
User Documentation for kinsol v2.8.0

(sundials v2.6.0)

Aaron M. Collier, Alan C. Hindmarsh, Radu Serban, and Carol S. Woodward

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

March 9, 2015

UCRL-SM-208116

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

Contents

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Historical Background . 1
1.2 Changes from previous versions . 2
1.3 Reading this User Guide . 4

2 Mathematical Considerations 7

3 Code Organization 13
3.1 SUNDIALS organization . 13
3.2 KINSOL organization . 13

4 Using KINSOL for C Applications 17
4.1 Access to library and header files . 17
4.2 Data types . 18
4.3 Header files . 18
4.4 A skeleton of the user’s main program . 19
4.5 User-callable functions . 21

4.5.1 KINSOL initialization and deallocation functions 21
4.5.2 Linear solver specification functions . 22
4.5.3 KINSOL solver function . 26
4.5.4 Optional input functions . 28

4.5.4.1 Main solver optional input functions 28
4.5.4.2 Dense direct linear solver optional input functions 38
4.5.4.3 Sparse linear solvers optional input functions 39
4.5.4.4 Iterative linear solvers optional input functions 41

4.5.5 Optional output functions . 42
4.5.5.1 Main solver optional output functions 42
4.5.5.2 Dense direct linear solvers optional output functions 45
4.5.5.3 Sparse direct linear solvers optional output functions 46
4.5.5.4 Iterative linear solvers optional output functions 47

4.6 User-supplied functions . 50
4.6.1 Problem-defining function . 50
4.6.2 Error message handler function . 50
4.6.3 Informational message handler function . 51
4.6.4 Jacobian information (direct method with dense Jacobian) 51
4.6.5 Jacobian information (direct method with banded Jacobian) 52
4.6.6 Jacobian information (direct method with sparse Jacobian) 53
4.6.7 Jacobian information (matrix-vector product) 54
4.6.8 Preconditioning (linear system solution) . 55

iii

4.6.9 Preconditioning (Jacobian data) . 55
4.7 A parallel band-block-diagonal preconditioner module 56

5 FKINSOL, an Interface Module for FORTRAN Applications 61
5.1 Important note on portability . 61
5.2 Fortran Data Types . 61
5.3 FKINSOL routines . 62
5.4 Usage of the FKINSOL interface module . 63
5.5 FKINSOL optional input and output . 69
5.6 Usage of the FKINBBD interface to KINBBDPRE . 70

6 Description of the NVECTOR module 75
6.1 The NVECTOR SERIAL implementation . 79
6.2 The NVECTOR PARALLEL implementation . 81
6.3 The NVECTOR OPENMP implementation . 83
6.4 The NVECTOR PTHREADS implementation . 85
6.5 NVECTOR Examples . 87
6.6 NVECTOR functions used by KINSOL . 88

7 Providing Alternate Linear Solver Modules 89
7.1 Initialization function . 90
7.2 Setup function . 90
7.3 Solve function . 91
7.4 Memory deallocation function . 92

8 General Use Linear Solver Components in SUNDIALS 93
8.1 The DLS modules: DENSE and BAND . 94

8.1.1 Type DlsMat . 94
8.1.2 Accessor macros for the DLS modules . 97
8.1.3 Functions in the DENSE module . 97
8.1.4 Functions in the BAND module . 100

8.2 The SLS module . 101
8.2.1 Type SlsMat . 102
8.2.2 Functions in the SLS module . 103
8.2.3 The KLU solver . 105
8.2.4 The SUPERLUMT solver . 105

8.3 The SPILS modules: SPGMR, SPFGMR, SPBCG, and SPTFQMR 105
8.3.1 The SPGMR module . 106
8.3.2 The SPFGMR module . 107
8.3.3 The SPBCG module . 107
8.3.4 The SPTFQMR module . 107

A SUNDIALS Package Installation Procedure 109
A.1 CMake-based installation . 110

A.1.1 Configuring, building, and installing on Unix-like systems 110
A.1.2 Configuration options (Unix/Linux) . 112
A.1.3 Configuration examples . 115
A.1.4 Working with external Libraries . 115

A.2 Building and Running Examples . 116
A.3 Configuring, building, and installing on Windows . 116
A.4 Installed libraries and exported header files . 117

B KINSOL Constants 121
B.1 KINSOL input constants . 121
B.2 KINSOL output constants . 121

iv

Bibliography 125

Index 127

v

List of Tables

4.1 Optional inputs for kinsol, kindense, kinsparse, and kinspils 29
4.2 Optional outputs from kinsol, kindls, kinsls, and kinspils 43

5.1 Keys for setting fkinsol optional inputs . 70
5.2 Description of the fkinsol optional output arrays IOUT and ROUT 71

6.1 Description of the NVECTOR operations . 77
6.2 List of vector functions usage by kinsol code modules 88

A.1 sundials libraries and header files . 118
A.2 sundials libraries and header files (cont.) . 119

vii

List of Figures

3.1 Organization of the SUNDIALS suite . 14
3.2 Overall structure diagram of the KINSOL package . 15

8.1 Diagram of the storage for a banded matrix of type DlsMat 96
8.2 Diagram of the storage for a compressed-sparse-column matrix of type SlsMat 104

A.1 Initial ccmake configuration screen . 111
A.2 Changing the installdir . 112

ix

Chapter 1

Introduction

kinsol is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [14]. This suite consists of cvode, arkode, kinsol, and ida, and variants of these
with sensitivity analysis capabilities.

kinsol is a general-purpose nonlinear system solver based on Newton-Krylov solver technology.
A fixed point iteration is also included with the release of kinsol v.2.8.0.

1.1 Historical Background

The first nonlinear solver packages based on Newton-Krylov methods were written in Fortran. In
particular, the NKSOL package, written at LLNL, was the first Newton-Krylov solver package written
for solution of systems arising in the solution of partial differential equations [5]. This Fortran code
made use of Newton’s method to solve the discrete nonlinear systems and applied a preconditioned
Krylov linear solver for solution of the Jacobian system at each nonlinear iteration. The key to the
Newton-Krylov method was that the matrix-vector multiplies required by the Krylov method could
effectively be approximated by a finite difference of the nonlinear system-defining function, avoiding a
requirement for the formation of the actual Jacobian matrix. Significantly less memory was required
for the solver as a result.

In the late 1990’s, there was a push at LLNL to rewrite the nonlinear solver in C and port it to
distributed memory parallel machines. Both Newton and Krylov methods are easily implemented in
parallel, and this effort gave rise to the kinsol package. kinsol is similar to NKSOL in functionality,
except that it provides for more options in the choice of linear system methods and tolerances, and
has a more modular design to provide flexibility for future enhancements.

At present, kinsol contains four Krylov methods: the GMRES (Generalized Minimal RESid-
ual) [20], FGMRES (Flexible Generalized Minimal RESidual) [19], Bi-CGStab (Bi-Conjugate Gradient
Stabilized) [21], and TFQMR (Transpose-Free Quasi-Minimal Residual) [13] linear iterative methods.
As Krylov methods, these require almost no matrix storage as compared to direct methods. However,
the algorithms allow for a user-supplied preconditioner matrix, and for most problems preconditioning
is essential for an efficient solution. For very large nonlinear algebraic systems, the Krylov methods
are preferable over direct linear solver methods, and are often the only feasible choice. Among the
three Krylov methods in kinsol, we recommend GMRES as the best overall choice. However, users
are encouraged to compare all three, especially if encountering convergence failures with GMRES.
Bi-CGStab and TFQMR have an advantage in storage requirements, in that the number of workspace
vectors they require is fixed, while that number for GMRES depends on the desired Krylov subspace
size.

For the sake of completeness in functionality, direct linear system solvers are included in kinsol.
These include methods for both dense and banded linear systems, with Jacobians that are either
user-supplied or generated internally by difference quotients. kinsol also includes interfaces to the
sparse direct solvers KLU [7, 1], and the threaded sparse direct solver, SuperLU MT [16, 9, 2].

