
PSUADE Short Manual
(Version 1.7)

Charles Tong

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

Livermore, CA 94551-0808

August, 2015

1

1 Introduction

PSUADE (Problem Solving environment for Uncertainty Analysis and Design Exploration)
is a software package for performing various uncertainty quantification (UQ) computational
tasks such as uncertainty analysis (UA), sensitivity analysis (SA), parameter study, numeri-
cal optimization, Bayesian calibration, etc. It comprises three major components: a suite of
sampling methods, a job execution environment, and a collection of analysis/optimization
tools. This document describes how to set up and use these UQ tools. Detailed UQ mathe-
matics can be found in the theory manual.

1.1 A Quick Start

Follow the instruction in this section and you should be able to build and run PSUADE
(on a simple example) in less than 5 minutes (depending on the speed of your hardware)
on a Linux-based system. For building PSUADE executables on other platforms (MAC,
Windows), please refer to detailed instructions in a later section.

1. tar xvfz PSUADE vx.x.x.tar

2. cd PSUADE vx.x.x

3. For adding the external Gaussian process capability, please consult PSUADE develop-
ers.

4. Set the ‘FC’ environment variable to your preferred Fortran compiler, if you have one
(cmake will select one automatically if not set).

5. mkdir build

6. cd build

7. ccmake .. (Select packages by typing ’c’ and then using the arrow keys to move up and
down the list and type ’enter’ to select. When you are finished with package selection,
type ’c’ (may be twice) and then ’g’ to save and exit. If you would like to install the
executable somewhere else, set the install directory.)

8. make (to create the ‘psuade’ executable and libraries in the buiid/bin directory), or

9. make install (to install ‘psuade’ in your install directory if, for example, you would like
to make the executable to be available to your project team).

10. To test correct installation, do:

(a) cd Examples/Bungee

(b) cc -o simulator simulator.c -lm

(c) psuade psuade.in (this is to verify that the executable runs correctly).

2

What you have just done are to build the PSUADE executable and perform uncertainty
analysis on a simple example. At the end PSUADE prints out the summary statistics; and
all sample input and output data will have been stored in the psuadeData file. Later on in
this document more details about how to create PSUADE input files (psuade.in in this case)
and how to create Matlab/Scilab graphics will be given.

1.2 PSUADE Capabilities

PSUADE supports non-intrusive uncertainty quantification through sampling (it does have
a few features to support semi-intrusive methods). Some of the available sampling methods
are:

• Monte Carlo (MC) and quasi-Monte Carlo (LPTAU)

• Latin hypercube (LH) and orthogonal arrays (OA, OALH)

• Morris one-at-a-time (MOAT), its variants, and other screening designs

• Central composite designs (CCI4, CCI5, etc)

• Factorial (FACT) and fractional factorial (FF4, FF5)

• Fourier Amplitude Sampling Test (FAST)

• Other space-filling designs (e.g. METIS)

• Support for several standard input probability distribution functions

These sample points are then evaluated by running the user simulation codes on them.
PSUADE provides a mechanism to accomplish this via a runtime environment, which per-
forms the following tasks when invoked (by, e.g. psuade psuade.in):

• Write the values of a sample point to a parameter file.

• Call the user code (provided by users in the PSUADE input file - ’driver’) with the
parameter file as its first argument.

• The user code is expected to read in the parameter values from the parameter file,
run the application, produce some output quantities and write them to an output
file which has been specified as the second argument when PSUADE calls the user
code. Thus, the user code can be a simple program such as simulator.c in some of our
examples, or a complex super-script performing preprocessing, actual model evaluation
and postprocessing.

• PSUADE detects the presence of the output file and reads in the outputs.

3

• PSUADE moves on to the next sample point and continues until all sample points have
been processed (PSUADE can process multiple sample points at the same time using
asynchronous mode).

• Finally, PSUADE reads in all sample data and analyzes them based on user requests
given in the PSUADE input file (the ‘ANALYSYS’ section).

PSUADE supports many types of analysis such as

• Parameter screening (several such methods)

• Response surface construction and validation (including adaptive methods)

• Basic uncertainty and correlation analysis (for raw sample or response surfaces)

• Main effect (first order sensitivity) analysis

• Two-way interaction (pairwise sensitivity) analysis

• Group and total sensitivity analysis

• Bayesian calibration

• Hypothesis testing

• Deterministric numerical optimization

• Optimization under uncertainty (preliminary capabilities)

• Mixed aleatory-epistemic uncertainty analysis

• Graphical analysis (e.g. scatter plots via Matlab/Scilab)

In addition, starting from version 1.7.4, parallel processing will be added to some analysis
methods for faster turnaround time. Finally, there are other advanced features in PSUADE
which are under active research and are not described in this document.

2 Installation

In this section we describe installation procedures for three different operating systems.

4

2.1 Linux

As described in the last section, installation of PSUADE on Linux-based systems is straight-
forward. After ‘unzipping’ and ‘untarring’ the downloaded file, go into the PSUADE direc-
tory and do the following:

[Linux] mkdir build

[Linux] cd build

[Linux] (optional) setenv FC <your preferred Fortan compiler>

[Linux] ccmake ..

hit ‘c’

Select BUILD_SHARED, MARS, BOBYQA, and METIS (Note: Consult PSUADE

developers for instructions on how to install other packages).

If you need to change the compiler, hit ‘t’ and find the

CMAKE_C_COMPILER and CXX fields and fix them.

hit ‘c’

hit ‘c’ again until you are able to hit ‘g’.

hit ‘g’ to generate an exit

* If you do not have ccmake, do :

* cmake ..

* and then open the CMakeCache.txt file and turn on the packages

* MARS, BOBYQA, and METIS.

[Linux] make

At the end of this installation, the PSUADE executable will have been created in the build/bin
directory. Note that since ‘BUILD SHARED’ has been selected, the executable will use the
shared libraries in the build/lib directory, so it is important to keep the libraries at the same
directory and be accessible by users. If it is desirable to have the executable and libraries
accessible to multiple users, you can set the ‘CMAKE INSTALL PREFIX’ field in ‘ccmake’
and then issue ‘make install’ instead.

2.2 MacOSX

Building PSUADE executable from source files on MacOS is similar to building it on Linux
systems. The major difference is that the MAC compilers may give out more warnings, and
possibly compiler errors that prevent a successful build. A build session is given below:

2.2.1 Step 1: Check Compilers

For this release the following compilers have been checked to ensure successful compilations.

[macos] cc --version (gcc also works)

Apple LLVM version 6.0 (clang-600.0.57) (based on LLVM 3.5svn)

5

Target: x86_64-apple-darwin13.4.0

Thread model: posix

[macos] c++ --version (g++ also works)

Apple LLVM version 6.0 (clang-600.0.57) (based on LLVM 3.5svn)

Target: x86_64-apple-darwin13.4.0

Thread model: posix

[macos] gfortran --version

GNU Fortran (GCC) 4.8.0 20120603 (experimental)

Copyright (C) 2012 Free Software Foundation, Inc.

2.2.2 Step 2: Run Cmake

[Linux] mkdir build

[Linux] cd build

[Linux] ccmake ..

hit ‘c’

Select BUILD_SHARED, BOBYQA, and METIS (Note: Consult PSUADE

developers for instructions on how to install other packages).

hit ‘c’

hit ‘t’ to go to advanced options.

I can see that in my case cmake has picked up cc:

CMAKE_C_COMPILER /usr/bin/cc

You can keep this the same, or you can change it to:

CMAKE_C_COMPILER /usr/bin/gcc

Once all compilers have been verified, hit ‘c’ until you can hit ‘g’,

then hit ‘g’ to generate and exit.

