
DAMTP 2007/NA03

A view of algorithms for optimization

without derivatives1

M.J.D. Powell

Abstract: Let the least value of the function F (x), x∈Rn, be required, where
n ≥ 2. If the gradient ∇F is available, then one can tell whether search direc-
tions are downhill, and first order conditions help to identify the solution. It
seems in practice, however, that the vast majority of unconstrained calculations
do not employ any derivatives. A view of this situation is given, attention being
restricted to methods that are suitable for noisy functions, and that change the
variables in ways that are not random. Particular topics include the McKinnon
(1998) example of failure of the Nelder and Mead (1965) simplex method, some
convergence properties of pattern search algorithms, and my own recent research
on using quadratic models of the objective function. We find that least values of
functions of more than 100 variables can be calculated.

Department of Applied Mathematics and Theoretical Physics,
Centre for Mathematical Sciences,
Wilberforce Road,
Cambridge CB3 0WA,
England.

April, 2007

1Presented as a William Benter Distinguished Lecture at the City University of Hong Kong.

1. Introduction

Many optimization problems occur naturally. A soap film on a wire frame, for
example, takes the shape that has least area, and an atomic system may decay
into a state that has least energy. They also arise from best ways of achieving
objectives, such as changing the path of a space capsule to a required new orbit by
firing rocket motors in the way that consumes least fuel, or designing the cheapest
suspension bridge that will carry prescribed loads for a reasonable range of weather
conditions. Medical applications include the treatment of malignant tumours by
radiation, when the required total dose is collected from several sources outside
the patient’s body, the amount from each source being chosen to minimize the
damage to healthy tissue. Other examples arise from data fitting, from the design
of experiments and from financial mathematics, for instance.

The development of algorithms for optimization has been my main field of re-
search for 45 years, but I have given hardly any attention to applications. It is very
helpful, however, to try to solve some particular problems well, in order to receive
guidance from numerical results, and in order not to be misled from efficiency in
practice by a desire to prove convergence theorems. My particular problems were
usually contrived, and often I let the objective function be a quadratic polynomial
in the variables. Indeed, I have constructed several useful algorithms by seeking
good performance in this case in a way that allows the objective function to be
general.

I started to write computer programs in Fortran at Harwell in 1962. The opti-
mization software that I developed there, until I left in 1976, was made available
for general use by inclusion in the Harwell Subroutine Library (HSL). Occasion-
ally people elsewhere would hear about these contributions from publications,
from conferences and from contacts with other people. The procedures for ob-
taining the software were unrestricted, and I was always delighted to hear when
my work had been useful. The change of orbit calculation is mentioned above,
because I was told after the event that the DFP algorithm (Fletcher and Powell,
1963) had assisted the moon landings of the Apollo 11 Space Mission.

I made some more contributions to HSL after moving to Cambridge in 1976
and also I became a consultant for IMSL. One product they received from me was
the TOLMIN package (Powell, 1989) for optimization subject to linear constraints,
which requires first derivatives of the objective function. Their customers, how-
ever, prefer methods that are without derivatives, so IMSL forced my software
to employ difference approximations instead, although this modification may lose
much accuracy. I was not happy. The IMSL point of view was receiving much
support then from the widespread popularity of simulated annealing and genetic
algorithms. That was also sad, because those methods take many decisions ran-
domly, instead of taking advantage of the precision that is available usually in
calculated function values. Thus there was strong motivation to try to construct

2

some better algorithms.
At about that time, Westland Helicopters asked me to help with a constrained

optimization problem that had only four variables. Therefore I developed the
COBYLA software (Powell, 1994), which constructs linear polynomial approxi-
mations to the objective and constraint functions by interpolation at the vertices
of simplices (a simplex in n dimensions is the convex hull of n+1 points, n being
the number of variables). Even then, simplices had been in use for optimization
without derivatives for more than 30 years. That work is the subject of Section
2, because some of the algorithms are employed often in practical calculations.

It is explained in Section 2 that MacKinnon (1998) discovered an example
of failure of the Nelder and Mead (1965) simplex method, which adds to the
imperfections of the techniques that are favoured by many users. Thus pattern
search methods, which also had a history then of more than 30 years, received a
big boost. A comprehensive review of recent work in that field is presented by
Kolda, Lewis and Torczon (2003). It includes some ways of ensuring convergence
that we address briefly in Section 3.

