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From the Director 
Contact: Jeff Hittinger 

“Adversity has the effect of eliciting talents, which in prosperous 
circumstances would have lain dormant.” – Horace 

Who knew when we scrambled to transition to shelter in place that we would still be 
here one year later? In many ways, that seems like last week, but in others, it feels like 
a lifetime ago. Either way, it has been amazing to witness the resilience of CASC and 
our ability to shift our entire way of work, while still maintaining our productivity and the 
high quality research for which we are known 

That is not to say that it has been easy. There is isolation without the daily comradery, 
the serendipitous meetings, and the lunches with friends and colleagues. Some of us 
have worked for the Lab for nearly a year and have never been on site. Some of us 
have children who have struggled with online learning and who have lost an important 
year in their childhood. Some of us have lost loved ones. 

We look forward to returning to a more normal time and take hope in the recent 
advances in treatments and vaccines for COVID-19. Still, we have not stopped 
advancing our discipline. In this issue, we are proud to highlight several research 
activities that are truly pushing the boundaries of what is possible in scientific 
computing: in the application of new methods and capabilities to pressing problems like 
COVID-19 therapeutic discovery, in foundational work creating new modeling and 

mailto:hittinger1@llnl.gov


CASC Newsletter | Vol 10 
April 2021 

 
 

2 

simulation algorithms, and in advanced tool development to enable more effective use 
of high performance computing (HPC). 

Collaborations | Enabling Rapid COVID-19 Small 
Molecule Drug Design Through Scalable Deep 
Learning of Generative Models 
Contact: Sam Ade Jacobs 

The Accelerating Therapeutics for Opportunities in Medicine (ATOM) consortium was 
established as a public-private partnership with the primary purpose of accelerating 
drug discovery by creating an open and sharable platform that integrates HPC, 
emerging biotechnologies (leveraging artificial intelligence), and shared biological data 
from public and industry sources. LLNL is a leading member of the ATOM consortium, 
and CASC staff have been part of the consortium from its inception. 

The pandemic has presented opportunities to leverage the diverse skills within the 
consortium to address the challenges of COVID-19. Whereas significant effort has been 
devoted to the development of preventative vaccines for COVID-19, there is also need 
for the development of therapeutic options like therapeutic antibodies and small 
molecule antivirals. CASC’s collaborative efforts within ATOM focus on discovering and 
designing candidates for small molecule antivirals. 

In the drug design landscape, there are an estimated 1060 compounds from which to 
identify as potential drug candidates. Exploring this landscape to find appropriate drugs 
is a herculean task and costly both in time and effort. With the increased availability of 
large compute resources and techniques from the machine learning (ML) community, 
the LLNL team’s goal has been to leverage ML techniques to optimize new molecules 
within a large design space based on the docking, binding, and molecular dynamics 
information from promising known molecules (see Figure 1). To this end, the team 
designed a Wasserstein autoencoder, a generative model that is both computational 
efficient and of higher quality than existing state-of-the-art methods. Leveraging a LLNL 
open-source, HPC-centric ML toolkit (LBANN), the team trained the autoencoder on an 
unprecedented 1.6 billion drug compounds—nearly an order of magnitude more 
chemical compounds than any other work reported to date. 

For drug design, the ability to train generative models at scale provides an opportunity 
for chemists and domain scientists to explore the chemical space with a speed and at a 
scale not seen before. The scalable parallel algorithm implemented in LBANN enabled 
rapid prototyping and training of the large-scale molecular generator within reasonable 
runtime: The novel WAE model was trained on 1.6 billion compounds in 23 minutes, 
while the previous state-of-the-art solution required a day for only 1 million compounds. 
Thus, training at such an unprecedented scale—using all of the Sierra supercomputer—
can benefit and extend the frontiers of discovery for drug design, accelerating the 
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search for novel candidate drugs and reducing the time to synthesize such compounds 
to be tested in the laboratory. 

 

In terms of ML at HPC scale, whereas there have been applications of ML techniques in 
drug design space, this work enabled by CASC researchers is the first to demonstrate 
such applications at a billion (drug) compound scale on a pre-exascale system. The 
LLNL team worked with researchers from NVIDIA on optimization of different compute 
kernels for performance scalability. Training the ML model at HPC scale also exposed 
the need for algorithmic choices to promote power optimization at extreme scale. For 
example, asynchronicity in ML algorithms was necessary to avoid dramatic power 
usage swings at the Livermore Computing leadership-class facility (see Figure 2). 

