HadCM2 control present climate 100 years

139 years
Mitchell et al.

(1995); Johns et
GS1 GHG + SO4 1899 - 1998

1860 - 1998
al. (1997)

GS2 GHG + SO4 1899 - 1998
1861 - 1998

GS3 GHG + SO4 1899 - 1998
1860 - 1998

GS4 GHG + SO4 1899 - 1998
1860 -  1998

HadCM3 GS GHG + SO4 1899 - 1998
1860 - 1998

MPI ECHAM4/OP
YC

control present climate 100 years
139 years

Roeckner et al.
(1999);

GSD GHG + SO4 1899 - 1998
1860 - 1998

Bengtsson et al.
(1999)

DOE/NCAR PCM control present climate 100 years
139 years

Washington et
al. (2000)

DOE/NCAR PCM B05.09 GHG + SO4 1899 - 1998
B05.17 GHG + SO4 1899 - 1998
B06.08 GHG + SO4 1899 - 1998

* CCCMA: Canadian Centre for Climate Modeling and Analysis; CCSR: Japanese Centre for Climate
System Research; CSIRO: Australian Commonwealth Scientific and Industrial Research Organization;
NCAR: National Center for Atmospheric Research; GFDL: Geophysical Fluid Dynamics Laboratory;
UKMO: United Kingdom Meteorological Office; MPI: Max-Planck Institute for Meteorology; DOE/NCAR:
Dept. of Energy/National Center for Atmospheric Research.

 CGCM1: Canadian Global Coupled Model, version 1; CCSR-98: Japanese Centre for Climate System
Research, version 1998; Mk2: Mark 2; CSM: Climate System Model; HadCM2,3: Hadley Centre for
Climate Prediction and Research Coupled Model, versions 2 and 3; ECHAM4/OPYC: ECMWF/Hamburg
atmospheric GCM, coupled to Hamburg isopycnal ocean model; PCM: Parallel Climate Model.
 CCCMA experiments GS1, GS2, and GS3 have identical forcing, but each starts from slightly
different initial conditions. The same applies to the UKMO experiments GS1, GS2, GS3 and GS4.
Control simulations have time invariant concentrations of greenhouse gases and sulfate aerosols.
⁄ GHG + SO4: includes radiative effects of well-mixed greenhouses gases and direct effects of
anthropogenic sulfate aerosols.


