
LLNL-PRES-834716
This work was perf ormed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Overview and Use of New Features in the
SUNDIALS Suite of Nonlinear and
Differential/Algebraic Equation Solvers
ECP Annual Meeting

Carol S. Woodward, Cody J. Balos, David J. Gardner, Daniel R. Reynolds
May 2, 2022

2
LLNL-PRES-834716

 Introduction (Carol Woodward)

 Multirate time integrators (Daniel Reynolds)

 Enhanced GPU support (David Gardner)

 Performance profiling, analysis, and logging (Cody Balos)

 Scalable demonstration code (Daniel Reynolds)

 Closing Remarks (Carol)

 Where to get this tutorial: SUNDIALS/hypre ECP Project Confluence (Under Software
Technologies/2.3.3.12) Tutorials page:
https://confluence.exascaleproject.org/display/STLM12/Tutorials

Tutorial Outline

https://confluence.exascaleproject.org/display/STLM12/Tutorials

3
LLNL-PRES-834716

 SUNDIALS is a software library consisting of ODE
and DAE integrators and nonlinear solvers

 Packages: CVODE(S), IDA(S), ARKODE, KINSOL
 Written in C with interfaces to Fortran (Python coming

soon)
 Designed to be incorporated into existing codes
 Through the ECP, developing a rich infrastructure of

support on exascale systems and applications
 Freely available; released under the BSD 3-Clause

license (>100,000 downloads in 2021)
 Active user community supported by sundials-users

email list
 Detailed user manuals included with each package

(and at https://sundials.readthedocs.io)

SUite of Nonlinear and DIfferential-ALgebraic Solvers

https://computing.llnl.gov/casc/sundials

 Nonlinear and linear solvers and all data use is fully
encapsulated from the integrators and can be user-
supplied

 All parallelism is encapsulated in vector & solver
modules and user-supplied functions

https://sundials.readthedocs.io/

4
LLNL-PRES-834716

SUNDIALS: Used Worldwide in Applications from Research & Industry
 Computational Cosmology (Nyx)
 Combustion (PELE)
 Atmospheric dynamics (DOE E3SM)
 Fluid Dynamics (NEK5000) (ANL)
 Dislocation dynamics (LLNL)
 3D parallel fusion (SMU, U. York, LLNL)
 Power grid modeling (RTE France, ISU, LLNL)
 Sensitivity analysis of chemically reacting flows (Sandia)
 Large-scale subsurface flows (CO Mines, LLNL)
 Micromagnetic simulations (U. Southampton)
 Chemical kinetics (Cantera)
 Released in third party packages:
 Red Hat Extra Packages for Enterprise Linux (EPEL)
 SciPy – python wrap of SUNDIALS
 Cray Third Party Software Library (TPSL)

Core collapse
supernova

Dislocation dynamics Subsurface flow

Cosmology

Atmospheric Dynamics

5
LLNL-PRES-834716

 CVODE, IDA, and sensitivity analysis variants (forward and adjoint), CVODES and IDAS, are based on linear multistep
methods
— CVODE solves ODEs, �̇�𝑦 = f(t, y)
— IDA solves DAEs, 𝐹𝐹(𝑡𝑡, 𝑦𝑦, �̇�𝑦) = 0
— Adaptive in both order and step sizes
— Both packages include stiff BDF methods; CVODE includes nonstiff Adams-Moulton methods

 ARKODE is designed to work as an infrastructure for developing adaptive one-step, multistage time integration methods
— Originally designed to solve

𝑀𝑀(𝑡𝑡) may be the identity or any nonsingular (and optionally time-dependent) mass matrix (e.g., FEM)
— Multistage embedded methods give rise to adaptive time steps
— Three steppers: ARKStep (explicit, implicit, and additive ImEx Runge-Kutta methods), ERKStep (streamlined explicit RK

implementation), and MRIStep (multirate infinitesimal step methods)
— Paralell-in-Time support: Xbraid wrappers for SUNDIALS vectors and explicit, implicit, and IMEX methods in ARKStep

 KINSOL solves nonlinear algebraic systems with Newton or accelerated fixed point methods

SUNDIALS offers packages with linear multistep and
multistage methods

6
LLNL-PRES-834716

Time steps are chosen to minimize local truncation error and
maximize efficiency

 Time step selection
— Based on the method, estimate the time step error
— Accept step if ||E(∆t)||WRMS < 1; Reject it otherwise

— Choose next step, ∆t’, so that ||E(∆t’)|| WRMS < 1
 CVODE and IDA also adapt order

— Choose next order resulting in largest step meeting error condition

 Relative tolerance (RTOL) controls local error relative to the size of the solution
— RTOL = 10-4 means that errors are controlled to 0.01%

 Absolute tolerances (ATOL) control error when a solution component may be small
— Ex: solution starting at a nonzero value but decaying to noise level, ATOL should be set to noise level

7
LLNL-PRES-834716

SUNDIALS uses modular design and control inversion to interface with
application codes, external solvers, and encapsulate parallelism
 Control passes between the integrator, solvers, and application code as the integration progresses

 Nonlinear and linear solver modules are designed for generic systems

Time integrator and nonlinear
solver are agnostic of vector data
layout and specific solvers used

Application /
discretization
framework:

RHS Function, f
RHS Jacobian, Jf

Preconditioner, P

Linear solver

Time integrator

Nonlinear solver

z

x

z0, F, JF

Axm, P-1rm

Application Code

yn+1t0, y0, f, Jf

A, x0, b

Generic Solver
Interfaces

zm

F(zm), JF(zm)

xm, rm

8
LLNL-PRES-834716

Status in pre-exascale environments
 SUNDIALS supports AMD, Intel, and NVIDIA GPUs

 Vector implementations using CUDA, HIP, SYCL, OpenMP offload,
and RAJA (with CUDA, HIP, or SYCL backends)

 Iterative nonlinear and matrix-free linear (Krylov) solvers inherit
GPU support from vectors and user-defined functions

 Interfaces to MAGMA (CUDA and HIP) and oneMKL(DPC++) for
dense batched LU linear solvers

 Interface to cuSOLVER for batched sparse QR linear solver

 SUNMemoryHelperclass enables application supplied allocators
under SUNDIALS objects

 Performance profiling and instrumentation layer

 Benchmark problems utilizing CUDA, HIP, and RAJA incorporated
into LLNL GitLab CI for automated performance testing

 Installation via Spack with smoke tests for CUDA, HIP, and SYCL

 OLCF now has install of SUNDIALS on Spock with HIP enabled

Blue indicates new in the last year

Nvector
Interface

Serial
Parallel

(MPI) PThreads OpenMP CUDA

ParHyp
(hypre)RAJA

ManyVec.