My own recent and current research is investigating the use of quadratic models
of the objective function in unconstrained calculations, these approximations too
being constructed from interpolation conditions without any derivatives. Good
efficiency can be achieved using only 2n+1 conditions at a time, although a
quadratic polynomial has 1

2
(n+1)(n+2) degrees of freedom. These findings, with

a few numerical results, receive attention in Section 4.

2. Simplex methods

Let the least value of F (x), x∈Rn, be required, and let the function values F (xi),
i = 0, 1, . . . , n, be available, where F (x0)≤F (x1)≤ · · · ≤F (xn). We assume that
the volume of the simplex with the vertices xi∈Rn, i=0, 1, . . . , n, is nonzero. An
iteration of the original simplex method (Spendley, Hext and Himsworth, 1962)
calculates the new function value F (x̂), where x̂ is the point

x̂ = (2/n)
∑n−1

i=0 xi − xn. (1)

If F (x̂) < F (xn−1) is achieved, then x̂ replaces xn as a vertex of the simplex.
Otherwise, a “contraction” is preferred, x0 being retained, but xi being replaced
by 1

2
(x0 +xi) for i = 1, 2, . . . , n, and then n more function values have to be

computed for the next iteration. In both cases, the new set of function values is
arranged into ascending order as before.

The point x̄ = (1/n)
∑n−1

i=0 xi is the centroid of the face of the simplex that is
opposite the vertex xn, and equation (1) puts x̂ on the line from xn through x̄,
the step x̂− x̄ being the same as x̄−xn. Thus the volumes of the old and new
simplices are the same unless contraction occurs. The test F (x̂) < F (xn−1) for
accepting F (x̂) is employed instead of the test F (x̂)<F (xn), in order that the x̂
of the next iteration will be different from the old xn.

3

Usually this method reduces F (xn) steadily as the iterations proceed, but its
main contribution now to optimization algorithms is as a source of ideas. In
particular, if there are only two variables, and if the level sets {x : F (x)≤F (xn)}
are bounded, one can prove as follows that contractions occur regularly. We let
y

0
, y

1
and y

2
be the vertices of the first simplex, and we assume without loss of

generality that y
0

is at the origin. Then equation (1) with n=2 implies that every
x̂ until the first contraction has the form αy

1
+β y

2
, where α and β are integers.

Thus the possible positions of vertices are confined to a two dimensional grid before
and between contractions. Each vertex is visited at most once, because every
iteration without a contraction reduces either F (xn) or the number of function
values at vertices that take the value F (xn). It follows from the boundedness of
the level sets that there is going to be another contraction. This kind of argument
for establishing convergence, which can be applied to the original simplex method
only for n ≤ 2, is fundamental to the construction of the recent pattern search
methods of Section 3.

We consider the original simplex method when n=2, when F is the function
F (x)=x2

1+100x2
2, x∈R2, and when the current simplex has the vertices

x0 =

(

198
0.1

)

, x1 =

(

200
0

)

and x2 =

(

199
2.1

)

. (2)

The values F (x0) = 1982 +1, F (x1) = 2002 and F (x2) = 1992 +441 satisfy the
ordering condition F (x0)<F (x1)<F (x2). Therefore equation (1) picks the point
x̂ = x0+x1−x2, which has the coordinates x̂1 = 199 and x̂2 =−2. A contraction
occurs, because the new function value has the property F (x̂)=(200−1)2+400=
F (x1)+1. We see in expression (2) that the distance from the simplex to the
origin is about 200, but that the lengths of the edges of the simplex are in the
interval (2.0, 2.4). Thus it seems that the contraction has added about 200 to
the number of iterations that are needed to move the simplex close to the origin,
which is where the objective function is least.

The Nelder and Mead (1965) version of the simplex method, NM say, tries
to avoid such inefficiencies by applying the given contraction only in the case
min[F (x̂), F (x̌)]≥F (xn−1), where x̌ is another point on the straight line through
xn, x̄ and x̂. Most implementations of NM make the choice

x̌ =















2 x̂ − x̄, F (x̂) < F (x0),
1
2
(x̄ + x̂), F (x0) ≤ F (x̂) < F (xn−1),

1
2
(xn +x̄), F (xn−1) ≤ F (x̂).

