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Overview

▪ Introduction 

▪ Overview of Target Matrix Optimization Paradigm (TMOP) for -adaptivity 

▪ Recent advances 

▪ Target construction and mesh quality metrics 

▪ -adaptivity 

▪ Tangential relaxation and interface fitting 

▪ Future work
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Introduction

▪ Why mesh optimization?

▪ Mesh optimization can help adapt the mesh to the solution and ultimately reduce error. 

▪ Improve conditioning of the resulting system.

Outwards propagating shock wave Multimaterial Lagrangian hydrodynamics
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Target Matrix Optimization Paradigm (TMOP)

▪ Any Jacobian transformation can be represented using four geometric 
parameters:

W = ζ
⏟

[volume]

R
⏟

[rotation]
Q
⏟

[skewness]

D⏟
[aspect-ratio]

▪ The transformation  from the active to target element can be defined using the 
Jacobian transformation .

T
A and W
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▪ Quality metric  is a measure of the deviation between the active and target 
Jacobian transformation. 

▪ Different metrics depend on different geometric parameters. 

▪  metric - depends on Skew (Q) and Aspect-ratio (D). 

▪  metric - depends on . 

▪ Other kinds include , , , etc. 

▪ We typically deploy  metrics but seldom also use  
metrics.

μ(T )

!"#$%

!&'% ζ

()&*+,%+- !"#$% + !&'% !"#$% + ()&*+,%+-

!"#$% + !&'% ()&*+,%+-
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TMOP Mesh Quality Metrics

µ2(T ) = 0.5
|T |2

det(T )
� 1

µ77(T ) = 0.5

✓
det(T )� 1

det(T )

◆2
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Node Movement with TMOP 

▪ Using the quality metric and the Jacobian transformation , the TMOP objective 
function is defined as: 

where  represents mesh coordinates,  is a user-defined spatial weight. The 
element-by-element integral is computed as:

T

x ω
F(x) = ∑E∈ℳ FE(xE) = ∑E(xE) ∫Et

ω(x)μ(T(x))dxt

∑E∈ℳ ∫Et
ω(xt)μ(T(xt))dxt = 1

NE
∑E∈ℳ ∑xq∈Et

wq det(W(x̄q)) ω(xq)μ(T(xq))

▪ In practice, we can use multiple metrics with different spatial weights. 

▪ -adaptivity -  is minimized using a technique such as the Newton’s method 
to optimize the mesh [2].
r F(x)
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Target Construction & Mesh Quality Metric

▪ Use of TMOP relies on choice of  and a compatible quality metric satisfying 
certain convexity requirements. 

▪ Recent developments have advanced the state-of-the-art on both fronts.

W
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Target Construction

Geometric Data

Geometric Domain
Initial Mesh

Reference Mesh

Geometric Functionals

Boundary parameterization 

Volumes and Curvatures 

Ideal Element Shapes 

Mesh quality statistics 

Simulation Data

Solution
Material Indicators

Stress, or other tensors

Solution Functionals

Gradient, Hessians
Error Estimators

Eigenvectors, Eigenvalues

W

▪ Knupp describes various techniques with examples in “Target formulation and construction in mesh 
quality improvement”, LLNL-TR-795097. 
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Metric polyconvexity

▪ Existence of minimum can be established, in part, by showing that the metric 
is polyconvex [Garanzha]. 

▪ Knupp has developed various metrics for TMOP in “Metric type in the target-
matrix mesh optimization paradigm”, LLNL-TR-817490. 

▪ Over 100 different metrics divided into 8 Types based on geometric 
properties. 

▪ Analyzes polyconvexity of each metric. 

▪ Determined at-least one polyconvex metric for , , 
, and .

!"#$% !"#$% + !&'%
12&%+-#-&3+ + !&'% !"#$% + 12&%+-#-&3+ + !&'%
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Simulation-driven Adaptivity

Simulation data 
material indicator (η)

Size - ζ ∝ 1/ |∇η | Aspect-Ratio - ρ ∝ |ηx /ηy |

 

▪  for an ideal square. 

▪ Use a  polyconvex metric,  . 

▪ Note:  must be remapped between and after Newton iterations.