HIP

OpenMP
Dev (Offld)

SYCL
(DPC++)

PETScTrilinos

MPI
ManyVec. KokkosMPI + X

SUNLinearSolver
Interface

ITERATIVE

SPTFQMR SPBCGSPFGMR PCGSPGMR

DIRECT

Dense SuperLU MTBand KLU
LAPACK
Dense

LAPACK
Band

SuperLU
DIST cuSOLVER rocSOLVERMAGMA

Dense
oneMKL

Dense Ginkgo

SUNMatrix
Interface

Dense Band Sparse SLU NRLOC cuSPARSE MAGMA
Dense

GinkgooneMKL
Dense

SUNNonlinearSolver
Interface

Fixed PointNewton PETSc SNES

9
LLNL-PRES-834716

 High-order multirate methods that can integrate different portions of the problem with different time step sizes
— Implicit and IMEX at the slow scale
— Custom integrators for the fast scale

 New vector and solver support for SYCL-based applications
— Direct SYCL and RAJA with SYCL backend vectors
— OneMKL dense solve support

 Support for logging more run diagnostic information (extremely helping in debugging and better understanding
performance)

 Performance profiling layer with optional use of Caliper

 Added the ability for CVODES to project the solution onto an invariant manifold as the solution is evolved

 New online documentation: https://sundials.readthedocs.io

 Moved development repo fully to GitHub: https://github.com/LLNL/sundials

What’s new in SUNDIALS?

https://sundials.readthedocs.io/
https://github.com/LLNL/sundials

10
LLNL-PRES-834716

 Greater support on AMD and Intel GPUs
— Optimizations for HIP and SYCL vectors
— Interfaces to more batched solvers – Gingko, ROCm, MKL batched solvers

 Python interfaces for CVODE, ARKODE, IDA, and KINSOL

 More multirate methods and options

 Greater interoperability to discretization packages
— AMReX – multifab-based vector for SUNDIALS
— Chombo – Chombo vector for SUNDIALS
— MFEM – integrators already available from MFEM, new GPU-based examples
— PETSc – updating interfaces to SUNDIALS integrators from PETSc

What are we working on now?

11
LLNL-PRES-834716

SUNDIALS Team
Current Team:

Alumni:

Cody Balos David Gardner Alan Hindmarsh Dan Reynolds Steven Roberts

Radu Serban

Scott D. Cohen, Peter N. Brown, George Byrne, Allan G. Taylor, Steven L. Lee,
Keith E. Grant, Aaron Collier, Lawrence E. Banks, Steve G. Smith, Cosmin Petra,
Slaven Peles, John Loffeld, Dan Shumaker, Ulrike M. Yang, James Almgren-Bell,
Shelby L. Lockhart, Rujeko Chinomona, Daniel McGreer, Hunter Schwartz,
Hilari C. Tiedeman, Ting Yan, Jean M. Sexton, and Chris White

Carol Woodward

Folks with red
outlines are
part of the ECP
time integration
effort

12
LLNL-PRES-834716

 Introduction (Carol Woodward)

 Multirate time integrators (Daniel Reynolds)

 Enhanced GPU support (David Gardner)

 Performance profiling, analysis, and logging (Cody Balos)

 Scalable demonstration code (Daniel Reynolds)

 Closing Remarks (Carol)

Tutorial Outline

13
LLNL-PRES-834716

 Multirate methods consider a general initial-value problem of the form:

— contains the “slow” dynamics, evolved with a time step H.
— contains the “fast” dynamics, evolved with smaller time steps .

 Historically, such problems have been treated using low-order operator splitting methods:
— Lie—Trotter computes via

— Strang—Marchuk symmetrizes this loose “initial-condition” coupling to achieve 2nd order.

Multirate Time Integration

14
LLNL-PRES-834716

 Multirate infinitesimal step (MIS or MRI) methods arose in the numerical weather prediction
community, but have seen dramatic advances in recent years.

 Fast time scale is again evolved using any desired solver (of sufficient accuracy).

 Slow time scale is advanced through solving a sequence of modified “fast” initial-value
problems.

 These achieve higher order (3rd or even 4th) through:
— initial condition coupling (as with Lie—Trotter and Strang—Marchuk), and
— temporal interpolation of slow information () onto the fast time scale, through the

modifications to each fast IVP.

 Extremely efficient – higher order is attainable with only a single traversal of , unlike
extrapolation or deferred correction approaches that bootstrap Lie—Trotter or Strang—
Marchuk to higher order at significantly higher cost.

Higher-Order “Infinitesimal” Multirate Methods (MIS/MRI)
[Schlegel et al. 2009; Sandu 2019; Chinomona & R. 2021]

15
LLNL-PRES-834716

A single step of size proceeds as:

1. Let: .

2. For each slow stage :

a) Define:

b) Evolve:

c) Let: .

3. Let:

 is a polynomial in θ , defined by coefficients that satisfy underlying order conditions.

 When , step 2b reduces to a standard ERK/DIRK Runge—Kutta stage update.

 Implicitness at the slow time scale depends on the “diagonal” , typically only used when

MRI Method Skeleton

16
LLNL-PRES-834716

 ARKODE’s MRIStep module additionally supports ImEx treatment of the slow time scale:

where both are evolved with the large step size H.

 The slow time scale may be handled using explicit, implicit, or ImEx MRI-GARK methods, with
orders of accuracy from 2nd through 4th. Additionally supports user-provided MRI-GARK or
IMEX-MRI-GARK tables .

 Slow time scale requires a user-defined H that can be varied between steps. The fast time
scale can be evolved using ARKStep or any viable user-supplied IVP solver.

