
Example Programs for idas

v4.7.0

Radu Serban and Alan C. Hindmarsh
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

February 2, 2021

LLNL-TR-437091

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or as-
sumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, pro-
cess, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States gov-
ernment or Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors.
The current SUNDIALS team consists of Cody J. Balos, David J. Gardner, Alan C. Hind-
marsh, Daniel R. Reynolds, and Carol S. Woodward. We thank Radu Serban for significant
and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Pe-
ter N. Brown, George Byrne, Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E.
Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld, Daniel McGreer, Slaven Peles, Cos-
min Petra, H. Hunter Schwartz, Jean M. Sexton, Dan Shumaker, Steve G. Smith, Allan G.
Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M. Yang.

Contents

1 Introduction 1

2 Forward sensitivity analysis example problems 6

3 Adjoint sensitivity analysis example problems 12

References 15

1 Introduction

This report is intended to serve as a companion document to the User Documentation of
idas [4]. It provides details, with listings, on the example programs supplied with the idas
distribution package.

The idas distribution contains examples of the following types: serial and parallel ex-
amples of Initial Value Problem (IVP) integration, serial and parallel examples of forward
sensitivity analysis (FSA), and serial and parallel examples of adjoint sensitivity analysis
(ASA). The names of all the examples are given in the following table.

Serial examples Parallel examples

IVP idasRoberts dns idasHeat2D kry p

idasRoberts klu idasRoberts sps idasHeat2D kry bbd p

idasAkzoNob dns idasSlCrank dns idasFoodWeb kry p

idasHeat2D bnd idasHeat2D kry idasFoodWeb kry bbd p

idasFoodWeb bnd idasFoodWeb bnd omp idasBruss kry bbd p

idasFoodWeb kry omp idasKrylovDemo ls

FSA idasRoberts FSA dns idasBruss FSA kry bbd p

idasRoberts FSA klu idasRoberts FSA sps idasHeat2D FSA kry bbd p

idasSlCrank FSA dns

ASA idasRoberts ASAi dns idasBruss ASAp kry bbd p

idasRoberts ASAi klu idasRoberts ASAi sps

idasAkzoNob ASAi dns idasHessian ASA FSA

With the exception of “demo”-type example files, the names of all the examples distributed
with sundials are of the form [slv][PbName]_[SA]_[ls]_[prec]_[p], where

[slv] identifies the solver (for idas examples this is idas);

[PbName] identifies the problem;

[SA] identifies sensitivity analysis examples. This field can be one of: FSA for forward
sensitivity examples, ASAi for adjoint sensitivity examples using an integral-form model
output, or ASAp for adjoint sensitivity examples using an pointwise model output;

[ls] identifies the linear solver module used;

[prec] indicates the idas preconditioner module used (if applicable — for examples using a
Krylov linear solver and the idabbdpre module, this will be bbd);

[p] indicates an example using the parallel vector module nvector parallel.

The examples are briefly described next. Note that the idas distribution includes all of the
ida C examples (denoted here as examples for IVP integration). More details on these can
be found in the ida Example Program document [2].

Supplied in the srcdir/examples/idas/serial directory are the following serial examples
(using the nvector serial module):

1

• idasRoberts dns solves the Robertson chemical kinetics problem [3], which consists
of two differential equations and one algebraic constraint. It also uses the rootfinding
feature of idas.

The problem is solved with the sunlinsol dense linear solver using a user-supplied
Jacobian.

• idasRoberts klu is the same as idasRoberts dns but uses the KLU sparse direct
linear solver.

• idasRoberts sps is the same as idasRoberts dns but uses the SuperLUMT sparse
direct linear solver (with one thread).

• idasAkzoNob dns solves the Akzo-Nobel chemical kinetics problem, which consists of
six nonlinear DAEs of index 1. The problem originates from Akzo Nobel Central
research in Arnhern, The Netherlands, and describes a chemical process in which two
species are mixed, while carbon dioxide is continuously added.