 

This CASC effort is part of a large, multidisciplinary team that was recognized as a 
special-topic SC20 Gordon Bell finalist paper [1]. Authors on the Gordon Bell 
submission come from different disciplines, divisions, and directorates at LLNL: Sam 
Ade Jacobs, Brian Van Essen, and David Hysom are computer scientists in CASC; 
Felice Lightstone, a biochemist from the Physical and Life Sciences Directorate, 
currently leads LLNL COVID-19 small molecule project; Jonathan Allen is a 
bioinformatician in the Global Security Computing Applications Division (GS-CAD) and a 

Figure 1: Generative model for drug design: Known compounds are projected to latent 
space of a trained neural network (Wasserstein autoencoder), perturbed, and optimized to 

create new compounds. 

Figure 2: Quick 2–3MW power swings observed on Sierra while training the generative 
model at scale (left); observation after training was made globally asynchronous (right). The 
200KW is per plate power swing; there are 12 wall plate monitors in total approximating 2-

3MW overall power swing. 
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project lead within ATOM; Tim Moon, Kevin McLoughlin, and Derek Jones are (bio) data 
scientists within GS-CAD; and Ian Karlin, John Gyllenhaal, and Py Watson are with 
Livermore Computing. The team also benefited from the expertise of a long list of other 
collaborators both within and outside LLNL. 

[1] S. A. Jacobs, T. Moon, K. McLoughlin, D. Jones, D. Hysom, D. H. Ahn, J. 
Gyllenhaal, P. Watson, F. C. Lightstone, J. E. Allen, I. Karlin, and B. Van Essen, 
“Enabling Rapid COVID-19 Small Molecule Drug Design Through Scalable Deep 
Learning of Generative Models,” to appear as Gordon Bell Special Prize finalist in 
International Journal of High Performance Computing Applications (IJHPCA), 2020. 

Lab Impact | High-Order Finite Elements for Thermal 
Radiative Transfer on Curved Meshes 
Contact: Terry Haut 

The accurate modeling of thermal radiative transfer (TRT), which describes the 
interaction of radiation with a background material, is a critical component of LLNL’s 
mission. TRT simulations are extremely challenging because of the high-dimensional 
nature of the models describing photon transport (see Figure 3). Given that the next-
generation Arbitrary Lagrangian-Eulerian (ALE) hydrodynamics code uses high-order 
(HO) finite elements on HO curved meshes, an outstanding research problem has been 
how to robustly couple TRT and hydrodynamics on the HO curved meshes. 

 

LLNL’s current production 
deterministic TRT code can 
only solve the TRT 
equations on low-order 
(LO, straight-edged) 

meshes, which necessitates mapping solutions from the native HO mesh to an LO 
refined mesh. This mapping procedure necessarily entails an increase in the degrees of 
freedom by factors of 4 in 2D and 8 in 3D (relative to solving on the native HO mesh), 
and it can be several orders of magnitude more for the highly distorted meshes that 
arise from HO Lagrangian hydrodynamics (see Figure 4). Given TRT’s enormous 
memory footprint and runtime, decreasing the number of unknowns needed to represent 
the TRT system can have a significant impact on LLNL’s multi-physics simulations. In 

Figure 3: TRT is high-
dimensional and can account 
for 90% of runtime and 
memory of multi-physics 
simulations. 
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addition, solving the TRT equations on the hydrodynamics mesh avoids potential 
instability and physics degradation resulting from HO to LO mappings. 

This challenging problem was the 
topic of a recently concluded 
Laboratory Directed Research and 
Development (LDRD) project led 
by CASC researcher Terry Haut 
and involving Vladimir Tomov 
(CASC), Milan Holec (CASC), Ben 
Yee (now at WCI/DPD), Sam 
Olivier (UC Berkeley), Will Pazner 
(CASC), Ben Southworth (now at 
LANL), and Pete Maginot (now at 
LANL). 