 Robust multirate adaptivity (H and h) is under development [Fish & R., arXiv:2202.10484, 2022].

MRI Methods in SUNDIALS

17
LLNL-PRES-834716

MRI Code Example (from ark_brusselator1D_imexmri.c)

 We request a DIRK method from
ARKStep for the fast [reaction]
time scale (NULL explicit RHS, ff
implicit RHS).

 This utility routine wraps the
ARKStep integrator as an “inner”
stepper for MRIStep.

 We request an IMEX-MRI-GARK
method at the slow scale
[advection + diffusion].

 We “evolve” the IVP as normal
for SUNDIALS integrators.

18
LLNL-PRES-834716

 Custom “inner” integrators have a simple API:

— Required: a routine to evolve the fast IVP system over an interval (t0,tf) with a given initial
condition, v(t0).

— Required: a routine to evaluate the fast RHS function fF(t,v) [for MRIStep dense output].

— Optional: a routine to reset the inner integrator’s internal data to a given state, (tR,v(tR))
[called before the evolve routine to set the initial condition].

 The example program examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp
even wraps CVODE as a custom inner integrator for MRIStep.

 Note: I will also discuss another multirate example at the end of the tutorial, when discussing
our scalable demonstration code.

Additional MRI Comments

19
LLNL-PRES-834716

 Introduction (Carol Woodward)

 Multirate time integrators (Daniel Reynolds)

 Enhanced GPU support (David Gardner)

 Performance profiling, analysis, and logging (Cody Balos)

 Scalable demonstration code (Daniel Reynolds)

 Closing Remarks (Carol)

Tutorial Outline

20
LLNL-PRES-834716

 SUNDIALS’ object-oriented design enables supporting various GPUs with class implementations
targeting different programming models e.g., HIP, SYCL, CUDA, RAJA, etc.

 To leverage GPU acceleration:
— Compile SUNDIALS with GPU features enabled e.g., ENABLE_HIP=ON

— Utilize GPU-enabled class implementations i.e., vectors, matrices, and algebraic solvers

— Supply callback functions that leverage GPU acceleration e.g., ODE right-hand side functions

 Primary uses cases:
— SUNDIALS controls the main time-integration loop, and evolves a large ODE system in a distributed

manner (MPI+X) e.g., FEM, FD, or FV applications

— SUNDIALS is used as a local integrator for numerous independent subsystems within a larger problem
e.g., local reactions in each grid cell within an adaptive mesh refinement application

SUNDIALS Supports AMD, Intel, and NVIDIA GPUs

21
LLNL-PRES-834716

 The user must ensure data coherency between the CPU host and GPU-device
— SUNDIALS integrators do not internally migrate data from one memory space to another

— The location of the data depends entirely on the object implementations utilized

 For optimal performance it is critical to minimize data movement between the host and device
— It is recommended to only access data in the device memory space as much as possible

— Ideally, data would reside in device memory for the entire duration of the simulation

 SUNDIALS-provided GPU-enabled objects, keep data resident in the GPU-device memory
— When control passes from the user to SUNDIALS, simulation data must be up-to-date in the device

memory space (unless using UVM)

— Similarly, when control returned from SUNDIALS to the user, it should be assumed that any simulation
data is only up-to-date in the device memory space

Key Considerations When Using SUNDIALS With GPUs

22
LLNL-PRES-834716

SUNDIALS GPU Enabled Vectors

Serial

Parallel (MPI)

PThreadsOpenMP

CUDA

ParHyp
(hypre)

RAJA

ManyVector

HIP

OpenMP Dev
(Offload)

SYCL
(DPC++)

PETSc

Trilinos

MPI
ManyVector MPI + X

 SUNDIALS modifies data through vector operations
defined by the NVector interface (sum, norms, etc.)

 GPU implementations are provided with SUNDIALS:

— HIP, SYCL, CUDA, RAJA with CUDA, HIP, or SYCL
backends, and OpenMP DEV (target offloading)

— ManyVector and MPIPlusX modules enable data
partitioning and support for hybrid MPI+X computation

 Many of the native GPU vectors support:

— Separate host and device or managed (UVM) memory

— User-defined memory allocators (SUNMemoryAPI)

— User-defined execution policies (ExecPolicy)

 Straightforward to create a vector e.g., AMReX and
SAMRAI provide their own NVector implementations

Nvector
Interface

23
LLNL-PRES-834716

Creating GPU Vectors

// Create vector with separate host and device data arrays
N_Vector N_VNew_**(sunindextype length, SUNContext ctx);

// Create vector from existing host and device data arrays
N_Vector N_VMake_**(sunindextype length, sunrealtype* h_data,

sunrealtype* d_data, SUNContext ctx);

// Create vector with a UVM data array
N_Vector N_VNewManaged_**(sunindextype length, SUNContext ctx);

// Create vector from an existing UVM data array
N_Vector N_VMakeManaged_**(sunindextype length, sunrealtype* umv_data,

SUNContext ctx);

 Here ** is the vector implementation name i.e., Hip, Sycl, Cuda, Raja, or OpenMPDEV

 Note: SYCL functions include an addition SYCL queue input and the OpenMPDEV vector currently
does not support UVM i.e., separate host and device memory must be used

24
LLNL-PRES-834716

Creating Vectors with a User-defined Allocator and the SUNMemory API

// Create vector with a user-supplied memory allocator
N_Vector N_VNewWithMemHelp_**(sunindextype length, sunbooleantype managed,

SUNMemoryHelper helper, SUNContext ctx);

 A SUNMemory object contains a void* data pointer, memory type, and ownership flag

 The SUNMemoryHelper base class provides the following operations
Alloc Creates SUNMemoryobject and allocates memory of a given type and size, required

Dealloc Frees memory own by a SUNMemoryobject and destroys the object, required

Copy Synchronously copies data between SUNMemoryobjects, required

CopyAsync Asynchronously copies data between SUNMemoryobjects, optional

Clone Creates a clone of a SUNMemoryHelper, optional

Destroy Destroys a SUNMemoryHelper, optional

 Native SUNMemoryHelper implementations are provided for Hip, Sycl, and Cuda (** above)