The problem is solved with the sunlinsol dense linear solver using the default differ-
ence quotient dense Jacobian approximation.

• idasHeat2D bnd solves a 2-D heat equation, semidiscretized to a DAE on the unit
square.

This program solves the problem with the sunlinsol band linear solver and the default
difference-quotient Jacobian approximation. For purposes of illustration, IDACalcIC is
called to compute correct values at the boundary, given incorrect values as input initial
guesses. The constraint u > 0.0 is imposed for all components.

• idasHeat2D kry solves the same 2-D heat equation problem as idasHeat2D bnd, with
the Krylov linear solver sunlinsol spgmr. The preconditioner uses only the diagonal
elements of the Jacobian.

• idasFoodWeb bnd solves a system of PDEs modeling a food web problem, with predator-
prey interaction and diffusion, on the unit square in 2-D.

The PDEs are discretized in space to a system of DAEs which are solved using the
sunlinsol band linear solver with the default difference-quotient Jacobian approxi-
mation.

• idasSlCrank dns solves a system of index-2 DAEs, modeling a planar slider-crank
mechanism.

The problem is obtained through a stabilized index reduction (Gear-Gupta-Leimkuhler)
starting from the index-3 DAE equations of motion derived using three generalized
coordinates and two algebraic position constraints. The program also computes the
time-averaged kinetic energy as a quadrature.

• idasKrylovDemo ls solves the same problem as idasHeat2D kry, with three Krylov
linear solvers sunlinsol spgmr, sunlinsol spbcgs, and sunlinsol sptfqmr. The
preconditioner uses only the diagonal elements of the Jacobian.

• idasRoberts FSA dns solves the same kinetics problem as in idasRoberts dns.
idas also computes both its solution and solution sensitivities with respect to the three

2

reaction rate constants appearing in the model. This program solves the problem with
the sunlinsol dense linear solver, and a user-supplied Jacobian routine.

• idasRoberts FSA klu solves the same problem as in idasRoberts FSA dns but uses
the sparse direct solver KLU.

• idasRoberts FSA sps solves the same problem as in idasRoberts FSA dns but uses
the sparse solver SuperLUMT.

• idasSlCrank FSA dns solves a system of index-2 DAEs, modeling a planar slider-crank
mechanism.

This example computes both its solution and solution sensitivities with respect to the
problem parameters k (spring constant) and c (damper constant), and then uses them
to evaluate the gradient of the cumulative kinetic energy of the system.

• idasRoberts ASAi dns solves the same kinetics problem as in idasRoberts dns.
Here the adjoint capability of idas is used to compute gradients of a functional of the
solution with respect to the three reaction rate constants appearing in the model. This
program solves both the forward and backward problems with the sunlinsol dense
linear solver, and user-supplied Jacobian routines.

• idasRoberts ASAi klu solves the same problem as in idasRoberts ASAi dns, but uses
the sparse direct solver KLU.

• idasRoberts ASAi sps solves the same problem as in idasRoberts ASAi dns, but uses
the sparse solver SuperLUMT.

• idasAkzoNob ASAi dns solves the Akzo-Nobel chemical kinetics problem.
The adjoint capability of idas is used to compute gradients with respect to the initial
conditions of the integral over time of the concentration of the first species.

• idasHessian ASA FSA is an example of using the forward-over-adjoint method for com-
puting 2nd-order derivative information, in the form of Hessian-times-vector products.

Supplied in the srcdir/examples/idas/parallel directory are the following parallel examples
(using the nvector parallel module):

• idasHeat2D kry p solves the same 2-D heat equation problem as idasHeat2D kry, with
sunlinsol spgmr in parallel, and with a user-supplied diagonal preconditioner,

• idasHeat2D kry bbd p solves the same problem as idasHeat2D kry p.

This program uses the sunlinsol spgmr linear solver in parallel, and the band-block-
diagonal preconditioner idabbdpre with half-bandwidths equal to 1.