To solve the TRT equations using 
HO finite elements on HO 
meshes, this team developed a 
novel, graph-based HO SN 

transport solver [1], which is efficient even on highly distorted HO Lagrangian 
hydrodynamics. They also developed several physically motivated preconditioners 
based on HO variants of discretized diffusion equations [2-5] and data-driven methods 
[6]; such preconditioners are critical in the common regime where photons are 
frequently absorbed and reemitted by the material. To avoid solutions with unphysical 
oscillations and negative values in spatially under-resolved regions, which is a common 
occurrence for HO methods, the team also developed a new positivity-preserving, 
conservative transport solver that preserves a discrete maximum principle and has 
negligible computational overhead [7]. Importantly, this positivity-preserving scheme 
does not degrade the convergence of the main HO diffusion-type preconditioner, which 

has been an open research question even for LO methods (see Figure 5). 

Finally, the team led by Haut developed several new nonlinear solvers and IMEX time-
stepping schemes for HO TRT [8-10] and have demonstrated their efficacy on 
challenging inertial confinement fusion (ICF) problems, including the ICF problem based 

Figure 4: The triple-point mesh requires roughly a 
factor of 256 increase in unknowns to map to an LO 
refined mesh. In contrast, directly solving on the HO 

mesh is efficient via the graph-based solver. 

 

Figure 5: HO solution of the “glancing void” problem without and with the positivity-
preserving SN transport solver. 
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on a 2D (X-Y) model of throttled radiative flux in a half-hohlraum, which is motivated by 
the National Ignition Facility (NIF) Sonoma campaign (see Figure 6). One noteworthy 
feature of the IMEX time-stepping schemes is the need for only a single so-called SN 
transport sweep for meshes with convex mesh elements, which can save significant 
computational time in comparison to standard methods. 

 

This work was presented at the 2020 
Predictive Science Panel (PSP) Deep Dive 
at LLNL to a panel of external experts. In 
the PSP final report, the panel 
recommended that LLNL develop these 
methods within a production code for use by 
the next-generation multi-physics code. 

Work on a next-generation TRT code for production use is currently under way, which 
will leverage the research developed in this LDRD to enable HO discretizations on HO 
meshes and coupling with LLNL’s next-generation multi-physics code. 

[1] T. S. Haut, P. G. Maginot, V. Z. Tomov, B. S. Southworth, and T. A. Brunner, “An 
Efficient Sweep-Based Solver for the SN Equations on High-Order Meshes,” Nuclear 
Science and Engineering, pp. 746–759, 2019. 

[2] T. S. Haut, B. S. Southworth, P. G. Maginot, and V. Z. Tomov, “DSA Preconditioning 
for DG Discretizations of SN Transport and High-Order Curved Meshes,” SIAM Journal 
of Scientific Computing (in press), 2020. 

[3] B. S. Southworth, M. Holec, and T. S. Haut, “Diffusion Synthetic Acceleration for 
Heterogeneous Domains, Compatible with Voids,” Nuclear Science and Engineering (in 
press), 2020. 

[4] S. S. Olivier, P. G. Maginot, and T. S. Haut, “High Order Mixed Finite Element 
Discretization for the Variable Eddington Factor Equations,” in International Conference 
on Mathematics and Computational Methods Applied to Nuclear Science and 
Engineering, 2019. 

[5] S. S. Olivier, “On Fast Solvers for the Variable Eddington Factor Equations,” in 
International Conference on Mathematics and Computational Methods Applied to 
Nuclear Science and Engineering, 2021. 

Figure 6: Model of throttled radiative flux in a 
half-hohlraum, motivated by the NIF Sonoma 
campaign. One SN transport sweep per time 
step using two new IMEX time-stepping 
schemes has shown comparable accuracy to 
using backward Euler. 
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[6] R. G. McClarren and T. S. Haut, “Acceleration of Source Iteration using the Dynamic 
Mode Decomposition,” in International Conference on Mathematics and Computational 
Methods Applied to Nuclear Science and Engineering, 2019. 

[7] B. C. Yee, T. S. Haut, M. Holec, V. Z. Tomov, and P. G. Maginot, “A Quadratic 
Programming Flux Correction Method for High-Order DG Discretizations of SN 
Transport,” Journal of Computational Physics, 2020. 