2.2.3 Step 3: Build Executable

To build the PSUADE executable, do the following:

[Linux] make

At the end of this installation, the PSUADE executable will have been created in the
build/bin directory.

2.3 Windows

Building PSUADE executable from source files on Windows requires ‘cmake’, and ‘mingw’
(preferably including ‘gfortran’). If you desire to build an installable package, you will need
NSIS.

6

2.3.1 Step 1: Check Compilers

First make sure you have ‘cmake’ version 2.8 or higher installed on your system. Then,

Start the ‘cmake-gui’ program.

Select your PSUADE source tree, and where you want it to be built.

Click ‘configure’.

Select MingGW make files.

Select BUILD_SHARED, BOBYQA, and METIS.

Click ‘Generate’.

2.3.2 Step 2: Build Executable

Open a command line window, either ‘powershell’ or ‘cmd’, then do:

cd builddir

c:\mingw\bin\mingw-make.exe (It should build for a while)

2.3.3 Step 3: Install

You can now install PSUADE by running

c:\mingw\bin\mingw-make.exe install

Now continue to read this manual and follow the instructions to get a simple application
running.

3 Using PSUADE

PSUADE operates in one of the two modes: batch or command line modes.

3.1 Batch Mode

In batch mode, PSUADE interacts with users via a few files. At the first level, an PSUADE
input file (called psuade.in here) has to be created and run via

[Linux] psuade psuade.in

This psuade.in file should begin with the keyword PSUADE as the first line and should
have 5 subsections followed by the last line having the keyword END. The formats of the sub-
sections are described next (for an example, read the psuade.in file in the Examples/Bungee
directory).

7

3.1.1 The Input Section

The INPUT section allows the users to specify the number of inputs, their names, their range,
and their distributions. Specifically, it is enclosed in an INPUT block. An example is given
as follows:

INPUT

dimension = 4

variable 1 X1 = 0.0 1.0

variable 2 X2 = 0.0 1.0

variable 3 X3 = 0.0 1.0

variable 4 X4 = 0.0 1.0

PDF 1 T 0.0 1.0

PDF 2 N 0.0 1.0

PDF 3 S sample3 1

PDF 4 N 0.0 1.0

COR 2 4 0.5

END

In this example the number of inputs is 4, their names are X1, X2, X3, and X4 (notice
that the variable indices are 1-based), and their lower and upper bounds are all 0 and
1, respectively. The probability density distributions (PDF) for the inputs are optional
(the default is uniform U). If the PDF is either normal (N) or lognormal (L), the mean
and standard deviation must also be provided. If the PDF is triangular (T), the mean and
width must be provided. Other available distributions are beta (B), exponential (E), gamma
(G), Weibull (W), and user-provided samples (S). The last option (S) allows probabilities
to be represented by a pre-generated sample file (’sample3’ above) such as the posterior
samples generated from Bayesian inference (the integer following the sample file is the index
specifying which input in the sample file corresponds to input 3 here). An example of the
’S’ type sample file can be found in the Examples/PDFTest/sample file. The ’S’ option also
facilitates the use of discrete variables even though PSUADE assumes all variables to be
continuous. ’COR’ specifies the correlation between two inputs and it is currently available
only for the normal distribution (that is, both input 2 and 4 have to be normally distributed
if a correlation is to be prescribed between them).

3.1.2 The Output Section

The OUTPUT section is similar to but simpler than the INPUT section. Here only the
output dimension and the names of the output variables to be specified. For example, given
as follows:

OUTPUT

dimension = 3

variable 1 Y1

variable 2 Y2

8

variable 3 Y3

END

3.1.3 The Method Section

The METHOD section specifies the selected sampling method and additional information on
sampling. An example is given below.

METHOD

sampling = LH

num_samples = 600

num_replications = 60

num_refinements = 0

randomize

random_seed = 129932931

END

In this example, the sampling method is Latin hypercube, the sample size has been set to
600, and no refinement is used (refinement is an advanced feature for adaptive sampling and
is described in detail in the theory manual). When the number of replications is larger than
1, it is called replicated Latin hypercube which is useful for certain global sensitivity analysis.
In this example, with 60 replications, the number of levels for the Latin hypercube samples
is 600/60 = 10. Also, the randomize flag has been turned on to tell the sampling method
that random perturbation should be added to the sample. Optionally, the random number
generator seed can be provided. This is useful if you would like your sampling experiments
to be repeatable (having the same random seed every time the experiment is repeated.)

Some of the other sampling methods available are (refer to the theory manual or examine
your sample data file, psuadeData, for more details):

MC - Monte Carlo

LPTAU - a quasi-random sequence

FACT - full factorial design

MOAT - Morris one-at-a-time screening

LH - Latin hypercube

OA - Orthogonal Array

OALH - Orthogonal Array-based Latin hypercube

FAST - Fourier Amplitude Sampling Test (FAST)

BBD - Box Behnken design

PBD - Plackett Burman design

FF4 - Fractional factorial of resolution IV

FF5 - Fractional factorial of resolution V

FF5 - Fractional factorial of resolution V

CCI4 - Central composite (circumscribed) of resolution V

CCI5 - Central composite (circumscribed) of resolution V

9

METIS - full space-filling based on domain decomposition

SPARSEGRID - a sparse grid method

3.1.4 The Application Section

The APPLICATION section sets up the user-provided simulation executable and other runtime
parameters. An example is given below.

APPLICATION

driver = ./testmain

opt_driver = NONE

aux_opt_driver = NONE

ensemble_run_mode

ensemble_driver = NONE

ensemble_opt_driver = NONE

max_parallel_jobs = 1

max_job_wait_time = 1000000

END

Here driver points to the executable to be used for function evaluations, and opt driver and
aux opt driver point to the executables for numerical optimization (aux opt driver is needed for
the ’SM’ and ’MM’ optimizers, which are two-level optimizers), if they are used. Again, the
user code can just be a simple program or a complex super-script performing preprocessing,
actual model evaluation and postprocessing. The user code can also be a PSUADE data file
itself, as will be shown later.

After the creation of a sample based on information from the INPUT, OUTPUT and
METHOD sections, PSUADE proceeds with launching the jobs. If the max parallel jobs is
set to 1, the sequential mode is turned on. In this mode, PSUADE schedules the evaluation
of the user-provided function by sequencing from sample point 1 onward. To run job i,
PSUADE first creates an input parameter file (called psuadeApps.in.i). This file contains in
its first line the input dimension, followed by the values of the input parameters for the i-th
sample point. PSUADE then calls driver with two parameters (for example, for the sample
point 9)

./testmain psuadeApps.in.9 psuadeApps.out.9

The driver program is expected to take the input parameters from the psuadeApps.in.9
file, do whatever is needed, and write the outputs to the psuadeApps.out.9 file. An example
of the content of an input file (2 variables) created by PSUADE is:

2

0.345

1.429

An example of the content of an output file (3 variables) to be created by user programs is:

10

3.12

15.9

100.4

If max parallel jobs is set to a number larger than 1, then the asynchronous job scheduling
mode is turned on. In this mode, multiple psuadeApps.in.i files are created simultaneously,
and driver is called max parallel jobs times simultaneously. max job wait time is used for fault
detection and recovery.

For fast simulations (such as ’simulator.c’ in Examples/Bungee), cycling through the
sample points one by one will require file input/output (open the parameter file, read in
the sample point, evaluate, and write to the output file) that may consume much more
time than the calculations themselves. To reduce the overall processing time, PSUADE
provides the ensemble driver (and ensemble opt driver for numerical optimization) that can
be called in place of driver (and opt driver) to facilitate ’group processing’ when ’ensemble run’
mode is turned on. In this mode, PSUADE writes multiple sample points (as specified by
the max parallel jobs variable) in the parameter file and the user executable is expected to
process all sample points before returning the results to PSUADE. An example is given
in the Examples/Bungee directory (uncomment the ‘ensemble’ lines in ‘psuade.in’, compile
ensemble simulator.c and run ‘psuade psuade.in’).