• idasFoodWeb kry p solves the same food web problem as idasFoodWeb bnd, but with
sunlinsol spgmr and a user-supplied preconditioner.

The preconditioner supplied to sunlinsol spgmr is the block-diagonal part of the
Jacobian with ns × ns blocks arising from the reaction terms only (ns = number of
species).

3

• idasFoodWeb kry bbd p solves the same food web problem as idasFoodWeb kry p.

This program solves the problem using sunlinsol spgmr in parallel and the idabbd-
pre preconditioner.

• idasBruss kry bbd p solves the two-species time-dependent PDE known as the Brus-
selator problem, using the sunlinsol spgmr linear solver and the idabbdpre precon-
ditioner.

The PDEs are discretized by central differencing on a 2D spatial mesh. The system is
actually implemented on submeshes, processor by processor.

• idasBruss FSA kry bbd p solves the Brusselator problem with the forward sensitivity
capability in idas used to compute solution sensitivities with respect to two of the
problem parameters, and then the gradient of a model output functional, written as
the final time value of the spatial integral of the first PDE component.

• idasHeat2D FSA kry bbd p solves the same problem as idaHeat2D kry p, but using
the idabbdpre preconditioner, and with forward sensitivity enabled to compute the
solution sensitivity with respect to two coefficients of the original PDE.

• idasBruss ASAp kry bbd p solves the same problem as idasBruss FSA kry bbd p but
using an adjoint sensitivity approach for computing the gradient of the model output
functional.

Supplied in the srcdir/examples/idas/C openmp directory are the following examples, using
the OpenMP NVECTOR module:

• idasFoodWeb bnd omp solves the same problem as in idasFoodWeb bnd but uses the
OpenMP module.

• idasFoodWeb kry omp solves the same problem as in idasFoodWeb kry but uses the
OpenMP module.

In the following sections, we give detailed descriptions of some (but not all) of the sensi-
tivity analysis examples. We do not discuss the examples for IVP integration; for those,
the interested reader should consult the ida Examples document [2]. Any ida problem
will work with idas with only two modifications: (1) the main program should include the
header file idas.h instead of ida.h, and (2) the loader command must reference build-
dir/lib/libsundials idas.lib instead of builddir/lib/libsundials ida.lib.

We also give our output files for each of thes examples described below, but users should
be cautioned that their results may differ slightly from these. Differences in solution values
may differ within the tolerances, and differences in cumulative counters, such as numbers of
steps or Newton iterations, may differ from one machine environment to another by as much
as 10% to 20%.

In the descriptions below, we make frequent references to the idas User Guide [4]. All
citations to specific sections (e.g. §4.2) are references to parts of that user guide, unless
explicitly stated otherwise.

4

Note The examples in the idas distribution were written in such a way as to compile and
run for any combination of configuration options during the installation of sundials (see
Appendix A in the User Guide). As a consequence, they contain portions of code that will
not typically be present in a user program. For example, all example programs make use of
the variables SUNDIALS EXTENDED PRECISION and SUNDIALS DOUBLE PRECISION to test if the
solver libraries were built in extended or double precision, and use the appropriate conversion
specifiers in printf functions. Similarly, all forward sensitivity examples can be run with or
without sensitivity computations enabled and, in the former case, with various combinations
of methods and error control strategies. This is achieved in these example through the
program arguments.

5

2 Forward sensitivity analysis example problems

For all the idas examples, either of the two sensitivity method options, IDA SIMULTANEOUS

or IDA STAGGERED, can be used, and sensitivities may be included in the error test or not
(errconS set to SUNTRUE or SUNFALSE, respectively, in the call to IDASetSensErrCon).

Descriptions of one serial example (idasSlCrank FSA dns) and one parallel example
(idasBruss FSA kry bbd p) are provided in the following two subsections. For details on
the other examples, the reader is directed to the comments in their source files.

2.1 A serial dense example: idasSlCrank FSA dns

To illustrate the use of idas in a forward sensitivity analysis (FSA) problem, using the serial
vector representation, we present in this section a problem from multibody system dynamics.
Besides introducing the FSA capabilities of idas, this example also illustrates the proper
treatment of such problems within ida and idas (a stabilized index reduction is required).