[8] M. Holec, B. S. Southworth, T. S. Haut, W. Pazner, and B. C. Yee, “Multi-Group 
Nonlinear Diffusion Synthetic Acceleration of Thermal Radiative Transfer,” in 
International Conference on Mathematics and Computational Methods Applied to 
Nuclear Science and Engineering, 2021. 

[9] T. S. Haut, M. Holec, B. Southworth, B. Chang, W. Pazner, B. Yee, and S. Olivier, “A 
New One-Sweep Implicit-Explicit Time-Stepping Scheme for Thermal Radiative 
Transfer,” in International Conference on Mathematics and Computational Methods 
Applied to Nuclear Science and Engineering, 2021. 

[10] B. C. Yee, S. S. Olivier, B. S. Southworth, M. Holec, and T. S. Haut, “A New 
Scheme for Solving High-Order DG Discretizations of Thermal Radiative Transfer using 
the Variable Eddington Factor Method,” in International Conference on Mathematics 
and Computational Methods Applied to Nuclear Science and Engineering, 2021. 

Advancing the Discipline | Fast and Accurate Data 
Race Detection for OpenMP Programs 
Contact: Ignacio Laguna and Giorgis Georgakoudis 

OpenMP is the de facto standard for on-node parallelism in HPC, targeting both 
multicore CPUs and accelerators such as GPUs and also serving as the backend of 
high-level programming models, such as RAJA and Kokkos. Although OpenMP is 
widely used, writing correct OpenMP programs can be difficult, as data race conditions 
and other concurrency bugs can be easily introduced. Debugging race conditions in 
OpenMP is particularly challenging because of the non-deterministic behavior of parallel 
programs. 

CASC researchers Ignacio Laguna and Giorgis Georgakoudis, along with academic and 
industry collaborators, have been pushing the envelope on developing new methods for 
data race detection in OpenMP. The majority of the current work on race detection 
focuses on dynamic tools—i.e., tools that detect a race by tracing the program’s 
execution. That approach, however, has several limitations: (1) It is slow because of the 
high overhead associated with memory tracing, and (2) detection depends on the 
specific thread and input configuration, so it may miss data races that do not manifest 
with a specific configuration. CASC researchers have developed a static approach, 
called OMPRacer, that overcomes the limitations of existing methods. OMPRacer does 
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not require running the program and can detect all the races in the program, including 
those that dynamic methods detect and those that they miss. 

OMPRacer leverages the LLVM compiler’s intermediate representation (IR) to statically 
analyze the parallel execution of OpenMP regions in a program. It discovers parallel 
OpenMP regions to build a concurrency graph that encodes concurrent logical tasks, 
the data they use along with their sharing attributes, and any synchronization specified 
using OpenMP. Based on this novel analysis of parallelism in the compiler, OMPRacer 
detects concurrent memory accesses that can result in data races, independently of the 
specific input and thread configuration at runtime (see Figure 7). 

 

Figure 7: Overview of OMPRacer. 

As a tool, it is easy to integrate OMPRacer in the build configuration of an application: It 
requires as input only the source code, without the need of tracing, and provides a 
comprehensive data race report as the output that pinpoints possible data races in the 
source code. Compared to other state-of-the-art static and dynamic data race detectors, 
including ARCHER, benchmarked with DataRaceBench, OMPRacer has the highest 
detection accuracy (91%). Table 1 shows relevant results. Comparing its execution time 
to ARCHER using HPC proxy applications, OMPRacer’s static approach is on average 
faster by avoiding application execution for tracing. 

Table 1: Results of several tools using DataRaceBench. 
Tools Precision Recall Accuracy Total Accuracy 

ARCHER 0.98–0.98 0.91–0.91 0.94–0.95 0.90 
ROMP 0.96–0.96 0.91–0.91 0.93–0.93 0.85 
LLOV 0.83 0.94 0.86 0.63 
OMPRacer 0.89 0.93 0.89 0.91 

The techniques behind OMPRacer as well as a comprehensive evaluation of the 
method were published as a technical paper at the SC20 conference [1]. OMPRacer’s 
ideas were initially developed in a collaboration project with researchers at Texas A&M 
University. Later this project led to the creation of a startup, Coderrect, which is 
commercializing a software tool for static data race detection. 