(3)

The first line of this formula puts x̌ beyond x̂ when the move from xn to x̂ reduces
the objective function very well. The second line keeps x̌ on the x̂ side of x̄ when
it is known that the current iteration is going to be without a contraction. The
third line puts x̌ on the xn side of x̄ when x̂ is unacceptable as a vertex of the

4

next simplex. In the example of the previous paragraph, formula (3) gives the
point x̌ = 1

2
(xn + x̄). It has the coordinates x̌1 = 199 and x̌2 = 1.075, and the

ordering F (x̌)<F (xn−1)<F (x̂) occurs. Therefore x̌ replaces xn as a vertex and
xn−1 is retained, which provides contraction only in the x2 direction. Thus further
progress can be made by future iterations, without increasing substantially the
number of iterations that are needed to move the simplex close to the origin.

I was told in the 1970s that, in applications that require unconstrained min-
imization without derivatives, the NM method is employed more than any other
algorithm. It is still very popular, although simulated annealing seems to have
taken over first place. Therefore many users should pay careful attention to the
examples of MacKinnon (1998), one of them being as follows.

We retain n=2, and we ask whether, on every iteration, formula (3) can give
x̌= 1

2
(xn+x̄), with x0 staying fixed and with x1 and x2 being replaced by x̌ and x1,

respectively, when the vertices of the simplex are updated for the next iteration.
We let the fixed vertex x0 be at the origin, and we consider the vectors x1 that
would occur on three consecutive iterations. Letting superscripts denote iteration
numbers, we would have x

(k)
2 =x

(k−1)
1 and x̌=x

(k+1)
1 . Thus, because the last line

of formula (3) becomes x̌= 1
2
x2+

1
4
x1, due to x0 =0 and n=2, we obtain the three

term recurrence relation

x
(k+1)
1 = 1

2
x

(k−1)
1 + 1

4
x

(k)
1 , k=2, 3, 4, . . . , (4)

which has many solutions, one of them being the sequence

x
(k)
1 =







[

(1 +
√

33) / 8
]k

[

(1 −
√

33) / 8
]k





 ≈




(0.8431)k

(−0.5931)k



 , k=1, 2, 3, (5)

This sequence is generated automatically if the objective function satisfies F (x̌)<
F (x1) < F (x̂) on every iteration. In other words, because the right hand side of

equation (1) is the vector x0+x1−x2 =x
(k)
1 −x

(k−1)
1 , we require the conditions

F (x
(k+1)
1) < F (x

(k)
1) < F (x

(k)
1 − x

(k−1)
1), k=2, 3, 4, (6)

Expression (5) shows that, if the conditions (6) hold, then x
(k)
1 tends to the

zero vector as k →∞. Further, the edges of the simplex tend to be parallel to
the first coordinate direction, which allows the possibility that the gradient ∇F
has a nonzero second component at the origin. All of these things happen in the
examples of MacKinnon (1998), which include the convex objective function

F (ξ, η) =

{

360 ξ2+ η + η2, ξ≤0,

6 ξ2+ η + η2, ξ≥0,
(ξ, η)∈R2. (7)

5

Let ξk and ηk be the components of x
(k)
1 , k ≥ 1. Equation (5) provides ξk+1 ≈

0.8431 ξk > 0 and |ηk+1| ≈ 0.5931 |ηk|, so the choice (7) gives the property

F (x
(k+1)
1) − F (x

(k)
1) < −1.7350 ξ2

k+ 1.5931 |ηk| − 0.6482 η2
k < 0, (8)

where the last part depends on |ηk|<ξ2
k, which is shown in equation (5). Moreover,

x
(k)
1 −x

(k−1)
1 has the components −0.1861 ξk and 2.6861 ηk, approximately, which

provide the bound

F (x
(k)
1) − F (x

(k)
1 − x

(k−1)
1) < −6.46 ξ2

k+ 3.69 |ηk| − 6.21 η2
k < 0. (9)

Therefore the conditions (6) are achieved. Thus the NM method finds incorrectly
that the least value of the function (7) is at the origin.

