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Overview

▪ High-order meshes 

▪ Target Matrix Optimization Paradigm (TMOP) for -adaptivity 

▪ Acceleration through Partial Assembly 

▪ Acceleration through Metric Linearization 

▪ Future work

r
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High-Order Mesh Optimization

▪ Why mesh optimization?

Outward propogating shock-wave Multi-material Lagrangian 
Hydrodynamics

▪ Mesh optimization can help adapt the mesh to the solution and ultimately reduce error. 

▪ Improve conditioning of the resulting system.
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High-Order Mesh Representation

x(x̄) = ΦE(x̄) ≡
Np

∑
i=1

xE,iw̄i(x̄), x̄ ∈ Ē, x = x(x̄) ∈ E

▪ Each element in the mesh is represented using scalar basis 

functions  on the reference element .{w̄i}
Np
i=1 Ē

4th order mesh for a turbine blade

A
x̄

x

▪ The Jacobian of the transformation at each point represents the 
local deformation of the element with respect to the reference 
element: 

A(x̄) =
∂ΦE

∂x̄
=

Nw

∑
i=1

xE,i[∇w̄i(x̄)]T
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Target-Matrix Optimization Paradigm (TMOP)

▪ Any Jacobian transformation can be represented using four geometric 
parameters:

W = ζ
⏟

[volume]

R
⏟

[rotation]
Q
⏟

[skewness]

D⏟
[aspect-ratio]

▪ The transformation  from the active to target element can be defined using the 
Jacobian transformation .

T
A and W
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▪ Quality metric  is a measure of the deviation between the active and target 
Jacobian transformation. 

▪ Different metrics depend on different geometric parameters. 

▪  metric - depends on Skew (Q) and Aspect-ratio (D). 

▪  metric - depends on . 

▪ Other kinds include , , , etc. 

▪ We typically deploy  metrics but seldom also use  
metrics. 

▪  typically non-linear and defined such that its minima is  with .

μ(T )

𝚂𝚑𝚊𝚙𝚎

𝚂𝚒𝚣𝚎 ζ

𝙰𝚕𝚒𝚐𝚗𝚖𝚎𝚗𝚝 𝚂𝚑𝚊𝚙𝚎 + 𝚂𝚒𝚣𝚎 𝚂𝚑𝚊𝚙𝚎 + 𝙰𝚕𝚒𝚐𝚗𝚖𝚎𝚗𝚝

𝚂𝚑𝚊𝚙𝚎 + 𝚂𝚒𝚣𝚎 𝙰𝚕𝚒𝚐𝚗𝚖𝚎𝚗𝚝

μ(T ) T = I μ(I) = 0

6

TMOP Mesh Quality Metrics

µ2(T ) = 0.5
|T |2

det(T )
� 1

µ77(T ) = 0.5

✓
det(T )� 1

det(T )

◆2
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Node Movement with TMOP 

▪ Using the quality metric and the Jacobian transformation , the TMOP objective 
function is defined as: 

where  represents mesh coordinates. The element-by-element integral is 
computed as:

T

x
F(x) = ∑E∈ℳ FE(xE) = ∑E(xE) ∫

Et
μ(T(x))dxt

∑E∈ℳ ∫
Et

μ(T(xt))dxt = 1
NE

∑E∈ℳ ∑xq∈Et
wq det(W(x̄q)) μ(T(xq))

▪ In practice, we can use multiple metrics with different spatial weights.
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▪ -adaptivity -  is minimized using a technique such as the Newton’s method to optimize the mesh. 

▪
Node movement direction:  

▪ Solution using MINRES with preconditioning: .  