 AMReX and MFEM use the SUNMemory API to leverage their own memory tools under SUNDIALS

25
LLNL-PRES-834716

 The HIP, SYCL, and CUDA vectors support attaching ExecPolicy objects for determining kernel
launch parameters, setting GPU streams, and selecting reduction algorithms (HIP and CUDA only)

 Setting a GPU stream enables concurrent kernel execution (beneficial when running multiple
integrator instances) and the reduction algorithm is critical depending on hardware capabilities

 SUNDIALS provided hip, sycl, and cuda (** below) class implementations

Creating and Attaching GPU Execution Policies to Vectors

// Set the execution policies for steaming and reduction operations
int N_VSetKernelExecPolicy_**(N_Vector v, sundials::**::ExecPolicy stream_exec,

sundials::**::ExecPolicy reduce_exec);

ThreadDirectExecPolicy(blockDim, stream) One thread per work unit

GridStrideExecPolicy(blockDim, gridDim, stream) Fixed grid and block size
BlockReduceAtomicExecPolicy(blockDim, gridDim, stream) Block reduce with atomics
BlockReduceExecPolicy(blockDim, gridDim, stream) Block reduce with shared memory

26
LLNL-PRES-834716

 SUNDIALS implicit time integrators require solving one or more nonlinear systems of the form
𝐹𝐹 𝑦𝑦 = 0 or G 𝑦𝑦 = 𝑦𝑦 in each time step

 SUNDIALS provides several nonlinear solver implementations

Solving Nonlinear Systems in SUNDIALS Time Integrators

SUNNonlinearSolver
Interface Fixed-PointNewton PETSc SNES

 The Newton and Fixed-Point solvers inherit their GPU capability from the underlying objects
(vectors, matrices, and linear solvers) and user-supplied callback functions e.g., the ODE RHS

 User-defined or problem-specific nonlinear solver modules can be supplied by wrapping the solver
as a SUNNonlinearSolver implementation

— See examples/arkode/CXX_parallel/ark_brusselator1D_task_local_nls.cpp for an example
utilizing a problem-specific task-local nonlinear solver on GPUs

https://github.com/LLNL/sundials/blob/develop/examples/arkode/CXX_parallel/ark_brusselator1D_task_local_nls.cpp

27
LLNL-PRES-834716

 By default, SUNDIALS integrators use a Newton method which requires linear solve each iteration

 In this case, users need to attach a linear solver object and, if necessary, a matrix object

 SUNDIALS provides several GPU-ready linear solver implementations/interfaces

— Iterative: SUNDIALS’ matrix-free iterative (Krylov) linear solvers inherit their GPU capability
from the vector utilized and user-supplied functions e.g., the ODE RHS, preconditioner, etc.

— Direct: SUNDIALS provides interfaces to linear solver libraries with batched direct linear solvers
for AMD, Intel, and NVIDIA GPUs.

 User-defined or problem-specific linear solver modules can be supplied by wrapping the solver as
a SUNLinearSolver implementation

— See examples/cvode/CXX_parhyp/cv_heat2D_hypre_ls.cpp for an example wrapping a linear
solver from the hypre library

Solving Linear Systems in SUNDIALS

https://github.com/LLNL/sundials/blob/develop/examples/cvode/CXX_parhyp/cv_heat2D_hypre_ls.cpp

28
LLNL-PRES-834716

 Interfaces to external linear solver libraries
provide access to batched direct solvers
for block diagonal systems that arise when
solving independent systems together

SUNDIALS GPU Enabled Batched Direct Linear Solvers

Dense

SuperLU
MT

Band

KLU

LAPACK
Dense

LAPACK
Band

SuperLU
DIST

cuSOLVER

rocSOLVER

MAGMA
Dense

oneMKL
Dense Ginkgo

Dense Band Sparse SLU NRLOC

cuSPARSEMAGMA
Dense GinkgooneMKL

Dense

SUNLinearSolver Interface

SUNMatrix Interface

 Dense blocks 𝐴𝐴𝑗𝑗,
— MAGMA interface supports HIP and CUDA
— oneMKL interface supports DPC++

 Sparse blocks 𝐴𝐴𝑗𝑗,
— cuSPRASE interface supports CUDA

 Ginkgo will support sparse and dense
batched iterative solvers - HIP/CUDA/SYCL

29
LLNL-PRES-834716

Creating GPU Enabled Dense Batched Matrices and Linear Solvers

// Create a block diagonal matrix of Nb blocks of size M x N
SUNMatrix SUNMatrix_MagmaDenseBlock(sunindextype Nb, sunindextype M,

sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper helper, void* queue,
SUNContext sunctx);

// Create a MAGMA batched dense linear solver
SUNLinearSolver SUNLinSol_MagmaDense(N_Vector y, SUNMatrix A, SUNContext sunctx);

 All blocks 𝐴𝐴𝑗𝑗 in the block-diagonal system must be the same size

 For sparse blocks (cuSPARSE, not shown), all blocks 𝐴𝐴𝑗𝑗 must share the same sparsity pattern

 The user must provide a callback function for filling the Jacobian matrix, ideally this should launch
a GPU kernel to compute and set the matrix entries

 The interface to the oneMLK is nearly identical, replace “Magma” with “OneMkl” and “void* queue”
with “sycl::queue”

30
LLNL-PRES-834716

A High-Level Look at a GPU-enabled SUNDIALS example

 Consider the case where independent ODEs are combined into a larger group that is evolved
together as a single system

 In this example, we use the Robertson example for a stiff autocatalytic reaction

𝑑𝑑𝑦𝑦1
𝑑𝑑𝑡𝑡 = −0.04 𝑦𝑦1 + 104 𝑦𝑦2 𝑦𝑦3

𝑑𝑑𝑦𝑦2
𝑑𝑑𝑡𝑡 = 0.04 𝑦𝑦1 −104 𝑦𝑦2 𝑦𝑦3 − 3 × 107 𝑦𝑦22

𝑑𝑑𝑦𝑦2
𝑑𝑑𝑡𝑡 = 3 × 107 𝑦𝑦22

 The problem is replicated ngroups times giving a total problem size of 3*ngroups to evolve