2 Introduction

In the process of translating NKSOL into C, the overall kinsol organization has been changed
considerably. One key feature of the kinsol organization is that a separate module devoted to vector
operations has been created. This module facilitated extension to multiprosessor environments with
minimal impact on the rest of the solver. The vector module design is shared across the sundials

suite. This nvector module is written in terms of abstract vector operations with the actual routines
attached by a particular implementation (such as serial or parallel) of nvector. This abstraction
allows writing the sundials solvers in a manner independent of the actual nvector implementation
(which can be user-supplied), as well as allowing more than one nvector module linked into an
executable file. sundials (and thus kinsol) is supplied with serial, MPI-parallel, and both openMP
and Pthreads thread-parallel nvector implementations.

There are several motivations for choosing the C language for kinsol. First, a general movement
away from Fortran and toward C in scientific computing was apparent. Second, the pointer, struc-
ture, and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for kinsol because
of the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease
of interfacing the solver to applications written in Fortran.

1.2 Changes from previous versions

Changes in v2.8.0

Two major additions were made to the globalization strategy options (KINSol argument strategy).
One is fixed-point iteration, and the other is Picard iteration. Both can be accelerated by use of the
Anderson acceleration method. See the relevant paragraphs in Chapter 2.

Three additions were made to the linear system solvers that are available for use with the kinsol

solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to kinsol. Finally, a variation of
GMRES called Flexible GMRES was added.

Otherwise, only relatively minor modifications were made to kinsol:

In function KINStop, two return values were corrected to make the values of uu and fval consistent.

A bug involving initialization of mxnewtstep was fixed. The error affects the case of repeated user
calls to KINSol with no intervening call to KINSetMaxNewtonStep.

A bug in the increments for difference quotient Jacobian approximations was fixed in function
kinDlsBandDQJac.

In KINLapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an
illegal input error for DGBTRF/DGBTRS.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

In the FKINSOL module, an incorrect return value ier in FKINfunc was fixed.

In the FKINSOL optional input routines FKINSETIIN, FKINSETRIN, and FKINSETVIN, the optional
fourth argument key length was removed, with hardcoded key string lengths passed to all strncmp
tests.

In all FKINSOL examples, integer declarations were revised so that those which must match a C
type long int are declared INTEGER*8, and a comment was added about the type match. All other
integer declarations are just INTEGER. Corresponding minor corrections were made to the user guide.

Two new nvector modules have been added for thread-parallel computing environments — one
for openMP, denoted NVECTOR OPENMP, and one for Pthreads, denoted NVECTOR PTHREADS.

With this version of sundials, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

1.2 Changes from previous versions 3

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The func-
tion NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays,
respectively.

A large number of errors have been fixed. Three major logic bugs were fixed – involving updating
the solution vector, updating the linesearch parameter, and a missing error return. Three minor
errors were fixed – involving setting etachoice in the Matlab/kinsol interface, a missing error case
in KINPrintInfo, and avoiding an exponential overflow in the evaluation of omega. In each linear
solver interface function, the linear solver memory is freed on an error return, and the **Free function
now includes a line setting to NULL the main memory pointer to the linear solver memory. In the
installation files, we modified the treatment of the macro SUNDIALS USE GENERIC MATH, so that
the parameter GENERIC MATH LIB is either defined (with no value) or not defined.

Changes in v2.6.0

This release introduces a new linear solver module, based on Blas and Lapack for both dense and
banded matrices.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the already present family of scaled precon-
ditioned iterative linear solvers, the direct solvers, including the new Lapack-based ones, were also
organized into a direct family); (b) maintaining a single pointer to user data, optionally specified
through a Set-type function; (c) a general streamlining of the band-block-diagonal preconditioner
module distributed with the solver.

Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire sundials source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including sundials header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
were made to the build system: all exported header files are now installed in separate subdirectories
of the installation include directory.

The functions in the generic dense linear solver (sundials dense and sundials smalldense) were
modified to work for rectangular m×n matrices (m ≤ n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.

Changes in v2.4.0

kinspbcg, kinsptfqmr, kindense, and kinband modules have been added to interface with the
Scaled Preconditioned Bi-CGStab (spbcg), Scaled Preconditioned Transpose-Free Quasi-Minimal
Residual (sptfqmr), dense, and band linear solver modules, respectively. (For details see Chapter
4.) Corresponding additions were made to the Fortran interface module fkinsol. At the same
time, function type names for Scaled Preconditioned Iterative Linear Solvers were added for the
user-supplied Jacobian-times-vector and preconditioner setup and solve functions.

Regarding the Fortran interface module fkinsol, optional inputs are now set using FKINSETIIN

(integer inputs), FKINSETRIN (real inputs), and FKINSETVIN (vector inputs). Optional outputs are
still obtained from the IOUT and ROUT arrays which are owned by the user and passed as arguments
to FKINMALLOC.

The kindense and kinband linear solver modules include support for nonlinear residual moni-
toring which can be used to control Jacobian updating.

4 Introduction

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (kinsol and sundials). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see
Appendix A.

Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. Additionally, to resolve potential variable scope issues, all SUNDIALS
solvers release user data right after its use. The build system has been further improved to make it
more robust.

Changes in v2.2.1

The changes in this minor sundials release affect only the build system.

Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, kinsol now provides a
set of routines (with prefix KINSet) to change the default values for various quantities controlling the
solver and a set of extraction routines (with prefix KINGet) to extract statistics after return from the
main solver routine. Similarly, each linear solver module provides its own set of Set- and Get-type
routines. For more details see Chapter 4.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobian-
vector products and preconditioner information) were simplified by reducing the number of arguments.
The same information that was previously accessible through such arguments can now be obtained
through Get-type functions.

Installation of kinsol (and all of sundials) has been completely redesigned and is now based on
configure scripts.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions and specific examples. We expect that
some readers will want to concentrate on the general instructions, while others will refer mostly to
the examples, and the organization is intended to accommodate both styles.

There are different possible levels of usage of kinsol. The most casual user, with a small nonlinear
system, can get by with reading all of Chapter 2, then Chapter 4 through §4.5.3 only, and looking
at examples in [6]. In a different direction, a more expert user with a nonlinear system may want to
(a) use a package preconditioner (§4.7), (b) supply his/her own Jacobian or preconditioner routines
(§4.6), (c) supply a new nvector module (Chapter 6), or even (d) supply a different linear solver
module (§3.2 and Chapter 7).

The structure of this document is as follows:

• In Chapter 2, we provide short descriptions of the numerical methods implemented by kinsol

for the solution of nonlinear systems.

• The following chapter describes the structure of the sundials suite of solvers (§3.1) and the
software organization of the kinsol solver (§3.2).

• Chapter 4 is the main usage document for kinsol for C applications. It includes a complete
description of the user interface for the solution of nonlinear algebraic systems.

• In Chapter 5, we describe fkinsol, an interface module for the use of kinsol with Fortran

applications.

1.3 Reading this User Guide 5

• Chapter 6 gives a brief overview of the generic nvector module shared among the various
components of sundials, and details on the four nvector implementations provided with
sundials: a serial implementation (§6.1), a distributed memory parallel implementation based
on MPI (§6.2), and two thread-parallel implementations based on openMP (§6.3) and Pthreads
(§6.4), respectively.

• Chapter 7 describes the interfaces to the linear solver modules, so that a user can provide his/her
own such module.

• Chapter 8 describes in detail the generic linear solvers shared by all sundials solvers.

• Finally, in the appendices, we provide detailed instructions for the installation of kinsol, within
the structure of sundials (Appendix A), as well as a list of all the constants used for input to
and output from kinsol functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as KINInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules are
written in all capitals. Usage and installation instructions that constitute important warnings are
marked with a triangular symbol in the margin. !

Acknowledgments. We wish to acknowledge the contributions to previous versions of the kinsol

code and user guide by Allan G. Taylor.

Chapter 2

Mathematical Considerations

kinsol solves nonlinear algebraic systems in real N -space.
Using Newton’s method, or the Picard iteration, one can solve

F (u) = 0 , F : RN → RN , (2.1)

given an initial guess u0. Using a fixed-point iteration, the convergence of which can be improved
with Anderson acceleration, one can solve

G(u) = u , G : RN → RN , (2.2)

given an initial guess u0.

Basic Newton iteration

Depending on the linear solver used, kinsol can employ either an Inexact Newton method [4, 5, 8, 10,
15], or a Modified Newton method. At the highest level, kinsol implements the following iteration
scheme:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

(a) Solve J(un)δn = −F (un)

(b) Set un+1 = un + λδn, 0 < λ ≤ 1

(c) Test for convergence

Here, un is the nth iterate to u, and J(u) = F ′(u) is the system Jacobian. At each stage in the
iteration process, a scalar multiple of the step δn, is added to un to produce a new iterate, un+1. A
test for convergence is made before the iteration continues.