Some of the other options in this section are:

launch_only - launch all jobs without waiting for results

gen_inputfile_only - generate all sample files only (no code runs)

limited_launch_only - launch max_parallel_jobs jobs and terminate

launch only is useful when you can run all the jobs at the same time on your machine but
each job takes a long time to run. In this case PSUADE is terminated after all jobs have
been launched, and when all the jobs are completed, PSUADE should be launched again to
harvest the results.

gen inputfile only is useful when job launching management is handled outside PSUADE.
In this case PSUADE is launched initially to create the input files for all sample points (all
psuadeApps.in.i). At this point your preferred job scheduler can take over to run all sample
points. After the runs have been completed and all psuadeApps.out.i have been created,
PSUADE should be called again to harvest the results.

Finally, limited launch only is useful in a semi-automated job launching environment (e.g.
on the LC machines at LLNL). In this case PSUADE is called initially to launch a small
number of jobs (e.g. 10 out of 100 in total). The job execution scripts for these 10 jobs
are equipped with capabilities to launch more jobs when it is completed (e.g. the depen-
dency auto-submission mechanism on the LC machines). This ‘domino effect’ job launching
(also called ‘chain mode’) will continue until all 100 jobs have been completed. After that,
PSUADE should be called again to harvest the results.

11

3.1.5 The Analysis Section

The ANALYSIS section specifies the type of analysis to be performed and the parameters
to be used. An example given below (’analyzer method = Moment’) computes statistical
moments on output number 1 (’analyzer output id = 1’). Lines beginning with ‘#’ are
comments (the commented options will be explained later).

ANALYSIS

analyzer method = Moment

analyzer threshold = 5.000000e-04

analyzer output_id = 1

#analyzer rstype = MARS

#optimization method = bobyqa

#optimization num_local_minima = 1

#optimization use_response_surface

#optimization num_fmin = 1

#optimization fmin = 0

END

Some of the available analysis methods are:

MainEffect - sensitivity indices

TwoParamEffect - second order sensitivity indices

RSFA - response surface analysis (curve fitting)

MOAT - Morris one-at-a-time screening analysis

Correlation - correlation analysis

Integration - numerical integration using the data points

FAST - Fourier Amplitude Sampling Test analysis

FF - fractional factorial main and interaction analyses

PCA - principal component analysis

RSMSobol1 - response surface-based first order sensitivity analysis

RSMSobol2 - response surface-based first second sensitivity analysis

RSMSobolG - response surface-based group main effect analysis

RSMSobolTSI - response surface-based total sensitivity analysis

When response surfaces are used together with the selected analysis method, the response
surface type (’rstype’ above) may have to be specified. The available response surface types
are (some of these are not included in the release):

MARS - multi-variate adaptive regression splines (by Friedman)

MARSBag - MARS with bootstrapped aggregation

linear - linear regression

quadratic - second order polynomial

cubic - third order polynomial

quartic - fourth order polynomial

12

user_regression - user-specified polynomial

GP1 - Gaussian process (TPROS)

SVM - support vector machine

Kriging - an universal Kriging method

SOT - a sum-of-trees method

KNN - K nearest-neighbors

RBF - Radial Basis functions

sparse_grid_regression

Splines

In addition, for performing numerical optimization, a few related options have to be
specified (the commented lines from the above example). In the example, the selected
optimization method is bobyqa by Michael Powell. Other available optimization methods are
crude (a simple examination of all sample outputs and select the minimum one), minpack (an
external optimization package), and sm/mm (space-mapping and manifold-mapping methods
by David E. Ciaurri). num local minima tells PSUADE how many minima to identify (from
the initial sample) for multi-start searches. If user response surface is used, the sample data
will first be used to create a response surface before searching for minima in the initial sample.
num fmin tells PSUADE the number of optimal points to be expected so that PSUADE can
pick the best optimal points (num fmin needs to be smaller or equal to num local minima.
Users can also tell PSUADE the optimal value to look for via fmin.

3.2 Command Line Mode

PSUADE allows users to ‘interactively’ perform some of the analyses. The idea is to run
all the simulations with the batch mode (and delete or comment out all analysis methods in
the input file). Once all simulations have been completed, the psuadeData file will contains
all sample inputs and the corresponding outputs enclosed in the PSUADE IO section. This
file (which needs to be renamed) is to be loaded in the command line mode for analysis.
Command line mode is activated by calling

[Linux] psuade

without any argument. Some of the available commands in the command line mode are (most
of the commands can be found by the help command and also in the reference manual):

load <filename> (load a data file, e.g. psuadeData)

splot (generate scatter plot in matlab)

moat (Morris analysis on Morris samples)

me (main effect study + matlab plot)

rs2 (2-input response surface in Matlab)

rs3 (3-input response surface in Matlab)

rscheck (Check quality of response surfaces)

rssobol1b (Perform first order Sobol’ analysis)

13

quit

help

For example, after you have completed a set of runs, a PSUADE data file will be created
(say, the renamed file is psData). To create scatter plots for the data in the command line
mode, do:

[Linux] psuade

*** *** ***

*** Welcome to PSUADE (version 1.7.4) ***

*** *** ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> load psData

psuade> splot

matlabsp.m is now available for scatter plots.

psuade> quit

[Linux]

You can now use Matlab to display the scatter plot. You can also generate Scilab files by
toggle the ‘scilab’ command (scilab capability is less well-developed than matlab capability
in PSUADE).

4 Examples

PSUADE provides many tools for answering many questions with uncertainty quantification.
For example, given a computational model simulating some physical processes,

1. How to assess the impact of parameter uncertainties on the model output of interest?
(uncertainty analysis)

2. How to identify a small subset of parameters accounting for most of the output vari-
abilities ? (parameter screening)

3. How to construct a relationship between some input parameters and the model output
of interest? (response surface modeling)

4. How to quantify the impact of a particular subset of parameters on the output uncer-
tainties ? (global sensitivity analysis)

5. How to find the parameter values that best fit the available experimental data ?
(Bayesian calibration, parameter estimation)

6. How to find the input parameter values that give the best model performance? (opti-
mization)

14

7. How to process, manipulate and visualize uncertainty data?

8. How to formulate and perform hypothesis testing?

In the following we provide a few examples to show in more details how to set up and run
PSUADE. PSUADE has many other advanced features for handling complex multi-physics
models.

4.1 Uncertainty Analysis

This section shows how to perform a simple uncertainty analysis on the following Rosenbrock
function: let the function be given by

Y =
m−1∑

i=1

(1 − Xi)
2 + 100(Xi+1 − X2

i)2 Xi ∈ [0, 2]

where m is the number of input parameters and can be any integer larger than 1 (we use
m = 6 in this example). To compute the basic statistical moments of this function assuming
all inputs are uniformly distributed in [0, 2], we select the Latin hypercube design with a
sample size of 100 (an arbitrary pick). The simulations are to be run in sequential mode.
The corresponding PSUADE input file (say, ‘psuadeRawUA.in’) is:

PSUADE

INPUT

dimension = 6

variable 1 X1 = 0.0 2.0

variable 2 X2 = 0.0 2.0

variable 3 X3 = 0.0 2.0

variable 4 X4 = 0.0 2.0

variable 5 X5 = 0.0 2.0

variable 6 X6 = 0.0 2.0

END

OUTPUT

dimension = 1

variable 1 Y

END

METHOD

sampling = LH

num_samples = 100

randomize

END

APPLICATION

driver = ./testmain.py

END

15

ANALYSIS

analyzer method = Moment

printlevel 3

END

END

Here ‘randomize’ in the ‘METHOD’ section specifies that random perturbations are to be
added to the sample. The ‘driver’ points to an executable, which takes a sample point from a
parameter file (first argument), uses it to run a simulation, and writes the simulation output
to the output file (second argument). The driver program can be in any language provided
that it can be executed (by the Linux ‘system’ command). Our example uses Python to
represent the above function (Examples/UserExample/testmain.py):

