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 Introduction (Carol Woodward)

 Multirate time integrators (Daniel Reynolds)

 Enhanced GPU support (David Gardner)

 Performance profiling, analysis, and logging (Cody Balos)

 Scalable demonstration code (Daniel Reynolds)

 Closing Remarks (Carol)

 Where to get this tutorial: SUNDIALS/hypre ECP Project Confluence (Under Software 
Technologies/2.3.3.12) Tutorials page: 
https://confluence.exascaleproject.org/display/STLM12/Tutorials

Tutorial Outline

https://confluence.exascaleproject.org/display/STLM12/Tutorials


3
LLNL-PRES-834716

 SUNDIALS is a software library consisting of ODE 
and DAE integrators and nonlinear solvers

 Packages: CVODE(S), IDA(S), ARKODE, KINSOL
 Written in C with interfaces to Fortran (Python coming 

soon)
 Designed to be incorporated into existing codes
 Through the ECP, developing a rich infrastructure of 

support on exascale systems and applications
 Freely available; released under the BSD 3-Clause 

license ( >100,000 downloads in 2021)
 Active user community supported by sundials-users 

email list
 Detailed user manuals included with each package 

(and at https://sundials.readthedocs.io )

SUite of Nonlinear and DIfferential-ALgebraic Solvers

https://computing.llnl.gov/casc/sundials

 Nonlinear and linear solvers and all data use is fully 
encapsulated from the integrators and can be user-
supplied

 All parallelism is encapsulated in vector & solver 
modules and user-supplied functions

https://sundials.readthedocs.io/
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SUNDIALS: Used Worldwide in Applications from Research & Industry
 Computational Cosmology (Nyx)
 Combustion (PELE)
 Atmospheric dynamics (DOE E3SM)
 Fluid Dynamics (NEK5000) (ANL)
 Dislocation dynamics (LLNL)
 3D parallel fusion (SMU, U. York, LLNL)
 Power grid modeling (RTE France, ISU, LLNL)
 Sensitivity analysis of chemically reacting flows (Sandia)
 Large-scale subsurface flows (CO Mines, LLNL)
 Micromagnetic simulations (U. Southampton)
 Chemical kinetics (Cantera)
 Released in third party packages:
 Red Hat Extra Packages for Enterprise Linux (EPEL)
 SciPy – python wrap of SUNDIALS
 Cray Third Party Software Library (TPSL)

Core collapse 
supernova

Dislocation dynamics Subsurface flow

Cosmology

Atmospheric Dynamics
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 CVODE, IDA, and sensitivity analysis variants (forward and adjoint), CVODES and IDAS, are based on linear multistep 
methods
— CVODE solves ODEs, �̇�𝑦 = f(t, y)
— IDA  solves DAEs, 𝐹𝐹(𝑡𝑡, 𝑦𝑦, �̇�𝑦) = 0
— Adaptive in both order and step sizes
— Both packages include stiff BDF methods; CVODE includes nonstiff Adams-Moulton methods

 ARKODE is designed to work as an infrastructure for developing adaptive one-step, multistage time integration methods
— Originally designed to solve 

𝑀𝑀(𝑡𝑡) may be the identity or any nonsingular (and optionally time-dependent) mass matrix (e.g., FEM)
— Multistage embedded methods give rise to adaptive time steps
— Three steppers: ARKStep (explicit, implicit, and additive ImEx Runge-Kutta methods), ERKStep (streamlined explicit RK 

implementation), and MRIStep (multirate infinitesimal step methods)
— Paralell-in-Time support: Xbraid wrappers for SUNDIALS vectors and explicit, implicit, and IMEX methods in ARKStep

 KINSOL solves nonlinear algebraic systems with Newton or accelerated fixed point methods

SUNDIALS offers packages with linear multistep and 
multistage methods
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Time steps are chosen to minimize local truncation error and 
maximize efficiency

 Time step selection
— Based on the method, estimate the time step error
— Accept step if ||E(∆t)||WRMS < 1; Reject it otherwise

— Choose next step, ∆t’, so that ||E(∆t’)|| WRMS < 1
 CVODE and IDA also adapt order

— Choose next order resulting in largest step meeting error condition

 Relative tolerance (RTOL) controls local error relative to the size of the solution
— RTOL = 10-4 means that errors are controlled to 0.01%

 Absolute tolerances (ATOL) control error when a solution component may be small 
— Ex: solution starting at a nonzero value but decaying to noise level, ATOL should be set to noise level
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SUNDIALS uses modular design and control inversion to interface with 
application codes, external solvers, and encapsulate parallelism
 Control passes between the integrator, solvers, and application code as the integration progresses

 Nonlinear and linear solver modules are designed for generic systems

Time integrator and nonlinear 
solver are agnostic of vector data 
layout and specific solvers used

Application / 
discretization 
framework:

RHS Function, f 
RHS Jacobian, Jf

Preconditioner, P

Linear solver

Time integrator

Nonlinear solver

z

x

z0, F, JF

Axm, P-1rm

Application Code

yn+1t0, y0, f, Jf

A, x0, b

Generic Solver 
Interfaces

zm

F(zm), JF(zm)

xm, rm
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Status in pre-exascale environments 
 SUNDIALS supports AMD, Intel, and NVIDIA GPUs 

 Vector implementations using CUDA, HIP, SYCL, OpenMP offload, 
and RAJA (with CUDA, HIP, or SYCL backends)

 Iterative nonlinear and matrix-free linear (Krylov) solvers inherit 
GPU support from vectors and user-defined functions

 Interfaces to MAGMA (CUDA and HIP) and oneMKL(DPC++) for 
dense batched LU linear solvers

 Interface to cuSOLVER for batched sparse QR linear solver

 SUNMemoryHelperclass enables application supplied allocators 
under SUNDIALS objects

 Performance profiling and instrumentation layer

 Benchmark problems utilizing CUDA, HIP, and RAJA incorporated 
into LLNL GitLab CI for automated performance testing

 Installation via Spack with smoke tests for CUDA, HIP, and SYCL

 OLCF now has install of SUNDIALS on Spock with HIP enabled

Blue indicates new in the last year

Nvector
Interface

Serial
Parallel 

(MPI) PThreads OpenMP CUDA

ParHyp
(hypre)RAJA

ManyVec.