The multibody system considered here consists of two bodies (crank and connecting rod)
with a translational-spring-damper (TSD) and a constant force acting on the connecting
rod. The system has a single degree of freedom. It is modeled with the three generalized
coordinates indicated in Fig. 1 (crank angle, horizontal position of the translational joint, and
angle of the connecting rod) and therefore has two constraints. The local reference frame on
the crank is positioned at the revolute joint on the ground. The crank has length a, mass
m1, and moment of inertia J1 (with respect to the local frame). The local reference frame
on the connecting rod is positioned at the translational joint. The connecting rod has length
2, mass m2, and moment of inertia J2. The TSD has spring constant k, damping constant c,
and free length l0. A constant horizontal force F acts on the connecting rod.

Figure 1: Slider-crank mechanism modeled with three generalized coordinates.

The equations of motion can be written as

M(y)ÿ = Q(y, ẏ)− ΦT
y (y)λ

Φ(y) = 0 ,

6

where y ∈ R3 is the vector of generalized coordinates, M(y) is the generalized mass matrix,
and Q is a vector of generalized applied forces. Φ(y) ∈ R2 represents the (algebraic) position-
level constraints and Φy is its Jacobian with respect to y. λ ∈ R2 are Lagrange multipliers
corresponding to the constraint forces. For its solution with idas, the above index-3 DAE
is reformulated as a stabilized index-2 DAE (Gear-Gupta-Leimkuhler formulation, [1]) by
introducing two additional Lagrange multipliers µ and appending the velocity constraints.
Converting to first order differential equations, we obtain:

ẏ = v − ΦT
y (y)µ

M(y)v̇ = Q(y, v)− ΦT
y (y)λ

Φ(y) = 0

Φy(y)v = 0 ,

(1)

where v = ẏ are the generalized velocities.
For the mechanical system under consideration, the position constraints can be written

as

Φ(y) =

[
y2 − a cos(y1)− a cos(y3)

a sin(y1) + sin(y3)

]
while the generalized force takes the form

Q(y, v) =

 −(f/`)a[sin(y3 − y1)/2 + y2 sin(y1)]/2
(f/`)[cos(y3)/2− y2 + a cos(y1)/2] + F

−(f/`)[y2 sin(y3)− a sin(y3 − y1)/2]/2− F sin(y3)

 ,

where

f =k(`− `0) + c`′

`2 =y22 − y2[cos(y3) + a cos(y1)] + (1 + a2)/4 + a cos(y3 − y1)/2
2``′ =2y2v2 − v2[cos(y3) + a cos(y1)] + y2[sin(y3)v3 + a sin(y1)v1]

− a sin(y3 − y1)(v3 − v1)/2 .

The generalized mass matrix is diagonal: M = diag{J1,m2, J2}.
In the case treated here, a = .5, J1 = 1, J2 = 2, m1 = m2 = 1, F = 1, k = 1, c = 1, and

`0 = 1. The final time is tf = 10.
The system (1) is solved with idas using a state vector Y = [y, v, λ, µ] ∈ R10. The initial

conditions (at t = 0) are set to consistent values, given as follows:

y1 = π/2

y3 = arcsin(−a)

y2 = cos(y3)

v1 = v2 = v3 = 0

λ1 = λ2 = µ1 = µ2 = 0

dy1/dt = dy2/dt = dy3/dt = 0

dv1/dt = [Q1]t=0 /J1

dv2/dt = [Q2]t=0 /m2

dv3/dt = [Q3]t=0 /J2

dλ1/dt = dλ2/dt = dµ1/dt = dµ2/dt = 0 .

7

The problem is solved with a relative tolerance of 10−6 and a (scalar) absolute tolerance
of 10−7. Note that the algebraic variables λ and µ are excluded from the error test (by
specifying them through IDASetId and invoking IDASetSuppressAlg).