#!/usr/local/bin/python

import string

import sys

infile = open(sys.argv[1], "r")

lineIn = infile.readline()

ncols = lineIn.split()

n = eval(ncols[0])

X = range(n)

for ii in range(n):

lineIn = infile.readline()

ncols = lineIn.split()

X[ii] = eval(ncols[0])

infile.close()

Y = 0

for ii in range(n-1):

Y = Y + pow(1 - X[ii], 2) + 100 * pow(X[ii+1] - X[ii] * X[ii], 2)

outfile = open(sys.argv[2], "w")

outfile.write("%e \n" % Y)

outfile.close()

After these files have been prepared (make sure the Python link in testmain.py is correct,
and that testmain.py has execute permission turned on), run PSUADE:

[Linux] psuade psuade.in

and, at the completion of the runs, the moment information will be displayed and the
psuadeData file (which contains the 100 sets of sample inputs/outputs) will also be available
for use in further analysis.

The above shows how to perform uncertainty analysis in batch mode. This analysis
can also be conducted in two steps: (1) run the simulation and ignore the analysis (by
commenting out the ‘analyzer method’ line in psuadeRawUA.in); (2) renaming psuadeData

16

to, for example, psData); and (3) load psData in command line mode and issuing the ua
command. This two-step approach is recommended because the command line interpreter
provides many other functions to analyze the same data set (e.g. ca for correlation analysis).

In this example, we observe that even for computing simple statistical moments, a sample
size of 100 may be too small. You may increase the sample size and re-run to see if the
result changes much. You can also turn on the refinement mode (by uncommenting the
line ‘num refinements = 5’ and re-run), which will iteratively increase the sample size and
re-anaylze.

4.2 Screening for Important Inputs

A useful design and analysis tool in PSUADE is the suite of parameter screening methods.
There are several parameter screening methods that may be useful under different scenarios.
In this section we provide a survey of these methods and their applicability; and then we
will show how to use one of them.

If you already have a sample available for analysis (that is, simulations are complete),
the following screening methods may be useful:

1. Correlation analysis (ca). This method, however, assumes that the model input-output
relationship is more or less linear. If the model input-input relationship is not linear
but exhibits monotonic behavior (non-decreasing or non-increasing), the Spearman
coefficients are more informative. For general nonlinear relationships, this analysis
may give erroneous results.

2. Delta test (delta test). This method works only with relatively large (hundreds to a
thousand) random or quasi-random samples. Since this method involves minimization
of certain noise function, it may be computationally intensive. Screening results may
be confirmed by using different sample sizes.

3. Sum-of-trees method (sot). This method works well with relatively large random or
quasi-random samples. It uses bisection techniques to form unbalanced trees and
estimates sensitivities based on frequencies of bisection in each input parameter.

4. Approximate response surface methods. If your already-run sample is small, you can
perform a response surface analysis on your sample and use the response surface to
rank parameters. The two methods available in this class are mars sa (based on the
MARS response surface method) and gp sa (based on Kriging). To assess whether
these methods may be useful, we recommend first analyzing the response surface cross
validation errors (described in next section) to make sure the response surface gives
the right trend (error distribution centers around zero).

If you do not have a sample ready for analysis, and the simulations are computationally
expensive, a more careful sample design is needed. Again, design selection depends on your
knowledge about the simulation model and how much computational resources are available.
PSUADE currently provides the following screening methods:

17

1. If the model input-output is known to have a near-linear relationship, then the Plackett-
Burman or local sensitivity analysis design (and the corresponding lsa analysis com-
mand) may suffice. These method requires only m + 1 simulations (m is the number
of uncertain parameters).

2. If, in addition to linear relationship between each input and the model output, there
are also interaction terms (e.g. the model equation consists also of terms involving two
or more inputs, then the fractional factorial designs and the corresponding analysis (ff)
may be useful.

3. For general non-parametric models that may be nonlinear with significant input pa-
rameter interactions (higher order sensitivities), we recommend the Morris (MOAT)
method, which is an effective variable selection method when the number of inputs is
large (say, 10 − 100’s).

In the following we show how to use PSUADE to set up the MOAT screening analysis.
The PSUADE input file for a 20-dimension problem is given in the Examples/Morris20
directory):

PSUADE

INPUT

dimension = 20

variable 1 X1 = 0.0 1.0

variable 2 X2 = 0.0 1.0

...

variable 20 X20 = 0.0 1.0

END

OUTPUT

dimension = 1

variable 1 Y

END

METHOD

sampling = MOAT

num_samples = 210

randomize

END

APPLICATION

driver = ./simulator

END

ANALYSIS

analyzer method = MOAT

printlevel 3

END

END

18

Here the sample size should be a multiple (usually 10) of m + 1 where m is the number
of inputs. The driver program can be constructed in a similar manner as before (and thus is
not to be given here). Again, PSUADE is launched with this input file and screening results
will be displayed at completion.

Alternatively, the analysis can be performed interactively by (again psuadeData has been
created and has been renamed to psData):

[Linux] psuade

*** *** ***

*** Welcome to PSUADE (version 1.7.4) ***

*** *** ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> load psData

load complete : nSamples = 210

nInputs = 20

nOutputs = 1

psuade> moat

... (MOAT results) ...

...

Create screening diagram ? (y or n) y

matlab/scilab screening diagram file name (no extension): screen

MOAT screening diagram matlab file = screen.m

psuade> quit

[Linux]

Thereafter, you can launch Matlab and run screen to view the Morris screening diagram
(scatter and bootstrap plots are also available).

4.3 Response Surface Analysis

As we can see from the previous exercise, even a relatively simple test function may require
large samples to compute the statistics accurately. To reduce the computational demands,
one approach is to generate a small sample for this function and find out if the model input-
output relationship can be described by a simple curve fitting method. In this example we
show how to use the curve fitting tools in PSUADE to find the best response surface (or
surrogate) model. To do this, we run PSUADE on Examples/UserExample/psuadeRS.in to
evaluate a sample of size 100. We then rename the sample file psuadeData to psData so that
it will not be overwritten by PSUADE (since ‘psuadeData’ is the PSUADE default output
file). The following gives a snapshot of how to perform response surface analysis in the
PSUADE command line mode:

[Linux] psuade

19

**

* Welcome to PSUADE (version 1.7.4)

**

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

(for help, enter <help>)

==

psuade> load psData

load complete : nSamples = 100

nInputs = 6

nOutputs = 1

psuade> rscheck (NOTE: this command performs response surface analysis)

... list response surface types

Enter you choice? 2 (’2’ is for quadratic regression)

... (some analysis results show be shown)

Perform crosss validation ? (y or n) y

Enter the number of groups to validate : (2 - 100) 20 (Use 10 - 20)

... (more informatin will be displayed)

Random selection of leave-out groups ? (y or n) y (generally say yes)

...

RSA: final CV error = -3.694e+02 (avg unscaled)

RSA: final CV error = -5.043e-01 (avg scaled)

RSA: final CV error = 4.157e+02 (rms unscaled)

RSA: final CV error = 6.512e-01 (rms scaled)

RSA: final CV error = 1.061e+03 (max unscaled, BASE=2.432e+03)

RSF: final CV error = 2.879e+00 (max scaled, BASE=2.479e+02)

...