[1] B. Swain, Y. Li, P. Liu, I. Laguna, G. Georgakoudis, and J. Huang, “OMPRacer: A 
Scalable and Precise Static Race Detector for OpenMP Programs,” in Proceedings of 
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the International Conference for High Performance Computing, Networking, Storage 
and Analysis, pp. 1–14, 2020. 

Machine Learning & Applications | NM-ROM: Marrying 
Machine Learning with Reduced Order Models 
Contact: Youngsoo Choi 

In the past decade, ML has excelled in using large amounts of data to produce 
predictive models where first principles hardly exist, such as in speech recognition, self-
driving cars, protein-folding, writing short sentences with perfect grammar, and 
AlphaGo. However, one area where ML lacks robustness is in physical simulations. This 
shortcoming is partly because data-driven neural networks (NNs) fail to incorporate 
known first principles, such as conservation properties. The result has been that an ML-
based, black-box approach to physical modeling has lacked accuracy and physical 
fidelity. 

Recently, some ML researchers have realized the importance of incorporating first 
principles. The physics-informed NN (PINN) [1] is a representative example. Although 
the PINN has demonstrated a new way to incorporate first principles knowledge into the 
ML framework and provided a way of obtaining a solution without complete information 
about initial and boundary conditions, these networks are slower and less accurate than 
existing numerical methods because their solution process relies on the training of the 
NNs. Thus, there is a need for better ways to combine the power of ML with existing 
numerical methods to achieve acceleration and accuracy. 

Physics-constrained reduced order models (ROM) provide an approach to fully leverage 
the benefits of data-driven models within existing numerical methods by reducing the 
size of the corresponding full order model (FOM). Among the many ROM approaches 
used, the Linear Subspace ROM (LS-ROM)—in which a linear subspace solution 
representation is used—has been successfully applied to various decision-making 
applications as well as to many physical simulations. Despite its successes, the LS-
ROM solution representation is not able to represent certain physical simulation 
solutions in a compact form, such as the solution to advection-dominated problems over 
long time periods. These limitations call for a new way of representing the solution (e.g., 
a nonlinear manifold solution representation that can be achieved by ML). 

In collaborative work with researchers in LLNL’s Computational Engineering Division, 
CASC researcher Youngsoo Choi recently developed a nonlinear manifold ROM (NM-
ROM) technique [2,3] that overcomes this gap by substituting the nonlinear manifold 
solution representation (which is trained with ML) into the numerically discretized 
governing equations. NM-ROM also exploits a special NN structure to achieve a speed-
up (Figure 8). The NM-ROM introduces a new way of incorporating first principles with 
ML and shows how to re-use existing numerical methods in the ML-based, data-driven 
physical simulations. 

mailto:choi15@llnl.gov
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Figure 9 shows the 
comparison of the FOM 
solution and the 
predictions of various data-
driven models for the 
parameterized advection-
dominated 2D Burgers’ 
equation, with a large 
Reynolds number of 
10,000. Figure 9(a) shows 
the FOM solution (a finite 
difference approximation) 
at the final time and (b–d) 
show absolute differences 
of the FOM solution and 
three different data-driven 
models at the final time. 
The NM-ROM 
outperforms both the LS-
ROM and black-box 
neural network (BB-NN) 
methods in terms of 
accuracy (note the scale 
differences), presenting a 

promising pathway for improved modeling. In this example, the FOM solution has 3,600 
degrees of freedom, while all the data-driven models use a latent space dimension of 
five and use the same data. The NM-ROM approach is eleven times faster than the 
FOM. Both LS-ROM and BB-NN are unable to capture the FOM solution accurately. 
Here, LS-ROM and NM-ROM follow the methods described in [2,3], while BB-NN 
follows the method described in [4]. 

 

Figure 9: Solution comparison of various surrogate models for the parameterized advection-
dominated 2D Burgers’ equation, Reynolds number = 10,000. 