HIP

OpenMP 
Dev (Offld)

SYCL
(DPC++)

PETScTrilinos

MPI 
ManyVec. KokkosMPI + X

SUNLinearSolver
Interface

ITERATIVE

SPTFQMR SPBCGSPFGMR PCGSPGMR

DIRECT

Dense SuperLU MTBand KLU
LAPACK 
Dense 

LAPACK 
Band

SuperLU
DIST cuSOLVER rocSOLVERMAGMA

Dense
oneMKL

Dense Ginkgo

SUNMatrix
Interface

Dense Band Sparse SLU NRLOC cuSPARSE MAGMA 
Dense

GinkgooneMKL
Dense

SUNNonlinearSolver
Interface

Fixed PointNewton PETSc SNES
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 High-order multirate methods that can integrate different portions of the problem with different time step sizes
— Implicit and IMEX at the slow scale
— Custom integrators for the fast scale

 New vector and solver support for SYCL-based applications
— Direct SYCL and RAJA with SYCL backend vectors
— OneMKL dense solve support

 Support for logging more run diagnostic information (extremely helping in debugging and better understanding 
performance)

 Performance profiling layer with optional use of Caliper

 Added the ability for CVODES to project the solution onto an invariant manifold as the solution is evolved

 New online documentation: https://sundials.readthedocs.io

 Moved development repo fully to GitHub: https://github.com/LLNL/sundials

What’s new in SUNDIALS?

https://sundials.readthedocs.io/
https://github.com/LLNL/sundials
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 Greater support on AMD and Intel GPUs
— Optimizations for HIP and SYCL vectors
— Interfaces to more batched solvers – Gingko, ROCm, MKL batched solvers

 Python interfaces for CVODE, ARKODE, IDA, and KINSOL

 More multirate methods and options

 Greater interoperability to discretization packages
— AMReX – multifab-based vector for SUNDIALS
— Chombo – Chombo vector for SUNDIALS
— MFEM – integrators already available from MFEM, new GPU-based examples
— PETSc – updating interfaces to SUNDIALS integrators from PETSc

What are we working on now? 
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SUNDIALS Team
Current Team:

Alumni:

Cody Balos David Gardner Alan Hindmarsh Dan Reynolds Steven Roberts

Radu Serban

Scott D. Cohen, Peter N. Brown, George Byrne, Allan G. Taylor, Steven L. Lee, 
Keith E. Grant, Aaron Collier, Lawrence E. Banks, Steve G. Smith, Cosmin Petra, 
Slaven Peles, John Loffeld, Dan Shumaker, Ulrike M. Yang, James Almgren-Bell, 
Shelby L. Lockhart, Rujeko Chinomona, Daniel McGreer, Hunter Schwartz, 
Hilari C. Tiedeman, Ting Yan, Jean M. Sexton, and Chris White

Carol Woodward

Folks with red 
outlines are 
part of the ECP 
time integration 
effort
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 Introduction (Carol Woodward)

 Multirate time integrators (Daniel Reynolds)

 Enhanced GPU support (David Gardner)

 Performance profiling, analysis, and logging (Cody Balos)

 Scalable demonstration code (Daniel Reynolds)

 Closing Remarks (Carol)

Tutorial Outline
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 Multirate methods consider a general initial-value problem of the form:

— contains the “slow” dynamics, evolved with a time step H.
— contains the “fast” dynamics, evolved with smaller time steps            . 

 Historically, such problems have been treated using low-order operator splitting methods:
— Lie—Trotter computes                    via

— Strang—Marchuk symmetrizes this loose “initial-condition” coupling to achieve 2nd order.

Multirate Time Integration
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 Multirate infinitesimal step (MIS or MRI) methods arose in the numerical weather prediction 
community, but have seen dramatic advances in recent years.

 Fast time scale is again evolved using any desired solver (of sufficient accuracy).

 Slow time scale is advanced through solving a sequence of modified “fast” initial-value 
problems.

 These achieve higher order (3rd or even 4th) through:
— initial condition coupling (as with Lie—Trotter and Strang—Marchuk), and
— temporal interpolation of slow information (            ) onto the fast time scale, through the 

modifications to each fast IVP.

 Extremely efficient – higher order is attainable with only a single traversal of                , unlike 
extrapolation or deferred correction approaches that bootstrap Lie—Trotter or Strang—
Marchuk to higher order at significantly higher cost.

Higher-Order “Infinitesimal” Multirate Methods (MIS/MRI)
[Schlegel et al. 2009; Sandu 2019; Chinomona & R. 2021]
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A single step                    of size                          proceeds as:

1. Let:              .

2. For each slow stage                          :

a) Define: 

b) Evolve: 

c) Let:                            .

3. Let: 

 is a polynomial in θ , defined by coefficients that satisfy underlying order conditions.