▪ Newton update with line-search: .    is backtracked starting from 1.0 until:  

▪  

▪  

▪ .

r F(x)

Δxk = − [∂2F(xk)

ℋ(xk)

]−1∂F(xk
⏟
𝒥(xk)

)

ℋ(xk)Δxk = 𝒥(xk) ↔ Ay = b

xk+1 = xk − αΔxk α

F(xk+1) ≤ 1.2F(xk)

|𝒥(xk+1) | ≤ 1.2 |𝒥(xk) |

𝚖𝚒𝚗( det(A(xk+1))) > ϵ𝚍𝚎𝚝

8

Node Movement with TMOP 



LLNL-PRES-852734

▪ TMOP for r-adaptivity:

9

Geometric -adaptivityr

, , ϕ = π
2 ρ = 1 μSh(T )

W =
ζ

sin ϕ [cos θ −sin θ
sin θ cos θ ] [1 cos ϕ

0 sin ϕ]
1
ρ

0

0 ρ

, , , ζ = 𝒱
NE

ϕ = π
2 ρ = 1 μShSz(T ) , , , ζ(x) ϕ = π

2 ρ = 1 μShSz(T )

Original 2nd order mesh Ideal shape + shape-metric. Ideal shape, equal size + 

shape-metric.

Ideal shape, spatially varying 

size + shape+size -metric.

“The target-matrix optimization paradigm for high-order meshes." SIAM Journal on Scientific Computing (2019).
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Simulation-driven Adaptivity

Simulation data material 
indicator (η)

Size - ζ ∝ 1/ |∇η | Aspect-Ratio - ρ ∝ |ηx /ηy |

 

▪  for an ideal square. 

▪ Use a  polyconvex metric,  . 

▪ Note:  must be remapped between and after Newton iterations.

W = ζ
sin ϕ [1 0

0 1] [1 cos ϕ
0 sin ϕ]

1
ρ

0

0 ρ
,

ϕ = π
2

𝚂𝚑𝚊𝚙𝚎 + 𝚂𝚒𝚣𝚎 μ80 = (1 − γ)μ2 + γμ77

η

µ2(T ) = 0.5
|T |2

det(T )
� 1 μ77(T ) = 1

2 (τ − 1
τ )2

"Simulation-driven optimization of high-order meshes in ALE hydrodynamics." Computers & Fluids (2020).
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Simulation-driven Adaptivity

Simulation-driven adaptivity with TMOP for multi-material ALE.
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▪ Nonlinear mesh quality metric  problem is not quadratic so need more 
than 1 Newton iteration. 

▪ Each Newton iteration requires assembly of matrix . 

▪ Each Newton iteration has O(10-100) MINRES iterations where we do 
matrix-vector products using .

→

ℋ

ℋ

12

Computational Cost of High-Order Mesh 
Optimization
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▪ Minimizing the TMOP objective function entails solving . 

▪ Assume :

ℋ(xk)Δxk = 𝒥(xk)

W = I

13

Computational Cost of High-Order Mesh 
Optimization

F(x) = ∑E∈ℳ FE(xE) = ∑E(xE) ∫
Ē

μ(T(x))dx̄

∂F(x)
∂xa,i

= ∫Ē

∂μ
∂T(x)

:
∂T(x)
∂xa,i

dx̄ = ∫Ē

∂μ
∂T

: ( ∂A
∂xa,i ) dx̄

a = 1,…, d, i = 1,…, Nx

∂2F(x)
∂xb,j∂xa,i

= ∫Ē

∂
∂xb,j [

∂μ
∂T

: ( ∂A
∂xa,i )]dx̄

a, b = 1,…, d, i, j = 1,…, Nx
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▪ Simple implementation (Full assembly): 

▪ Construct and store the global matrix  for the entire mesh at each Newton 
iteration. 

▪ Easy to setup but computationally expensive (prohibitive as  increases): 

ℋ

p

14

Computational Cost of High-Order Mesh 
Optimization
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▪ Acceleration for tensor-product elements (quads/hexes) using partial-assembly and matrix-free evaluation. 

▪ Construct  Operators as a Kronecker product ( ) of 1D operators. 

▪ Store only locally assembled 1D matrices. 

▪ At each iteration, store only quadrature point data and use locally stored 1D operatores to perform element-
by-element matrix-vector products. 

