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Abstract

In this paper, we discuss the computation and use of solution sensitivities for ana-
lyzing radiation diffusion problems and the dependence of solutions on input param-
eters. The derivation of the sensitivity equations is given, along with a description of
the method for solving them in tandem with the simulation. The parameter values
express material opacity as a power-law of material temperature and density. The
computed sensitivities reveal important qualitative details about the temperature
coupling and diffusion processes. It is also shown that these sensitivities are valuable
for ranking the parameters from most to least influential, designing improved exper-
iments, and quantifying uncertainty in the simulation results. Lastly, the numerical
examples show that these various types of sensitivity analysis are only moderately
expensive to perform relative to solving the simulation by itself.
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1 Introduction

The computer has become the virtual laboratory. In recent years, the rapid growth in com-
puter memory and speed has meant that multiphysics complex physical systems operating
in two and three dimensions can be simulated, analyzed and quantitative information ex-
tracted. The need to quantitatively predict physical phenomena means that the sensitivity
of our answers to uncertainties in the parameters making up physical models used in sim-
ulations must be made known. Otherwise, comparisons between simulation and experiment
are of reduced value.

Simulations of astrophysical and inertial confinement fusion (ICF) phenomena are good ex-
amples of areas where computer simulations are relied on for virtual experimentation [1–3].
Both areas involve multiple physics models (hydrodynamics, radiation transport, thermonu-
clear burn) which depend on such quantities as equations of state, thermonuclear reaction
rates, and opacities. Due to the nature of the equations involved, the various physics pro-
cesses tend to couple to each other nonlinearly. Hence, uncertainty in a parameter in one
physics model can affect other physics models in sometimes unexpected ways. Before we can
tackle the sensitivity of solutions in the multiphysics context, however, it is important to
understand solution sensitivity for an isolated physics model. Of particular interest in this
paper is radiation diffusion.

In radiation diffusion, one area of concern is the understanding of temperature and density
dependencies within opacity values. In particular, the opacity tends to be a rather strong
function of temperature in grey radiation diffusion. The calculation of opacities has given rise
to sophisticated codes that compute the detailed many-body physics of plasmas [4–6]. These
codes have, in turn, given rise to opacity databases. For our purposes, we will consider opacity
as a parameterized function of material temperature and density. One of the main objectives
then is to quantify the sensitivity of our radiation calculations with respect to parameters
used to characterize the dependencies of opacity on material density and temperatures.

A common method of computing solution sensitivities is to run a simulation code for many
values of the uncertain parameter and then difference the resulting solutions. The technique
used is a finite difference method for computing sensitivities and can be inaccurate unless
many runs of the simulation code are included. The method is time-consuming, especially
for codes that require extensive run time for their solution. An alternative method is to
formulate an equation for the solution sensitivities and evolve that equation along with the
original physical system. The resulting method simultaneously gives the solution and its
sensitivity, requiring a single run of the simulation code. The run time for this method is
longer than for the simulation alone, but gives much more information.

In this work, the sensitivities are evolved in time along with the solution. Since sensitivities
are defined as the first derivative of the solution with respect to the model parameter, we
can develop an equation for the sensitivities by simply differentiating the original model
problem with respect to the parameter. This is done for each parameter that we study.
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Previous work in the area of linear Boltzmann Transport has shown that this method of
doing sensitivity analysis can lead to accurate estimates of uncertainties in much faster
times than a sampling approach [7]. Previous work has also showed that sensitivities can
be evolved in time to effectively give solution sensitivities for equations similar to those
governing radiation diffusion [8–11].

In this work, we show how this approach is formulated and we demonstrate the application
and versatility of carrying out sensitivity analysis experiments on radiation diffusion prob-
lems. To illustrate the method with little sacrifice of reality, we have opted to choose an
analytic representation for the opacity. We show how sensitivities are calculated and used
to determine the most critical parameters for different materials. In addition, we show how
sensitivities can be used to make an estimate of the solution error due to uncertainty in the
opacity parameters. The cost of these methods varies from problem to problem, but it has
been a modest multiple of the time it takes for a solution-only calculation.

An important aspect of doing sensitivity analysis as we present in this paper is that the
calculations of sensitivities require opacities to be handled in a fully implicit manner. Fully
implicit methods for radiation diffusion have been a very active area of research recently.
Solution techniques for fully implicit methods have been developed for both multigroup
and grey formulations [12–17]. These methods have been shown to produce very accurate
solutions faster than semi-implicit methods on problems in 1, 2, and 3 dimensions as well
as in parallel [18–20]. With these advances, the opportunity to compute sensitivities for
radiation diffusion problems can easily be realized.

An outline of this paper is as follows. In section 2, we describe our general model for radiation
diffusion and in section 3, we describe our numerical approach to computing solutions and
sensitivities. In section 4, the details of the model problems are described. In section 5, we
give our numerical results, and in section 6, we describe how our sensitivity computations
can be used to gain further insight into the solutions we compute. Lastly, section 7 gives our
conclusions.

2 Flux-Limited Radiation Diffusion Model

We consider a sensitivity analysis of the flux-limited grey radiation diffusion equation given
by [3,21]

∂ER

∂t
= ∇ ·


 c

3ρκR(TR) +
‖∇ER‖
ER

∇ER


+ cρκP (TM) ·

(
aT 4

M − ER

)
, (1)

where ER(x, t) is the radiation energy density (x = (x, y, z)), TM(x, t) is the material tem-
perature, ρ(x) is the material density, c is the speed of light, and a = 4σ/c where σ is the
Stephan–Boltzmann constant. In the limiter, the norm ‖·‖ is just the l2 norm of the gradient
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vector. The Rosseland opacity, κR, is a nonlinear function of the density and the radiation
temperature, TR, which is defined by the relation ER = aT 4

R. The Planck opacity, κP , is a
nonlinear function of density and material temperature, TM , which is related to the material
energy through an equation of state, EM = EOS(TM).