W = ζ [1 0
0 1] [1 cos ϕ

0 sin ϕ]
1
ρ

0

0 ρ
,

ϕ = π
2

!"#$% + !&'% μ80 = (1 − γ)μ2 + γμ77

η

µ2(T ) = 0.5
|T |2

det(T )
� 1 μ77(T ) = 1

2 (τ − 1
τ )2

"Simulation-driven optimization of high-order meshes in ALE hydrodynamics." Computers & Fluids 208 (2020): 104602.
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-adaptivityhr

▪ Effectiveness of -adaptivity can be limited due to the topology of the original 
mesh. 

▪ -adaptivity introduces addition degrees of freedom by splitting existing 
elements. 

▪ Nonconforming high-order mesh refinement framework introduced by Cerveny 
et al. [6] 

▪ Supports nonconforming isotropic and anisotropic refinement/derefinement 
in 2D and 3D for triangles/quads and tetrahedrons/cubes. 

▪ Requires use of an error estimator for refinement/derefinement decisions 
during simulation.

r

h
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AMR for Mesh Optimization

▪ Anisotropic refinements impact the shape and size of an element, and isotropic 
refinement impacts only the size of an element. 

▪ Refinements also impact skew, but this impact cannot be directly controlled.

Different types of refinements for a quad and a cube
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TMOP-based Refinement Error Estimator

▪ Based on , define  as the set of refinement types to be considered: 

▪  metric -  in 2D and 1-6 in 3D. 

▪  metric -  in 2D and 7 in 3D. 

▪  metric -  in 2D and 1-7 in 3D. 

▪ For a given element  and refinement type : 

▪ Refinement type is picked based on:           

μ Γ

!"#$% γ = 1,2

!&'% γ = 3

!"#$% + !&'% γ = 1 − 3

E γ ∈ Γ

maxγ ΔFγ
E, γ ∈ Γ

ΔFγ
E = Fγ=0

E − Fγ
E

Nc
,

FE = ∑xq∈Et
wq det(W(x̄q)) ω(xq)μ(T(xq))

where Fγ
E = ∑Nc

i=1 FEc

Difference in energy for a 
given refinement.

Sum of TMOP energy for 
children of a given element.

TMOP energy for a given 
element.
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TMOP-based Derefinement Error Estimator

▪ Derefinement is important for time-dependent problems where regions that 
require resolution can change with time.  

▪ Elements that are already refined, are considered for derefinement: 

▪ If  is an element that was refined to span  children at a previous 
iteration: 

▪  for refinement and  for derefinement are compliments of each other. 

▪ Note: Determining  and  requires the discrete functions to be mapped 

between children and parent elements. 

Ep Nc

ΔFγ
E ΔFEp

ΔFγ
E ΔFEp

ΔFEp
= ∑Nc

i=1
FEc

Nc
− FEp

Difference in energy for a 
derefinement.
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-adaptivityhr
 - original meshx0

 - TMOP quality metricμ
 - Newton convergence ϵ
 - -adaptivity iterations per step.Nh h

Target construction

 - Number of elements refined 
at previous iteration
NR

 - Number of elements 
derefined at previous iteration 
ND

-adaptivity with Newton’s method ( )r ϵ

 iterations of -adaptivityNh h

[Derefinement 
estimator] 

[Refinement 
estimator] 

• Note: quality metric can be 
different for r- and h-adaptivity 
component.
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▪ Solve the Poisson problem: 

with a known exact solution to mimic a sharp circular wave front of radius  centered at  

▪

r (xc, yc)

α = 200, (xc, yc) = (−0.05, − 0.05), r = 0.7

16

2D Benchmark Using Poisson Equation

∇2u = f, Ω = [0,1]2

u = arctan[α( (x − xc)2 + (y − yc)2 − r)]
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▪ Target construction using gradient of the discrete function on the mesh, as earlier. 

▪ To compare h-, r-, and hr-adaptivity, we start with a mesh and do 1 iteration of h- and/or 
r-adaptivity, using a  metric!"#$% + !&'%

17

2D Benchmark Using Poisson Equation

W = ζ [1 0
0 1] [1 cos ϕ

0 sin ϕ]
1
ρ

0

0 ρ

h-adaptivity r-adaptivity hr-adaptivity
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2D Benchmark Using Poisson Equation

▪ Error comparison for different 
adaptivity techniques shows 
effectiveness of hr-adaptivity. 