The two parameters of the TSD, k and c, are considered in a forward sensitivity analysis
of this model. Solution sensitivities with respect to those parameters are computed and then
used to estimate the gradient of the integrated kinetic energy of the system,

G =

∫ tf

t0

(
1

2
J1ẏ

2
1 +

1

2
m2ẏ

2
2 +

1

2
J2ẏ

2
3

)
dt . (2)

This is then compared against gradient approximations based on (backward, forward, and
central) finite differences. The sensitivity residuals are evaluated using the idas internal finite-
difference approximation. Computation of the gradient of the integral in G takes advantage
of the idas feature for computing sensitivities of pure quadrature equations.

Figure 2 shows the sensitivities of the horizontal position of the translational joint (x = y2)
with respect to the TSD parameters k and c, superimposed over the solution itself.

Figure 2: Sensitivities of the solution component y2 with respect to the TSD parameters.

The following output is generated by idasSlCrank FSA dns when computing sensitivities
with the IDA SIMULTANEOUS method and full error control:

idasSlCrank FSA dns sample output

Slider -Crank example for IDAS:

Forward integration ... done!

Final Run Statistics:

Number of steps = 231

Number of residual evaluations = 1131

Number of Jacobian evaluations = 42

Number of nonlinear iterations = 711

Number of error test failures = 0

Number of nonlinear conv. failures = 0

--

G = 3.3366157997761721

8

--

-------------F O R W A R D------------------

dG/dp: 3.3346e-01 -3.6375e-01

--

Checking using Finite Differences

---------------BACKWARD ------------------

dG/dp: 3.3344e-01 -3.6375e-01

---------------FORWARD -------------------

dG/dp: 3.3345e-01 -3.6375e-01

--------------CENTERED -------------------

dG/dp: 3.3345e-01 -3.6375e-01

2.2 A parallel example using IDABBDPRE: idasBruss FSA kry bbd p

The idasBruss FSA kry bbd p program solves the two-species time-dependent PDE known
as the Brusselator problem, using the sunlinsol spgmr linear solver and the idabbdpre
preconditioner.

With subscripts on u and v denoting partial derivatives, the PDEs are as follows:

∂u/∂t = ε1(uxx + uyy) + u2v − (B + 1)u+A

∂v/∂t = ε2(vxx + vyy)− u2v +Bu

on the unit square in (x, y), and for 0 ≤ t ≤ tf = 1. The constants involved are ε1 = ε2 =
0.002, A = 1, and B = 3.4. The boundary conditions are Neumann (zero derivatives). The
initial conditions are given by:

u = 1− 0.5 cos(πy)

v = 3.5− 2.5 cos(πx)

The PDEs are discretized by central differencing on a uniform 2D spatial mesh. The
boundary conditions are handled by copying values from the first interior mesh line to a line
of ghost values on each side of the square. The system is actually implemented on submeshes,
processor by processor.

Here the forward sensitivity capability in idas is used to compute solution sensitivities
with respect the two parameters εi. From those, we compute the corresponding sensitivities
of the final spatial average of u,

g =

∫ ∫
u(x, y, tf) dx dy

by means of a spatial integration of the sensitivities:

dg/dεi =

∫ ∫
∂u(x, y, tf)/∂εi dx dy .

9

The following output is generated by idasBruss FSA kry bbd p when computing sensi-
tivities with the IDA SIMULTANEOUS method and full error control:

mpirun -np 4 idasBruss FSA kry bbd p -sensi sim t

idasBruss FSA kry bbd p sample output

Brusselator PDE - DAE parallel example problem for IDA

Number of species ns: 2 Mesh dimensions: 82 x 82

Total system size: 13448

Subgrid dimensions: 41 x 41 Processor array: 2 x 2

Tolerance parameters: rtol = 1e-05 atol = 1e-05

Linear solver: SUNLinSol_SPGMR Max. Krylov dimension maxl: 16

Preconditioner: band -block -diagonal (IDABBDPRE), with parameters

mudq = 82, mldq = 82, mukeep = 2, mlkeep = 2

CalcIC called to correct initial concentrations

t bottom -left top -right | nst k h

0.00e+00 5.0038e-01 1.4996e+00 | 0 0 1.0000e-06

1.0019e+00 5.9981e+00 |

1.00e-03 4.9944e-01 1.5076e+00 | 11 1 5.1200e-04

1.0034e+00 5.9896e+00 |

1.00e-02 4.9119e-01 1.5832e+00 | 17 2 2.0480e-03

1.0170e+00 5.9082e+00 |

1.00e-01 4.2223e-01 3.0684e+00 | 31 4 7.4353e-03

1.1419e+00 4.3097e+00 |

4.00e-01 3.0652e-01 5.4104e+00 | 72 5 7.4353e-03

1.4714e+00 6.1133e-01 |

7.00e-01 2.7048e-01 4.1053e+00 | 112 5 7.4353e-03

1.7403e+00 7.8907e-01 |

1.00e+00 2.6100e-01 3.1024e+00 | 152 5 7.4353e-03

1.9881e+00 1.0113e+00 |

Final statistics:

Number of steps = 152

Number of residual evaluations = 972

Number of nonlinear iterations = 164

Number of error test failures = 1

Number of nonlinear conv. failures = 0

Number of linear iterations = 806

Number of linear conv. failures = 0

Number of preconditioner setups = 15

Number of preconditioner solves = 1304

Number of local residual evals. = 2490

10

The average of u on the domain:

g = 1.62453

Sensitivities of g:

w.r.t. eps0 = 16.1571227152

w.r.t. eps1 = -3.7188364999

11

3 Adjoint sensitivity analysis example problems

The next two subsections describe a serial example (idasAkzoNob ASAi dns) and a parallel
one (idasBruss ASAp kry bbd p). For details on the other examples, the reader is directed
to the comments in their source files.

3.1 A serial dense example: idasAkzoNob ASAi dns

The idasAkzoNob ASAi dns program solves the Akzo-Nobel chemical kinetics problem, which
consists of six nonlinear DAEs. The system has index 1. The problem originates from Akzo
Nobel Central research in Arnhern, The Netherlands, and describes a chemical process in
which two species are mixed, while carbon dioxide is continuously added.

The problem is of the form

y′ = f(y, z)

0 = g(y, z)
(3)

with y ∈ R5 and z ∈ R. The function f is defined by

f(y, z) =


−2r1 +r2 −r3 −r4
−1

2r1 −r4 −1
2r5 +Fin

r1 −r2 +r3
−r2 +r3 −2r4
r2 −r3 +r5


where the ri and Fin are auxiliary variables, given by

r1 = k1y
4
1y

1/2
2

r2 = k2y3y4

r3 =
k2
K
y1y5

r4 = k3y1y
1/2
4

r5 = k4z
2y

1/2
2

Fin = klA

(
p(CO2)

H
− y2

)
.

The function g in the algebraic equation is defined by

g(y, z) = Ksy1y4 − z .

It is clear from the fact that the Jacobian ∂g/∂z is non-singular that the DAE (3) has
(differentiation) index 1. See http://pitagora.dm.uniba.it/∼testset/report/chemakzo.pdf for
details.

The problem is solved with the sunlinsol dense linear solver using the default difference
quotient dense Jacobian approximation. The adjoint capability of idas is used to compute
gradients with respect to the initial values of y of the integral

G =

∫ tf

0
y1dt ,

12

where y1 is the concentration of the first species. The initial value of z cannot be taken as
a free parameter, since its value is determined by the value of y. The sensitivity of G with
respect to the initial values of y is given by the first five components of the solution of the
adjoint system, evaluated at t = 0.

The output generated by idasAkzoNob ASAi dns is shown below.

idasAkzoNob ASAi dns sample output

Adjoint Sensitivity Example for Akzo -Nobel Chemical Kinetics

Sensitivity of G = int_t0^tf (y1) dt with respect to IC.