Eq. (1) is coupled to an equation expressing conservation of material energy given by

∂EM

∂t
= −cρκP (TM) ·

(
aT 4

M − ER

)
. (2)

We consider Dirichlet and Neumann boundary conditions for the system (1)–(2), and we
apply appropriate initial conditions, ER|t=0 = a(TR|t=0)

4 and EM |t=0 = EOS(TM |t=0).

As discussed in [22,23], the Rosseland and Planck opacities are taken to be parameterized
functions of temperature and density given by

κ(T, ρ) = bT µρλ. (3)

Although [22,23] give specific values of b, µ, and λ for a number of materials, experimental
error usually makes the precise values of these parameters difficult to quantify, giving rise to
uncertainty in the solution of the diffusion equations. In addition, the relative importance
of these parameters can change for various materials. In this paper, we describe a method
for calculating sensitivities of the solutions to the three parameters given in (3). These
sensitivities can then be used to evaluate the relative importance of the parameters as well
as estimate error in the solution energies and temperatures due to small uncertainties in
parameter values.

3 Solution and Sensitivity Methods

In this section, we discuss the solution and sensitivity methods employed for the system
given in (1)-(2). We first show how we discretize the system in space, then discuss our use
of ordinary differential equation (ODE) time integration techniques and solvers. Lastly, we
show how the solution method is easily extended to compute sensitivities.

3.1 Discretization

For spatial discretization, we employ a cell-centered finite difference approach. We use a
tensor product grid with Nx, Ny, and Nz cells in the x, y, and z directions, respectively.
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Defining ER,i,j,k(t) ≈ ER(xi,j,k, t) and EM,i,j,k(t) ≈ EM(xi,j,k, t), with xi,j,k = (xi, yj, zk), and

ER ≡




ER,1,1,1

...

ER,Nx,Ny ,Nz



and EM ≡




EM,1,1,1

...

EM,Nx,Ny ,Nz



,

we can write our discrete equations in terms of a discrete diffusion operator given by

L(ER) ≡
(
L1,1,1(ER), · · · , LNx,Ny ,Nz(ER)

)T
, (4)

and a local coupling operator given by

S(ER,EM) ≡ (S1,1,1(ER,EM), · · · , SNx,Ny ,Nz(ER,EM))
T , (5)

where

Li,j,k(ER)=




c

3ρi+1/2,j,kκR,i+1/2,j,k +
‖∇ER‖i+1/2,j,k

ER,i+1/2,j,k

ER,i+1,j,k − ER,i,j,k

∆xi+1/2,j,k

−
c

3ρi−1/2,j,kκR,i−1/2,j,k +
‖∇ER‖i−1/2,j,k

ER,i−1/2,j,k

ER,i,j,k − ER,i−1,j,k

∆xi−1/2,j,k


 /∆xi (6)

+ y and z terms,

and

Si,j,k(ER,i,j,k, EM,i,j,k) = cρi,j,kκP,i,j,k
(
aT 4

M,i,j,k − ER,i,j,k

)
. (7)

Thus, our discrete scheme is to find ER(t) and EM(t) such that,

dER

dt
= L(ER) + S(ER,EM) (8)

dEM

dt
= −S(ER,EM). (9)

We write (8)-(9) as a single system of ODEs by defining the solution vector and nonlinear
function as

y ≡



ER

EM


 and f ≡



L(ER) + S(ER,EM)

−S(ER,EM)


 .
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Thus, our discrete ODE system is given by

dy

dt
= f(t, y). (10)

3.2 Solution Method

The time integration of the ODE system (10) is accomplished via the parallel ODE solver
CVODE [24], a software package written in the C language for the solution of general ODE
systems. CVODE uses the Backward Differentiation Formula (BDF) [25,26] methods to
perform the time integration. The BDF methods are variable in order and step size and are
also implicit. This method results in a coupled, nonlinear system of the form

yn =
q∑

j=1

αjyn−j +∆tβ0f(tn, yn) (11)

that must be solved for the solution, yn, at the new time, tn. In this system, q is the order of
the method used at that step, and β0 is a coefficient related to the order of the method. For
example, solving the ODE system with the backward Euler method (i.e., the BDF method
of order 1), leads to the following nonlinear system

0 = G(y) ≡ y −∆tf(tn, y)− yn−1

(
i.e.,

yn − yn−1

∆t
= f(tn, yn)

)
(12)

that must be solved for y = yn at each time step. For the solution of the nonlinear systems,
we use an inexact Newton–Krylov method with Jacobian-vector products approximated by
finite differences of the form

G′(y)v ≈
G(y + θv)−G(y)

θ
, (13)

where θ is a scalar. An explicit predictor value is used as the initial guess for the nonlinear
system. Within the Newton–Krylov paradigm using (13), only the implementation of the
nonlinear function is necessary, and Jacobian matrix entries need never be formed or stored.
Heuristic arguments for the case of systems arising from the implicit integration of ODEs
show that θ = 1 works quite well [27] and is the choice used in CVODE. Finally, an explicit
predictor, yn(0), is used as an initial guess to the nonlinear system (12).

We use the GMRES Krylov iterative solver for solution of the linear Jacobian system at
each Newton iteration [28]. Preconditioning is generally essential when using Krylov linear
solvers, and we employ a number of techniques including lagging and multigrid [29] within
our preconditioning strategy. The solution method presented above has been tested on very
large, three-dimensional problems and has been shown to be parallel scalable up to almost
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6,000 processors. As the focus of this paper is on the calculation of solution sensitivities, the
specific details of the preconditioning method are not discussed here. We refer the interested
reader to the discussion of the Schur Complement method in [14].