Newton method variants

For solving the linear system given in step 2(a), kinsol provides several choices, including the option
of a user-supplied linear solver module. The linear solver modules distributed with sundials are orga-
nized in three families, a direct family comprising direct linear solvers for dense or banded matrices, a
sparse family comprising direct linear solvers for matrices stored in compressed-sparse-column format,
and a spils family comprising scaled preconditioned iterative (Krylov) linear solvers. The methods
offered through these modules are as follows:

• dense direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial or threaded vector modules only),

8 Mathematical Considerations

• band direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial or threaded vector modules only),

• sparse direct solver interfaces, using either the KLU sparse solver library [7, 1], or the thread-
enabled SuperLU MT sparse solver library [16, 9, 2] (serial or threaded vector modules only)
[Note that users will need to download and install the KLU or SuperLU MT packages indepen-
dent of kinsol],

• spgmr, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver without
restarts,

• spfgmr, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver without restarts,

• spbcg, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver, or

• sptfqmr, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver.

When using one of the direct linear solvers, the linear system in 2(a) is solved exactly, thus resulting
in a Modified Newton method (the Jacobian matrix is normally out of date; see below1). Note that
the direct linear solvers (dense, band, and sparse) can only be used with the serial and threaded vector
representations.

On the other hand, when using any of the iterative linear solvers (GMRES, FGMRES, Bi-CGStab,
or TFQMR), the linear system in 2(a) is solved only approximately, thus resulting in an Inexact
Newton method. Here right preconditioning is available by way of the preconditioning setup and
solve routines supplied by the user, in which case the iterative method is applied to the linear systems
(JP−1)(Pδ) = −F , where P denotes the right preconditioning matrix.

Jacobian information update strategy

In general, unless specified otherwise by the user, kinsol strives to update Jacobian information (the
actual system Jacobian J in the case of direct linear solvers, or the preconditioner matrix P in the case
of iterative linear solvers) as infrequently as possible to balance the high costs of matrix operations
against other costs. Specifically, these updates occur when:

• the problem is initialized,

• ‖λδn−1‖Du,∞ > 1.5 (Inexact Newton only),

• mbset= 10 nonlinear iterations have passed since the last update,

• the linear solver failed recoverably with outdated Jacobian information,

• the global strategy failed with outdated Jacobian information, or

• ‖λδn‖Du,∞ < steptol with outdated Jacobian information.

kinsol allows, through optional solver inputs, changes to the above strategy. Indeed, the user can
disable the initial Jacobian information evaluation or change the default value of mbset, the number
of nonlinear iterations after which a Jacobian information update is enforced.

1kinsol allows the user to enforce a Jacobian evaluation at each iteration thus allowing for an Exact Newton iteration.

9

Scaling

To address the case of ill-conditioned nonlinear systems, kinsol allows prescribing scaling factors both
for the solution vector and for the residual vector. For scaling to be used, the user should supply values
Du, which are diagonal elements of the scaling matrix such that Duun has all components roughly the
same magnitude when un is close to a solution, and DF , which are diagonal scaling matrix elements
such that DF F has all components roughly the same magnitude when un is not too close to a solution.
In the text below, we use the following scaled norms:

‖z‖Du
= ‖Duz‖2, ‖z‖DF

= ‖DF z‖2, ‖z‖Du,∞ = ‖Duz‖∞, and ‖z‖DF ,∞ = ‖DF z‖∞ (2.3)

where ‖ · ‖∞ is the max norm. When scaling values are provided for the solution vector, these values
are automatically incorporated into the calculation of the perturbations used for the default difference
quotient approximations for Jacobian information; see (2.7) and (2.9) below.

Globalization strategy

Two methods of applying a computed step δn to the previously computed solution vector are imple-
mented. The first and simplest is the standard Newton strategy which applies step 2(b) as above
with λ always set to 1. The other method is a global strategy, which attempts to use the direction
implied by δn in the most efficient way for furthering convergence of the nonlinear problem. This
technique is implemented in the second strategy, called Linesearch. This option employs both the
α and β conditions of the Goldstein-Armijo linesearch given in [10] for step 2(b), where λ is chosen
to guarantee a sufficient decrease in F relative to the step length as well as a minimum step length
relative to the initial rate of decrease of F . One property of the algorithm is that the full Newton
step tends to be taken close to the solution.

kinsol implements a backtracking algorithm to first find the value λ such that un + λδn satisfies
the sufficient decrease condition (or α-condition)

F (un + λδn) ≤ F (un) + α∇F (un)λδn ,

where α = 10−4. Although backtracking in itself guarantees that the step is not too small, kinsol

secondly relaxes λ to satisfy the so-called β-condition (equivalent to Wolfe’s curvature condition):

F (un + λδn) ≥ F (un) + β∇F (un)λδn ,

where β = 0.9. During this second phase, λ is allowed to vary in the interval [λmin, λmax] where

λmin =
steptol

‖δ̄n‖∞
, δ̄j

n =
δj
n

1/Dj
u + |uj |

,

and λmax corresponds to the maximum feasible step size at the current iteration (typically λmax =
stepmax/‖δn‖Du

). In the above expressions, vj denotes the jth component of a vector v.
For more details, the reader is referred to [10].

Nonlinear iteration stopping criteria

Stopping criteria for the Newton method are applied to both of the nonlinear residual and the step
length. For the former, the Newton iteration must pass a stopping test

‖F (un)‖DF ,∞ < ftol ,

where ftol is an input scalar tolerance with a default value of U1/3. Here U is the machine unit
roundoff. For the latter, the Newton method will terminate when the maximum scaled step is below
a given tolerance

‖λδn‖Du,∞ < steptol ,

where steptol is an input scalar tolerance with a default value of U2/3. Only the first condition
(small residual) is considered a successful completion of kinsol. The second condition (small step)
may indicate that the iteration is stalled near a point for which the residual is still unacceptable.

10 Mathematical Considerations

Additional constraints

As a user option, kinsol permits the application of inequality constraints, ui > 0 and ui < 0, as well
as ui ≥ 0 and ui ≤ 0, where ui is the ith component of u. Any such constraint, or no constraint, may
be imposed on each component. kinsol will reduce step lengths in order to ensure that no constraint
is violated. Specifically, if a new Newton iterate will violate a constraint, the maximum step length
along the Newton direction that will satisfy all constraints is found, and δn in Step 2(b) is scaled to
take a step of that length.

Residual monitoring for Modified Newton method

When using a Modified Newton method (i.e. when a direct linear solver is used), in addition to the
strategy described above for the update of the Jacobian matrix, kinsol also provides an optional
nonlinear residual monitoring scheme to control when the system Jacobian is updated. Specifically,
a Jacobian update will also occur when mbsetsub= 5 nonlinear iterations have passed since the last
update and

‖F (un)‖DF
> ω‖F (um)‖DF

,

where un is the current iterate and um is the iterate at the last Jacobian update. The scalar ω is
given by

ω = min
(

ωmin emax(0,ρ−1), ωmax

)

, (2.4)

with ρ defined as

ρ =
‖F (un)‖DF

ftol
, (2.5)

where ftol is the input scalar tolerance discussed before. Optionally, a constant value ωconst can be
used for the parameter ω.

The constants controlling the nonlinear residual monitoring algorithm can be changed from their
default values through optional inputs to kinsol. These include the parameters ωmin and ωmax, the
constant value ωconst, and the threshold mbsetsub.

Stopping criteria for iterative linear solvers

When using an Inexact Newton method (i.e. when an iterative linear solver is used), the convergence
of the overall nonlinear solver is intimately coupled with the accuracy with which the linear solver in
2(a) above is solved. kinsol provides three options for stopping criteria for the linear system solver,
including the two algorithms of Eisenstat and Walker [11]. More precisely, the Krylov iteration must
pass a stopping test

‖Jδn + F‖DF
< (ηn + U)‖F‖DF

,

where ηn is one of:

Eisenstat and Walker Choice 1

ηn =
| ‖F (un)‖DF

− ‖F (un−1) + J(un−1)δn‖DF
|

‖F (un−1)‖DF

,

Eisenstat and Walker Choice 2

ηn = γ

(‖F (un)‖DF

‖F (un−1)‖DF

)α

,

where default values of γ and α are 0.9 and 2, respectively.