 When                   , step 2b reduces to a standard ERK/DIRK Runge—Kutta stage update.

 Implicitness at the slow time scale depends on the “diagonal”              , typically only used when 

MRI Method Skeleton
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 ARKODE’s MRIStep module additionally supports ImEx treatment of the slow time scale:

where both                               are evolved with the large step size H.

 The slow time scale may be handled using explicit, implicit, or ImEx MRI-GARK methods, with 
orders of accuracy from 2nd through 4th.  Additionally supports user-provided MRI-GARK or 
IMEX-MRI-GARK tables                      .

 Slow time scale requires a user-defined H that can be varied between steps. The fast time 
scale can be evolved using ARKStep or any viable user-supplied IVP solver.

 Robust multirate adaptivity (H and h) is under development [Fish & R., arXiv:2202.10484, 2022].

MRI Methods in SUNDIALS
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MRI Code Example (from ark_brusselator1D_imexmri.c)

 We request a DIRK method from 
ARKStep for the fast [reaction] 
time scale (NULL explicit RHS, ff
implicit RHS).

 This utility routine wraps the 
ARKStep integrator as an “inner” 
stepper for MRIStep.

 We request an IMEX-MRI-GARK 
method at the slow scale 
[advection + diffusion].

 We “evolve” the IVP as normal 
for SUNDIALS integrators.
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 Custom “inner” integrators have a simple API:

— Required: a routine to evolve the fast IVP system over an interval (t0,tf) with a given initial 
condition, v(t0).

— Required: a routine to evaluate the fast RHS function fF(t,v) [for MRIStep dense output].

— Optional: a routine to reset the inner integrator’s internal data to a given state, (tR,v(tR)) 
[called before the evolve routine to set the initial condition].

 The example program examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp
even wraps CVODE as a custom inner integrator for MRIStep.

 Note: I will also discuss another multirate example at the end of the tutorial, when discussing 
our scalable demonstration code.

Additional MRI Comments
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 Introduction (Carol Woodward)

 Multirate time integrators (Daniel Reynolds)

 Enhanced GPU support (David Gardner)

 Performance profiling, analysis, and logging (Cody Balos)

 Scalable demonstration code (Daniel Reynolds)

 Closing Remarks (Carol)

Tutorial Outline
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 SUNDIALS’ object-oriented design enables supporting various GPUs with class implementations 
targeting different programming models e.g., HIP, SYCL, CUDA, RAJA, etc.

 To leverage GPU acceleration:
— Compile SUNDIALS with GPU features enabled e.g., ENABLE_HIP=ON

— Utilize GPU-enabled class implementations i.e., vectors, matrices, and algebraic solvers

— Supply callback functions that leverage GPU acceleration e.g., ODE right-hand side functions

 Primary uses cases:
— SUNDIALS controls the main time-integration loop, and evolves a large ODE system in a distributed 

manner (MPI+X) e.g., FEM, FD, or FV applications

— SUNDIALS is used as a local integrator for numerous independent subsystems within a larger problem 
e.g., local reactions in each grid cell within an adaptive mesh refinement application

SUNDIALS Supports AMD, Intel, and NVIDIA GPUs
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 The user must ensure data coherency between the CPU host and GPU-device
— SUNDIALS integrators do not internally migrate data from one memory space to another

— The location of the data depends entirely on the object implementations utilized

 For optimal performance it is critical to minimize data movement between the host and device
— It is recommended to only access data in the device memory space as much as possible

— Ideally, data would reside in device memory for the entire duration of the simulation

 SUNDIALS-provided GPU-enabled objects, keep data resident in the GPU-device memory
— When control passes from the user to SUNDIALS, simulation data must be up-to-date in the device 

memory space (unless using UVM)

— Similarly, when control returned from SUNDIALS to the user, it should be assumed that any simulation 
data is only up-to-date in the device memory space

Key Considerations When Using SUNDIALS With GPUs
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SUNDIALS GPU Enabled Vectors

Serial

Parallel (MPI)

PThreadsOpenMP

CUDA

ParHyp
(hypre)

RAJA

ManyVector

HIP

OpenMP Dev
(Offload)

SYCL
(DPC++)

PETSc

Trilinos

MPI 
ManyVector MPI + X

 SUNDIALS modifies data through vector operations 
defined by the NVector interface (sum, norms, etc.)

 GPU implementations are provided with SUNDIALS:

— HIP, SYCL, CUDA, RAJA with CUDA, HIP, or SYCL 
backends, and OpenMP DEV (target offloading)

— ManyVector and MPIPlusX modules enable data 
partitioning and support for hybrid MPI+X computation

 Many of the native GPU vectors support:

— Separate host and device or managed (UVM) memory

— User-defined memory allocators (SUNMemoryAPI)

— User-defined execution policies (ExecPolicy)

 Straightforward to create a vector e.g., AMReX and 
SAMRAI provide their own NVector implementations

Nvector
Interface
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Creating GPU Vectors

// Create vector with separate host and device data arrays
N_Vector N_VNew_**(sunindextype length, SUNContext ctx);

// Create vector from existing host and device data arrays
N_Vector N_VMake_**(sunindextype length, sunrealtype* h_data,                   

sunrealtype* d_data, SUNContext ctx);

// Create vector with a UVM data array
N_Vector N_VNewManaged_**(sunindextype length, SUNContext ctx);

// Create vector from an existing UVM data array
N_Vector N_VMakeManaged_**(sunindextype length, sunrealtype* umv_data,

SUNContext ctx);