3.3 Computation of Sensitivities

In this paper, we examine the effects on solutions to the radiation diffusion model due to
changes in values of the parameters in (3). These effects are measured in sensitivities of the
solutions, defined by

sp ≡
∂y

∂p
=




∂ER

∂p

∂EM

∂p


 , (14)

where p is one of the set of parameters, {µ, b, λ}, and sp is the expected change in ER and
EM due to changes in the parameter p.

We can differentiate the system (10) with respect to one of our opacity parameters to get
the following system

dsp
dt
=

∂f

∂y
sp +

∂f

∂p
, (15)

where p ∈ {µ, b, λ}. Eq. (15) is a linear ODE system that is easily solved with the same
solution methods as described above for the original problem.

We calculate the solution to these equations with the sensitivity version of CVODE [30].
This software augments the ODE system given in (10) with the linear systems (15) for the
sensitivity of the solution with respect to each parameter. Thus, a single ODE system is
solved giving the radiation diffusion solution as well as the sensitivities of that solution to
each of the opacities.

Letting

Y (t) ≡




y(t)

sµ(t)

sb(t)

sλ(t)




, F (t, Y, µ, b, λ) ≡




f

∂f
∂y
sµ +

∂f
∂µ

∂f
∂y
sb +

∂f
∂b

∂f
∂y
sλ +

∂f
∂λ




,
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we have the new ODE system,

dY

dt
= F (t, Y, µ, b, λ).

Given knowledge only of f , computation of the derivatives found in F can be difficult. In
this work, we approximate these derivatives with centered finite difference techniques, e.g.,

∂f

∂y
sµ +

∂f

∂µ
≈

f(t, y + δsµ, µ+ δ, b, λ)− f(t, y − δsµ, µ− δ, b, λ)

2δ
.

A Taylor series analysis shows that this central difference scheme approximates the sensi-
tivity derivative with O(δ2) accuracy. The scalar δ is a heuristically determined value that
attempts to balance the loss of accuracy due to roundoff or truncation error in the differ-
encing technique [30]. One could also use automatic differentiation techniques such as in the
automatic differentiation software ADIC [31].

The sensitivity version of CVODE chooses time steps for the BDF methods so that accuracy
is ensured for both solutions of the radiation diffusion system as well as their sensitivities.
As in CVODE, implicit problems are solved at each time step using GMRES, and the same
preconditioners as are applied for solution of the state variables are applied for solution of
sensitivities.

3.4 Types of sensitivities

In addition to the energy sensitivities, the radiation and material temperature sensitivities
∂TR

∂p
and ∂TM

∂p
can be determined. By differentiating the expressions relating energies and

temperatures with respect to an opacity parameter,

∂ER

∂p
=
(
4aT 3

R

) ∂TR
∂p

(16)

∂EM

∂p
=
∂ EOS(TM)

∂TM

∂TM
∂p

, (17)

the temperature sensitivities can be determined using the energies and their sensitivities.

In our analysis work involving temperatures, the temperature sensitivities are often more
useful if they are scaled by certain quantities. By scaling these sensitivities, one can create
scaled and normalized sensitivities. One notable property of scaled sensitivities such as

µ
∂TR
∂µ

and µ
∂TM
∂µ
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is that they share the same units as the solution quantities TR and TM . These sensitivities
can then be used in a first-order Taylor series expansion, e.g.,

TR(t, µ̃, b, λ)≈TR(t, µ, b, λ) +

(
µ̃− µ

µ

)
µ
∂TR
∂µ

(18)

TM(t, µ̃, b, λ)≈TM(t, µ, b, λ) +

(
µ̃− µ

µ

)
µ
∂TM
∂µ

(19)

to give a first-order prediction of solution values due to small relative changes in nominal

values of a parameter, such as µ̃−µ
µ
. Scaled sensitivities indicate the magnitude and direction

of changes in the nominal solution based on a small relative increase in a nominal parameter
value.

Normalized sensitivities, e.g.,

ηR =

(
µ
∂TR
∂µ

)
/TR and ηM =

(
µ
∂TM
∂µ

)
/TM (20)

can be used to estimate the relative change in the solution

∂TR
TR

=
∂µ

µ
ηR and

∂TM
TM

=
∂µ

µ
ηM

given a relative change in the nominal parameter value, ∂µ
µ
. These sensitivities are dimen-

sionless and are often used to give comparative information about the relative importance
of different parameters within a physical system.

3.5 Sensitivity Software

In recent years, general use packages have become available to aid in the computation of
solution sensitivities using the sensitivity equation method described above.

One such package is CVODES [32] developed at Lawrence Livermore National Laboratory.
This package includes capabilities for augmenting an ODE solver with the sensitivity equa-
tions as discussed above. The ODE solver is CVODE, a C language re-write of the VODPK
package which evolved from LSODE [33]. The CVODES package is written in a “data struc-
ture neutral” manner, meaning that all operations on vectors (the simulation data needed by
the package) are done through a set of pre-defined interfaces to the computational kernels.
Users can either invoke the serial or parallel default vector kernels or supply their own. As a
result, the CVODES package assumes no specific layout or structure to the users’ data, and
the package is reasonably easy to combine with a pre-existing simulation code (as long as the
parameters for sensitivity analysis are handled in an implicit manner). The Livermore group
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will be releasing sensitivity versions of their C language DAE and nonlinear system solvers
soon as part of the SUNDIALS (Suite of Nonlinear and Differential/Algebraic Solvers) suite
[34].

Petzold and others have developed another set of packages for sensitivity analysis of For-
tran codes. The package DASPK3.0 [35–37] is a Fortran package that solves the augmented
system of DAEs and sensitivity equations. This package is also written in a data structure
neutral manner as described above and consequently can also be combined with pre-existing
simulation codes fairly easily.