Constant η
ηn = constant,

with 0.1 as the default.

The default strategy is ”Eisenstat and Walker Choice 1”. For both options 1 and 2, appropriate
safeguards are incorporated to ensure that η does not decrease too quickly [11].

11

Difference quotient Jacobian approximations

With the direct dense and band methods, the Jacobian may be supplied by a user routine, or approxi-
mated by difference quotients, at the user’s option. In the latter case, we use the usual approximation

J ij = [F i(u + σje
j) − F i(u)]/σj . (2.6)

The increments σj are given by

σj =
√

U max
{

|uj |, 1/Dj
u

}

. (2.7)

In the dense case, this scheme requires N evaluations of F , one for each column of J . In the band
case, the columns of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the number
of F evaluations equal to the bandwidth.

We note that with the sparse direct solvers, the Jacobian must be supplied by a user routine in
compressed-sparse-column format, i.e. it is not approximated internally within kinsol.

In the case of a Krylov method, Jacobian information is needed only as matrix-vector products
Jv. If a routine for Jv is not supplied, these products are approximated by directional difference
quotients as

J(u)v ≈ [F (u + σv) − F (u)]/σ , (2.8)

where u is the current approximation to a root of (2.1), and σ is a scalar. The choice of σ is taken
from [5] and is given by

σ =
max{|uT v|, uT

typ|v|}
‖v‖2

sign(uT v)
√

U , (2.9)

where utyp is a vector of typical values for the absolute values of the solution (and can be taken to be
inverses of the scale factors given for u as described below). Convergence of the Newton method is
maintained as long as the value of σ remains appropriately small, as shown in [4].

Basic Fixed Point iteration

The basic fixed-point iteration scheme implemented in kinsol is given by:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

(a) Set un+1 = G(un).

(b) Test for convergence.

Here, un is the nth iterate to u. At each stage in the iteration process, function G is applied to the
current iterate to produce a new iterate, un+1. A test for convergence is made before the iteration
continues.

For Picard iteration, as implemented in kinsol, we consider a special form of the nonlinear function
F , such that F (u) = Lu − N(u), where L is a constant nonsingular matrix and N is (in general)
nonlinear. Then the fixed-point function G is defined as G(u) = u − L−1F (u). The Picard iteration
is given by:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

(a) Set un+1 = G(un) = un − L−1F (un).

(b) Test F (un+1) for convergence.

Here, un is the nth iterate to u. Within each iteration, the Picard step is computed then added to
un to produce the new iterate. Next, the nonlinear residual function is evaluated at the new iterate,
and convergence is checked. Noting that L−1N(u) = u−L−1F (u), the above iteration can be written
in the same form as a Newton iteration except that here, L is in the role of the Jacobian. Within
kinsol, however, we leave this in a fixed-point form as above. For more information, see p. 182 of
[18].

12 Mathematical Considerations

Anderson Acceleration

The Picard and fixed point methods can be significantly accelerated using Anderson’s method [3, 22,
12, 17]. Anderson acceleration can be formulated as follows:

1. Set u0 = an initial guess and m ≥ 1

2. Set u1 = G(u0)

3. For n = 0, 1, 2, ... until convergence do:

(a) Set mn = min{m,n}
(b) Set Fn = (fn−mn

, . . . , fn), where fi = G(ui) − ui

(c) Determine α(n) = (α
(n)
0 , . . . , α

(n)
mn

) that solves minα ‖FnαT ‖2 such that
∑mn

i=0 αi = 1

(d) Set un+1 =
∑mn

i=0 α
(n)
i G(un−mn+i)

(e) Test for convergence

It has been implemented in kinsol by turning the constrained linear least-squares problem in Step
(c) into an unconstrained one leading to the algorithm given below:

1. Set u0 = an initial guess and m ≥ 1

2. Set u1 = G(u0)

3. For n = 0, 1, 2, ... until convergence do:

(a) Set mn = min{m,n}
(b) Set ∆Fn = (∆fn−mn

, . . . ,∆fn−1), where ∆fi = fi+1 − fi and fi = G(ui) − ui

(c) Determine γ(n) = (γ
(n)
0 , . . . , γ

(n)
mn−1) that solves minγ ‖fn − ∆FnγT ‖2

(d) Set un+1 = G(un) − ∑mn−1
i=0 γ

(n)
i ∆gn−mn+i with ∆gi = G(ui+1) − G(ui)

(e) Test for convergence

The least-squares problem in (c) is solved by applying a QR factorization to ∆Fn = QnRn and
solving Rnγ = QT

nfn.

Fixed-point - Anderson Acceleration Stopping Criterion

The default stopping criterion is

‖G(un+1) − un+1‖DF ,∞ < gtol ,

where DF is a user-defined diagonal matrix that can be the identity or a scaling matrix chosen so
that the components of DF (G(u) − u) have roughly the same order of magnitude. Note that when
using Anderson acceleration, convergence is checked after the acceleration is applied.

Picard - Anderson Acceleration Stopping Criterion

The default stopping criterion is
‖F (un+1)‖DF ,∞ < ftol ,

where DF is a user-defined diagonal matrix that can be the identity or a scaling matrix chosen so
that the components of DF F (u) have roughly the same order of magnitude. Note that when using
Anderson acceleration, convergence is checked after the acceleration is applied.

Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode and arkode (for ODE
systems), kinsol (for nonlinear algebraic systems), and ida (for differential-algebraic systems). In
addition, sundials also includes variants of cvode and ida with sensitivity analysis capabilities
(using either forward or adjoint methods), called cvodes and idas, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Fig. 3.1). The following is a list
of the solver packages presently available, and the basic functionality of each:

• cvode, a solver for stiff and nonstiff ODE systems dy/dt = f(t, y) based on Adams and BDF
methods;

• cvodes, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

• arkode, a solver for ODE systems Mdy/dt = f(t, y) based on additive Runge-Kutta methods;

• ida, a solver for differential-algebraic systems F (t, y, ẏ) = 0 based on BDF methods;

• idas, a solver for differential-algebraic systems with sensitivity analysis capabilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0.

3.2 KINSOL organization

The kinsol package is written in the ANSI C language. This section summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the kinsol package is shown in Figure 3.2. The central solver mod-
ule, implemented in the files kinsol.h, kinsol impl.h and kinsol.c, deals with the solution of a
nonlinear algebraic system using either an Inexact Newton method or a line search method for the
global strategy. Although this module contains logic for the Newton iteration, it has no knowledge of
the method used to solve the linear systems that arise. For any given user problem, one of the linear
system modules is specified, and is then invoked as needed.

At present, the package includes the following seven kinsol linear algebra modules, organized
into two families. The direct family of linear solvers provides solvers for the direct solution of linear
systems with dense, banded, or sparse matrices and includes:

• kindense: LU factorization and backsolving with dense matrices (using either an internal im-
plementation or Blas/Lapack);

• kinband: LU factorization and backsolving with banded matrices (using either an internal
implementation or Blas/Lapack);

14 Code Organization

(a) High-level diagram (note that none of the Lapack-based linear solver modules are represented.)
* only applies to arkode

** only applies to arkode and kinsol

(b) Directory structure of the source tree

Figure 3.1: Organization of the SUNDIALS suite

3.2 KINSOL organization 15

Figure 3.2: Overall structure diagram of the kinsol package. Modules specific to kinsol are dis-
tinguished by rounded boxes, while generic solver and auxiliary modules are in rectangular boxes.
Grayed boxes refer to the encompassing sundials structure. Note that the direct linear solvers using
Lapack implementations are not explicitly represented. Note also that the KLU and SuperLU MT
support is through interfaces to packages. Users will need to download and compile those packages
independently.

• kinklu: LU factorization and backsolving with compressed-sparse-column (CSC) matrices using
the KLU linear solver library [7, 1] (KLU to be downloaded and compiled by user independent
of kinsol);

• kinsuperlumt: LU factorization and backsolving with compressed-sparse-column (CSC) ma-
trices using the threaded SuperLU MT linear solver library [16, 9, 2] (SuperLU MT to be down-
loaded and compiled by user independent of kinsol).