 Here ** is the vector implementation name i.e., Hip, Sycl, Cuda, Raja, or OpenMPDEV

 Note: SYCL functions include an addition SYCL queue input and the OpenMPDEV vector currently 
does not support UVM i.e., separate host and device memory must be used
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Creating Vectors with a User-defined Allocator and the SUNMemory API

// Create vector with a user-supplied memory allocator
N_Vector N_VNewWithMemHelp_**(sunindextype length, sunbooleantype managed,

SUNMemoryHelper helper, SUNContext ctx);

 A SUNMemory object contains a void* data pointer, memory type, and ownership flag

 The SUNMemoryHelper base class provides the following operations
Alloc Creates SUNMemoryobject and allocates memory of a given type and size, required

Dealloc Frees memory own by a SUNMemoryobject and destroys the object, required

Copy Synchronously copies data between SUNMemoryobjects, required

CopyAsync Asynchronously copies data between SUNMemoryobjects, optional

Clone Creates a clone of a SUNMemoryHelper, optional

Destroy Destroys a SUNMemoryHelper, optional

 Native SUNMemoryHelper implementations are provided for Hip, Sycl, and Cuda (** above)

 AMReX and MFEM use the SUNMemory API to leverage their own memory tools under SUNDIALS
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 The HIP, SYCL, and CUDA vectors support attaching ExecPolicy objects for determining kernel 
launch parameters, setting GPU streams, and selecting reduction algorithms (HIP and CUDA only)

 Setting a GPU stream enables concurrent kernel execution (beneficial when running multiple 
integrator instances) and the reduction algorithm is critical depending on hardware capabilities

 SUNDIALS provided hip, sycl, and cuda (** below) class implementations

Creating and Attaching GPU Execution Policies to Vectors

// Set the execution policies for steaming and reduction operations
int N_VSetKernelExecPolicy_**(N_Vector v, sundials::**::ExecPolicy stream_exec,

sundials::**::ExecPolicy reduce_exec);

ThreadDirectExecPolicy(blockDim, stream) One thread per work unit

GridStrideExecPolicy(blockDim, gridDim, stream) Fixed grid and block size
BlockReduceAtomicExecPolicy(blockDim, gridDim, stream) Block reduce with atomics
BlockReduceExecPolicy(blockDim, gridDim, stream) Block reduce with shared memory
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 SUNDIALS implicit time integrators require solving one or more nonlinear systems of the form 
𝐹𝐹 𝑦𝑦 = 0 or G 𝑦𝑦 = 𝑦𝑦 in each time step

 SUNDIALS provides several nonlinear solver implementations 

Solving Nonlinear Systems in SUNDIALS Time Integrators

SUNNonlinearSolver
Interface Fixed-PointNewton PETSc SNES

 The Newton and Fixed-Point solvers inherit their GPU capability from the underlying objects 
(vectors, matrices, and linear solvers) and user-supplied callback functions e.g., the ODE RHS

 User-defined or problem-specific nonlinear solver modules can be supplied by wrapping the solver 
as a SUNNonlinearSolver implementation

— See examples/arkode/CXX_parallel/ark_brusselator1D_task_local_nls.cpp for an example 
utilizing a problem-specific task-local nonlinear solver on GPUs

https://github.com/LLNL/sundials/blob/develop/examples/arkode/CXX_parallel/ark_brusselator1D_task_local_nls.cpp


27
LLNL-PRES-834716

 By default, SUNDIALS integrators use a Newton method which requires linear solve each iteration

 In this case, users need to attach a linear solver object and, if necessary, a matrix object

 SUNDIALS provides several GPU-ready linear solver implementations/interfaces

— Iterative: SUNDIALS’ matrix-free iterative (Krylov) linear solvers inherit their GPU capability 
from the vector utilized and user-supplied functions e.g., the ODE RHS, preconditioner, etc.

— Direct: SUNDIALS provides interfaces to linear solver libraries with batched direct linear solvers 
for AMD, Intel, and NVIDIA GPUs. 

 User-defined or problem-specific linear solver modules can be supplied by wrapping the solver as 
a SUNLinearSolver implementation

— See examples/cvode/CXX_parhyp/cv_heat2D_hypre_ls.cpp for an example wrapping a linear 
solver from the hypre library

Solving Linear Systems in SUNDIALS

https://github.com/LLNL/sundials/blob/develop/examples/cvode/CXX_parhyp/cv_heat2D_hypre_ls.cpp
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 Interfaces to external linear solver libraries 
provide access to batched direct solvers 
for block diagonal systems that arise when 
solving independent systems together

SUNDIALS GPU Enabled Batched Direct Linear Solvers

Dense

SuperLU
MT

Band

KLU

LAPACK 
Dense 

LAPACK 
Band

SuperLU
DIST

cuSOLVER

rocSOLVER

MAGMA
Dense

oneMKL
Dense Ginkgo

Dense Band Sparse SLU NRLOC

cuSPARSEMAGMA 
Dense GinkgooneMKL

Dense

SUNLinearSolver Interface

SUNMatrix Interface

 Dense blocks 𝐴𝐴𝑗𝑗,
— MAGMA interface supports HIP and CUDA 
— oneMKL interface supports DPC++

 Sparse blocks 𝐴𝐴𝑗𝑗,
— cuSPRASE interface supports CUDA

 Ginkgo will support sparse and dense 
batched iterative solvers - HIP/CUDA/SYCL
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Creating GPU Enabled Dense Batched Matrices and Linear Solvers