 Advance the system in time with CVODE adaptive order and step BDF methods with a modified
Newton iteration and the MAGMA batched direct linear solver

 MAGMA HIP/CUDA – see examples/cvode/magma/cvRoberts_blockdiag_magma.cpp

 oneMKL DPC++ – see examples/cvode/CXX_onemkl/cvRoberts_blockdiag_onemkl.cpp

 cuSPARSE CUDA – see examples/cvode/cuda/cvRoberts_block_cusolversp_batchqr.cu

31
LLNL-PRES-834716

User-Supplied Functions: ODE RHS Evaluation
// ODE RHS function y’ = f(t,y) launches a GPU kernel to do the computation
static int f(sunrealtype t, N_Vector y, N_Vector ydot, void* user_data)
{
UserData* udata = (UserData*) user_data;
sunrealtype* ydata = N_VGetDeviceArrayPointer(y);
sunrealtype* ydotdata = N_VGetDeviceArrayPointer(ydot);
unsigned block_size = gpuBlockSize;
unsigned grid_size = (udata->ngroups + block_size - 1) / block_size;

f_kernel<<<grid_size, block_size>>>(t, ydata, ydotdata, udata->ngroups);

return 0;
}

// Right hand side function evaluation kernel
__global__ void f_kernel(sunrealtype t, sunrealtype* ydata, sunrealtype* ydotdata, int ngroups)
{
for (int j = blockIdx.x * blockDim.x + threadIdx.x; j < ngroups; j += blockDim.x * gridDim.x)
{
ydotdata[j] = -0.04 * ydata[j] + 1.0e4 * ydata[j+1] * ydata[j+2];
ydotdata[j+1] = 0.04 * ydata[j] - 1.0e4 * ydata[j+1] * ydata[j+2] - 3.0e7 * ydata[j+1] * ydata[j+1];
ydotdata[j+2] = 3.0e7 * ydata[j+1] * ydata[j+1];

}
}

32
LLNL-PRES-834716

User-Supplied Functions: ODE Jacobian Evaluation
// ODE Jacobian function J = df/dy(t,y) launches a GPU kernel to do the computation
static int J(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix J, void* user_data,

N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
UserData* udata = (UserData*) user_data;
sunrealtype* ydata = N_VGetDeviceArrayPointer(y);
sunrealtype* Jdata = SUNMatrix_MagmaDense_Data(J);
unsigned block_size = gpuBlockSize;
unsigned grid_size = (udata->ngroups + block_size - 1) / block_size;

j_kernel<<<grid_size, block_size>>>(ydata, Jdata, udata->ngroups);

return 0;
}

// Jacobian function evaluation kernel
__global__ void j_kernel(sunrealtype* ydata, sunrealtype* Jdata, int ngroups)
{
for (int j = blockIdx.x * blockDim.x + threadIdx.x; j < ngroups; j += blockDim.x * gridDim.x)
{
Jdata[GROUPSIZE * GROUPSIZE * j] = -0.04;
Jdata[GROUPSIZE * GROUPSIZE * j + 1] = 0.04;
Jdata[GROUPSIZE * GROUPSIZE * j + 2] = 0.0;
// Fill other matrix entries column-wise...

}
}

33
LLNL-PRES-834716

Creating SUNDIALS Vector, Matrix, and Solver Objects
int main(int argc, char* argv[])
{
sundials::Context sunctx; // Create the SUNDIALS context

// Read input parameters...

sunindextype neq = GROUPSIZE * ngroups; // Number of ODE equations

SUNMemoryHelper helper = SUNMemoryHelper_Hip(sunctx); // SUNDIALS HIP Memory Allocator

N_Vector y = N_Vnew_Hip(neq, sunctx); // Create the initial condition vector

sunrealtype* ydata = N_VGetArrayPointer(y); // Fill host data and copy to device
for (int j = 0; j < neq; j += GROUPSIZE)
{
ydata[j] = Y1; ydata[j+1] = Y2; ydata[j+2] = Y3;

}
N_VCopyToDevice_Hip(y);

SUNMatrix A = // Create MAGMA block dense SUNMatrix
SUNMatrix_MagmaDenseBlock(ngroups, GROUPSIZE, GROUPSIZE,

SUNMEMTYPE_DEVICE, helper, NULL, sunctx);

SUNLinearSolver LS = SUNLinSol_MagmaDense(y, A, sunctx); // Create MAGMA SUNLinearSolver object

// Setup CVODE...

34
LLNL-PRES-834716

Create, Initialize, and Configure CVODE then Evolve in Time
void* cvode_mem = CVodeCreate(CV_BDF, sunctx); // Create and initialize CVODE, attaches the ODE RHS
retval = CVodeInit(cvode_mem, f, t0, y); // function and sets the initial condition

UserData udata = {ngroups}; // Create and attach the user data structure
retval = CVodeSetUserData(cvode_mem, &udata);

// Create and fill absolute tolerance vector...

retval = CVodeSVtolerances(cvode_mem, 1.0e-4, abstol); // Specify the integration tolerances

retval = CVodeSetLinearSolver(cvode_mem, LS, A); // Attach the matrix and linear solver

retval = CVodeSetJacFn(cvode_mem, Jac); // Set the Jacobian function

for (int iout = 0; iout < NOUT; iout++)
{
retval = CVode(cvode_mem, tout, y, &tret, CV_NORMAL); // Evolve to output time

N_VCopyFromDevice_Hip(y); // Copy solution to host for output

// Output solution and update output time...
}

retval = CVodePrintAllStats(cvode_mem, stdout, SUN_OUTPUTFORMAT_TABLE); // Print final statistics

// Destroy object, free memory, and return...

35
LLNL-PRES-834716

Using Multiple CVODE Instances with OpenMP and GPU Streams

 Consider same Robertson example where the larger group of independent systems is divided
across multiple CVODE instances each associated with an OpenMP thread and GPU stream

 The use of OpenMP threads and GPU streams enables concurrent kernel execution which is
beneficial when different groupings of systems require differing amounts of work

 We now need to create arrays of objects and potentially adjust the kernel launch parameters
otherwise, the steps are largely the same as in the non-OpenMP case.

