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Introduction

▪ We	are	interested	in	optimizing	meshes	for	multi-material	ALE	Hydrodynamics	

[1].	For	 	materials	and	a	material	index	 ,	the	system	of	interest	is:N k = 1…N
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Introduction

▪ Why	mesh	optimization?

3D triple point problem on a static mesh and on a moving mesh with Lagrangian framework.

▪ Lagrangian	meshes	can	get	large	deformations	which	lead	to	small	time	step	size	or	even	tangling	of	the	
finite	elements.	

▪ Static	meshes	can	lead	to	numerical	dissipation	as	materials	evolve	in	time.	

▪ Mesh	optimization	can	help	reduce	numerical	dissipation	and	prevent	mesh	tangling.	

▪ Also	improve	computational	efficiency	of	the	calculation	(#dofs	for	a	given	accuracy).
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Reference	element

Physical/Active 
element

Target	Matrix	Optimization	Paradigm	(TMOP)

▪ Any	Jacobian	transformation	can	be	represented	using	four	geometric	
parameters:

Target 
element

W = ζ
⏟

[volume]

R
⏟

[rotation]
Q
⏟

[skewness]

D⏟
[aspect-ratio]

▪ The	transformation	 	from	the	active	to	target	element	can	be	defined	using	the	
Jacobian	transformation	 .

T
A	and	W
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▪ Quality	metric	 	is	a	measure	of	the	deviation	between	the	active	and	target	
Jacobian	transformation.	

▪ Different	metrics	depend	on	different	geometric	parameters.	

▪ 	metric	-	depends	on	Skew	(Q)	and	Aspect-ratio	(D).	

▪ 	metric	-	depends	on	 .	

▪ Other	kinds	include	 ,	 ,	 ,	etc.	

Over	100	different	metrics	divided	into	8	metric	types.	

▪ We	typically	deploy	metrics	that	control	shape	and	size	of	the	elements,	but	
seldom	also	use	metrics	for	mesh	alignment.

μ(T )

!"#$%

!&'% ζ

()&*+,%+- !"#$% + !&'% !"#$% + ()&*+,%+-

6

TMOP	Mesh	Quality	Metrics

µ2(T ) = 0.5
|T |2

det(T )
� 1

µ77(T ) = 0.5

✓
det(T )� 1

det(T )

◆2



LLNL-PRES-XXXXXX
7

r-adaptivity	with	TMOP	

▪ Using	the	quality	metric	and	the	Jacobian	transformation	 ,	the	TMOP	objective	
function	is	defined	as:	

where	 	represents	mesh	coordinates,	 	is	a	user-defined	spatial	weight.	The	
element-by-element	integral	is	computed	as:

T

x ω

F(x) = ∑E∈ℳ FE(xE) = ∑E(xE) ∫Et
ω(x)μ(T(x))dxt

∑E∈ℳ ∫Et
ω(xt)μ(T(xt))dxt = 1

NE
∑E∈ℳ ∑xq∈Et

wq det(W(x̄q)) ω(xq)μ(T(xq))

▪ In	practice,	we	can	use	multiple	metrics	with	different	spatial	weights.	

▪ -adaptivity	-	 	is	minimized	using	a	technique	such	as	the	Newton’s	method	
to	optimize	the	mesh	[2].
r F(x)
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Target	Construction

Reference	element

Physical/Target 

▪ Use	of	TMOP	relies	on	choice	of	 	and	a	
compatible	quality	metric.	

▪ 	is	defined	using	any	combination	of	the	
four	geometric	parameters	based	on	the	
mesh	optimization	goal.	[3]	

▪ For	practical	implementations,	 	is	derived	
from	discrete	simulation	data	at	run-time.	

▪ Consider	a	simple	2D	example	where	the	
material	interface	is	not	aligned	with	the	
mesh:

W

W

W

Simulation data - material indicator (η)
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Target	Construction

Simulation data 
material indicator (η)

Size - ζ ∝ 1/ |∇η | Aspect-Ratio - ρ ∝ |ηx /ηy |

▪
	

▪ 	for	an	ideal	square.	

▪ Use	a	 	metric,		

W = ζ [1 0
0 1] [1 cos ϕ

0 sin ϕ]
1
ρ

0

0 ρ
,

ϕ = π
2

!"#$% + !&'% μ7 = |T − T−t |2
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Discrete	Function	Transfer	During	and	After	Mesh	
Optimization

η(xs)η0(x0) xs

▪ During	and	after	mesh-optimization,	the	discrete	functions	must	be	mapped	
from	the	original	mesh	to	the	moved	mesh.	