// Create a block diagonal matrix of Nb blocks of size M x N
SUNMatrix SUNMatrix_MagmaDenseBlock(sunindextype Nb, sunindextype M,

sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper helper, void* queue,
SUNContext sunctx);

// Create a MAGMA batched dense linear solver
SUNLinearSolver SUNLinSol_MagmaDense(N_Vector y, SUNMatrix A, SUNContext sunctx);

 All blocks 𝐴𝐴𝑗𝑗 in the block-diagonal system must be the same size

 For sparse blocks (cuSPARSE, not shown), all blocks 𝐴𝐴𝑗𝑗 must share the same sparsity pattern

 The user must provide a callback function for filling the Jacobian matrix, ideally this should launch 
a GPU kernel to compute and set the matrix entries

 The interface to the oneMLK is nearly identical, replace “Magma” with “OneMkl” and “void* queue” 
with “sycl::queue”
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A High-Level Look at a GPU-enabled SUNDIALS example

 Consider the case where independent ODEs are combined into a larger group that is evolved 
together as a single system

 In this example, we use the Robertson example for a stiff autocatalytic reaction

𝑑𝑑𝑦𝑦1
𝑑𝑑𝑡𝑡 = −0.04 𝑦𝑦1 + 104 𝑦𝑦2 𝑦𝑦3

𝑑𝑑𝑦𝑦2
𝑑𝑑𝑡𝑡 = 0.04 𝑦𝑦1 −104 𝑦𝑦2 𝑦𝑦3 − 3 × 107 𝑦𝑦22

𝑑𝑑𝑦𝑦2
𝑑𝑑𝑡𝑡 = 3 × 107 𝑦𝑦22

 The problem is replicated ngroups times giving a total problem size of 3*ngroups to evolve

 Advance the system in time with CVODE adaptive order and step BDF methods with a modified 
Newton iteration and the MAGMA batched direct linear solver

 MAGMA HIP/CUDA – see examples/cvode/magma/cvRoberts_blockdiag_magma.cpp

 oneMKL DPC++ – see examples/cvode/CXX_onemkl/cvRoberts_blockdiag_onemkl.cpp

 cuSPARSE CUDA – see examples/cvode/cuda/cvRoberts_block_cusolversp_batchqr.cu
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User-Supplied Functions: ODE RHS Evaluation
// ODE RHS function y’ = f(t,y) launches a GPU kernel to do the computation
static int f(sunrealtype t, N_Vector y, N_Vector ydot, void* user_data)
{
UserData*    udata = (UserData*) user_data;
sunrealtype* ydata = N_VGetDeviceArrayPointer(y);
sunrealtype* ydotdata = N_VGetDeviceArrayPointer(ydot);
unsigned block_size = gpuBlockSize;
unsigned grid_size = (udata->ngroups + block_size - 1) / block_size;

f_kernel<<<grid_size, block_size>>>(t, ydata, ydotdata, udata->ngroups);

return 0;
}

// Right hand side function evaluation kernel
__global__ void f_kernel(sunrealtype t, sunrealtype* ydata, sunrealtype* ydotdata, int ngroups)
{
for (int j = blockIdx.x * blockDim.x + threadIdx.x; j < ngroups; j += blockDim.x * gridDim.x)
{
ydotdata[j]   = -0.04 * ydata[j] + 1.0e4 * ydata[j+1] * ydata[j+2];
ydotdata[j+1] =  0.04 * ydata[j] - 1.0e4 * ydata[j+1] * ydata[j+2] - 3.0e7 * ydata[j+1] * ydata[j+1];
ydotdata[j+2] = 3.0e7 * ydata[j+1] * ydata[j+1];

}
}
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User-Supplied Functions: ODE Jacobian Evaluation
// ODE Jacobian function J = df/dy(t,y) launches a GPU kernel to do the computation
static int J(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix J, void* user_data,

N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
UserData*    udata = (UserData*) user_data;
sunrealtype* ydata = N_VGetDeviceArrayPointer(y);
sunrealtype* Jdata = SUNMatrix_MagmaDense_Data(J);
unsigned block_size = gpuBlockSize;
unsigned grid_size = (udata->ngroups + block_size - 1) / block_size;

j_kernel<<<grid_size, block_size>>>(ydata, Jdata, udata->ngroups);

return 0;
}

// Jacobian function evaluation kernel
__global__ void j_kernel(sunrealtype* ydata, sunrealtype* Jdata, int ngroups)
{
for (int j = blockIdx.x * blockDim.x + threadIdx.x; j < ngroups; j += blockDim.x * gridDim.x)
{
Jdata[GROUPSIZE * GROUPSIZE * j]     = -0.04;
Jdata[GROUPSIZE * GROUPSIZE * j + 1] =  0.04;
Jdata[GROUPSIZE * GROUPSIZE * j + 2] =  0.0;
// Fill other matrix entries column-wise...