36
LLNL-PRES-834716

Creating SUNDIALS Vector, Matrix, and Solver Objects
int main(int argc, char* argv[])
{
// Read input parameters and determined the problem size per thread...

SUNContext sunctx[num_threads];
// Arrays of other SUNDIALS objects...

for (int i = 0; i < num_threads; i++)
{
hipStreamCreate(&stream[i]); // Create GPU streams
retval = SUNContext_Create(NULL, &sunctx[i]); // Create the SUNDIALS contexts
helper[i] = SUNMemoryHelper_Hip(sunctx[i]); // SUNDIALS HIP Memory Allocator
y[i] = N_Vnew_Hip(neq_per_thread, sunctx[i]); // Create the vector and exec policy

SUNHipExecPolicy* stream_exec = new SUNHipGridStrideExecPolicy(threads_per_block, blocks_per_grid,
stream[i]);

SUNHipExecPolicy* reduce_exec = new SUNHipBlockReduceExecPolicy(threads_per_block, blocks_per_grid,
stream[i]);

retval = N_VSetKernelExecPolicy_Hip(y, stream_exec, reduce_exec);
delete stream_exec; delete reduce_exec;

A[i] = SUNMatrix_MagmaDenseBlock(ngroups_per_thread, GROUPSIZE, GROUPSIZE, // Create MAGMA SUNMatrix
SUNMEMTYPE_DEVICE, helper[i], stream[i], sunctx[i]);

LS[i] = SUNLinSol_MagmaDense(y[i], A[i], sunctx[i]); // Create MAGMA SUNLinearSolver object
}

37
LLNL-PRES-834716

Create, Initialize, and Configure CVODE then Evolve in Time
#pragma omp parallel for
for (int i = 0; i < total_num_groups; i++)
{
int tid = omp_get_thread_num(); // Get the thread ID

retval = FillInitialCondition(y[tid]); // Set the initial condition

if (!cvode_initialized[tid]) // Initialize and configure CVODE if not done yet
{
retval = CVodeInit(cvode_mem[tid], f, t0, y[tid]);
cvode_initialized[tid] = 1;
// Configure CVODE...

}
else
{
retval = CVodeReInit(cvode_mem[tid], t0, y[tid]); // Reinitialize CVODE to evolve a new group

}

for (int iout = 0; iout < NOUT; iout++)
{
retval = CVode(cvode_mem[tid], tout, y[tid], &tret, CV_NORMAL);

// Output solution and update output time...
}
// Output integrator statistics...

}

38
LLNL-PRES-834716

 Introduction (Carol Woodward)

 Multirate time integrators (Daniel Reynolds)

 Enhanced GPU support (David Gardner)

 Performance profiling, analysis, and logging (Cody Balos)

 Scalable demonstration code (Daniel Reynolds)

 Closing Remarks (Carol)

Tutorial Outline

39
LLNL-PRES-834716

 SUNDIALS v6.0.0+ has a built-in, MPI-aware, performance profiler, SUNProfiler
— Low-overhead when enabled and no overhead when disabled (choose at build-time)
— Key regions within the time-integration loop are profiled out-of-the-box
— Environment variable and run-time API
— Can optionally use Caliper1 for more advanced profiling without any additional code

 SUNDIALS v6.2.0+ adds new functions for printing stats and a logging capability, SUNLogger
— PrintAllStats functions allow you to choose between human- and machine-readable formats
— Choose max logging level at build-time to minimize overhead
— Separate channels for errors, warnings, informational output, and debugging output
— Lots of new informational output has been added

• Internal integrator decisions and state etc.
— Environment variable and run-time API

 Together, these make measuring and analyzing SUNDIALS performance easier than ever

Built-In Profiling & Logging Makes Identifying Bottlenecks Easier

1http://software.llnl.gov/Caliper/

http://software.llnl.gov/Caliper/

40
LLNL-PRES-834716

 To facilitate profiling, logging and error handling, v6.0.0 introduced the SUNContext object

 All the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a
SUNDIALS simulation, hold a reference to a common simulation context object defined by
the SUNContext class

 The SUNContext should be created before all other calls to the SUNDIALS library

 See https://sundials.readthedocs.io/en/latest/sundials/SUNContext_link.html for more

SUNContext

Creating a SUNContext is simple. For
serial programs (top), the first
argument is NULL and the second is
a pointer that will be the new
context on output. For MPI
programs (bottom) the first
argument is a pointer to the
communicator.

https://sundials.readthedocs.io/en/latest/sundials/SUNContext_link.html#c.SUNContext
https://sundials.readthedocs.io/en/latest/sundials/SUNContext_link.html

41
LLNL-PRES-834716

Profiling Demo

1. Clone SUNDIALS

2. Configure CMake with profiling ON

3. Set the environment variable
SUNPROFILER_PRINT=<0|1|filename>

4. Run

https://sundials.readthedocs.io/en/latest/sundials/
Profiling_link.html

https://sundials.readthedocs.io/en/latest/sundials/Profiling_link.html

42
LLNL-PRES-834716

Profiling Demo

Not setting
SUNPROFILER_PRINT or
setting it to 0 disables profiling
output but not the profiling itself.

SUNPROFILER_PRINT can
alternatively be set to a filename.

https://github.com/LLNL/sundials/blob/v6.2.0/
examples/cvode/serial/cvAdvDiff_bnd.c

https://github.com/LLNL/sundials/blob/v6.2.0/examples/cvode/serial/cvAdvDiff_bnd.c

43
LLNL-PRES-834716

SUNProfiler runtime API allows users to
a) configure profiling b) add profile
regions to user-code.

1. Get the default SUNProfiler object
from the SUNContext

2. Store it in user data

3. Access it in the RHS function

4. Mark RHS function for profiling

Profiling Runtime API

https://github.com/LLNL/sundials/tree/develop/
benchmarks/diffusion_2D

https://github.com/LLNL/sundials/tree/develop/benchmarks/diffusion_2D

44
LLNL-PRES-834716

Profiling with Caliper

 Caliper is a program instrumentation and performance measurement framework.