▪ Interpolation	using	FindPoints	[4],	 	

▪ PDE-based	remap	[5],

xs ∈ Ωs → e, r ∈ Ω0

τ ∈ [0,1], u = xs − x0

∂η
∂τ

= u ⋅ ∇η, η(x0,0) = η0(x0)
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-adaptivityh

▪ Effectiveness	of	 -adaptivity	can	be	limited	due	to	the	topology	of	the	original	
mesh.	

▪ -adaptivity	introduces	addition	degrees	of	freedom	by	splitting	existing	
elements.	

▪ Nonconforming	high-order	mesh	refinement	framework	introduced	by	Cerveny	
et	al.	[6]	

▪ Supports	nonconforming	isotropic	and	anisotropic	refinement/derefinement	
in	2D	and	3D	for	triangles/quads	and	tetrahedrons/cubes.	

▪ Requires	use	of	an	error	estimor	for	refinement/derefinement	decisions	
during	simulation.

r

h
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AMR	for	Mesh	Optimization

▪ Anisotropic	refinements	impact	the	shape	and	size	of	an	element,	and	isotropic	
refinement	impacts	only	the	size	of	an	element.	

▪ Refinements	also	impact	skew,	but	this	impact	cannot	be	directly	controlled.

Different types of refinements for a quad and a cube
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TMOP-based	Refinement	Error	Estimator

▪ Based	on	 ,	define	 	as	the	set	of	refinement	types	to	be	considered:	

▪ 	metric	-	 	in	2D	and	1-6	in	3D.	

▪ 	metric	-	 	in	2D	and	7	in	3D.	

▪ 	metric	-	 	in	2D	and	1-7	in	3D.	

▪ For	a	given	element	 	and	refinement	type	 :	

▪ Refinement	type	is	picked	based	on:											

μ Γ

!"#$% γ = 1,2

!&'% γ = 3

!"#$% + !&'% γ = 1 − 3

E γ

maxγ ΔFγ
E, γ ∈ Γ

ΔFγ
E = Fγ=0

E − Fγ
E

Nc
,

FE = ∑xq∈Et
wq det(W(x̄q)) ω(xq)μ(T(xq))

where Fγ
E = ∑Nc

i=1 FEc

Difference in energy for a 
given refinement.

Sum of TMOP energy for 
children of a given element.

TMOP energy for a given 
element.
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TMOP-based	Refinement	Error	Estimator

▪ In	practice,	determining	 	requires	the	element	 	being	considered	to	be	
refined	and	all	discrete	functions	must	be	mapped	to	its	children	 .	

▪ Trivial	via	finite	element	interpolation	matrices	that	can	be	robustly	
constructed	for	a	given	 .	

Fγ
E E

Ec

γ
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TMOP-based	Derefinement	Error	Estimator

▪ Derefinement	is	important	for	time-dependent	problems	where	regions	that	
require	resolution	can	change	with	time.		

▪ Elements	that	are	already	refined,	are	considered	for	derefinement:	

▪ If	 	is	an	element	that	was	refined	to	span	 	children	at	a	previous	
iteration:	

▪ 	for	refinement	and	 	for	derefinement	are	compliments	of	each	
other.

Ep Nc

ΔFγ
E ΔFEp

ΔFEp
= ∑Nc

i=1
FEc

Nc
− FEp

Difference in energy for a 
derefinement.
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-adaptivityhr
 - original meshx0

 - TMOP quality metricμ
 - Newton convergence ϵ
 - -adaptivity iterations per step.Nh h

Target construction

 - Number of elements refined 
at previous iteration metric
NR

 - Number of elements 
derefined at previous iteration 
ND

-adaptivity with Newton’s method ( )r ϵ

 iterations of -adaptivityNh h

[Derefinement 
estimator] 

[Refinement 
estimator] 

• Note: quality metric can be 
different for r- and h-adaptivity 
component.
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▪ Solve	the	Poisson	problem:	

with	a	known	exact	solution	to	mimic	a	sharp	circular	wave	front	of	radius	 	centered	at	 	

▪

r (xc, yc)

α = 200, (xc, yc) = (−0.05, − 0.05), r = 0.7

17

Application	I	-	2D	Benchmark	Using	Poisson	
Equation

∇2u = f, Ω = [0,1]2

u = arctan[α( (x − xc)2 + (y − yc)2 − r)]
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▪ Target	construction	using	gradient	of	the	discrete	function	on	the	mesh,	as	earlier.	

▪ To	compare	h-,	r-,	and	hr-adaptivity,	we	start	with	a	mesh	and	do	1	iteration	of	h-	and/or	
r-adaptivity,	using	a	 	metric!"#$% + !&'%

18

Application	I	-	2D	Benchmark	Using	Poisson	
Equation

W = ζ [1 0
0 1] [1 cos ϕ

0 sin ϕ]
1
ρ

0

0 ρ

h-adaptivity r-adaptivity hr-adaptivity
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Application	I	-	2D	Benchmark	Using	Poisson	
Equation

▪ Error	comparison	for	different	
adaptivity	techniques	shows	
effectiveness	of	hr-adaptivity.	