Both CVODES and DASPK3.0 have hooks for using automatic differentiation codes for the
computation of derivatives in the right-hand side of the sensitivity equations. Automatic
differentiation packages use parsing techniques to differentiate computer codes to get mathe-
matical derivatives. Two popular packages for this functionality are ADIFOR [38] and ADIC
[31] for Fortran and C language codes, respectively.

4 Model problems

We now consider the development, interpretation, and expense of computing sensitivities in
addition to solutions for radiation diffusion problems. For this discussion, we use a suite of
test problems based on aluminum and beryllium. The problems are one dimensional so that
we can concentrate on the meaning and expense of sensitivities without undue expense of
solutions. We chose the materials aluminum and beryllium because they behave somewhat
differently in the regimes in which we look, and thus they require some differences in inter-
pretation. In addition, we look at both closed and open systems so that, again, we can see
some differences in the interpretation of sensitivities. Section 5 will go in depth on the solu-
tions and sensitivities for our problems so that we can demonstrate exactly what sensitivities
mean for radiation diffusion systems. Below, we give specific information on the test cases.

The densities used for aluminum and beryllium are 2.70 and 1.85 g cm−3, respectively. The
analytical formulas for the equation of state

EM =
p∗

(γs − 1)
ραT β

M (21)

and Rosseland mean opacity

κR(T, ρ) = bT µρλ (22)

are based on the parameters given in Table I and are derived from [22]. We further as-
sume that the Planck mean opacity is roughly 5-10 times larger than the Rosseland mean
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TABLE I

Parameters for Equation of State and Rosseland Mean Opacity

Parameter Al Be

α 0.937 0.9976

β 1.145 1.0042

γs 1.43 1.57

p∗ (g1−αcm3α−1µs−2eV −β) 1.99e-1 5.23e-1

b (g−λ−1cm3λ+2eV −µ) 5.0e+7 5.8824e+10

µ -2.0 -4.2

λ 0.3 0.8

opacity [39], and we use the approximation

κP (TM , ρ) = 5κR(TM , ρ). (23)

4.1 Closed system

Our first model problem simulates the diffusion of radiation into a system in which there are
reflecting boundaries. Since total energy is always conserved and all fluxes at the boundaries
are zero, the steady state temperature for the system can easily be computed given

aT 4
steady + EOS(Tsteady) =

∑
(ER(t0) + EM(t0)). (24)

Besides being physically interesting, the closed system problem tells us in a simple and direct
way the degree to which energy is conserved in the code and, consequently, to what level the
sensitivities can be believed. It does no good, for example, to be looking at sensitivities to
1 part in 1000 if the code conserves energy to 1 part in 100; the sensitivities are then merely
reflecting the lack of energy conservation. For the closed system test problems in Section 5,
the relative error in the total energy at steady state is less than 10−9 in magnitude. This
tight energy conservation gives us confidence that the sensitivities quoted in this paper are
indeed due to physics and not numerics.

The radiation diffusion model is solved in the domain 0 ≤ x ≤ 0.1 cm, 0 ≤ y, z ≤ 1 cm
with homogeneous Neumann boundary conditions on all of the faces. For initial conditions,
ER = aT 4

R,0 and EM = EOS(TM,0) where
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TR,0=1000 eV for 0.04 ≤ x ≤ 0.06 cm; otherwise, 200 eV (25)

TM,0=200 eV for 0 ≤ x ≤ 0.1 cm. (26)

The spatial grid was uniform and consisted of 50 × 1 × 1 gridpoints. Before we continue, a
comment is in order concerning the regime of applicability of the Basko analytic form of the
opacity [22]. Technically, our test problems encounter temperature regimes outside of the
range of validity. It must be remembered, however, that we are not trying to simulate an
actual physical experiment, but rather we are merely using it as a reasonable representation
of the opacity so as to elucidate the effects of strong parameter nonlinearity on sensitivity.

4.2 Marshak wave

Our second test problem is the one-dimensional Marshak wave. The radiation diffusion model
is solved in the domain 0 ≤ x ≤ 0.1 cm, 0 ≤ y, z ≤ 1 cm with Dirichlet boundary conditions
of TR = 300 eV at x = 0 cm and TR = 30 eV at x = 0.1 cm and homogeneous Neumann
boundary conditions on the other faces. The initial conditions in the interior were TR,0 =
TM,0 = 30 eV. The spatial grid was uniform and consisted of 50× 1× 1 gridpoints.

5 Numerical results

The purpose of this section is to demonstrate our sensitivity analysis technique as applied to
the model problems described above. In addition to descriptions of solution and sensitivity
behavior, surface and line plots are included to enhance our understanding of the radiation
diffusion process. Our first set of examples simulates radiation diffusion in the closed system
test problem. In particular, we first present a detailed analysis for aluminum and its sensitiv-
ity to the temperature exponent µ. This extended analysis is helpful as a basis for comparison
when other materials or sensitivity parameters are considered. The second set of examples
is for the Marshak wave problem, and we also begin with the results for aluminum and µ.
Lastly, the cost of computing solutions and sensitivities for the test problems is tabulated
and we explain the reasons for the differences in total time to solve the problem.

5.1 Closed system

Our first closed system example is a detailed study of radiation diffusion through a slab
of aluminum. Initial conditions are given in (25). The surface plots in Figure 1 show the
radiation and material temperatures as they vary in time and along the x-axis in space. The
process of material energy transfer is faster and occurs on a shorter time scale than the one
for energy diffusion. To adequately capture the details of these processes, a logarithmic scale
is used for the axis in time. During the first 10−9 µs, the peak value for radiation temperature
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(a) Radiation temperature for aluminum. (b) Material temperature for aluminum.