The spils family of linear solvers providess scaled preconditioned iterative linear solvers and includes:

• kinspgmr: scaled preconditioned GMRES method;

• kinspbcg: scaled preconditioned Bi-CGStab method;

• kinsptfqmr: scaled preconditioned TFQMR method.

The set of linear solver modules distributed with kinsol is intended to be expanded in the future as
new algorithms are developed. Note that users wishing to employ KLU or SuperLU MT will need to
download and install these libraries independent of sundials. sundials provides only the interfaces
between itself and these libraries.

In the case of the direct methods kindense and kinband the package includes an algorithm for the
approximation of the Jacobian by difference quotients, but the user also has the option of supplying
the Jacobian (or an approximation to it) directly. When using the sparse direct linear solvers kinklu

and kinsuperlumt, the user must supply a routine for the Jacobian (or an approximation to it) in

16 Code Organization

CSC format, since standard difference quotient approximations do not leverage the inherent sparsity
of the problem. In the case of the Krylov methods kinspgmr, kinspbcg and kinsptfqmr, the
package includes an algorithm for the approximation by difference quotients of the product between
the Jacobian matrix and a vector of appropriate length. Again, the user has the option of providing
a routine for this operation. For the Krylov methods, the preconditioning must be supplied by the
user, in two phases: setup (preprocessing of Jacobian data) and solve.

Each kinsol linear solver module consists of four routines, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the solution, as required to achieve convergence. The
call list within the central kinsol module to each of the associated functions is fixed, thus allowing
the central module to be completely independent of the linear system method.

These modules are also decomposed in another way. Each of the linear solver modules (kindense,
etc.) consists of an interface built on top of a generic linear system solver (dense etc.). The interface
deals with the use of the particular method in the kinsol context, whereas the generic solver is
independent of the context. While some of the generic linear system solvers (dense, band, spgmr,
spfgmr, spbcg, and sptfqmr) were written with sundials in mind, they are intended to be usable
anywhere as general-purpose solvers. This separation also allows for any generic solver to be replaced
by an improved version, with no necessity to revise the kinsol package elsewhere.

kinsol also provides a preconditioner module called kinbbdpre for use with any of the Krylov
iterative liear solvers. It works in conjunction with nvector parallel and generates a precondi-
tioner that is a block-diagonal matrix with each block being a band matrix, as further described in
§4.7.

All state information used by kinsol to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the kinsol package, and so, in this
respect, it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the kinsol memory structure. The reentrancy of kinsol was motivated
by the anticipated multi-computer extension.

Chapter 4

Using KINSOL for C Applications

This chapter is concerned with the use of kinsol for the solution of nonlinear systems. The following
subsections treat the header files, the layout of the user’s main program, description of the kinsol

user-callable routines, and user-supplied functions. The sample programs described in the companion
document [6] may also be helpful. Those codes may be used as templates (with the removal of some
lines involved in testing), and are included in the kinsol package.

Users with applications written in Fortran77 should see Chapter 5, which describes the For-

tran/C interface module.
The user should be aware that not all linear solver modules are compatible with all nvector

implementations. For example, nvector parallel is not compatible with the direct dense, direct
band or direct sparse linear solvers since these linear solver modules need to form the complete system
Jacobian. The following kinsol modules can only be used with nvector serial, nvector openmp

or nvector pthreads: kindense, kinband, kinklu and kinsuperlumt. It is not recommended
to use a threaded vector module with SuperLU MT unless it is the nvector openmp module and
SuperLU MT is also compiled with openMP. The preconditioner module kinbbdpre can only be used
with nvector parallel.

kinsol uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of kinsol, following the procedure described in
Appendix A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by kinsol. The relevant library files are

• libdir/libsundials kinsol.lib,

• libdir/libsundials nvec*.lib (one to four files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include

• incdir/include/kinsol

• incdir/include/sundials

The directories libdir and incdir are the install library and include directories, respectively. For a
default installation, these are builddir/lib and builddir/include, respectively, where builddir was
defined in Appendix A.

18 Using KINSOL for C Applications

4.2 Data types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials

solvers for all floating-point data. The type realtype can be float, double, or long double, with
the default being double. The user can change the precision of the sundials solvers arithmetic at
the configuration stage (see §A.1.2 or §??).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials

uses the RCONST macro internally to declare all of its floating-point constants.
A user program which uses the type realtype and the RCONST macro to handle floating-point

constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype). Thus, a previously existing piece of ANSI C code can use sundials without modifying
the code to use realtype, so long as the sundials libraries use the correct precision (for details see
§??).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• kinsol.h, the header file for kinsol, which defines several types and various constants, and
includes function prototypes.

kinsol.h also includes sundials types.h, which defines the types realtype and booleantype and
constants FALSE and TRUE.

The calling program must also include an nvector implementation header file (see Chapter 6
for details). For the two nvector implementations that are included in the kinsol package, the
corresponding header files are:

• nvector serial.h, which defines the serial implementation, nvector serial;

• nvector parallel.h, which defines the parallel MPI implementation, nvector parallel,

• nvector openmp.h, which defines the shared memory parallel openMP implementation,

• nvector pthreads.h, which defines the shared memory parallel Pthreads implementation.

Note that these files include in turn the header file sundials nvector.h, which defines the abstract
N Vector type.

Finally, a linear solver module header file is required. The header files corresponding to the various
linear solver options in kinsol are:

• kinsol dense.h, which is used with the dense direct linear solver;

4.4 A skeleton of the user’s main program 19

• kinsol band.h, which is used with the band direct linear solver;

• kinsol lapack.h, which is used with Lapack implementations of dense or band direct linear
solvers;

• kinsol klu.h, which is used with the KLU sparse direct linear solver;

• kinsol superlumt.h, which is used with the SuperLU MT threaded sparse direct linear solver;

• kinsol spgmr.h, which is used with the Krylov solver spgmr;

• kinsol spfgmr.h, which is used with the Krylov solver spfgmr;

• kinsol spbcgs.h, which is used with the Krylov solver spbcg;

• kinsol sptfqmr.h, which is used with the Krylov solver sptfqmr;

The header files for the dense and banded linear solvers (both internal and Lapack) include the file
kinsol direct.h which defines common functions. This in turn includes a file (sundials direct.h)
which defines the matrix type for these direct linear solvers (DlsMat), as well as various functions and
macros acting on such matrices.

The header files for the KLU and SuperLU MT sparse linear solvers include the file kinsol sparse.h,
which defines common functions. This in turn includes a file (sundials sparse.h) which defines the
matrix type for these sparse direct linear solvers (SlsMat), as well as various functions and macros
acting on such matrices.

The header files for the Krylov iterative solvers include kinsol spils.h which defined common
functions and which in turn includes a header file (sundials iterative.h) which enumerates the
kind of preconditioning and for the choices for the Gram-Schmidt process for spgmr.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
kinFoodWeb kry p example (see [6]), preconditioning is done with a block-diagonal matrix. For this,
even though the kinspgmr linear solver is used, the header sundials dense.h is included for access
to the underlying generic dense linear solver.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the solution of a nonlin-
ear problem. Some steps are independent of the nvector implementation used; where this is not the
case, usage specifications are given for the implementations provided with kinsol: Steps marked [P]
correspond to nvector parallel, steps marked [O] correspond to nvector openmp, steps marked
[T] correspond to nvector pthreads, while steps marked [S] correspond to nvector serial.

1. [P] Initialize MPI

Call MPI Init(&argc, &argv) to initialize MPI if used by the user’s program, aside from the
internal use in nvector parallel. Here argc and argv are the command line argument counter
and array received by main.

2. Set problem dimensions

[S], [O], [T] Set N, the problem size N .

[O], [T] Set num threads, the number of threads to use within the threaded vector functions.

[P] Set Nlocal, the local vector length (the sub-vector length for this process). Set N, the global
vector length (the problem size N , and the sum of all the values of Nlocal). Set the active set of
processes.

Note: The variables N and Nlocal should be of type long int. The variable num threads should
be of type int.