▪ hr-adaptivity	requires	66%	
fewer	degrees	of	freedoms	in	
comparison	to	r-adaptivity	for	
a	given	accuracy	in	the	
solution.
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Application	II	-	Analytic	adaptivity

NE = 256 NE = 544, ΔF = 21.9 % NE = 256, ΔF = 51.8 % NE = 616, ΔF = 67.3 %

NE = 256 NE = 600, ΔF = 65.6 % NE = 256, ΔF = 60.6 % NE = 716, ΔF = 85.3 %

(a) μr
7 (!"#$% + !&'% metric), μh

55 (!&'% metric)

(b) μ7 (!"#$% + !&'% metric)
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Application	II	-	Analytic	adaptivity

NE = 128 NE = 928, ΔF = 62.4 % NE = 128, ΔF = 43.9 % NE = 1100, ΔF = 85.2 %

(c) μr
7 (!"#$% + !&'% metric), μh

55 (!&'% metric)

(d) μr
7 (!"#$% + !&'% metric), μh

55 (!&'% metric)
NE = 4096 NE = 484, ΔF = 98.3 % NE = 4096, ΔF = 55.4 % NE = 664, ΔF = 98.6 %
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▪ High-velocity	impact	of	gasses	[7]	using	the	Laghos	[8]	in	MFEM.	

▪ Large	mesh	deformations	lead	to	mesh	tangling	in	Lagrangian	framework.	

▪ TMOP-based	r-	and	hr-adaptivity	improves	mesh	quality	and	provides	resolution	in	regions	with	material	
interaction:	

▪ 	metric	for	r-	and	 	metric	for	h-adaptivity	component.	

▪ Material	indicator	used	for	target	construction.

!"#$% + !&'% !"#$%

22

Application	III	-	ALE	Hydrodynamics	2D	gas	
impactor
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Application	IV	-	ALE	Hydrodynamics	3D	Triple	
Point

▪ 3D	triple	point	problem	[9].	

▪ 	metric	for	r-	and	 	metric	for	h-adaptivity	component.	

▪ To	quantify	the	comparison	between	these	meshes,	we	look	at	how	well	the	original	material	
indicator	can	be	represented	on	each	of	the	meshes	in	comparison	to	the	mesh	from	
Lagrangian	framework.

!"#$% + !&'% !&'%

(a) Lagrangian mesh (b) Original mesh

e = ∫Ω (ηL(xL) − η(xs))
2

ηL(xL)
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Application	IV	-	ALE	Hydrodynamics	3D	Triple	
Point

(a) Lagrangian mesh (b) Original mesh (c) r-adaptivity (d) hr-adaptivity

ηL(xL) e = 1.71 e = 0.62 e = 0.078
▪ Volumetric	error	is	almost	an	order	of	magnitude	lower	for	the	hr−adaptivity	mesh	in	

comparison	to	r−adaptivity	and	about	20x	lower	in	comparison	to	the	uniform	hexahedron	
mesh.	
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Conclusion	&	Future	Work

▪ TMOP-based	mesh	optimization	enables	hr-adaptivity	for	nonconforming	
high-order	meshes.	

▪ Novel	element-by-element	TMOP-based	energy	estimator	determine	
elements	and	corresponding	refinement	type	for	h-adaptivity.	

▪ Physics-dependent	mesh	optimization	can	significantly	improve	the	
computational	performance	of	a	mesh	by	reducing	the	number	of	degrees	of	
freedom	required	for	a	given	accuracy	in	the	solution.	

▪ Future	work:	

▪ Integrate	hr-adaptivity	framework	in	the	Laghos	miniapp	for	optimization	
at	runtime.	

▪ Explore	integration	of	p-adaptivity	in	hr-adaptivity	framework.
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MFEM	open	source	implementation

▪ All	presented	methods	are	(or	will	be)  
available	in	MFEM.	

▪ MFEM	contains	various	2D	and	3D	mesh	quality	
metrics,	and	different	6	target	construction	methods.	

▪ Modular	framework	allows	additional	metrics	and	
target	construction	approaches	to	be	robustly	
integrated.	

▪ User	interface	provided	by	the	mesh_optimizer	and	
pmesh_optimizer	miniapps.  
-	Choice	of	target	construction	/	quality	metric	/	
adaptivity	fields	/	parameters.  
-	Visualization	through	GLVis.

mfem.org glvis.org
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