Fig. 1. Radiation and material temperatures for 1D radiation diffusion through aluminum shown
as surface plots across time and space for the closed system model problem.

decreases and the square-wave profile broadens slightly. The material temperature, however,
has a more noticeable change as the loss of radiation temperature leads to an increase in the
material temperature. This initial increase is governed by the material energy equation (2)
and partly depends on the temperature difference a(T 4

M − T 4
R). The rate of increase also

depends on and is slightly damped by the Planck mean opacity κP (TM , ρ), which decreases
as the material temperature increases. These considerations also help account for the rate
of decrease in the peak radiation temperature since the right-hand side of (2) appears as
a negative source term in the radiation energy equation (1). The critical period between
10−9 and 10−6 µs is when the radiation and material temperatures couple rapidly. The peak
radiation temperature drops below 1000 eV, and the material temperature peaks at 245 eV.
Between 10−6 and 10−3 µs, radiation and material temperatures are nearly in equilibrium
and they begin to diffuse throughout the rest of the spatial domain. The rate of diffusion is
primarily influenced by the Rosseland mean opacity κR(TR, ρ). The diffusion process behaves
like a Marshak wave centered around 0.05 cm with wavefronts that simultaneously move
toward the left and right boundaries as the height of the wave falls. Between 10−3 and 0.1 µs,
the radiation and material temperatures are essentially in equilibrium except the wavefront
for radiation temperature slightly leads that for material temperature. Temperatures range
within [200, 240] eV and eventually approach the common steady state temperature of 209.4
eV after about 0.4 µs.

How sensitive is the above simulation to changes in the nominal values of the mean opacity
parameters? The change in the nominal solutions can be estimated based on a rearrange-
ment of the first-order Taylor series (18)–(19). At each time step, the change in the nominal
solutions is proportional to the scaled sensitivities, and the proportionality factor is the rel-
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(a) Scaled sensitivity for radiation temper-
ature in aluminum.

(b) Scaled sensitivity for material temper-
ature in aluminum.

Fig. 2. Scaled sensitivity with respect to temperature exponent µ for 1D radiation diffusion through
aluminum shown as surface plots across time and space for the closed system model problem.

ative change in the parameter. For example, the surface plots in Figure 2 show the scaled
sensitivities with respect to the temperature exponent µ. The time, location, and nonzero
values indicate when, where, and to what extent the nominal solution is predicted to change.
Physically, a positive relative change in µ increases the mean opacities so that the larger
Planck opacity accelerates the rate at which the radiation and material temperatures cou-
ple and the larger Rosseland opacity impedes the rate at which the coupled temperatures
diffuse before reaching steady state. This information is revealed by the scaled sensitivities
though some skill of interpretation is required. For example, it is important to notice that
the upward sensitivity spike in Figure 2b occurs slightly earlier in time than the material
temperature rise in the nominal solution. This means the material temperature will increase
earlier in time and in proportion to the relative increase in µ. Similarly, the negative sen-
sitivity values corresponding to the downward spike in Figure 2a predicts sharply reduced
values for the nominal radiation temperature. Those lower temperatures correspond to the
radiation temperature dropping sooner in time as it reaches equilibrium with the material
temperature. After 10−6 µs, the later scaled sensitivity values are the same in both surface
plots. As the radiation and material temperatures are essentially in equilibrium, they become
equally sensitive to the same parameter. The elevated values after 10−3 µs indicate that the
nominal temperatures are proportionally higher and do not fall as rapidly to steady state.
Lastly, note that the sensitivity to the Planck and Rosseland mean opacities are decoupled
in time. The downward and upward spikes that occur earlier in time are essentially the
scaled sensitivities with respect to the temperature exponent µ in the Planck mean opacity.
The identical sensitivities that occur later reveal the scaled sensitivities with respect to the
temperature exponent in the Rosseland mean opacity. The gap between 10−6 and 10−3 in
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(a) Radiation temperature for beryllium. (b) Material temperature for beryllium.

Fig. 3. Radiation and material temperatures for 1D radiation diffusion through beryllium shown
as surface plots across time and space for the closed system model problem.

Figure 2b clearly shows the separation for the sensitivity between the coupling and diffusion
processes.

We next consider the case in which beryllium is used for this model problem. Beryllium is
less opaque than aluminum. In this case, the energy transfer governed by the Planck opacity
is less rapid and more time is needed for temperatures to couple. Note that in Figure 3,
the radiation and material temperatures have the same, initial square-wave and flat profiles;
however, the temperature coupling is somewhat delayed until about 10−6 µs. The peak
material temperature is 248.3 eV, and the steady state temperature of 215.7 eV is reached
after about 0.006 µs. It is also evident that the coupling and diffusion processes do not
occur in separate phases. The broadened face for radiation temperature indicates that its
temperature is diffusing even as it falls. The material temperature also shows diffusion to
the boundaries as its peak value is attained. This overlap of processes is also revealed in
the scaled sensitivity plots in Figure 4. The radiation temperature sensitivity shows that the
downward spike has diffused to the boundary. The material temperature sensitivity shows
that the upward spike due to sensitivity in the Planck opacity is fused with the nonzero
sensitivities that come from the Rosseland opacity.

5.2 Marshak wave

For the Marshak wave problem, the behavior of the radiation and material temperatures is
roughly the same whether the material slab is composed of aluminum or beryllium. In the
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(a) Scaled sensitivity for radiation temper-
ature in beryllium.

(b) Scaled sensitivity for material temper-
ature in beryllium.