20 Using KINSOL for C Applications

3. Set vector with initial guess

To set the vector u of initial values, use functions defined by a particular nvector implementation.
If a realtype array udata already exists, containing the initial guess of u0, make the call:

[S] u = N VMake Serial(N, udata);

[O] y0 = N VMake OpenMP(N, num threads, ydata);

[T] y0 = N VMake Pthreads(N, num threads, ydata);

[P] u = N VMake Parallel(comm, Nlocal, N, udata);

Otherwise, make the call:

[S] u = N VNew Serial(N);

[O] y0 = N VNew OpenMP(N, num threads);

[T] y0 = N VNew Pthreads(N, num threads);

[P] u = N VNew Parallel(comm, Nlocal, N);

and load initial values into the structure defined by:

[S] NV DATA S(u)

[O] NV DATA OMP(y0)

[T] NV DATA PT(y0)

[P] NV DATA P(u)

Here comm is the MPI communicator, set in one of two ways: If a proper subset of active processes
is to be used, comm must be set by suitable MPI calls. Otherwise, to specify that all processes are
to be used, comm must be MPI COMM WORLD.

4. Create kinsol object

Call kin mem = KINCreate() to create the kinsol memory block. KINCreate returns a pointer
to the kinsol memory structure. See §4.5.1 for details.

5. Set optional inputs

Call KINSet* routines to change from their default values any optional inputs that control the
behavior of kinsol. See §4.5.4 for details.

6. Allocate internal memory

Call KINInit(...) to specify the problem defining function F , allocate internal memory for
kinsol, and initialize kinsol. KINInit returns a flag to indicate success or an illegal argument
value. See §4.5.1 for details.

7. Attach linear solver module

Initialize the linear solver module with one of the following calls (for details see §4.5.2).

[S], [O], [T] ier = KINDense(...);

[S], [O], [T] ier = KINBand(...);

[S], [O], [T] ier = KINLapackDense(...);

[S], [O], [T] ier = KINLapackBand(...);

[S], [O], [T] ier = KINKLU(...);

[S], [O], [T] ier = KINSuperLUMT(...);

ier = KINSpgmr(...);

ier = KINSpfgmr(...);

4.5 User-callable functions 21

ier = KINSpbcg(...);

ier = KINSptfqmr(...);

8. Set linear solver optional inputs

Call KIN*Set* functions from the selected linear solver module to change optional inputs specific
to that linear solver. See §4.5.4 for details.

9. Solve problem

Call ier = KINSol(...) to solve the nonlinear problem for a given initial guess. See §4.5.3 for
details.

10. Get optional outputs

Call KINGet* and KIN*Get* functions to obtain optional output. See §4.5.5 for details.

11. Deallocate memory for solution vector

Upon completion of the solution, deallocate memory for the vector u by calling the destructor
function defined by the nvector implementation:

[S] N VDestroy Serial(u);

[O] N VDestroy OpenMP(y);

[T] N VDestroy Pthreads(y);

[P] N VDestroy Parallel(u);

12. Free solver memory

Call KINFree(&kin mem) to free the memory allocated for kinsol.

13. [P] Finalize MPI

Call MPI Finalize() to terminate MPI.

4.5 User-callable functions

This section describes the kinsol functions that are called by the user to set up and solve a nonlinear
problem. Some of these are required. However, starting with §4.5.4, the functions listed involve
optional inputs/outputs or restarting, and those paragraphs can be skipped for a casual use of kinsol.
In any case, refer to §4.4 for the correct order of these calls.

The return flag (when present) for each of these routines is a negative integer if an error occurred,
and non-negative otherwise.

4.5.1 KINSOL initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the problem solution is complete, as it frees the kinsol memory block created and allocated by the
first two calls.

KINCreate

Call kin mem = KINCreate();

Description The function KINCreate instantiates a kinsol solver object.

Arguments This function has no arguments.

Return value If successful, KINCreate returns a pointer to the newly created kinsol memory block
(of type void *). If an error occurred, KINCreate prints an error message to stderr

and returns NULL.

22 Using KINSOL for C Applications

KINInit

Call flag = KINInit(kin mem, func, tmpl);

Description The function KINInit specifies the problem-defining function, allocates internal mem-
ory, and initializes kinsol.

Arguments kin mem (void *) pointer to the kinsol memory block returned by KINCreate.

func (KINSysFn) is the C function which computes the system function F (or G(u)
for fixed-point iteration) in the nonlinear problem. This function has the form
func(u, fval, user data). (For full details see §4.6.1.)

tmpl (N Vector) is any N Vector (e.g. the initial guess vector u) which is used as a
template to create (by cloning) necessary vectors in kin mem.

Return value The return value flag (of type int) will be one of the following:

KIN SUCCESS The call to KINInit was successful.

KIN MEM NULL The kinsol memory block was not initialized through a previous call
to KINCreate.

KIN MEM FAIL A memory allocation request has failed.

KIN ILL INPUT An input argument to KINInit has an illegal value.

Notes If an error occurred, KINInit sends an error message to the error handler function.

KINFree

Call KINFree(&kin mem);

Description The function KINFree frees the memory allocated by a previous call to KINCreate.

Arguments The argument is the address of the pointer to the kinsol memory block returned by
KINCreate (of type void *).

Return value The function KINFree has no return value.

4.5.2 Linear solver specification functions

As previously explained, Newton and Picard iterations require the solution of linear systems of the
form Jδ = −F . There are several kinsol linear solvers currently available for this task: kindense,
kinband, kinklu, kinsuperlumt, kinspgmr, kinspfgmr, kinspbcg, and kinsptfqmr.

The first two linear solvers are direct and derive their names from the type of approximation used
for the Jacobian J = ∂F/∂u; kindense and kinband work with dense and banded approximations to
J , respectively. The sundials suite includes both internal implementations of these two linear solvers
and interfaces to Lapack implementations. Together, these linear solvers are referred to as kindls

(from Direct Linear Solvers).
The second two linear solvers are sparse direct solvers based on Gaussian elimination, and require

user-supplied routines to construct the linear system matrix (in the case of Newton’s method, this
is the Jacobian J = ∂F/∂u) in compressed-sparse-column format. The sundials suite does not
include internal implementations of these solver libraries, instead requiring compilation of sundials

to link with existing installations of these libraries (if either is missing, sundials will install without
the corresponding interface routines). Together, these linear solvers are referred to as kinsls (from
Sparse Linear Solvers).

The remaining kinsol linear solvers — kinspgmr, kinspfgmr, kinspbcg, and kinsptfqmr —
are Krylov iterative solvers, which use scaled preconditioned GMRES, scaled preconditioned Flex-
ible GMRES, scaled preconditioned Bi-CGStab, and scaled preconditioned TFQMR, respectively.
Together, they are referred to as kinspils (from Scaled Preconditioned Iterative Linear Solvers).

With any of the Krylov solvers, only right preconditioning is available. For specification of the
preconditioner, see the Krylov solver sections within §4.5.4 and §4.6. If preconditioning is done, user-
supplied functions define the right preconditioner matrix P , which should approximate the system
Jacobian matrix J .

4.5 User-callable functions 23

To specify a kinsol linear solver, after the call to KINCreate but before any calls to KINSol, the
user’s program must call one of the functions KINDense/KINLapackDense, KINBand/KINLapackBand,
KINKLU, KINSuperLUMT, KINSpgmr, KINSpfgmr, KINSpbcg, or KINSptfqmr, as documented below. The
first argument passed to these functions is the kinsol memory pointer returned by KINCreate. A
call to one of these functions links the main kinsol nonlinear solver to a linear solver and allows the
user to specify parameters which are specific to a particular solver, such as the half-bandwidths in
the kinband case. The use of each of the linear solvers involves certain constants and possibly some
macros, that are likely to be needed in the user code. These are available in the corresponding header
file associated with the linear solver, as specified below.

In each case, the linear solver module used by kinsol is actually built on top of a generic linear
system solver, which may be of interest in itself. These generic solvers, denoted dense, band, klu,
superlumt, spgmr, spfgmr, spbcg, and sptfqmr, are described separately in Chapter 8.

KINDense

Call flag = KINDense(kin mem, N);

Description The function KINDense selects the kindense linear solver and indicates the use of the
internal direct dense linear algebra functions.

The user’s main program must include the kinsol dense.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

N (long int) problem dimension.

Return value The return value flag (of type int) is one of

KINDLS SUCCESS The kindense initialization was successful.

KINDLS MEM NULL The kin mem pointer is NULL.

KINDLS ILL INPUT The kindense solver is not compatible with the current nvector

module.

KINDLS MEM FAIL A memory allocation request failed.