CV error file is RSFA_CV_err.m

**

psuade> quit

[Linux]

Following the procedure and upon exit from PSUADE, there should be a file called
‘RSFA CV err.m’ in your working directory. This file can be run in Matlab giving two
plots: the left showing the distribution of the cross validation errors and the right showing
qualitatively how good the selected curve fitting method is. In addition, when ‘printlevel
4’ has been issued before running ‘rscheck’, another file called ‘psuade rsfa error.m’ will be
created. To assess, the ‘goodness’ of the response surface, we recommend examining the
following quantities:

1. The ‘final CV errors’ similar to those shown above give important information. For
example, if there is a large departure of the scaled average error from zero, a significant
systematic bias may be present. If the scaled max error is large (> 1) with non-
negligible base (e.g. if BASE=0.53 and max scale error is 0.5, it means the maximum

20

error has been found to be 0.53∗0.5 = 0.265 when the output is 0.53), the fitting error
may be significant.

2. Launching Matlab and running ‘psuade rsfa error.m’ will display a few plots. The
Matlab Figure 2 will show the distribution of errors when the response surface is
evaluated at the training set (also called resubstitution test). If there are significant
errors in this step, the response surface may be declared ‘unfit’ and no further analysis
is needed. The left plot in Matlab Figure 1 shows the ‘training errors’ for individual
sample points and the right plot compares the actual sample data against the predicted
values from the response surface (perfect predictions put every point on the diagonal
line). The Matlab Figure 3 displays interpolation errors with respect to each input and
is useful in assessing which input parameters may need more attention.

3. The left plot in Figure 1 of ‘RSFA CV err.m’ gives the distribution of the cross val-
idation errors. The desirable distribution should be centered around zero with small
spread. Again, if the center is far away from zero, it indicates systematic bias.

4. The right plot in Figure 1 of ‘RSFA CV err.m’ compares the CV predictions with
the actual simulation data. Ideally all points should lie on the diagonal line. For this
example problem, since the function is a fourth-order polynomial and you use quadratic
polynomials, significant CV errors showing systematic bias should be observed.

5. You can also change the ’morePlots’ variable to 1 in ‘RSFA CV err.m’ and re-run to
create another plot showing the normalized CV errors (with respect to the output
values). In our example problem, we can observe that when quadratic regression is
used, the result response surface incurs larger errors at the low end of the output
range.

6. One more caveat: sometimes the cross validation errors may appear to be small, but
the small errors may be deceiving. For example, if the sample outputs vary between
100 and 101, a maximum-scaled CV error of 1e−3 gives an absolute error of 0.1, which
may not be significant compared to 100, but may be significant when we notice that
the variation of the output is small (1.0).

After some preliminary analysis, it should be clear that fitting with quadratic regression
does not lead to a satisfactory response surface. Since this is a fourth order polynomial,
analyzing the data set with cubic regression will not improve the quality of the response
surface either. However, the data set of size 100 is not large enough to analyze with quartic
regression (needs a sample of 210). To see that quartic regression is the ideal candidate, you
can change the ‘num samples’ field in psuadeRS.in to 220 (210 plus a few more to allow room
for cross validation) and run the simulations again. After that, run ‘rscheck’ with quartic
regression and cross validation with 22 groups and observe an almost perfect fit.

You may experiment with other response surfaces and compare their error properties. If
you are not satisfied with all available response surfaces, you may

21

1. Experiment with your own basis functions using the user-defined regression option. In
this case, the response surface function is expected to be in the form

Y =
n∑

i=1

aiφi(X).

where X is the set of uncertain parameters and ai’s are the coefficients to be determined
using regression techniques within PSUADE. To use this option you need to provide
PSUADE with the following information:

(a) the number of terms n, and

(b) an executable file that returns the values of all the terms φi(X) given X for all
points requested by PSUADE.

2. Add more sample point via sample refinement until the response surface can be ‘vali-
dated’ (using the refine or a refine functions).

Once you have identified a suitable response surface, it will be ready for subsequent
analysis. Note that there are two types of response surfaces provided by PSUADE - the
ones that predict the output given the input values (splines, MARS, sparse grid, SVM),
and the ones that also provide errors associated with the predictions (polynomial and user-
defined regressions, MARS with bootstrapping, Kriging, nearest-neighbors, sum-of-trees), so
if you desire to include response surface uncertainties into subsequent analysis, select the
ones which provide errors.

Once a suitable response surface has been constructed, many users express interest in get-
ting the actual stand-alone code for future interpolation using this response surface. Users
can access this option in the new PSUADE version (1.7.2 and after) via turning on the
‘rs codegen’ mode in command line mode before running ‘rscheck’. When the operation is
complete, a file called ‘psuade rs.info’ containing the ‘C’ or ‘C++’ interpolation code will
have been created. In addition, a file called ‘psuade rs.py’ containing the Python interpola-
tion code will also have been created.

4.4 Response Surface-Based Uncertainty Analysis

To perform uncertainty analysis on a response surface with PSUADE, one should use the
rsuab command. The steps are:

1. Generate a sample to run through the validated response surface.

(a) Modify the INPUT section of your PSUADE sample that has been used to create
a response surface (e.g. change ranges or add distributions to reflect desired input
distributions).

(b) Start PSUADE in command line mode, load the modified file, and use the ‘gen-
sample’ command to create a large sample (say, of size 50000). Write this large
into another file, say, ua sample.

22

2. Launch PSUADE in command line mode to run uncertainty analysis:

(a) Load psData,

(b) Run the rsuab command,

(c) Enter ua sample when prompted for a sample file, and

(d) When completed, a file called ‘matlabrsuab.m’ will have been created.

3. Launch Matlab and run ‘matlabrsuab’.

(a) The top left plot gives the model output probability distribution,

(b) The bottom left plot gives the model output probability distributions for each
bootstrap,

(c) The right plot gives the corresponding cumulative probability distributions, and

(d) If the response surface uncertainty is significant, the bootstrapped probability
distribution curves will be easily distinguished.

Another command for response surface-based uncertainty analysis is the ‘rsua’ command,
which performs an average case or worst case analysis. Use ‘rsua -help’ to see what this
function does.

4.5 Quantitative Sensitivity Analysis

Quantitative sensitivity analysis include main effect, pairwise interaction effect, group main
effect, and total sensitivity analysis. Since quantitative sensitivity analysis requires a large
sample, it is often performed on validated response surfaces, unless simulations are inexpen-
sive or a large sample of unknown sampling design is already available.

Main effect analysis studies the first order sensitivities of individual input parameter
based on variance decomposition. Sensitivity (Sobol’) indices can be computed using one of
the following four methods:

1. Use the command ‘me’ on the sample if a large sample is already available;

2. Use replicated LH directly on the simulator or its response surface;

3. Use FAST sampling directly on the simulator or its response surface; or

4. Use direct numerical integration on the response surface.

In the following example, we describe the use of the replicated Latin hypercube approach
directly on the simulator. The input file is given as follow (this can be found in the Exam-
ples/UserExample/psuadeME.in file):

23

PSUADE

INPUT

dimension = 6

variable 1 X1 = 0.0 2.0

variable 2 X2 = 0.0 2.0

variable 3 X3 = 0.0 2.0

variable 4 X4 = 0.0 2.0

variable 5 X5 = 0.0 2.0

variable 6 X6 = 0.0 2.0

END

OUTPUT

dimension = 1

variable 1 Y

END

METHOD

sampling = LH

num_samples = 1000

num_replications = 50

randomize

END

APPLICATION

driver = ./testmain.py

END

ANALYSIS

analyzer method = MainEffect

END

END

Here the sample size is 1000 based on 50 replications of Latin hypercube each with
1000/50 = 20 levels. To run this analysis, go to Examples/UserExample and run the follow-
ing (first make sure to change the file permission to allow Python script to be execute-ready):

Linux] psuade psuadeME.in

At the conclusion of the analysis, main effect statistics will be displayed. More informa-
tion will be displayed if the printlevel level is increased. In addition, a Matlab plot of the
main effects (matlabme.m) will have been created.