▪ Well suited for GPUs due to low storage complexity and matrix-vector products.

nD ⨂

15

Partial Assembly

B3D = (B1D ⊗ B1D ⊗ B1D)u
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▪ Easy-to-setup benchmark for timing high-order mesh optimization. 

▪ Two parameters  control the element deformation. 

▪ In our tests, we use a  mesh, 9 quadrature points in 

each direction in an element, and a shape metric . 

(ϵy, ϵz) ∈ (0,1]2

24 × 24 × 24

μ303 = |T |2

3τ2/3 − 1

16

Kershaw Benchmark

Camier et al. Accelerating high-order mesh optimization using finite element partial assembly on GPUs. Journal of Computational Physics (2023). 
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Kershaw Benchmark: Timing Results

▪ Timing comparison on Lassen, a Livermore Computing supercomputer, for full- and 
partial-assembly on CPU vs partial-assembly on GPU. 

▪ CPU - 36 cores with 44 CPUs per core. 

▪ GPU - 1 core with 1 GPU and 4 CPUs per core. 

 speed-up on GPUs versus CPUs𝒪(30×)
PA benefecial on CPUs for higher .p
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Partial-assembly virtually eliminates the assembly cost associated with . 

GPUs provide further acceleration.

ℋ

Kershaw Benchmark: Timing Results
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Kershaw Benchmark: Throuput

Throughput over 1 Newton iteration on 4 NVIDIA V100s
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GPU Acceleration for MultiMaterial ALE with 
Solution-Driven Adaptivity

Density (top) and 2nd order mesh (bottom) for the ALE shaped charge GPU simulation. 

20x speed-up for TMOP step in the solver.  
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Metric Linearization

▪ TMOP problem requires multiple Newton iterations due to the non-linearity from the mesh 
quality metric. 

▪ We can linearize the problem using Taylor expansion when: 

▪ The target matrix  is constant throughout the domain. [Dependence of Hessian only 
on A] 

▪ Deviation of current jacobian  is small with respect to the target Jacobian .

W

A W
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Metric Linearization

▪ Linearize the metric around the minima  using :I T = I + X

μ(T ) = μ(I + X ) = μ(I ) + X :
∂μ
∂T T=I

+
1
2

X :
∂2μ
∂T2 T=I

: X + …

μ(T ) =
1
2

X :
∂2μ
∂T2 T=I

: X

∂μ
∂T

= X :
∂2μ
∂T2 T=I

∂2μ
∂T2

=
∂2μ
∂T2 T=I

Compute  once and re-use at all quadrature points.
∂2μ
∂T2 T=I

Problem is quadratic so 1 Newton iteration is sufficient.
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Metric Linearization - Results

Kershaw transformed 2nd order mesh optimized using ideal shape + shape metric.

• Linearized problem requires 1 Newton iteration with 82 MINRES iterations. 

• Non-linear form requires 8 Newton iterations with a total of 1457 MINRES iterations.
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Metric Linearization + GPU 
acceleration - Kershaw 

▪ Further  speed-up on GPUs + Partial assembly + Linearization in 
comparison to GPUs + Partial assembly. 

▪  speed-up in comparison to CPUs + Partial assembly.

𝒪(10×)

𝒪(300×)
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Summary & Future Work

▪ High-order mesh optimization using TMOP. 

▪ (30x) speed up for mesh optimization using 
partial-assembly. 

▪ Another (10x) gain from metric linearization. 

▪ Functionality based on open-source high-
order FEM library, MFEM. 

▪ Learn more about it at the virtual MFEM 
Community workshop in October: 
www.mfem.org/workshop. 

▪ Partial assembly and matrix-free action for 
other TMOP-based functionalities in future.

𝒪

𝒪

mfem.org

Barrera et al. High-Order Mesh Morphing for Boundary and Interface 
Fitting to Implicit Geometries. Computer Aided Design (2023). 
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