High-Order Mesh Optimization

Tzanio Kolev¹ (PI), Patrick Knupp², V. Tomov¹, K. Mittal³, V. Dobrev¹

¹Lawrence Livermore National Lab

²Dihedral, LLC

³UIUC

Motivation

High-Order methods are increasingly important for HPC simulations. High-order meshes can be very beneficial but are difficult to control due to their rich sub-zonal properties [4]. ETHOS develops rigorous theory for high-order mesh quality based on TMOP and VM [1,2,3] and uses it to produce mesh optimization algorithms for a wide spectrum of users. Synergistic with ECP: work is partially motivated by and benefits the CEED co-design center and its apps. The algorithms are easy-to-use and freely available through open-source software [5].

Approach

Extend Variation Minimization and the Target-Matrix Optimization Paradigm [1,2,3] to HO meshes.

- 1. Application-specific target elements, W. Examples: Ideal / Ideal with specified size.
- 2. Point-based mesh quality metric $\mu(T)$ Can measure shape / size / alignment: $\mu_2^{shape} = \frac{|T|^2}{2\det(T)} 1 \quad \mu_{55}^{size} = 0.5 \left(\det(T) 1\right)^2$
- 3. Minimize a variational objective function

$$\frac{\partial F(\boldsymbol{x})}{\partial \boldsymbol{x}} = 0$$
, where $F(x) = \sum_{K} \int_{K_t} \mu(T(x))$

Constraints: det(T) > 0 at all integration pts. Hessian-based methods require $\partial^2 \mu / \partial T^2$.

4. Additional capabilities: tangential relaxation, space-dependent compositions of metrics, limited node movement, mesh untangling.

Results

Shape optimization of a 4th order turbine blade

Initial μ_2 shape quality on a 2^{nd} order mesh

ICF-like mesh optimized by various ETHOS methods

3D shape optimization of a perturbed sphere

Shape + size optimization in High-Order ALE simulation

Conclusions and Future Work

Our rigorous theory for high-order mesh quality provides a general & flexible mesh optimization tool for next-gen applications. Next steps:

- Incorporation of **general adaptivity tensor** in TMOP with application to **r-adaptivity**.
- Investigate metrics based on higher-order derivatives (beyond Jacobians) and velocitybased ODE evolution solution algorithms.
- Demonstrations in large-scale simulations.

Areas in which we can help

- Freely available, easy-to-use mesh optimization algorithms: powerful and general (any order), open-source [5].
- Tailor the TMOP algorithms to your needs: specific targets, quality metrics, etc.
- High-quality interpolation/transfer of fields between original and optimized mesh.
- High-order visualization, mesh format, unstructured finite element discretizations.

Areas in which we need help

- High-order applications needs/requirements: what is a "good" mesh for your simulation?
- Optimization solvers for the global problem: derivative-free, Newton-like, constrained (valid mesh/positive Jacobian).

References

- [1] P. Knupp, "Algebraic mesh quality metrics", SISC, 2001
- [2] P. Knupp, "Introducing the target-matrix paradigm for mesh optimization via node-movement", Eng.Comp., 2012
- [3] V. Dobrev, P. Knupp, T. Kolev, V. Tomov, K. Mittal, "The target-matrix optimization paradigm for high-order meshes", preprint
- [4] V. Dobrev, T. Kolev, R. Rieben, "High-order curvilinear finite element methods for Lagrangian hydrodynamics", SISC, 2012
- [5] MFEM library, http://mfem.org