Fig. 4. Scaled sensitivity with respect to temperature exponent µ for 1D radiation diffusion through
beryllium shown as surface plots across time and space for the closed system model problem.

initial stage, the radiation temperature heats up more rapidly than the material tempera-
ture along the left boundary. As the radiation temperature reaches its peak value, it forms
a wavefront that begins to move across to the right boundary. Eventually, the material tem-
perature reaches the same peak value along the left boundary and forms a wavefront that
only slightly lags behind the radiation temperature wavefront. As in the closed system, the
temperatures are nearly in equilibrium as the wavefronts move to the boundary; however,
the Dirichlet boundary conditions ensure that the wave heights peak and do not fall as the
wavefronts move across the domain. An example of the radiation wavefront for aluminum is
given in Figure 5a.

The behavior of the sensitivities is also similar for the different materials and with respect to
the opacity parameters µ, b, and λ. A typical example is given in Figure 5b, which shows the
scaled sensitivity of the radiation temperature with respect to µ. Note that the sensitivities
have sharp, negative peaks concentrated around the wavefront. As with the closed system,
the negative sensitivity values predict sharply reduced values for the nominal radiation tem-
perature given a positive relative change in µ. Those lower temperatures correspond to the
radiation temperature lagging behind the nominal temperatures as the wavefront tries to
diffuse through a more opaque material.
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Fig. 5. Radiation temperature and its scaled sensitivity with respect to the temperature exponent
µ for 1D radiation diffusion through aluminum for the Marshak wave model problem.

5.3 Run Times

The run time cost of computing scaled sensitivities is relatively inexpensive. Tables II and III
show the run time and solver performance for computing the radiation diffusion solution and
its scaled sensitivity with respect to 0, 1, or all 3 parameters for the model problems. The key
question is: how much additional run time is required in computing sensitivity information?
In pairing each material and model problem, the tables show that the total number of time
steps (NST) is approximately the same within each pairing and that this statistic only
varies slightly when sensitivities are computed. The significant point for beryllium is that
the average number of Newton iterations per timestep (NNI) is roughly 1.2 whether 0, 1,
or 3 scaled sensitivities are computed. In each Newton iteration, 1 +m linear systems are
solved where m is the number of scaled sensitivities to be computed. The average number of
linear iterations (NLI) of GMRES roughly increases by a factor of 1 +m and indicates that
solving for Newton updates to energies or sensitivities is of comparable difficulty. For the
aluminum test results, the average number of Newton iterations increases by a factor of 1.5—
3 when computing scaled sensitivity with respect to a single parameter, and this increased
work in converging Newton iterations roughly quadruples the run time. Despite this four-
fold increase for a sensitivity computation, we note only a modest increase when additional
sensitivities are computed (e.g., all 3). So, although individual sensitivity computations may
more than double the run time of the original simulation, the cost-effectiveness can improve
when several sensitivities are computed together. Lastly, Table IV shows some results for
computing all 3 scaled sensitivities and/or the solution for larger problem sizes for the closed
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TABLE II: Aluminum

Solver Statistics: Solution and Scaled Sensitivities

Closed System Marshak Wave

Time Total Avg Avg Time Total Avg Avg
(sec) NST NNI NLI (sec) NST NNI NLI

none 2.63 456 1.14 2.57 10.36 1311 1.10 4.33

µ 11.08 453 2.41 4.80 55.60 1335 3.02 7.66

b 10.02 458 2.13 4.85 52.98 1319 2.99 7.38

λ 8.15 462 1.63 5.26 50.56 1319 2.94 7.09

µ, b, λ 25.25 458 2.33 11.47 133.09 1335 3.02 18.74

TABLE III: Beryllium

Solver Statistics: Solution and Scaled Sensitivities

Closed System Marshak Wave

Time Total Avg Avg Time Total Avg Avg
(sec) NST NNI NLI (sec) NST NNI NLI

none 6.58 791 1.20 4.05 20.60 1863 1.18 5.96

µ 14.48 790 1.21 8.48 43.68 1912 1.19 11.68

b 12.92 781 1.17 7.75 40.00 1911 1.17 10.68

λ 12.53 781 1.17 7.45 38.62 1894 1.16 10.41

µ, b, λ 27.62 790 1.18 15.84 79.41 1872 1.18 20.76

TABLE IV: Closed System Results for Larger Problem Sizes

Run Time in Seconds for Solution and Scaled Sensitivities

Al Be

100× 1× 1 250× 1× 1 500× 1× 1 100× 1× 1 250× 1× 1 500× 1× 1
none 5.16 13.46 29.90 21.73 120.50 466.13

µ, b, λ 50.93 140.09 320.77 95.76 550.94 3270.00

system problem. The run times for aluminum are consistent with our earlier observations:
computing all 3 scaled sensitivities increases the run time roughly by a factor of 10 relative
to solving the simulation by itself. The run time results for beryllium are also favorable. The
relative increase in run time ranges only by a factor of 4—7 for increased problem sizes.

18



6 Sensitivity Applications

In this section, we demonstrate the usefulness and versatility of sensitivity computations as
applied to the analysis of radiation diffusion models.

6.1 Model evaluation.

One application of sensitivity analysis focuses on the sensitivity of model behavior due to
perturbations in the nominal parameter values. The objective of such analysis is to identify
the parameters most influential in affecting simulation results. Given that each nominal
parameter value is typically chosen from a range of values, our confidence in simulation results
can be enhanced by narrowing the range of uncertainty for the most influential parameters.
This range can be narrowed, for example, by taking additional measurements that yield
a more accurate determination of the parameter range. A complementary objective is to
identify parameters for which simulation results are not sensitive. By identifying the most
insensitive parameters, it may be possible to create a reduced model with fewer equations
and/or parameters, but this topic is beyond the scope of this paper.