The COBYLA software (Powell, 1994) also employs the function values F (xi),
i = 0, 1, . . . , n, at the vertices of a simplex, as mentioned in Section 1. They
are interpolated by a unique linear polynomial L(x), x∈Rn, say, and also each
iteration requires a trust region radius ∆ > 0, which is adjusted automatically.
Except in the highly unusual case ∇L = 0, the next vector of variables x̂ is
obtained by minimizing L(x̂) subject to ‖x̂−x0‖≤∆, where F (x0) is still the least
value of the objective function that has been found so far, and where the vector
norm is Euclidean. Thus, in the unconstrained version of COBYLA, x̂ is the point

x̂ = x0 − (∆ / ‖∇L‖) ∇L, (10)

which is different from all the vertices of the current simplex due to the relations
L(x̂)<L(x0)=F (x0)≤F (xi)=L(xi), i=0, 1, . . . , n. The value F (x̂) is calculated,
and then the simplex for the next iteration is formed by replacing just one of
the vertices of the old simplex by x̂. Choosing which vertex to drop is governed
mainly by staying well away from the degenerate situation where the volume of
the simplex collapses to zero.

In the usual case when calculated values of F include errors that are not
negligible, the gradient ∇L becomes misleading if the distances between vertices
are too small. Therefore this situation is avoided by imposing a lower bound, ρ say,
on ∆, except that ρ is made small eventually if high accuracy is requested. The
initial and final values of ρ should be set to typical changes to the variables and
to the required final accuracy in the variables, respectively. The software never
increases ρ, and ρ is reduced only when the current value seems to be preventing
further progress. Therefore, if ‖xt−x0‖ is much larger than ρ, where ‖xt−x0‖ is the
greatest of the distances ‖xi−x0‖, i=1, 2, . . . , n, then the vertex xt may be moved
to x̌, say, before reducing ρ, the position of x̌ being obtained by maximizing the
volume of the new simplex subject to ‖x̌−x0‖= ρ. This “alternative iteration”,
which aims to improve the simplex without considering F , is relevant to some of
the techniques of the next two sections.

6

3. Pattern search methods

Pattern search methods also make use of values of the objective function F (x), x∈
Rn, without derivatives, and they are designed to have the following convergence
property. If all level sets of the form {x : F (x)≤F (xj)} are bounded, and if F
has a continuous first derivative, then, assuming exact arithmetic and an infinite
number of iterations, the condition

lim inf { ‖∇F (xj)‖ : j =1, 2, 3, . . . } = 0 (11)

is achieved, where {xj : j =1, 2, 3, . . .} is the set of points at which F is calculated.
The ingredients of a basic pattern search method include a grid size ∆ that is

reduced to zero, typically by halving when a reduction is made. For each ∆, the
points xj that are tried are restricted to a regular grid of mesh size ∆, the number
of grid points being finite within any bounded region of Rn. The condition for
reducing ∆ depends on a “generating set”, G(∆), say, which is a collection of
moves between grid points in Rn, such that the origin is a strictly interior point
of the convex hull of the elements of G(∆), and such that the longest move in
G(∆) tends to zero as ∆→0. For example, the vector x∈Rn may be a grid point
if and only if its components are integral multiples of ∆, and G(∆) may contain
the 2n moves ±∆ ei, i=1, 2, . . . , n, where ei is the i-th coordinate vector in Rn.

Let x(k) be the best vector of variables at the beginning of the k-th iteration,
which means that it is the point of the current grid at which the least value of
F has been found so far. One or more values of F at grid points are calculated
on the k-th iteration, and we let F (xj(k)) be the least of them. The vector x(k+1)

for the next iteration is set to xj(k) or x(k) in the case F (xj(k)) < F (x(k)) or

F (xj(k))≥F (x(k)), respectively. Particular attention is given to moves from x(k)

that are in the generating set, because, if F (xj(k))<F (x(k)) does not occur, then

∆ is reduced for the next iteration if and only if it is known that x(k) has the
property

F (x(k)) ≤ F (x(k)+d), d∈G(∆). (12)

The main step in establishing the limit (11) concerns the iterations that reduce
∆. We assemble their iteration numbers in the set K, say, and we pick an algorithm
that forces |K| to be infinite. It is sufficient to calculate enough function values
at grid points on each iteration to ensure that either condition (12) holds, or the
strict reduction F (x(k+1))<F (x(k)) is achieved. Then, for each ∆, the condition
k ∈ K is going to be satisfied eventually, because the number of occurrences of
F (x(k+1)) < F (x(k)) with the current grid is finite, due to the bounded level sets
of F .

