Optimization, Adaptivity, and Surface Fitting of High-Order Meshes

NAHOMCon 2022

Ketan Mittal J. Barrera, V. Dobrev, P. Knupp, Tz. Kolev, and V. Tomov

LLNL-PRES-836823

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Motivation

Take easy to generate Cartesian meshes and optimize them for simulation needs.

Time dependent problem where we wish to ensure sufficient resolution with key features of the simulation.

Multi-material Fischer-Tropsch reactor domain to be meshed for shape optimization

Target Matrix Optimization Paradigm (TMOP)

Any Jacobian transformation can be represented using four geometric parameters:

$$W = \underbrace{\zeta} \\ [volume] \ [rotation] \ [skewness] \ [aspect-ratio] \ [skewness] \ [$$

 The transformation T from the physical to target element is defined using the Jacobian transformation A and W.

TMOP based Mesh Optimization

• Quality metric $\mu(T)$ is a measure of the difference between the active and target Jacobian transformation.

• Shape metric
$$(\mu_{Sh}(T) = 0.5 \frac{|T|^2}{det(T)} - 1)$$
, Size metric $(\mu_{Sz}(T) = 0.5(det(T) - \frac{1}{det(T)})^2)$

 Using the quality metric and the Jacobian transformation T, the TMOP objective function is defined as:

$$F_{\mu}(\mathbf{x}) = \sum_{E(\mathbf{x}_{E})} \int_{E_{t}} \mu(T(\mathbf{x})) d\mathbf{x}_{t}$$

where **x** represents mesh coordinates, and E_t is the target element.

 r-adaptivity - F(x) is minimized using a technique such as the Newton's method to optimize the mesh.

Geometric *r*-adaptivity

• TMOP for *r*-adaptivity:

$$W = \sqrt{\zeta} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \cos \phi \\ 0 & \sin \phi \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{\rho}} & 0 \\ 0 & \sqrt{\rho} \end{bmatrix}$$

Original mesh

Geometric optimization for a high-order mesh

Simulation-driven *r*-adaptivity

Sinusoidal material indicator (η)

Optimized mesh

Simulation-driven *r*-adaptivity

"Simulation-driven optimization of high-order meshes in ALE hydrodynamics." Computers & Fluids, 2020.

Boundary and Interface Fitting Method

Our approach for boundary and interface fitting is to fit the mesh to surface of interest given as the zero level set of a discrete function ($\sigma(\mathbf{x})$), using a penalty-based formulation.

 $\sigma(\mathbf{x})$ describing target interface and mesh to be optimized

$$F(\mathbf{x}) = \underbrace{\sum_{E(\mathbf{x}_{E})} \int_{E_{t}} \mu(T(\mathbf{x})) d\mathbf{x}_{t}}_{F_{\mu}} + \underbrace{w_{\sigma} \int_{\mathcal{S}} \sigma^{2}(\mathbf{x})}_{F_{\sigma}}, \text{ where }$$

- σ Discrete function
- \mathcal{S} Nodes marked for fitting
- w_{σ} Penalization weight

Level Set Function Representation

- Using the mesh being optimized for representing $\sigma(\mathbf{x})$ results in a sub-optimal fit if
 - The mesh does not have sufficient resolution around the zero level-set of $\sigma(\mathbf{x})$.
 - If the zero level-set of $\sigma(\mathbf{x})$ is outside the domain of the mesh.
- We use a background/source mesh with AMR to ensure accuracy in $\sigma(\mathbf{x}_R)$ and its gradient.

Current mesh and target level set

Level set on a background mesh

We use FindPointsGSLIB in MFEM (a wrapper around the gslib high-order interpolation library) to transfer information from the background mesh to the current mesh.

$$\sigma(\mathbf{x}) = I(\mathbf{x}, \mathbf{x}_B, \sigma(\mathbf{x}_B))$$

Level Set Function Representation for Complex Domains

 To define non-trivial geometries with sufficient accuracy, we use geometric primitives along with a method for distance function.

AMR around the 0 level set

Distance function from the 0 level set

Marking for Interface Fitting

Marking for interface fitting is not trivial and impacts the quality of the final mesh.

• The fit might be sub-optimal if multiple faces of an element are trying to align along a curve.

- Optimized mesh
- Using an adaptive marking strategy can significantly improve the fit.

Marking for Interface Fitting

• With quadrilateral elements, we can do a *conforming* split to improve the fit.

Similar splitting strategy in hexahedral elements does not guarantee optimal fit and we
are currently working on that problem.

Adaptive Penalization Weight

- Using a constant penalization weight w_{σ} requires tuning to get the best fit for a given mesh topology and level set function.
- We adapt w_{σ} by monitoring the maximum fitting error, $|\sigma|_{\mathcal{S},\infty} := \max_{i \in \mathcal{S}} |\sigma_i(\mathbf{x})|$, at the marked nodes, and increasing w_{σ} if $|\sigma|_{\mathcal{S},\infty}$ does not decrease sufficiently across subsequent Newton iterations.

Applications - Interface Fitting to a Sphere

$$T = I, \ \mu_{Sh}(T) = \frac{|T|^2}{3det(T)^{\frac{2}{3}}} - 1$$

Multimaterial tet- and hex-meshes fitted to a sphere

Boundary Fitting for a Complex 3D Domain

Uniform Cartesian (second-order) mesh trimmed and fit to the level-set function.

Interface Fitting for the Reactor Design Problem

- Reactor design problem: Maximize the energy produced by the system while keeping the volume of the aluminum fins fixed (*red/orange* in plots below).
- We first generate a uniform mesh and optimize it in MFEM to get an initial mesh to be used for the reactor design problem in LiDO.

- Simulation-driven optimization of high-order meshes using TMOP.
- Boundary and interface fitting through a penalizationbased formulation.
- All presented methods are (or will be) available in MFEM.

mfem.org

glvis.org

Center for Applied Scientific Computing

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.