Since a sample of size 1000 may not be sufficient to give reasonable results, we describe
in the next example the use of the replicated Latin hypercube on response surfaces. First,
run PSUADE on Examples/UserExample/psuadeRS.in to create a sample of size 100 for use
in constructing a response surface. Again, rename the file psuadeData to psData and then
run PSUADE again with Examples/UserExample/psuadeRSME.in, which is given below (It
is important that you set the response surface type in psData before you launch this run).

24

PSUADE

INPUT

dimension = 6

variable 1 X1 = 0.0 2.0

variable 2 X2 = 0.0 2.0

variable 3 X3 = 0.0 2.0

variable 4 X4 = 0.0 2.0

variable 5 X5 = 0.0 2.0

variable 6 X6 = 0.0 2.0

END

OUTPUT

dimension = 1

variable 1 Y1

END

METHOD

sampling = LH

num_samples = 50000

num_replications = 50

randomize

END

APPLICATION

driver = psData

END

ANALYSIS

analyzer method = MainEffect

END

END

Again, simple run the following command

[Linux] psuade psuadeRSME.in

and main effect results will be displayed, along with a few Matlab plot files (if selected).
Specifically, the scatter plots show how the output behaves with respect to each individual
input and the bootstrapped plot include errors with each main effect.

Again, one can use command line interpreter to perform the main effect analysis (by
running the above script without setting the analysis method, loading the result file, and
use the me command). Note that me will work for any sampling design (not just replicated
LH) although the result will be less informative.

PSUADE also provides the functionality to perform second order (actually first and sec-
ond order) sensitivity analysis on raw sample data (that is, not response surface evaluations)
using ie in command line mode. In this case, instead of using replicated Latin hypercube,
replicated orthogonal array design will be more appropriate although any space-filling sam-
pling design will work. To achieve sufficient accuracy, however, very large sample is needed,

25

and hence it makes more sense to use response surfaces. To experiment with this analysis,
you can run PSUADE with Examples/UserExample/psuadeRSIE.in. After completing this
run, you can also load the sample data and have additional analysis.

PSUADE also provides the tsi command to perform total sensitivity analysis on a given
sample. This sample needs to be even larger and with small number of parameters (<= 21)
to give meaningful results. To experiment with this function, run PSUADE on Exam-
ples/UserExample/psuadeRSTSI.in to produce the psuadeData file and rename it. Launch
the PSUADE command line mode, load the data file, and run ‘tsi’.

The final example in this section shows how to compute sensitivity information in an
alternative method - using direct numerical integration. Once the response surface has been
validated and deemed satisfactory, it psData can be loaded into PSUADE’s command line
interpreter (make sure you indicate which response surface to use inside psData before loading
the sample file):

[Linux] psuade

*** *** ***

*** Welcome to PSUADE (version 1.7.4) ***

*** *** ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> load psData

load complete : nSamples = 100

nInputs = 6

nOutputs = 1

psuade> rssobol1b

...

Choose which output

Choose how many bootstrap samples to use

...

...

rssobol1 Statistics (based on 100 replications):

Input 1: mean = 1.1243143e+00, std = 0.0123132e+00

Input 2: mean = 2.5523545e+00, std = 0.1232000e+00

Matlab plot for first order sensitivities is in matlabrssobol1b.m.

psuade> quit

[Linux]

At the conclusion of the session, the main effects together with their standard devia-
tions will be displayed. In addition, a Matlab file is also available for visualizing the main
effects. This analysis is different from ‘me’ on response surfaces in that it provides error
bars to each sensitivity index based on bootstrapping. You can mimic this function with
‘me’ by generating multiple bootstraps yourself, running each with ‘me’, and computing
the means and standard deviations of the sensitivity indices. Similarly, PSUADE provides

26

‘rssobol2b’ and ‘rssoboltsib’ to compute second and total order sensitivities with error bars
from bootstrapping.

For response surface-based sensitivity analysis, you can experiment with different input
distributions by modifying the input section of your psuadeRSME.in (or psuadeRSIE.in, etc.)
file or, if you use ‘rssobol1’ (or similar commands), modifying your psData file to be loaded
in command line mode. In the former case, if you use any non-uniform distributions, you
need to change the sampling method to MC.

More sophisticated quantitative sensitivity analyses involving input correlations (gov-
erned by some inequality constraints, not joint PDFs) are available. For example, there are
two ways to include input correlations (input constraints) into main effect analysis:

1. If you are using replicated Latin hypercube, say, in psuadeRSME.in, the steps are:

(a) Generate a sample (for example, run PSUADE on psuadeRSME.in with analysis
turned off;

(b) Apply input constraints to filter out infeasible sample points in the sample file
from the last step;

(c) launch PSUADE and run ‘me’.

2. Alternatively, you can also use numerical integration (‘rssobol1b’). In this case, you
will need to turn on the ‘rs constraint’ line in your sample data file (psData). The
syntax is:

analyzer rs_constraint = constrSample indexFile Lbound Ubound

where ‘constrSample’ is another PSUADE sample, ‘indexFile’ file contains a subset
of input indices for constraining, and ‘Lbound’ and ’Ubound’ are lower and upper
bounds of the feasible region. For example, if you desire to impose constraint on input
2 and 3 such that 0 < X2 + X3 < 1, then ‘constrSample’ should contain a sample
for the function Y = X2 + X3; ‘indexFile’ should contain 2 and 3; ‘Lbound’= 0; and
‘Ubound’= 1.

4.6 Mixed Aleatory-Epistemic Uncertainty Analysis

When some of the inputs are epistemic parameters, it is not sufficient just to display the
output probability distribution. Rather it should be an ensemble of probability distributions
with each corresponding to the distributions due to variations in the aleatory parameters
at some fixed epistemic parameter values drawn from their respective ranges. PSUADE
provides the functionality to perform this analysis.

Since this analysis is computationally intensive, it is currently implemented on response
surfaces only. So the first step in this analysis is to create a response surface (say you have
done it and the sample for constructing the response surface is in psData). Next, you need to
prescribe the probability distributions for the aleatoric parameters by modifying the ‘INPUT’

27

section in psData (you can keep the epistemic variables with uniform distributions). Then,
launch PSUADE in command line mode, load psData, and run ‘ae ua’. You will be asked to
select which input parameters should be considered as epistemic. At the completion of this
analysis, PSUADE will output a ‘matlabaeua.m’ file for viewing the ensemble of cumulative
distributions.

Another similar analysis is the so-called ‘second-order uncertainty analysis’, which gen-
erates an ensemble of probability distributions as a result of uncertainties about the input
distribution parameters. For example, let a certain parameter have a normal distribution
with mean and standard deviation 1.2 and 0.5, respectively. Suppose there is an uncertainty
about the mean; then this analysis ’so ua’ draws samples from this second level parameter
uncertainties and generates distributions for each. At completion, this command will create
a ‘matlabsoua.m’ file for visualizing the uncertainties.

4.7 Numerical Optimization

Let the function for numerical optimization be the two-dimensional Rosenbrock function:

Y = 100(X2 − X2

1)2 + (1 − X1)
2, Xi ∈ [−2, 2].