▪ hr-adaptivity requires 66% 
fewer degrees of freedoms in 
comparison to r-adaptivity for 
a given accuracy in the 
solution.
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▪ Triple point problem using Laghos in MFEM. 

▪ Large mesh deformations lead to mesh tangling in Lagrangian framework. 

▪ TMOP-based r- and hr-adaptivity improves mesh quality and provides resolution in regions 
with material interaction.

19

Application to ALE Hydrodynamics

(a) Lagrangian mesh (b) Original mesh (c) r-adaptivity (d) hr-adaptivity

ηL(xL) e = 1.71 e = 0.62 e = 0.078

e = ∫Ω (ηL(xL) − η(xs))
2

“hr-Adaptivity for nonconforming high-order meshes with the target matrix optimization paradigm." Engineering with Computers (2021): 1-17.
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Adaptive Interface Fitting

▪ The surface of interest is given as a discrete level set (no 
analytic parametrization). 

▪ Penalty formulation (quality / fitting tradeoff). 
- All mesh nodes move simultaneously. 
- One approach for fitting / tangential relaxation. 

▪ The restricted level set function  penalizes the deviation from 
the zero level set. 

▪ Marking is not a trivial procedure. 

σ̄

Multimaterial mesh with 
target level set

<latexit sha1_base64="KAT09uR2oRV/aydwtBQvB3lETRc=">AAACJHicbVDLSgMxFM34rPVVdekmWISKUGaKqCBCUSjurGAf0NYhk6ZtaJIZkoxahvkYN/6KGxc+cOHGbzFtR9DWC4Fzz7mHm3u8gFGlbfvTmpmdm19YTC2ll1dW19YzG5tV5YcSkwr2mS/rHlKEUUEqmmpG6oEkiHuM1Lz++VCv3RKpqC+u9SAgLY66gnYoRtpQbuaklLvfg6ew5EZNHsZwH94ZpGiXoxg2qdCmu+SkO+w8JH8kY7opuJmsnbdHBaeBk4AsSKrsZt6abR+HnAiNGVKq4diBbkVIaooZidPNUJEA4T7qkoaBAnGiWtHoyBjuGqYNO740T2g4Yn87IsSVGnDPTHKke2pSG5L/aY1Qd45bERVBqInA40WdkEHtw2FisE0lwZoNDEBYUvNXiHtIIqxNrmkTgjN58jSoFvLOYb5wdZAtniVxpMA22AE54IAjUAQXoAwqAIMH8ARewKv1aD1b79bHeHTGSjxb4E9ZX98BOqPf</latexit>

F (x) = Fµ + w�

Z

⌦
�̄(x)2

The extra term affects only the 
position of the red DOF 
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Adaptive Interface Fitting

▪ We restrict σ to the set of marked nodes:  

▪ Goal: move the mesh so that . 
- Interpolatory finite element basis functions. 

▪ Requires derivative computation, , and transfer of 
 as the mesh moves during optimization. 

σi ≡ σ(xi) = 0

∂σ
∂x

σ(x0)

<latexit sha1_base64="06DBMZRNBicnRiqEmqKzRlKUg1o="></latexit>

�̄i =

(
�i if i 2 S,
0 otherwise.

“Adaptive Surface Fitting and Tangential Relaxation for High-Order Mesh Optimization”, International Meshing Roundtable, 2021.
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Adaptive Interface Fitting

▪ In all cases σ is a discrete FE function. 

▪ Ball at the center of the domain.
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Adaptive Interface Fitting

▪ For non-smooth practical cases, further research and methods are required. 
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Summary

▪ Theoretical and practical advances in target construction and metric 
types for TMOP. 

▪ TMOP-based hr-adaptivity for nonconforming high-order meshes helps 
improve mesh quality while reducing DOFs required for a given 
accuracy in solution. 

▪ Dobrev et al. “hr-adaptivity for nonconforming high-order meshes 
with the target matrix optimization paradigm”. Engineering With 
Computers, 2021. 

▪ Surface fitting and tangential relaxation through an adaptive FE 
formulation. 

▪ Discrete representation of the surface; no analytic parametrization  

▪ Weak enforcement through a variational penalty term  

▪ All presented methods are (or will be) available in MFEM.

mfem.org

glvis.org
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