The relative ranking of most to least influential parameters can be obtained by examining
the magnitude of the simulation response to relative perturbations in the mean opacity
parameters. In particular, the scaled sensitivities of largest magnitude (positive or negative)
can be plotted at each gridpoint for each parameter for all time. An example is given in
Figure 6 for the radiation and material temperatures of aluminum in the closed system.
The nested line plots in Figure 6a signify that the radiation temperature experiences the
largest amount of change due to relative perturbations in µ, b, and λ respectively. Figure 6b
shows that this nesting and strict ranking also holds for the material temperature. Analogous
plots for the other 3 pairings of test problems and materials yield the same ranking order.
Therefore, we conclude that uncertainty in the temperature exponent µ is most significant
in affecting the uncertainty in the simulation results.

Another useful technique for this example is to simultaneously visualize sensitivities and
the simulation solution. If we consider normalized sensitivities, we can assess the relative
changes in the simulation solution to relative perturbations in the mean opacity parameters.
The surface plots in Figure 7 show the simulation solution for aluminum in the closed system.
The surface color, however, corresponds to the normalized sensitivity with respect to µ. For
a relative perturbation in µ, the relative changes in the radiation and material temperatures
are proportional to the value of their corresponding normalized sensitivities. Figures 7a
and 7b show that the relative changes are the greatest as the two temperatures come into
equilibrium at around 10−9 µs. The greater portion of both surface plots, however, show
that the simulation solution has zero sensitivity to initial perturbations in the parameters. It
is mainly when temperature coupling or diffusion is active that the simulation solution has
increased responsiveness that the overlaid normalized sensitivities help identify and quantify.
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Fig. 6. Maximum magnitude of scaled sensitivities in time for radiation diffusion through aluminum
for closed system model problem.

(a) Radiation temperature. (b) Material temperature.

Fig. 7. Radiation and material temperature for radiation diffusion through aluminum in the closed
system. Surface colors correspond to normalized sensitivity with respect to temperature exponent µ.

6.2 Experimental Design

With the advent of new technology, real time, in-situ diagnostics are a distinct possibility.
An example would be advanced sensors that might measure the temperature and density
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inside a material that is being shocked and heated. Such dynamic information would provide
a wealth of data concerning equation of state and opacity. Sensitivity analysis is a tool that
can guide experimental design and diagnostics in such a way as to make maximum use of
the experiment. Going further, sensitivity analysis can tell us where and when the maximum
sensitivity occurs and in what variable. For example, in the Marshak wave problem, the sen-
sitivity calculations show that the arrival time of the radiation/matter temperature front is
a very sensitive indicator of opacity variations. It is also clear that the radiation temperature
is more sensitive than the matter temperature. An experimentalist, therefore, might choose
to measure the arrival time of the radiation temperature and thereby obtain an accurate
determination of an opacity parameter [40].

6.3 Uncertainty quantification

A third application of sensitivity analysis is in bounding the amount of uncertainty in the
simulation results in terms of the amount of uncertainty in the model parameters. In some
cases, many parameter measurements are available, and probability density functions (pdfs)
or at least the variances for the parameters are known. In such instances, particular sensitivity
techniques can be used to determine a first order estimate of the pdfs or variances for
the simulation results. If we assume a uniform parameter distribution or simply that the
parameters lie in a fixed range, the scaled sensitivities can also be used to bound the range
for the simulation results.

We can demonstrate this uncertainty quantification for the closed system test problem for
aluminum. In Figure 8a, we show the radiation temperature as it varies in time and goes to
steady state at x = 0.05 cm. By assuming that the nominal parameter µ = −2.0 varies by at
most 20%, we are able to bound the uncertainty of the radiation temperature based on its
scaled sensitivity. Similarly, Figure 8b bounds the uncertainty in the material temperature
due to the uncertainty in µ. Note that the simulation uncertainty is large at two separate
times: during the process of material energy transfer, and during the diffusion process.

7 Conclusions

We have developed and introduced new sensitivity-based methods for the analysis of radi-
ation diffusion problems. The proposed techniques are applied to simplified but physically
realistic models of radiation diffusion and material opacity. The sensitivity equations are
derived by differentiating the radiation and material energy equations with the respect to
the mean opacity parameters. Sensitivities are computed by solving the derived equations in
tandem with the simulation, rather than using a finite difference technique based on running
the simulation with two different values of the same parameter. Our main contribution was
to address several important questions related to the simulation results and their sensitivity
to the mean opacity parameters. These questions centered on the effects of changes in the
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Fig. 8. Radiation and material temperatures, with error bars associated with ±20% uncertainty in
the temperature exponent for radiation diffusion through aluminum in the closed system.

opacity parameter values, the cost of computing sensitivities, the identification of the most
and least influential parameters, and the use of sensitivities for experimental design and un-
certainty quantification. The significance of our work is that we can answer these questions
based on the sensitivity analysis techniques that we have developed.

One of the main conclusions of this work is that obtaining solution sensitivities is not an
expensive computation compared to the run time cost of computing the solution by itself—
the ratio ranged between 2—14 depending on the test problem, material, and parameters
selected. The second finding is that computing sensitivities is an effective technique for ob-
taining valuable information about the simulation. A coarse intuition of model behavior
and sensitivities can be developed from a general understanding of the model problem and
the underlying physics. As demonstrated, a study of scaled sensitivities can provide sup-
plemental, quantitative details that may be difficult to deduce from first principles—such
as the location and duration for when sensitivities are relatively large or small. Lastly, we
conclude that sensitivity-based techniques for uncertainty quantification are effective tools
for improving user confidence in simulation results. We demonstrated that sensitivities can
be used to give a first order estimate of the uncertainty in simulation results in terms of
the uncertainty in each parameter value. Moreover, experimental design techniques are one
means of determining where additional experimental measurements may be needed to tighten
the bounds on parameter uncertainties. Lastly, we discussed that with recently developed
software (section 3.5), existing codes can be reasonably modified to compute sensitivities
with the approach given in this paper. Future work in this area will include the application
of these sensitivity-based techniques to other radiation diffusion and parameter-dependent
scientific problems.