The successful application of the NM-ROM on the 2D Burgers’ equation is promising 
because the estimates predict that the NM-ROM will achieve much greater speed-up for 
larger-scale problems while preserving sufficient accuracy. If these estimates hold for 

Figure 8: Comparison between two NNs. (Left) One hidden 
layer and sparsely connected. (Right) Two hidden layers and 
somewhat densely connected. For both networks, the latent 

space dimension of five and eleven outputs are used. By 
hyper-reduction, three outputs are selected, and the 

corresponding subnets are illustrated with orange nodes and 
edges. For the network on the left, 52% of the nodes are 

selected in the subnet, while 76% of the nodes are selected in 
the subnet on the right. The comparison shows the importance 
of the NN structure to achieve a great sparsity in the subnet. 
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more complex problems, many decision-making problems that require ensembles of 
calculations, such as uncertainty quantification, design optimization, optimal control, and 
inverse problems, could be computed using NM-ROMs fairly quickly—if not in real 
time—which would enable breakthroughs in science and engineering applications. 

[1] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-Informed Neural Networks: 
A Deep Learning Framework for Solving Forward and Inverse Problems Involving 
Nonlinear Partial Differential Equations,” Journal of Computational Physics, 378, pp. 
686–707, 2019. 

[2] Y. Kim, Y. Choi, D. Widemann, and T. Zohdi, “Efficient Nonlinear Manifold Reduced 
Order Model,” accepted in Workshop on Machine Learning for Engineering Modeling, 
Simulation and Design at NeurIPS, 2020. 

[3] Y. Kim, Y. Choi, D. Widemann, and T. Zohdi, “A Fast and Accurate Physics-Informed 
Neural Network Reduced Order Model with Shallow Masked Autoencoder,” arXiv 
preprint, arXiv:2009.11990, 2020. 

[4] B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, and B. Solenthaler, “Deep 
Fluids: A Generative Network for Parameterized Fluid Simulations,” in Computer 
Graphics Forum, vol. 38, no. 2, pp. 59–70, 2019. 

CASC Highlights 
A lot has happened since our last newsletter. 

New Postdocs (Since June 2020) 
• Jingyi (“Frank”) Wang (6/20) 
• Tahsin Reza (7/20) 
• Ryan Vogt (7/20) 
• Siu Wun (“Tony”) Cheung (7/20) 
• Mark Heimann (8/20) 

• Trevor Steil (11/20) 
• Michael Barrow (11/20) 
• Haichao Miao (12/20) 
• Zoe Tosi (1/21) 
• Brendan Keith (2/21) 

New Staff Hires (Since June 2020) 
• Matthew Sottile (7/20) 
• Tom Benson (7/20) 
• Milan Holec (7/20) 
• Yohann Dudouit (8/20) 
• Michael Wyatt (8/20) 
• Nai-Yuan Chiang (8/20) 
• Keita Iwabuchi (9/20) – transfer 

from GS-CAD 
• Kshitij Bhardwaj (10/20) 

• Jim Gaffney (10/20) – transfer 
from PLS 

• Braden Soper (10/20) – transfer 
from GS-CAD 

• Quan Bui (11/20) 
• Jayram Thathachar (11/20) 
• Jize Zhang (1/21) 
• Ben Priest (1/21) 
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Departures (Since July 2019) 
• Abhinav Bhatele (8/19) 
• Milo Dorr (10/19) – 

retired/returned as subcontractor 
• Qunwei Li (10/19) 
• Dean Williams (10/19) – retired 
• Avary Kolasinski (1/20) 
• Ben Yee (1/20) – transfer to WCI 
• Bryce Campbell (3/20) 
• Naoya Maruyama (4/20) 

• Sasha Ames (8/20) – transfer to 
GS-CAD 

• Todd Gamblin (8/20) – transfer to 
LC 

• Scott Lloyd (8/20) 
• Louis Howell (8/20) – retired 
• Nathan Hanford (10/20) – 

transfer to LC 
• Sookyung Kim (1/21) 
• Andrew Barker (4/21) 

CASC Newsletter Sign-Up 

Was this newsletter link passed along to you? Or did you happen to find it on social 
media? Sign up to be notified of future newsletters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National 
Laboratory under Contract DE-AC52-07NA27344. LLNL-WEB-821743. Edited by Ming Jiang. 

https://computing.llnl.gov/casc/newsletter
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