}
}



33
LLNL-PRES-834716

Creating SUNDIALS Vector, Matrix, and Solver Objects
int main(int argc, char* argv[])
{
sundials::Context sunctx;                                             // Create the SUNDIALS context

// Read input parameters...

sunindextype neq = GROUPSIZE * ngroups;                               // Number of ODE equations

SUNMemoryHelper helper = SUNMemoryHelper_Hip(sunctx); // SUNDIALS HIP Memory Allocator

N_Vector y = N_Vnew_Hip(neq, sunctx);                                 // Create the initial condition vector

sunrealtype* ydata = N_VGetArrayPointer(y);                           // Fill host data and copy to device
for (int j = 0; j < neq; j += GROUPSIZE)
{
ydata[j] = Y1; ydata[j+1] = Y2; ydata[j+2] = Y3;

}
N_VCopyToDevice_Hip(y);

SUNMatrix A =                                                         // Create MAGMA block dense SUNMatrix
SUNMatrix_MagmaDenseBlock(ngroups, GROUPSIZE, GROUPSIZE,

SUNMEMTYPE_DEVICE, helper, NULL, sunctx);

SUNLinearSolver LS = SUNLinSol_MagmaDense(y, A, sunctx);              // Create MAGMA SUNLinearSolver object

// Setup CVODE...
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Create, Initialize, and Configure CVODE then Evolve in Time
void* cvode_mem = CVodeCreate(CV_BDF, sunctx);          // Create and initialize CVODE, attaches the ODE RHS
retval = CVodeInit(cvode_mem, f, t0, y);                // function and sets the initial condition

UserData udata = {ngroups};                             // Create and attach the user data structure
retval = CVodeSetUserData(cvode_mem, &udata);

// Create and fill absolute tolerance vector...

retval = CVodeSVtolerances(cvode_mem, 1.0e-4, abstol);  // Specify the integration tolerances

retval = CVodeSetLinearSolver(cvode_mem, LS, A);        // Attach the matrix and linear solver

retval = CVodeSetJacFn(cvode_mem, Jac);                 // Set the Jacobian function

for (int iout = 0; iout < NOUT; iout++)
{
retval = CVode(cvode_mem, tout, y, &tret, CV_NORMAL); // Evolve to output time

N_VCopyFromDevice_Hip(y);                             // Copy solution to host for output

// Output solution and update output time...
}

retval = CVodePrintAllStats(cvode_mem, stdout, SUN_OUTPUTFORMAT_TABLE);  // Print final statistics

// Destroy object, free memory, and return...
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Using Multiple CVODE Instances with OpenMP and GPU Streams

 Consider same Robertson example where the larger group of independent systems is divided 
across multiple CVODE instances each associated with an OpenMP thread and GPU stream

 The use of OpenMP threads and GPU streams enables concurrent kernel execution which is 
beneficial when different groupings of systems require differing amounts of work

 We now need to create arrays of objects and potentially adjust the kernel launch parameters 
otherwise, the steps are largely the same as in the non-OpenMP case.
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Creating SUNDIALS Vector, Matrix, and Solver Objects
int main(int argc, char* argv[])
{
// Read input parameters and determined the problem size per thread...

SUNContext sunctx[num_threads];
// Arrays of other SUNDIALS objects...

for (int i = 0; i < num_threads; i++)
{
hipStreamCreate(&stream[i]);                                        // Create GPU streams
retval = SUNContext_Create(NULL, &sunctx[i]);                    // Create the SUNDIALS contexts
helper[i] = SUNMemoryHelper_Hip(sunctx[i]); // SUNDIALS HIP Memory Allocator
y[i]      = N_Vnew_Hip(neq_per_thread, sunctx[i]);                  // Create the vector and exec policy

SUNHipExecPolicy* stream_exec = new SUNHipGridStrideExecPolicy(threads_per_block, blocks_per_grid,
stream[i]);

SUNHipExecPolicy* reduce_exec = new SUNHipBlockReduceExecPolicy(threads_per_block, blocks_per_grid,
stream[i]);

retval = N_VSetKernelExecPolicy_Hip(y, stream_exec, reduce_exec);
delete stream_exec; delete reduce_exec;

A[i] = SUNMatrix_MagmaDenseBlock(ngroups_per_thread, GROUPSIZE, GROUPSIZE, // Create MAGMA SUNMatrix
SUNMEMTYPE_DEVICE, helper[i], stream[i], sunctx[i]);

LS[i] = SUNLinSol_MagmaDense(y[i], A[i], sunctx[i]);                // Create MAGMA SUNLinearSolver object
}
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Create, Initialize, and Configure CVODE then Evolve in Time
#pragma omp parallel for
for (int i = 0; i < total_num_groups; i++)
{ 
int tid = omp_get_thread_num();                       // Get the thread ID

retval = FillInitialCondition(y[tid]);                // Set the initial condition

if (!cvode_initialized[tid])                          // Initialize and configure CVODE if not done yet
{
retval = CVodeInit(cvode_mem[tid], f, t0, y[tid]);
cvode_initialized[tid] = 1;
// Configure CVODE...

}
else
{
retval = CVodeReInit(cvode_mem[tid], t0, y[tid]);   // Reinitialize CVODE to evolve a new group

}

for (int iout = 0; iout < NOUT; iout++)
{
retval = CVode(cvode_mem[tid], tout, y[tid], &tret, CV_NORMAL); 

// Output solution and update output time...
}
// Output integrator statistics...

}
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 Introduction (Carol Woodward)

 Multirate time integrators (Daniel Reynolds)

 Enhanced GPU support (David Gardner)

 Performance profiling, analysis, and logging (Cody Balos)

 Scalable demonstration code (Daniel Reynolds)

 Closing Remarks (Carol)

Tutorial Outline
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 SUNDIALS v6.0.0+ has a built-in, MPI-aware, performance profiler, SUNProfiler
— Low-overhead when enabled and no overhead when disabled (choose at build-time)
— Key regions within the time-integration loop are profiled out-of-the-box
— Environment variable and run-time API
— Can optionally use Caliper1 for more advanced profiling without any additional code

 SUNDIALS v6.2.0+ adds new functions for printing stats and a logging capability, SUNLogger
— PrintAllStats functions allow you to choose between human- and machine-readable formats
— Choose max logging level at build-time to minimize overhead
— Separate channels for errors, warnings, informational output, and debugging output
— Lots of new informational output has been added