The PSUADE input file for numerical optimization can be constructed as follow (here bobyqa
is a public domain software developed by Michael Powell):

PSUADE

INPUT

dimension = 2

variable 1 X1 = -2.0 2.0

variable 2 X2 = -2.0 2.0

END

OUTPUT

dimension = 1

variable 1 Y1

END

METHOD

sampling = FACT

num_samples = 9

END

APPLICATION

driver = ./simulator

opt_driver = ./simulator

END

ANALYSIS

optimization method = bobyqa

optimization num_local_minima = 3

optimization max_feval = 10000

28

optimization tolerance = 1.0e-4

optimization print_level = 2

END

END

This analysis first creates a 3×3 factorial sample. The 9 sample points are evaluated and
the 3 (since num local minima = 3 points with the lowest output values are selected as the
starting points for a multi-start optimization. The maximum number of function evaluation
is set to be 10000 and the termination tolerance is set to be 1e − 4. The driver points to an
executable called simulator. Again, a PSUADE data file such as psData can be used instead.

Users can also specify their own initial points which have the same format as in the
PSUADE IO section in the psData file.

The above example is located in the Examples/OptRosenbrock directory. Simply compile
the simulator.c file and then run psuade psuadeBobyqa.in to see optimization in action.

There are other advanced features in optimization such as avoiding repeated function
evaluations (this is very useful for restart in the case when the function evaluation is expen-
sive).

4.8 Bayesian Calibration

Let the function for numerical optimization be the function:

Y = F (X; a, b)

where X is some model design parameter and Y is the model output (assume the output is
scalar simplify discussion); and a and b are parameters in the function that are not precisely
known except that they fall between 0 and 1. Suppose we also have a set of observation
data D = {XiỸi}

M
i=1 that may help guide the search for the true values of a and b. Suppose

further that we have decided to set a to some fixed value a∗ and search only for the best b
that fits the data set D. One way to find these values is to perform a deterministic numerical
optimization. If the experimental data Ỹi’s are noisy, an alternative is to perform a Bayesian
inference.

To perform Bayesian inference, we need to have the following:

1. a set of calibration parameters (b in this example) and their distributions (priors, e.g.
uniform between 0 and 1),

2. an observation data set (D in this example) together with the corresponding ob-
servation errors (let D∗ be D appended with its standard deviations, i.e. D∗ =
Normal(D, Σ)), and

3. a sample (e.g. a Latin hypercube of size N) for generating a response surface (F̃)
to approximate F (response surface is needed because a typical Bayesian inference
requires many function evaluations).

29

A few other decisions need to be made:

1. whether discrepancy modeling is to be included in the inference (see below), and

2. whether response surface errors are to be included in the inference.

To include discrepancy modeling, an additional sample is to be created that describes
the differences between the observation data and the corresponding function values (model
outputs) at the experimental design points. Thus, this additional sample has size M with
sample input and output pairs represented by {Xiei}

M
i=1 where

ei = Ỹi − F̃ (Xi; a = a∗, b = b∗),

and b∗ is some carefully selected value of b (the best choice is the posterior mean of b but
since its posterior mean is not known, it can be set to its prior mean or mode). PSUADE’s
Bayesian calibration provides an option to output this discrepancy sample to a file for further
examination (e.g. response surface analysis).

Let M = 4 be the number of observations at the design points {Xi}
4
i=1, and let the

observation noise be 0.1 (standard deviation). We will specify these information to facilitate
the construction of the likelihood function by creating a file, say ‘mcmcFile’, that contains

PSUADE_BEGIN

4 1 1 1

1 <X_1> <Y_1> 0.1

2 <X_2> <Y_2> 0.1

3 <X_3> <Y_3> 0.1

4 <X_4> <Y_4> 0.1

PSUADE_END

The first and last lines are markers recognized by PSUADE. The second lines specifies
that there are four observations, one output, and 1 design paramter (a in this example),
which is parameter 1 in the INPUT section. The next four lines each consists of the data
set number (in order from 1 to 4 in this example), the design parameter value, and the
observation value and its error.

To create a sample from the simulator (function F), we generate a Latin hypercube
sample of, for example, size 100. The PSUADE input file (say, ‘psuadeRS.in’) to generate
the Latin hypercube sample is:

PSUADE

INPUT

dimension = 3

variable 1 X = 0.0 1.0

variable 2 A = 0.0 1.0

variable 2 B = 0.0 1.0

END

30

OUTPUT

dimension = 1

variable 1 Y

END

METHOD

sampling = LH

num_samples = 100

END

APPLICATION

driver = ./simulator

END

ANALYSIS

printlevel 1

END

END

Again, simply run the following command

[Linux] psuade psuadeRS.in

and then move the result data file ‘psuadeData’ to, say, ‘simdata’. After the preparation
steps have been completed (make sure to validate your response surface), Bayesian inference
can be launched by:

[Linux] psuade

*** *** ***

*** Welcome to PSUADE (version 1.7.4) ***

*** *** ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> load psData

load complete : nSamples = 100

nInputs = 2

nOutputs = 1

psuade> ana_expert (use expert mode to turn on discrepancy mode)

psuade> rsmcmc

.....

===> Enter the spec file for building likelihood function : mcmcFile

.....

Output 1

Enter you choice (for response surface type) ? 0

Output 2

Enter you choice (for response surface type) ? 0

Output 3

31

Enter you choice (for response surface type) ? 0

Output 4

Enter you choice (for response surface type) ? 0

.....

<say yes to discrepancy modeling, use default for other options)

MCMC BEGINS

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

.....

MCMC completed

**

MCMC: matlabmcmc2.m file (2-input analysis) is ready.

**

psuade> quit

[Linux]

If the inference is completed successfully, a Matlab (or Scilab) file (‘matlabmcmc2.m’)
will contain the posterior distributions for visualization.

One may ask: if the likelihood function is derived from many experiments each of which
has its own set of sample points, can PSUADE perform inference on it? The answer is yes
and here is how to do it:

• Instead of loading a single sample (‘psData’ above), first strip this sample of the
PSUADE IO section but keep the input and output sections (that is, the calibration
parameters and ranges should be the same for all experiments, and the output section
defines the outputs for each experiment).

• After loading the ‘modified’ sample file, run ‘rsmcmc’ as before. PSUADE will rec-
ognize that a sample has not been given and the inference program will ask, for each
output, a sample file that will be used to create the response surface for that output.

• After all output sample files have been entered and response surface types selected,
the rest of the ‘rsmcmc’ command will be the same.

There are other advanced features in PSUADE’s MCMC method such as tuning MCMC
parameters (e.g. number of chains, termination criterion), writing the posterior sample into
a file, etc. when ‘ana expert’ mode is on. Finally, there is a similar command called ‘mcmc’
which uses the actual simulator instead of response surfaces. However, this method can be
computationally expensive even though the simulator is fast, because of the I/O requirement
in running the simulator sequentially many times. A remedy for this is to compile this
function into PSUADE and use ‘driver = PSUADE LOCAL’ to activate that function (this
will speed up evaluation by reducing the I/O overhead).

32

4.9 Optimization Under Uncertainty (OUU)

Let the simulation model be represented by

Y = F (X, U, ω, θ)

which is characterized by four types of variables:

1. Design/Decision variables X are the optimization variables that will be tuned to opti-
mize some objective function,

2. Recourse/Operational variables U are scenario variables which can be tuned in a given
system operating under different conditions (different values of ω and θ),

3. Discrete/Scenario variables ω have an enumerable set of states (called scenarios) such
that each state is associated with a probability (and sum of probabilities for all possible
states is equal to 1), and

4. Continuous uncertain variables θ are associated with a joint probability density func-
tion.

In the context of the formulation above, two different types of OUU are possible:

1. Single-stage OUU: this formulation requires no recourse variables so that it is solving
the following problem:

min
X

Φω,θ(F (X, ω, θ))

where Φω,θ, the objective function, is some statistical quantity (e.g. mean) from running
F (X, ω, θ) at some realizations (a sample) of ω and θ (either ω or θ can be an empty
set but not both).