Now, for “suitable” generating sets G(∆), the property (12) implies that, when
F is continuously differentiable, the infinite sequence ‖∇F (x(k))‖, k ∈ K, tends
to zero, “suitable” being slightly stronger than the conditions above on G(∆),

7

as explained in Kolda et al (2003). Moreover, every x(k) is in the set {xj : j =
1, 2, 3, . . .} of points at which F is calculated. Therefore, if the set {x(k) : k∈K}
contains an infinite number of different elements, then the convergence property
(11) is obtained. Otherwise, the vectors x(k), k∈K, are all the same for sufficiently
large k, and this single vector, x∗ say, satisfies ∇F (x∗)=0. In this case, the test
(12) implies that all of the values F (x∗+d), d∈G(∆), are calculated for sufficiently
small ∆. Thus vectors of the form x∗ + d provide an infinite subsequence of
{xj : j = 1, 2, 3, . . .} that converges to x∗. It follows from ∇F (x∗) = 0 and the
continuity of ∇F (x), x∈Rn, that the limit (11) is achieved, which completes the
proof.

It is important to the efficency of pattern search methods to include some other
techniques. In particular, if the starting point x(k) is far from the nearest grid
point at which ∆ can be reduced, then it may be very helpful to try some steps
from x(k) that are much longer than the elements of G(∆). One possibility, taken
from Hooke and Jeeves (1961), is often suitable when ‖x(k)−x(k−1)‖ is relatively
large. It is to begin the search for x(k+1) not at x(k) but at the point 2x(k)−x(k−1),
in order to follow the trend in the objective function that is suggested by the
previous iteration. Details are given in Section 4.2 of Kolda et al (2003). That
paper is a mine of information on pattern search methods, including developments
for constraints on the variables.

The reduction in ∆ by a pattern search method when the test (12) is satisfied
is analogous to the reduction in ρ by COBYLA that is the subject of the last
paragraph of Section 2. Both methods make reductions only when they seem to
be necessary for further progress, which helps to keep apart the points in Rn at
which F is calculated. Furthermore, decreases in ∆ are guaranteed in pattern
search methods, but, if F (x), x∈Rn, is a continuous function with bounded level
sets, then it may be possible for COBYLA to make an infinite number of strict
reductions in the best calculated value of F without decreasing ρ. Therefore,
when asked about the convergence properties of COBYLA, I am unable to give a
favourable answer within the usual conventions of convergence theory.

Instead, I prefer to draw the following conclusion from the finite precision of
computer arithmetic. In practice, the number of different values of F (x), x∈Rn,
is bounded above by the number of different real numbers that can be produced by
a computer. Let us assume there are about 1018 different numbers in the interval
[10ℓ, 10ℓ+1], where ℓ is any integer from [−200, 200]. Then, not forgetting zero and
plus and minus signs, there are no more than 1021 different values of F (x), which
is less than the number of lattice points of the unit cube when n=20 and ∆=0.1.
Thus we have two examples of theoretical bounds on the amount of work that
are not useful. I am without practical experience of how the efficiency of pattern
search methods depends on n.

8

4. Quadratic models

We recall the example of Section 2 with the vertices (2). It demonstrates that
contractions can occur in the original simplex method when the current simplex is
far from the required solution. A similar disadvantage exists in COBYLA, which
is shown by retaining F (x)=x2

1+100x2
2, x∈R2, and by letting the current simplex

have the vertices

x0 =

(

50
0

)

, x1 =

(

49
1

)

and x2 =

(

49
−1

)

. (13)

We see that the edges of this simplex are much shorter than the distance from
the simplex to the required solution at the origin, and that the simplex is well-
conditioned, being a triangle with angles of π/4, π/4 and π/2. Therefore we
expect the linear polynomial L(x)=2500+(50−x1), x∈R2, which interpolates F
at the vertices, to be helpful. The gradient ∇L in formula (10), however, is such
that the step from x0 to x̂ is directly away from the solution at the origin.