• Internal integrator decisions and state etc. 
— Environment variable and run-time API

 Together, these make measuring and analyzing SUNDIALS performance easier than ever

Built-In Profiling & Logging Makes Identifying Bottlenecks Easier

1http://software.llnl.gov/Caliper/

http://software.llnl.gov/Caliper/
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 To facilitate profiling, logging and error handling, v6.0.0 introduced the SUNContext object

 All the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a 
SUNDIALS simulation, hold a reference to a common simulation context object defined by 
the SUNContext class

 The SUNContext should be created before all other calls to the SUNDIALS library

 See https://sundials.readthedocs.io/en/latest/sundials/SUNContext_link.html for more

SUNContext

Creating a SUNContext is simple. For 
serial programs (top), the first 
argument is NULL and the second is 
a pointer that will be the new 
context on output. For MPI 
programs (bottom) the first 
argument is a pointer to the 
communicator. 

https://sundials.readthedocs.io/en/latest/sundials/SUNContext_link.html#c.SUNContext
https://sundials.readthedocs.io/en/latest/sundials/SUNContext_link.html
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Profiling Demo

1. Clone SUNDIALS

2. Configure CMake with profiling ON

3. Set the environment variable 
SUNPROFILER_PRINT=<0|1|filename>

4. Run

https://sundials.readthedocs.io/en/latest/sundials/
Profiling_link.html

https://sundials.readthedocs.io/en/latest/sundials/Profiling_link.html
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Profiling Demo

Not setting 
SUNPROFILER_PRINT or 
setting it to 0 disables profiling 
output but not the profiling itself.

SUNPROFILER_PRINT can 
alternatively be set to a filename.

https://github.com/LLNL/sundials/blob/v6.2.0/
examples/cvode/serial/cvAdvDiff_bnd.c

https://github.com/LLNL/sundials/blob/v6.2.0/examples/cvode/serial/cvAdvDiff_bnd.c
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SUNProfiler runtime API allows users to 
a) configure profiling b) add profile 
regions to user-code.

1. Get the default SUNProfiler object 
from the SUNContext

2. Store it in user data

3. Access it in the RHS function

4. Mark RHS function for profiling

Profiling Runtime API

https://github.com/LLNL/sundials/tree/develop/
benchmarks/diffusion_2D

https://github.com/LLNL/sundials/tree/develop/benchmarks/diffusion_2D
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Profiling with Caliper

 Caliper is a program instrumentation and performance measurement framework.

 To use Caliper instead of the SUNDIALS native profiler:
1. Install Caliper
2. When building SUNDIALS provide CMake with:

• ENABLE_CALIPER=ON
• CALIPER_DIR=path/to/caliper
• SUNDIALS_BUILD_WITH_PROFILING=ON

3. Use Caliper environment variables to configure it
4. Run 

http://software.llnl.gov/Caliper/
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Profiling with Caliper Demo

Sample output from running 
the SUNDIALS 2D diffusion 
benchmark problem with 
Caliper profiling enabled (left).

https://github.com/LLNL/sundials/tree/
develop/benchmarks/diffusion_2D

https://github.com/LLNL/sundials/tree/develop/benchmarks/diffusion_2D
https://github.com/LLNL/sundials/tree/develop/benchmarks/diffusion_2D
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Logging Demo

1. Configure CMake with SUNDIALS_LOGGING_LEVEL set to
• 1 – errors only
• 2 – errors + warnings
• 3 – errors + warnings + info
• 4 – errors + warnings + info + debugging

2. Set output location for levels through environment variables
• SUNLOGGER_<ERROR|WARNING|INFO|DEBUG>_FILENAME

3. Run any example and see the output 
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Logging Demo

Enable info-level output with the 
SUNLOGGER_INFO_FILELNAME 
environment variables

In this case we send the informational
output to stdout

Output is structured to be
machine-readable and easily filterable:
[LEVEL][MPI_RANK][SCOPE][LABEL]

https://github.com/LLNL/sundials/blob/v6.2.0/ex
amples/cvode/serial/cvAdvDiff_bnd.c

https://github.com/LLNL/sundials/blob/v6.2.0/examples/cvode/serial/cvAdvDiff_bnd.c
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Logger Runtime API

1. Create SUNLogger object

2. Attach logger to simulation 
SUNContext

3. Set filenames for level output

https://github.com/LLNL/sundials/blob/develop/examples/
cvode/parallel/cvAdvDiff_diag_p.c

https://github.com/LLNL/sundials/blob/develop/examples/cvode/parallel/cvAdvDiff_diag_p.c
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*PrintAllStats functions print integrator and solver statistics in a 
human-readable format or in a machine-readable CSV format

CVodePrintAllStats, ARKStepPrintAllStats, ERKStepPrintAllStats, MRIStepPrintAllStats,
IDAPrintAllStats, KINPrintAllStats

https://github.com/LLNL/sundials/blob/v6.2.0/examples/arkode/C_serial/ark_reaction_diffusion_mri.c

https://sundials.readthedocs.io/en/latest/search.html?q=PrintAllStats&check_keywords=yes&area=default
https://sundials.readthedocs.io/en/latest/search.html?q=PrintAllStats&check_keywords=yes&area=default
https://github.com/LLNL/sundials/blob/v6.2.0/examples/arkode/C_serial/ark_reaction_diffusion_mri.c
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PrintAllStats Demo

Running the ark_reaction_diffusion_mri.c example (top) produces 
both human-readable output (left) and machine-readable CSV 
format (bottom) with PrintAllStats.

https://github.com/LLNL/sundials/blob/v6.2.0/examples/arkode/C_serial/ark_reaction_diffusion_mri.c
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 Introduction (Carol Woodward)

 Multirate time integrators (Daniel Reynolds)

 Enhanced GPU support (David Gardner)

 Performance profiling, analysis, and logging (Cody Balos)

 Scalable demonstration code (Daniel Reynolds)

 Closing Remarks (Carol)

Tutorial Outline
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 SUNDIALS’ ManyVector and 
MPIManyVector objects are thin 
software layers that treat a 
collection of vector objects as a 
single cohesive vector.