Forward integration ... done (nst = 457)

G: 31.2642162580310945

--

Backward integration ... done (nst = 277)

dG/dy0: 2.2207e+01

-6.2695e+01

-2.5114e+00

9.1837e+01

3.5176e+00

--

3.2 A parallel example using IDABBDPRE: idasBruss ASAp kry bbd p

The idasBruss ASAp kry bbd p program solves the same problem as idasBruss kry bbd p

and idasBruss FSA kry bbd p, namely the Brusselator PDE system. (See §2.2 above.) In
addition, it uses an adjoint sensitivity approach to compute the gradients of the model output
functional

g(t) =

∫ ∫
u(t, x, y) dx dy .

For perturbations δu0 and δv0 in the initial profiles u and v, the perturbation of g at the
final time is

δg(tf) =

∫ ∫
[λ(0, x, y)δu0 + µ(0, x, y)δv0] dx dy ,

where λ(t, x, y) and µ(t, x, y) are the solutions of the adjoint PDEs,

∂λ/∂t = −ε1(λxx + λyy)− (2uv −B − 1)λ+ (2uv −B)µ

∂µ/∂t = −ε2(µxx + µyy)− u2λ+ u2µ ,

with Neumann boundary conditions, and initial (final time) conditions

λ(tf , x, y) = 1 , µ(tf , x, y) = 0 .

The adjoint PDEs are discretized and solved in the same way as the Brusselator PDEs.
A sample output generated by idasBruss ASAp kry bbd p is shown below.

idasBruss ASAp kry bbd p sample output

Starting integration of the FORWARD problem

13

BRUSSELATOR: chemically reacting system

Number of species ns: 2 Mesh dimensions: 42 x 42

Total system size: 3528

Subgrid dimensions: 21 x 21 Processor array: 2 x 2

Tolerance parameters: rtol = 1e-05 atol = 1e-05

Linear solver: SUNLinSol_SPGMR Max. Krylov dimension maxl: 16

Preconditioner: band -block -diagonal (IDABBDPRE), with parameters

mudq = 42, mldq = 42, mukeep = 2, mlkeep = 2

t bottom -left top -right | nst k h

1.00e+00 2.6132e-01 3.0982e+00 | 154 5 1.1112e-02

1.9993e+00 1.0125e+00 |

Final statistics:

Number of steps = 154

Number of residual evaluations = 392

Number of nonlinear iterations = 174

Number of error test failures = 2

Number of nonlinear conv. failures = 0

Number of linear iterations = 216

Number of linear conv. failures = 0

Number of preconditioner setups = 17

Number of preconditioner solves = 392

Number of local residual evals. = 1462

BACKWARD problem

Final statistics:

Number of steps = 106

Number of residual evaluations = 276

Number of nonlinear iterations = 125

Number of error test failures = 0

Number of nonlinear conv. failures = 0

Number of linear iterations = 151

Number of linear conv. failures = 0

Number of preconditioner setups = 18

Number of preconditioner solves = 276

Number of local residual evals. = 1548

14

References

[1] C.W. Gear, B. Leimkuhler, and G.K. Gupta. Automatic Integration of Euler-Lagrange
Equations with Constraints. J. Comput. Appl. Math., 12/13:77–90, 1985.

[2] A. C. Hindmarsh, R. Serban, and A. Collier. Example Programs for IDA v5.7.0. Technical
Report UCRL-SM-208113, LLNL, 2021.

[3] H. H. Robertson. The solution of a set of reaction rate equations. In J. Walsh, editor,
Numerical analysis: an introduction, pages 178–182. Academ. Press, 1966.

[4] R. Serban, C. Petra, and A. C. Hindmarsh. User Documentation for IDAS v4.7.0. Tech-
nical Report UCRL-SM-234051, LLNL, 2021.

15

	Introduction
	Forward sensitivity analysis example problems
	Adjoint sensitivity analysis example problems
	References