This example illustrates the well-known remark that, if F is smooth, then
algorithms for unconstrained optimization are hardly ever efficient unless some
attention is given to the curvature of F . One way of doing so without derivatives
of F is to replace the linear polynomial L(x), x∈Rn, of each iteration of COBYLA,
by a quadratic model of the form

Q(x) = F (x0) + (x−x0)
T g

0
+ 1

2
(x−x0)

T ∇ 2Q (x−x0), x∈Rn, (14)

whose parameters are also defined by interpolation. The value F (x0) is available,
because we continue to let it be the least calculated value of the objective function
so far. Furthermore, after choosing the quadratic model Q, the analogue of formula
(10) is to let x̂ = x0+d be the next trial vector of variables, where d is obtained
by solving (approximately) the “trust region subproblem”

Minimize Q(x0+ d) subject to ‖d‖ ≤ ∆, (15)

which is studied in many publications, including the compendious work of Conn,
Gould and Toint (2000).

The parameters of the quadratic model (14), besides F (x0), are the compo-
nents of g

0
∈ Rn and the elements of the n×n symmetric matric ∇ 2Q. We

obtain the correct number of interpolation conditions by replacing the points
{xi : i = 0, 1, . . . , n} of COBYLA by the set {xi : i = 0, 1, . . . ,m−1}, where
m= 1

2
(n+1)(n+2). The new points must have the “nonsingularity property” that

the parameters of Q are defined uniquely by the equations

Q(xi) = F (xi), i=0, 1, . . . ,m−1, (16)

which is analogous to each simplex of COBYLA having a nonzero volume. We
retain the feature that each iteration changes only one of the interpolation points.

9

Let xt be replaced by x̂. The “nonsingularity property” is preserved well if |ℓt(x̂)| is
relatively large, where ℓt(x), x∈Rn, is the quadratic polynomial that satisfies the
“Lagrange conditions” ℓt(xi)=δit, i=0, 1, . . . ,m−1, the right hand side being the
Kronecker delta. I have assembled these ingredients and more into the UOBYQA
Fortran software (Powell, 2002), where UOBYQA denotes Unconstrained Opti-
mization BY Quadratic Approximation. By employing updating techniques, the
amount of routine work of each iteration is only O(m2). This software has been
applied successfully to many test problems, including some with first derivative
discontinuities.

The O(n4) work of the iterations of UOBYQA prevents n from being more
than about 100 in practice. Therefore I have investigated the idea of reducing the
number m of interpolation conditions (16) from 1

2
(n+1)(n+2) to only m=2n+1.

Then there are enough data to define quadratic models with diagonal second
derivative matrices, which is done before the first iteration. On each iteration,
however, when updating the quadratic model from Q(old) to Q(new), say, I take up
the freedom in Q(new) by minimizing ‖∇2Q(new)−∇2Q(old)‖F , which is the Frobenius
norm of the change to the second derivative matrix of Q. Of course ∇2Q(new)

has to be symmetric, and Q(new) has to satisfy the interpolation conditions (16),
after the current iteration has moved just one of the interpolation points. This
technique is analogous to the “symmetric Broyden method” when first derivatives
are available, and it has two very welcome features. One is that Q can be updated
in only O(m2) operations, even in the case m=2n+1, because the change to ∇2Q
can be written in the form

∇2Q(new) −∇2Q(old) =
∑m−1

i=1 µi (xi− x0) (xi− x0)
T , (17)

where the values of the parameters µi, i = 1, 2, . . . ,m−1, have to be calculated.
The other feature is that the use of Frobenius norms provides a least squares
projection operator in the space of symmetric matrices. Thus, if F (x), x∈Rn, is
itself a quadratic function, the updating provides the property

‖∇2Q(new) −∇2F‖2
F = ‖∇2Q(old) −∇2F‖2

F − ‖∇2Q(new) −∇2Q(old)‖2
F , (18)

which suggests that the approximations ∇2Q ≈ ∇2F become more accurate as
the iterations proceed. This updating method is at the heart of my NEWUOA
Fortran software (Powell, 2006), which has superseded UOBYQA. The value of
m is chosen by the user from the interval [n+2, 1

2
(n+1)(n+2)].