 To use Caliper instead of the SUNDIALS native profiler:
1. Install Caliper
2. When building SUNDIALS provide CMake with:

• ENABLE_CALIPER=ON
• CALIPER_DIR=path/to/caliper
• SUNDIALS_BUILD_WITH_PROFILING=ON

3. Use Caliper environment variables to configure it
4. Run

http://software.llnl.gov/Caliper/

45
LLNL-PRES-834716

Profiling with Caliper Demo

Sample output from running
the SUNDIALS 2D diffusion
benchmark problem with
Caliper profiling enabled (left).

https://github.com/LLNL/sundials/tree/
develop/benchmarks/diffusion_2D

https://github.com/LLNL/sundials/tree/develop/benchmarks/diffusion_2D
https://github.com/LLNL/sundials/tree/develop/benchmarks/diffusion_2D

46
LLNL-PRES-834716

Logging Demo

1. Configure CMake with SUNDIALS_LOGGING_LEVEL set to
• 1 – errors only
• 2 – errors + warnings
• 3 – errors + warnings + info
• 4 – errors + warnings + info + debugging

2. Set output location for levels through environment variables
• SUNLOGGER_<ERROR|WARNING|INFO|DEBUG>_FILENAME

3. Run any example and see the output

47
LLNL-PRES-834716

Logging Demo

Enable info-level output with the
SUNLOGGER_INFO_FILELNAME
environment variables

In this case we send the informational
output to stdout

Output is structured to be
machine-readable and easily filterable:
[LEVEL][MPI_RANK][SCOPE][LABEL]

https://github.com/LLNL/sundials/blob/v6.2.0/ex
amples/cvode/serial/cvAdvDiff_bnd.c

https://github.com/LLNL/sundials/blob/v6.2.0/examples/cvode/serial/cvAdvDiff_bnd.c

48
LLNL-PRES-834716

Logger Runtime API

1. Create SUNLogger object

2. Attach logger to simulation
SUNContext

3. Set filenames for level output

https://github.com/LLNL/sundials/blob/develop/examples/
cvode/parallel/cvAdvDiff_diag_p.c

https://github.com/LLNL/sundials/blob/develop/examples/cvode/parallel/cvAdvDiff_diag_p.c

49
LLNL-PRES-834716

*PrintAllStats functions print integrator and solver statistics in a
human-readable format or in a machine-readable CSV format

CVodePrintAllStats, ARKStepPrintAllStats, ERKStepPrintAllStats, MRIStepPrintAllStats,
IDAPrintAllStats, KINPrintAllStats

https://github.com/LLNL/sundials/blob/v6.2.0/examples/arkode/C_serial/ark_reaction_diffusion_mri.c

https://sundials.readthedocs.io/en/latest/search.html?q=PrintAllStats&check_keywords=yes&area=default
https://sundials.readthedocs.io/en/latest/search.html?q=PrintAllStats&check_keywords=yes&area=default
https://github.com/LLNL/sundials/blob/v6.2.0/examples/arkode/C_serial/ark_reaction_diffusion_mri.c

50
LLNL-PRES-834716

PrintAllStats Demo

Running the ark_reaction_diffusion_mri.c example (top) produces
both human-readable output (left) and machine-readable CSV
format (bottom) with PrintAllStats.

https://github.com/LLNL/sundials/blob/v6.2.0/examples/arkode/C_serial/ark_reaction_diffusion_mri.c

51
LLNL-PRES-834716

 Introduction (Carol Woodward)

 Multirate time integrators (Daniel Reynolds)

 Enhanced GPU support (David Gardner)

 Performance profiling, analysis, and logging (Cody Balos)

 Scalable demonstration code (Daniel Reynolds)

 Closing Remarks (Carol)

Tutorial Outline

52
LLNL-PRES-834716

 SUNDIALS’ ManyVector and
MPIManyVector objects are thin
software layers that treat a
collection of vector objects as a
single cohesive vector.

 Do not touch any data directly;
their ops coordinate an operation
by calling subvector ops.

 Each subvector may stage data as
it wishes (e.g., CPU or GPU).

 Collective operations (norms, dot-
products) utilize MPI at the higher
MPIManyVector level, to minimize
overhead.

ManyVector – a Conceptual Interface for Data Flexibility

N_Vector_ManyVector

N_Vector A

N_Vector_MPIManyVector

ops N_Vector
pointer
array

ops

data

N_Vector B

ops

data

N_Vector C

ops

data

N_Vector D

ops

data

ops

N_Vector
pointer
array

MPI_Comm

53
LLNL-PRES-834716

SUNDIALS’ Scalable Demonstration Code – Reacting Flow

3D nonlinear compressible Euler equations combined with stiff chemical reactions for a low-density
primordial gas (molecular & ionization states of H and He, free electrons, and internal gas energy),
present in models of the early universe.

— w: density, momenta, total energy, and chemical species (10)
— F: advective fluxes (nonstiff/slow); and R: reaction network (stiff/fast)

w is stored as an MPIManyVector:

 Fluid species (density, momenta, total energy)
each stored in main memory

 Chemical densities stored in GPU memory,
using NVECTOR_RAJA interface.

 ManyVector handles MPI collectives; manual
point-to-point communication for fluxes.

54
LLNL-PRES-834716

 Method of lines: , with .

 Regular nx x ny x nz grid for Ω, parallelized using standard 3D MPI domain decomposition.

 FD-WENO flux reconstruction for F(w) [Shu, 2003].

 Resulting IVP system: , where f1(w) contains
and is evaluated on the CPU, while f2(w) contains spatially-local reaction network and is
evaluated on the GPU.

 We compare two forms of temporal evolution:

a) Temporally-adaptive, 3rd order ARK-ImEx method from ARKStep: f1 explicit and f2 implicit.

b) Fixed-step, 3rd order explicit MRI-GARK method from MRIStep (temporally adaptive fast
step h): f1 slow/explicit and f2 fast/DIRK.

Reacting Flow Solver Strategy

55
LLNL-PRES-834716

 At each stage zi within the ARK-ImEx method, we must solve a nonlinearly implicit system

 Since f2 contains only spatially-local reaction terms, Newton’s method applied to this results in
block-diagonal linear systems

 We construct a custom SUNLinearSolver that solves each Jp xp = bp using SUNDIALS’ new
GPU-enabled SUNLinSol_MagmaDense batched solver interface. The only communication
required is a single MPI_Allreduce to gauge success/failure of the overall linear solve with J,
along with norms associated with Newton’s method.