 Do not touch any data directly; 
their ops coordinate an operation 
by calling subvector ops.

 Each subvector may stage data as 
it wishes (e.g., CPU or GPU).

 Collective operations (norms, dot-
products) utilize MPI at the higher 
MPIManyVector level, to minimize 
overhead.

ManyVector – a Conceptual Interface for Data Flexibility

N_Vector_ManyVector

N_Vector A

N_Vector_MPIManyVector

ops N_Vector
pointer 
array

ops

data

N_Vector B

ops

data

N_Vector C

ops

data

N_Vector D

ops

data

ops

N_Vector
pointer 
array

MPI_Comm
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SUNDIALS’ Scalable Demonstration Code – Reacting Flow

3D nonlinear compressible Euler equations combined with stiff chemical reactions for a low-density 
primordial gas (molecular & ionization states of H and He, free electrons, and internal gas energy), 
present in models of the early universe.

— w: density, momenta, total energy, and chemical species (10)
— F: advective fluxes (nonstiff/slow); and R: reaction network (stiff/fast)

w is stored as an MPIManyVector:

 Fluid species (density, momenta, total energy) 
each stored in main memory

 Chemical densities stored in GPU memory, 
using NVECTOR_RAJA interface.

 ManyVector handles MPI collectives; manual 
point-to-point communication for fluxes.
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 Method of lines:                                , with                                                .

 Regular nx x ny x nz grid for Ω, parallelized using standard 3D MPI domain decomposition.

 FD-WENO flux reconstruction for F(w) [Shu, 2003].

 Resulting IVP system:                                                          , where f1(w) contains                   
and is evaluated on the CPU, while f2(w) contains spatially-local reaction network           and is 
evaluated on the GPU.

 We compare two forms of temporal evolution:

a) Temporally-adaptive, 3rd order ARK-ImEx method from ARKStep:  f1 explicit and f2 implicit.

b) Fixed-step, 3rd order explicit MRI-GARK method from MRIStep (temporally adaptive fast 
step h):  f1 slow/explicit and f2 fast/DIRK.

Reacting Flow Solver Strategy
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 At each stage zi within the ARK-ImEx method, we must solve a nonlinearly implicit system

 Since f2 contains only spatially-local reaction terms, Newton’s method applied to this results in 
block-diagonal linear systems

 We construct a custom SUNLinearSolver that solves each Jp xp = bp using SUNDIALS’ new 
GPU-enabled SUNLinSol_MagmaDense batched solver interface.  The only communication 
required is a single MPI_Allreduce to gauge success/failure of the overall linear solve with J,
along with norms associated with Newton’s method.

IMEX Approach

implicit explicit
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 The 3rd order explicit MRI method evaluates  f1  three times per slow step, and requires three 
modified fast IVPs:

corresponding with a system of nxnynz decoupled 15-variable IVPs.

 We construct a custom MRIStepInnerStepper that evolves these separately on each MPI rank.
— The MRIStep-provided zi and ri(τ) use MPIManyVectors
— Custom stepper repackages as rank-local ManyVectors, calling ARKStep to evolve each

— Implicit solves at the fast time scale involve rank-local Newton solvers, with nearly identical 
GPU-enabled SUNLinSol_MagmaDense batched solver interface.

— MPI_Allreduce call to gauge success/failure of fast IVP solves [at slow time scale].

Multirate Approach
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Weak Scaling Results (Summit)

 Weak scaling runs with 1 
MPI rank per GPU.

 Multirate H chosen 
proportional to CFL 
condition on  f1 . 

 Both approaches show 
excellent alg. scalability.

 Huge reduction in f1
evals allows MR / IMEX 
speedup of ~70x.

 GPU synchronization 
more severely hinders 
runtime scalability of 
IMEX than MR, due to 
increased frequency 
(fast vs slow stages).
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 Visit the SUNDIALS website (Google LLNL SUNDIALS)
https://computing.llnl.gov/projects/sundials

 Visit the SUNDIALS GitHub page: https://github.com/LLNL/sundials

 Where to get this tutorial:
— SUNDIALS/hypre ECP Project Confluence Tutorials page: 

https://confluence.exascaleproject.org/display/STLM12/Tutorials
— SUNDIALS Publications page (bottom): https://computing.llnl.gov/projects/sundials/publications

• This page also includes prior tutorials on the basic uses of SUNDIALS

 Come to our poster – Thur. 4:00-6:00 (EDT)

 Come to our breakout session and learn about user experiences with SUNDIALS.  
Wed. 10:00-11:00 (EDT) 

 Send any of us an email.  We frequently do WebEx discussions with ECP users to go through 
interfaces and discuss use cases

Where to learn more

https://computing.llnl.gov/projects/sundials
https://github.com/LLNL/sundials
https://confluence.exascaleproject.org/display/STLM12/Tutorials
https://computing.llnl.gov/projects/sundials/publications
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