I had not expected NEWUOA to require fewer calculations of the objective
function than UOBYQA. In many cases when n is large, however, NEWUOA
completes its task using less than the 1

2
(n+1)(n+2) values of F that are required

by the first iteration of UOBYQA. My favourite example is the sum of squares

F (x) =
2n
∑

i=1







bi −
n
∑

j=1

[Sij sin(xj/σj) + Cij cos(xj/σj)]







2

, x∈Rn, (19)

10

Numbers of calculations of F (#F)
n

Case 1 Case 2 Case 3 Case 4 Case 5

10 373 370 365 420 325
20 1069 1131 1083 1018 952
40 2512 2202 1965 2225 2358
80 4440 4168 4168 4185 4439
160 6989 7541 7133 7237 7633
320 12816 14077 13304 13124 12523

Table 1: NEWUOA applied to the test problem (19)

where all the elements Sij and Cij are random integers from [−100, 100], where
each σj is chosen randomly from [1, 10], and where each bi is defined by F (x∗)=0,
for a vector x∗ ∈Rn that is also chosen randomly. Thus the objective function
is periodic, with local maxima and saddle points and with a global minimum at
x=x∗. The initial and final values of ρ (see the last paragraph of Section 2) are
set to 0.1 and 10−6, respectively, and NEWUOA is given a starting vector xo,
which is picked by letting the weighted differences (xo

j −x∗

j)/σj, j = 1, 2, . . . , n,
be random numbers from [−π/10, π/10]. For each choice of n, five test problems
were generated randomly. For each case, the total number of calculations of F is
shown in Table 1. All the final values of the error ‖x−x∗‖∞ were found to be less
than 6×10−6. We see that the growth of #F as n increases is no faster than linear,
although the model Q has O(n2) parameters. I believe that this stunning success
is due mainly to the indication in equation (18) that ‖∇2Q(new)−∇2Q(old)‖F tends
to zero.

Four of my Fortran packages, namely TOLMIN, COBYLA, UOBYQA and
NEWUOA, have been mentioned in this paper. They are all available for general
use free of charge. I am always pleased to provide copies of them by e-mail, my
address being mjdp@cam.ac.uk.

Acknowledgement

I had the honour of presenting a William Benter Distinguished Lecture at the Liu
Bie Ju Centre for Mathematical Sciences of the City University of Hong Kong
on February 7th, 2007. This paper describes the material of the lecture and was
written after the lecture had been delivered, mainly during my stay in Hong Kong.
I am very grateful for the excellent support, facilities and hospitality that I enjoyed
there, both from the Liu Bie Ju Centre and from the Mathematics Department
of City University.

11

References

A.R. Conn, N.I.M. Gould and Ph.L. Toint (2000), Trust-Region Methods,
MPS/SIAM Series on Optimization, SIAM (Philadelphia).

R. Fletcher and M.J.D. Powell (1963), “A rapidly convergent descent method for
minimization”, Comput. J., Vol. 6, pp. 163–168.

R. Hooke and T.A. Jeeves (1961), “Direct search solution of numerical and
statistical problems”, J. Assoc. Comput. Mach., Vol. 8, pp. 212–229.

T.G. Kolda, R.M. Lewis and V. Torczon (2003), “Optimization by direct search:
new perspectives on some classical and modern methods”, SIAM Review,
Vol. 45, pp. 385–482.

K.I.M. McKinnon (1998), “Convergence of the Nelder–Mead simplex method to
a nonstationary point”, SIAM J. Optim., Vol. 9, pp. 148–158.

J.A. Nelder and R. Mead (1965), “A simplex method for function minimization”,
Comput. J., Vol. 7, pp. 308–313.

M.J.D. Powell (1989), “A tolerant algorithm for linearly constrained optimization
calculations”, Math. Programming, Vol. 45, pp. 547–566.

M.J.D. Powell (1994), “A direct search optimization method that models the
objective and constraint functions by linear interpolation”, in Advances in

Optimization and Numerical Analysis, eds. S. Gomez and J-P. Hennart,
Kluwer Academic (Dordrecht), pp. 51–67.

M.J.D. Powell (2002), “UOBYQA: unconstrained optimization by quadratic
approximation”, Math. Programming B., Vol. 92, pp. 555–582.

M.J.D. Powell (2006), “The NEWUOA software for unconstrained optimization
without derivatives”, in Large-Scale Nonlinear Optimization, eds. G. Di Pillo
and M. Roma, Springer (New York), pp. 255–297.

W. Spendley, G.R. Hext and F.R. Himsworth (1962), “Sequential application of
simplex designs in optimisation and evolutionary operation”, Technometrics,
Vol. 4, pp. 441–461.

12