Notes The kindense linear solver is not compatible with all implementations of the nvector

module. Of the nvector modules provided with sundials, only nvector serial,
nvector openmp and nvector pthreads are compatible, while nvector parallel

is not.

KINLapackDense

Call flag = KINLapackDense(kin mem, N);

Description The function KINLapackDense selects the kindense linear solver and indicates the use
of Lapack functions.

The user’s main program must include the kinsol lapack.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

N (int) problem dimension.

Return value The values of the returned flag (of type int) are identical to those of KINDense.

Notes Note that N is restricted to be of type int here, because of the corresponding type
restriction in the Lapack solvers.

KINBand

Call flag = KINBand(kin mem, N, mupper, mlower);

Description The function KINBand selects the kinband linear solver and indicates the use of the
internal direct band linear algebra functions.

The user’s main program must include the kinsol band.h header file.

24 Using KINSOL for C Applications

Arguments kin mem (void *) pointer to the kinsol memory block.

N (long int) problem dimension.

mupper (long int) upper half-bandwidth of the problem Jacobian (or of the approx-
imation of it).

mlower (long int) lower half-bandwidth of the problem Jacobian (or of the approxi-
mation of it).

Return value The return value flag (of type int) is one of

KINDLS SUCCESS The kinband initialization was successful.

KINDLS MEM NULL The kin mem pointer is NULL.

KINDLS ILL INPUT The kinband solver is not compatible with the current nvector

module, or one of the Jacobian half-bandwidths is outside its valid
range (0 . . . N−1).

KINDLS MEM FAIL A memory allocation request failed.

Notes The kinband linear solver is not compatible with all implementations of the nvector

module. Of the nvector modules provided with sundials, only nvector serial,
nvector openmp and nvector pthreads are compatible, while nvector parallel

is not. The half-bandwidths are to be set so that the nonzero locations (i, j) in the
banded (approximate) Jacobian satisfy −mlower ≤ j − i ≤ mupper.

KINLapackBand

Call flag = KINLapackBand(kin mem, N, mupper, mlower);

Description The function KINLapackBand selects the kinband linear solver and indicates the use of
Lapack functions.

The user’s main program must include the kinsol lapack.h header file.

Arguments The input arguments are identical to those of KINBand, except that N, mupper, and
mlower are of type int here.

Return value The values of the returned flag (of type int) are identical to those of KINBand.

Notes Note that N, mupper, and mlower are restricted to be of type int here, because of the
corresponding type restriction in the Lapack solvers.

KINKLU

Call flag = KINKLU(kin mem, N, NNZ);

Description The function KINKLU selects the kinklu linear solver and indicates the use of sparse-
direct linear algebra functions.

The user’s main program must include the kinsol klu.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

N (int) problem dimension.

NNZ (int) problem dimension.

Return value The return value flag (of type int) is one of

KINSLS SUCCESS The kinklu initialization was successful.

KINSLS MEM NULL The kin mem pointer is NULL.

KINSLS ILL INPUT The kinklu solver is not compatible with the current nvector

module.

KINSLS MEM FAIL A memory allocation request failed.

KINSLS PACKAGE FAIL A call to the KLU library returned a failure flag.

4.5 User-callable functions 25

Notes The kinklu linear solver is not compatible with all implementations of the nvector

module. Of the nvector modules provided with sundials, only nvector serial,
nvector openmp and nvector pthreads are compatible, while nvector parallel

is not.

KINSuperLUMT

Call flag = KINSuperLUMT(kin mem, num threads, N, NNZ);

Description The function KINSuperLUMT selects the kinsuperlumt linear solver and indicates the
use of sparse-direct linear algebra functions.

The user’s main program must include the kinsol superlumt.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

num threads (int) the number of threads to use when factoring the linear systems.
Note that SuperLU MT is thread-parallel only in the factorization routine.

N (int) problem dimension.

NNZ (int) maximum number of nonzero entries in the system Jacobian.

Return value The return value flag (of type int) is one of

KINSLS SUCCESS The kinsuperlumt initialization was successful.

KINSLS MEM NULL The kin mem pointer is NULL.

KINSLS ILL INPUT The kinsuperlumt solver is not compatible with the current nvec-

tor module.

KINSLS MEM FAIL A memory allocation request failed.

KINSLS PACKAGE FAIL A call to the SuperLU MT library returned a failure flag.

Notes The kinsuperlumt linear solver is not compatible with all implementations of the
nvector module. Of the nvector modules provided with sundials, only nvec-

tor serial, nvector openmp and nvector pthreads are compatible, while nvec-

tor parallel is not.

Performance will significantly degrade if the user applies the SuperLU MT package !

compiled with PThreads while using the nvector openmp module. If a user wants to
use a threaded vector kernel with this thread-parallel solver, then SuperLU MT should
be compiled with openMP and the nvector openmp module should be used. Also,
note that the expected benefit of using the threaded vector kernel is minimal compared
to the potential benefit of the threaded solver, unless very long (greater than 100,000
entries) vectors are used.

KINSpgmr

Call flag = KINSpgmr(kin mem, maxl);

Description The function KINSpgmr selects the kinspgmr linear solver.

The user’s main program must include the kinsol spgmr.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value KINSPILS MAXL= 5.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The kinspgmr initialization was successful.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS ILL INPUT The nvector module used does not implement a required oper-
ation.

KINSPILS MEM FAIL A memory allocation request failed.

26 Using KINSOL for C Applications

KINSpfgmr

Call flag = KINSpfgmr(kin mem, maxl);

Description The function KINSpfgmr selects the kinspfgmr linear solver.

The user’s main program must include the kinsol spfgmr.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value KINSPILS MAXL= 5.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The kinspfgmr initialization was successful.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS ILL INPUT The nvector module used does not implement a required oper-
ation.

KINSPILS MEM FAIL A memory allocation request failed.

KINSpbcg

Call flag = KINSpbcg(kin mem, maxl);

Description The function KINSpbcg selects the kinspbcg linear solver.

The user’s main program must include the kinsol spbcgs.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value KINSPILS MAXL= 5.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The kinspbcg initialization was successful.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS ILL INPUT The nvector module used does not implement a required oper-
ation.

KINSPILS MEM FAIL A memory allocation request failed.

KINSptfqmr

Call flag = KINSptfqmr(kin mem, maxl);

Description The function KINSptfqmr selects the kinsptfqmr linear solver.

The user’s main program must include the kinsol sptfqmr.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value KINSPILS MAXL= 5.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The kinsptfqmr initialization was successful.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS ILL INPUT The nvector module used does not implement a required oper-
ation.

KINSPILS MEM FAIL A memory allocation request failed.

4.5.3 KINSOL solver function

This is the central step in the solution process, the call to solve the nonlinear algebraic system.

4.5 User-callable functions 27

KINSol

Call flag = KINSol(kin mem, u, strategy, u scale, f scale);

Description The function KINSol computes an approximate solution to the nonlinear system.

Arguments kin mem (void *) pointer to the kinsol memory block.

u (N Vector) vector set to initial guess by user before calling KINSol, but
which upon return contains an approximate solution of the nonlinear system
F (u) = 0.

strategy (int) strategy used to solve the nonlinear system. It must be of the follow-
ing:
KIN NONE basic Newton iteration
KIN LINESEARCH Newton with globalization
KIN FP fixed-point iteration with Anderson Acceleration
KIN PICARD Picard iteration with Anderson Acceleration

u scale (N Vector) vector containing diagonal elements of scaling matrix Du for vec-
tor u chosen so that the components of Du·u (as a matrix multiplication) all
have roughly the same magnitude when u is close to a root of F (u).

f scale (N Vector) vector containing diagonal elements of scaling matrix DF for F (u)
chosen so that the components of DF · F (u) (as a matrix multiplication) all
have roughly the same magnitude when u is not too near a root of F (u). In
the case of a fixed-point iteration, consider F (u) = G(u) − u.

Return value On return, KINSol returns the approximate solution in the vector u if successful. The
return value flag (of type int) will be one of the following:

KIN SUCCESS

KINSol succeeded; the scaled norm of F (u) is less than fnormtol.

KIN INITIAL GUESS OK

The guess u = u0 satisfied the system F (u) = 0 within the tolerances specified.

KIN STEP LT STPTOL

kinsol stopped based on scaled step length. This means that the current iterate may
be an approximate solution of the given nonlinear system, but it is also quite possible
that the algorithm is “stalled” (making insufficient progress) near an invalid solution,
or that the scalar scsteptol is too large (see KINSetScaledStepTol in §4.5.4 to
change scsteptol from its default value).