22



Acknowledgements

The authors wish to thank Peter Brown for numerous discussions on sensitivity analysis
techniques and software and Keith Grant for the initial port of SensPVODE to our diffusion
code. The authors also acknowledge Rachel Knopp for initial comparisons of our sensitivity
techniques with finite difference methods. This work was performed under the auspices of
the U.S. DOE by LLNL under contract no. W-7405-Eng-48.

References

[1] J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect
Drive, Springer-Verlag, New York, 1998.

[2] J. M. Stone, D. Mihalas, M. L. Norman, ZEUS-2D: A radiation magnetohydrodynamics code
for astrophysical flows in two space dimensions: III. the radiation hydrodynamic algorithms
and tests, The Astrophysical Journal Supplements 80 (1992) 819–845.

[3] R. L. Bowers, J. R. Wilson, Numerical Modeling in Applied Physics and Astrophysics, Jones
and Bartlett, Boston, 1991.

[4] G. Tsakiris, K. Eidmann, An approximate method for calculating Planck and Rosseland mean
opacities in hot, dense plasmas, J. Quant. Spectrosc. Radiat. Transfer 38 (5) (1987) 353–368.

[5] F. Rogers, C. Iglesias, Radiative atomic Rosseland mean opacity tables, Astrophysical Journal
Supplement Series 79 (2) (1992) 507–568.

[6] F. Rogers, A. Nayfonov, Updated and expanded OPAL equation-of-state tables: Implications
for helioseismology, Astrophysical Journal 576 (2) (2002) 1064–1074 Part 1.

[7] P. N. Brown, K. E. Grant, C. S. Woodward, On the calculation of uncertainties for 3D
time-dependent neutral particle transport, Center for Applied Scientific Computing UCRL-
JC-146186, Lawrence Livermore National Laboratory, Livermore, CA, submitted. (Nov. 2001).

[8] C. S. Woodward, K. E. Grant, R. Maxwell, Applications of sensitivity analysis to uncertainty
quantification for variably saturated flow, in: S. M. Hassanizadeh, R. J. Schotting, W. G. Gray,
G. F. Pinder (Eds.), Computational Methods in Water Resources, Vol. 1, Elsevier, Amsterdam,
2002, pp. 73–80.

[9] K. J. Dowding, B. F. Blackwell, Sensitivity analysis for nonlinear heat conduction, Journal of
Heat Transfer 123 (2001) 1–10.

[10] M. Tocci, Sensitivity analysis of large-scale time dependent PDEs, Applied Numerical
Mathematics 37 (1-2) (2001) 109–125.

[11] W. Feehery, J. Tolsma, P. Barton, Efficient sensitivity analysis of large-scale differential-
algebraic systems, Applied Numerical Mathematics 25 (1) (1997) 41–54.

23



[12] P. N. Brown, B. Chang, F. Graziani, C. S. Woodward, Implicit solution of large-scale radiation-
material energy transfer problems, in: D. R. Kincaid, A. C. Elster (Eds.), Iterative Methods
in Scientific Computation IV, Vol. 5 of Series in Computational and Applied Mathematics,
International Association for Mathematics and Computers in Simulations, New Brunswick,
NJ, 1999, pp. 343–356.

[13] V. A. Mousseau, D. A. Knoll, W. J. Rider, Physics-based preconditioning and the Newton–
Krylov method for non-equilibrium radiation diffusion, J. of Comput. Phys. 160 (2000) 743–765.

[14] P. N. Brown, C. S. Woodward, Preconditioning strategies for fully implicit radiation diffusion
with material-energy transfer, SIAM J. Sci. Comput. 23 (2) (2001) 499–516.

[15] V. A. Mousseau, D. A. Knoll, New physics-based preconditioning of implicit methods for non-
equilibrium radiation diffusion, J. Comp. Phys. Submitted. Available as Los Alamos National
Laboratory Technical Report LA-UR-02-172.

[16] D. J. Mavriplis, Multigrid approaches to non-linear diffusion problems on unstructured meshes,
Num. Lin. Alg. with App. 8 (8) (2001) 499–512.

[17] L. H. Howell, J. A. Greenough, Radiation diffusion for multi-fluid eulerian hydrodynamics with
adaptive mesh refinement, J. Comp. Phys. 184 (2003) 58–78.

[18] D. A. Knoll, W. J. Rider, G. L. Olson, An efficient nonlinear solution method for nonequilibrium
radiation diffusion, J. Quant. Spec. and Rad. Trans. 63 (1999) 15–29.

[19] D. A. Knoll, W. J. Rider, G. L. Olson, Nonlinear convergence, accuracy, and time step control
in nonequilibrium radiation diffusion, J. Quant. Spec. and Rad. Trans. 70 (1) (2001) 25–36.

[20] P. N. Brown, F. Graziani, I. Otero, C. S. Woodward, Implicit solution of large-scale radiation
diffusion problems, Center for Applied Scientific Computing UCRL-JC-141881, Lawrence
Livermore National Laboratory, Livermore, CA, in Proceedings of Nuclear Explosives Code
Developers’ Collaborations 2000, Oakland, CA, Oct. 2000 (Jan. 2001).

[21] G. C. Pomraning, The Equations of Radiation Hydrodynamics, Pergamon, New York, 1973.

[22] M. Basko, A model for the conversion of ion-beam energy into thermal radiation, Phys. Fluids
B 4 (11) (1992) 3753–3763.
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