2. Two-stage OUU: this formulation requires recourse variables for inner optimization
but the recourse variables may be defined implicitly (not needing to be declared). This
type of OUU solves the following problem:

min
X

[Φω,θ(min
U

F (X, U, ω, θ))].

In essence, the first type is analogous to typical numerical optimization except that, in
the presence of uncertainties, the objective function to be optimized is some average of the
deterministic objective function. The second type, on the other hand, has the goal to obtain
an optimized design (with respect to X) but this design can dynamically adapt to different
operational conditions (U) to optimize its performance. Thus, the 2-stage method involves
an inner-outer optimization loop. Users can optionally provide the function F in ‘opt driver’
for which PSUADE will wrap around it with two layers of the BOBYQA optimizer (to
optimize with respect to X in the outer loop and U in the inner loop), or provide the inner
optimization (minU F (X, U, ω, θ)) for which PSUADE will just wrap around it with one layer
of the BOBYQA optimer (to optimize with respect to X).

An example is given in Examples/OUU/Problem2. The PSUADE input file is ‘ouu opt driver.in’:

33

PSUADE

INPUT

dimension = 12

variable 1 D1 = -5 5.0

variable 2 D2 = -5 5.0

variable 3 D3 = -5 5.0

variable 4 D4 = -5 5.0

variable 5 X1 = -10 10

variable 6 X2 = -10 10

variable 7 X3 = -10 10

variable 8 X4 = -10 10

variable 9 W1 = -5 5

variable 10 W2 = -5 5

variable 11 W3 = -5 5

variable 12 W4 = -5 5

END

OUTPUT

dimension = 1

variable 1 Y

END

METHOD

sampling = MC

num_samples = 1

randomize

random_seed = 41491431

END

APPLICATION

opt_driver = optdriver

END

ANALYSIS

optimization method = ouu

opt_expert

END

END

In this example, the first 4 variables are design variables (type 1), the next 4 are recourse
variables (type 2), and the last 4 are continuous uncertain parameters (type 4). The opti-
mization driver should be created by compiling the ‘optdriver.c’ file. To run OUU, simply
do:

[Linux] psuade ouu_optdriver.in

and you will prompted a few questions asking for the number of each of the 4 types of
variables (4, 4, 0, 4), the type of each declared variables, the choice of objective function

34

(enter ‘1’ - the expected value), the choice of the sample source for the type 4 variables
(PSUADE-generated), the option to use response surface for estimating the expected value
(enter ’n’), the sampling method used for type 4 (enter Latin hypercube), the sample size
(enter 200), to choose ‘your own inner optimizer’, and ‘n’ to the rest of the questions. You
will then see the OUU optimization in action giving the best design variable (X - variable
1 − 4) settings at the end.

4.10 A More Comprehensive Example

Suppose we are given a simulation model with 2 uncertain parameters X1 and X2 such that
Y = F (X1, X2) and with some given default values for X1 and X2. Suppose we do not know
the uncertain range for X1 and we arbitrarily impose its uncertain range to be +/-20% of
its default value. For X2, we also impose an initial range of +/-20%, but we have another
experiment that will help refine its uncertainty range. Our overall objective is to quantify
the uncertainty and parameter sensitivity of this model.

The steps to achieve the objective are (in Examples/CompositeTest):

1. Compile the available experimental data for refining the uncertainty distribution of X2

(in file ‘expdata2’).

2. Acquire the model (‘simulator2.c’) to apply Bayesian inference to refine X2 and compile
it (to become ‘simulator2’).

3. Put together a PSUADE input file (‘psuade2.in’) for Bayesian inference:

PSUADE

INPUT

dimension = 1

variable 1 X2 = 0.4 0.6

END

OUTPUT

dimension = 1

variable 1 Y

END

METHOD

sampling = FACT

num_samples = 10

randomize

END

APPLICATION

driver = ./simulator2

END

ANALYSIS

printlevel 1

35

END

END

4. Run PSUADE with ‘psuade2.in’ and rename psuadeData to psData2.

5. Launch PSUADE, load psData2 and apply ‘rsmcmc’ in command line mode to generate
a posterior sample for X2 (turn on ‘ana expert’ mode).

[Linux] psuade

*** *** ***

*** Welcome to PSUADE (version 1.7.4) ***

*** *** ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> load psData2

load complete : nSamples = 100

nInputs = 2

nOutputs = 1

psuade> ana_expert

psuade> rsmcmc

.....

===> Enter the spec file for building likelihood function : expdata2

Say ’no’ to the next question.

Output 1

Enter you choice (for response surface type) ? 2

Enter 10000 and 20 to the next 2 questions.

Enter 1 and 0 next to select input 1 and terminate.

Say ’no’ to discrepancy modeling.

Say ’yes’ to create posterior sample.

Enter 100, 3 and 1.05 to the next 3 questions.

.....

MCMC: input 1 value at peak of likelihood = 5.600000e-01

MCMC: input 1 mean = 7.689363e-01

MCMC: input 1 std dev = 1.300829e-01

MCMC iterations completed

MCMC: matlabmcmc2.m file has been created.

**

MCMC: check the MCMCPostSample file for a posterior sample.

psuade> quit

[Linux]

6. Convert the MCMC posterior sample to PSUADE data format by using the ‘iread’ in
command line mode and the ‘write’ to a PSUADE file (say, ‘sample2’).

36

7. Generate a large sample for X1 by running psuade psuade1.in (generate sample only
and no simulation) and rename ‘psuadeData’ to ‘sample1’.

8. Now we need to combine the two different distributions from two different inputs - one
drawn from some standard distribution (‘sample1’) and the other from the Bayesian
posterior distribution (‘sample2’). Concatenation of the two 1-parameter samples ‘sam-
ple1’ and ‘sample2’ via ‘rand draw2’ will give a 2-parameter sample to be propagated
through the simulation model (or its response surface).

[Linux] psuade

*** *** ***

*** Welcome to PSUADE (version 1.7.4) ***

*** *** ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> rand_draw2

Enter name of the first file : sample1

Enter name of the second file : sample2

Size of the sample to be drawn : (1-2000000) 100000

Store random sample to : (filename) newSample

psuade> quit

[Linux]

9. Prepare the original 2-parameter simulation model (‘simulator.c’) by compiling it (to
become ‘simulator’).

10. Propagate the 2-parameter sample through the simulator by setting the driver field in
‘newSample’ to be ‘simulator’ and running PSUADE on ‘newSample’ (Alternatively, if
‘simulator’ is expensive to run, replace it with a small sample and a response surface
type.) After the runs have been completed, rename ‘psuadeData’ (e.g. to ‘pdata’).

11. Launch PSUADE to compute uncertainties and sensitivities (e.g. ‘ua’). Turn on
‘ana expert’ mode for Matlab graphics. You can also try ‘me’, ‘tsi’, and/or ‘ca’.

[Linux] psuade

*** *** ***

*** Welcome to PSUADE (version 1.7.4) ***

*** *** ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> load pdata

psuade> ua

.....

psuade> me

37

.....

psuade> quit

[Linux]

12. If desired, compare the uncertainty distribution with the sample set without using
experimental data (by running PSUADE on ‘psuade.in’) to assess how the use of ex-
perimental data affects the output uncertainty.

5 Summary

PSUADE is intended to be a general-purpose toolkit for uncertainty quantification. Many
enhanced features have been incorporated based on our experiences with its practical appli-
cation to complex multi-physics models; and not all of these features have been comprehen-
sively described in this document. Users are encouraged to go through all examples included
in the software releases and give us feedback and suggestions on improving the manuals and
also the software itself.

38