IMEX Approach

implicit explicit

56
LLNL-PRES-834716

 The 3rd order explicit MRI method evaluates f1 three times per slow step, and requires three
modified fast IVPs:

corresponding with a system of nxnynz decoupled 15-variable IVPs.

 We construct a custom MRIStepInnerStepper that evolves these separately on each MPI rank.
— The MRIStep-provided zi and ri(τ) use MPIManyVectors
— Custom stepper repackages as rank-local ManyVectors, calling ARKStep to evolve each

— Implicit solves at the fast time scale involve rank-local Newton solvers, with nearly identical
GPU-enabled SUNLinSol_MagmaDense batched solver interface.

— MPI_Allreduce call to gauge success/failure of fast IVP solves [at slow time scale].

Multirate Approach

57
LLNL-PRES-834716

Weak Scaling Results (Summit)

 Weak scaling runs with 1
MPI rank per GPU.

 Multirate H chosen
proportional to CFL
condition on f1 .

 Both approaches show
excellent alg. scalability.

 Huge reduction in f1
evals allows MR / IMEX
speedup of ~70x.

 GPU synchronization
more severely hinders
runtime scalability of
IMEX than MR, due to
increased frequency
(fast vs slow stages).

58
LLNL-PRES-834716

 Introduction (Carol Woodward)

 Multirate time integrators (Daniel Reynolds)

 Enhanced GPU support (David Gardner)

 Performance profiling, analysis, and logging (Cody Balos)

 Scalable demonstration code (Daniel Reynolds)

 Closing Remarks (Carol)

Tutorial Outline

59
LLNL-PRES-834716

 Visit the SUNDIALS website (Google LLNL SUNDIALS)
https://computing.llnl.gov/projects/sundials

 Visit the SUNDIALS GitHub page: https://github.com/LLNL/sundials

 Where to get this tutorial:
— SUNDIALS/hypre ECP Project Confluence Tutorials page:

https://confluence.exascaleproject.org/display/STLM12/Tutorials
— SUNDIALS Publications page (bottom): https://computing.llnl.gov/projects/sundials/publications

• This page also includes prior tutorials on the basic uses of SUNDIALS

 Come to our poster – Thur. 4:00-6:00 (EDT)

 Come to our breakout session and learn about user experiences with SUNDIALS.
Wed. 10:00-11:00 (EDT)

 Send any of us an email. We frequently do WebEx discussions with ECP users to go through
interfaces and discuss use cases

Where to learn more

https://computing.llnl.gov/projects/sundials
https://github.com/LLNL/sundials
https://confluence.exascaleproject.org/display/STLM12/Tutorials
https://computing.llnl.gov/projects/sundials/publications

60
LLNL-PRES-834716

Acknowledgements

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration.

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research,
Scientic Discovery through Advanced Computing
(SciDAC) Program through the FASTMath Institute

computing.llnl.gov/sundials

This research used resources of the
Oak Ridge Leadership Computing
Facility, which is a DOE Office of
Science User Facility supported under
Contract DE-AC05-00OR22725.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

	Overview and Use of New Features in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers
	Tutorial Outline
	SUite of Nonlinear and DIfferential-ALgebraic Solvers
	SUNDIALS: Used Worldwide in Applications from Research & Industry
	SUNDIALS offers packages with linear multistep and multistage methods
	Time steps are chosen to minimize local truncation error and maximize efficiency
	SUNDIALS uses modular design and control inversion to interface with application codes, external solvers, and encapsulate parallelism
	Status in pre-exascale environments
	What’s new in SUNDIALS?
	What are we working on now?
	SUNDIALS Team
	Tutorial Outline
	Multirate Time Integration
	Higher-Order “Infinitesimal” Multirate Methods (MIS/MRI)�[Schlegel et al. 2009; Sandu 2019; Chinomona & R. 2021]
	MRI Method Skeleton
	MRI Methods in SUNDIALS
	MRI Code Example (from ark_brusselator1D_imexmri.c)
	Additional MRI Comments
	Tutorial Outline
	SUNDIALS Supports AMD, Intel, and NVIDIA GPUs
	Key Considerations When Using SUNDIALS With GPUs
	SUNDIALS GPU Enabled Vectors
	Creating GPU Vectors
	Creating Vectors with a User-defined Allocator and the SUNMemory API
	Creating and Attaching GPU Execution Policies to Vectors
	Solving Nonlinear Systems in SUNDIALS Time Integrators
	Solving Linear Systems in SUNDIALS
	SUNDIALS GPU Enabled Batched Direct Linear Solvers
	Creating GPU Enabled Dense Batched Matrices and Linear Solvers
	A High-Level Look at a GPU-enabled SUNDIALS example
	User-Supplied Functions: ODE RHS Evaluation
	User-Supplied Functions: ODE Jacobian Evaluation
	Creating SUNDIALS Vector, Matrix, and Solver Objects
	Create, Initialize, and Configure CVODE then Evolve in Time
	Using Multiple CVODE Instances with OpenMP and GPU Streams
	Creating SUNDIALS Vector, Matrix, and Solver Objects
	Create, Initialize, and Configure CVODE then Evolve in Time
	Tutorial Outline
	Built-In Profiling & Logging Makes Identifying Bottlenecks Easier
	SUNContext
	Profiling Demo
	Profiling Demo
	Profiling Runtime API
	Profiling with Caliper
	Profiling with Caliper Demo
	Logging Demo
	Logging Demo
	Logger Runtime API
	*PrintAllStats functions print integrator and solver statistics in a human-readable format or in a machine-readable CSV format
	PrintAllStats Demo
	Tutorial Outline
	ManyVector – a Conceptual Interface for Data Flexibility
	SUNDIALS’ Scalable Demonstration Code – Reacting Flow
	Reacting Flow Solver Strategy
	IMEX Approach
	Multirate Approach
	Weak Scaling Results (Summit)
	Tutorial Outline
	Where to learn more
	Acknowledgements
	Slide Number 61