KIN MEM NULL

The kinsol memory block pointer was NULL.

KIN ILL INPUT

An input parameter was invalid.

KIN NO MALLOC

The kinsol memory was not allocated by a call to KINCreate.

KIN LINESEARCH NONCONV

The line search algorithm was unable to find an iterate sufficiently distinct from the
current iterate, or could not find an iterate satisfying the sufficient decrease condition.

Failure to satisfy the sufficient decrease condition could mean the current iterate
is “close” to an approximate solution of the given nonlinear system, the difference
approximation of the matrix-vector product J(u)v is inaccurate, or the real scalar
scsteptol is too large.

KIN MAXITER REACHED

The maximum number of nonlinear iterations has been reached.

28 Using KINSOL for C Applications

KIN MXNEWT 5X EXCEEDED

Five consecutive steps have been taken that satisfy the inequality ‖Dup‖L2 > 0.99
mxnewtstep, where p denotes the current step and mxnewtstep is a scalar upper
bound on the scaled step length. Such a failure may mean that ‖DF F (u)‖L2 asymp-
totes from above to a positive value, or the real scalar mxnewtstep is too small.

KIN LINESEARCH BCFAIL

The line search algorithm was unable to satisfy the “beta-condition” for MXNBCF +1
nonlinear iterations (not necessarily consecutive), which may indicate the algorithm
is making poor progress.

KIN LINSOLV NO RECOVERY

The user-supplied routine psolve encountered a recoverable error, but the precondi-
tioner is already current.

KIN LINIT FAIL

The linear solver initialization routine (linit) encountered an error.

KIN LSETUP FAIL

The user-supplied routine pset (used to set up the preconditioner data) encountered
an unrecoverable error.

KIN LSOLVE FAIL

Either the user-supplied routine psolve (used to to solve the preconditioned linear
system) encountered an unrecoverable error, or the linear solver routine (lsolve)
encountered an error condition.

KIN SYSFUNC FAIL

The system function failed in an unrecoverable manner.

KIN FIRST SYSFUNC ERR

The system function failed recoverably at the first call.

KIN REPTD SYSFUNC ERR

The system function had repeated recoverable errors. No recovery is possible.

Notes The components of vectors u scale and f scale should be strictly positive.

KIN SUCCESS = 0, KIN INITIAL GUESS OK = 1, and KIN STEP LT STPTOL = 2. All
remaining return values are negative and therefore a test flag < 0 will trap all KINSol
failures.

4.5.4 Optional input functions

There are numerous optional input parameters that control the behavior of the kinsol solver. kinsol

provides functions that can be used to change these from their default values. Table 4.1 lists all optional
input functions in kinsol which are then described in detail in the remainder of this section, beginning
with those for the main kinsol solver and continuing with those for the linear solver modules. For
the most casual use of kinsol, the reader can skip to §4.6.

We note that, on error return, all of these functions also send an error message to the error handler
function. We also note that all error return values are negative, so a test flag < 0 will catch any
error.

4.5.4.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if either of the functions KINSetErrFile
or KINSetErrHandlerFn is to be called, that call should be first, in order to take effect for any later
error message.

4.5 User-callable functions 29

Table 4.1: Optional inputs for kinsol, kindense, kinsparse, and kinspils

Optional input Function name Default
KINSOL main solver

Error handler function KINSetErrHandlerFn internal fn.
Pointer to an error file KINSetErrFile stderr

Info handler function KINSetInfoHandlerFn internal fn.
Pointer to an info file KINSetInfoFile stdout

Data for problem-defining function KINSetUserData NULL

Verbosity level of output KINSetPrintLevel 0
Max. number of nonlinear iterations KINSetNumMaxIters 200
No initial matrix setup KINSetNoInitSetup FALSE

No residual monitoring∗ KINSetNoResMon FALSE

Max. iterations without matrix setup KINSetMaxSetupCalls 10
Max. iterations without residual check∗ KINSetMaxSubSetupCalls 5
Form of η coefficient KINSetEtaForm KIN ETACHOICE1

Constant value of η KINSetEtaConstValue 0.1
Values of γ and α KINSetEtaParams 0.9 and 2.0
Values of ωmin and ωmax

∗ KINSetResMonParams 0.00001 and 0.9
Constant value of ω∗ KINSetResMonConstValue 0.9
Lower bound on ǫ KINSetNoMinEps FALSE

Max. scaled length of Newton step KINSetMaxNewtonStep 1000‖Duu0‖2

Max. number of β-condition failures KINSetMaxBetaFails 10

Rel. error for D.Q. Jv KINSetRelErrFunc
√

uround
Function-norm stopping tolerance KINSetFuncNormTol uround1/3

Scaled-step stopping tolerance KINSetScaledSteptol uround2/3

Inequality constraints on solution KINSetConstraints NULL

Nonlinear system function KINSetSysFunc none
Anderson Acceleration subspace size KINSetMAA 0

KINDLS linear solvers
Dense Jacobian function KINDlsSetDenseJacFn DQ
Band Jacobian function KINDlsSetBandJacFn DQ

KINSLS linear solvers
Sparse Jacobian function KINSlsSetSparseJacFn none
Sparse matrix ordering algorithm KINKLUSetOrdering 1 for COLAMD
Sparse matrix ordering algorithm KINSuperLUMTSetOrdering 3 for COLAMD

KINSPILS linear solvers
Max. number of restarts∗∗ KINSpilsSetMaxRestarts 0
Preconditioner functions and data KINSpilsSetPreconditioner NULL, NULL, NULL
Jacobian-times-vector function and data KINSpilsSetJacTimesVecFn internal DQ,

NULL

∗ Only for the kindls linear solvers
∗∗ Only for kinspgmr and kinspfgmr

30 Using KINSOL for C Applications

KINSetErrFile

Call flag = KINSetErrFile(kin mem, errfp);

Description The function KINSetErrFile specifies the pointer to the file where all kinsol messages
should be directed when the default kinsol error handler function is used.

Arguments kin mem (void *) pointer to the kinsol memory block.

errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value of NULL disables all future error message output (except for the case
in which the kinsol memory pointer is NULL). This use of KINSetErrFile is strongly
discouraged.

If KINSetErrFile is to be called, it should be called before any other optional input!

functions, in order to take effect for any later error message.

KINSetErrHandlerFn

Call flag = KINSetErrHandlerFn(kin mem, ehfun, eh data);

Description The function KINSetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments kin mem (void *) pointer to the kinsol memory block.

ehfun (KINErrHandlerFn) is the user’s C error handler function (see §4.6.2).

eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The function ehfun and data pointer eh data have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default internal error handler function directs error messages to the file specified
by the file pointer errfp (see KINSetErrFile above).

Error messages indicating that the kinsol solver memory is NULL will always be directed
to stderr.

KINSetInfoFile

Call flag = KINSetInfoFile(kin mem, infofp);

Description The function KINSetInfoFile specifies the pointer to the file where all informative
(non-error) messages should be directed.

Arguments kin mem (void *) pointer to the kinsol memory block.

infofp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for infofp is stdout.

4.5 User-callable functions 31

KINSetInfoHandlerFn

Call flag = KINSetInfoHandlerFn(kin mem, ihfun, ih data);

Description The function KINSetInfoHandlerFn specifies the optional user-defined function to be
used in handling informative (non-error) messages.

Arguments kin mem (void *) pointer to the kinsol memory block.

ihfun (KINInfoHandlerFn) is the user’s C information handler function (see §4.6.3).

ih data (void *) pointer to user data passed to ihfun every time it is called.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The function ihfun and data pointer ih data have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default internal information handler function directs informative (non-error) mes-
sages to the file specified by the file pointer infofp (see KINSetInfoFile above).

KINSetPrintLevel

Call flag = KINSetPrintLevel(kin mem, printfl);

Description The function KINSetPrintLevel specifies the level of verbosity of the output.

Arguments kin mem (void *) pointer to the kinsol memory block.

printfl (int) flag indicating the level of verbosity. Must be one of:

0 no information displayed.

1 for each nonlinear iteration display the following information: the scaled
Euclidean ℓ2 norm of the system function evaluated at the current iterate,
the scaled norm of the Newton step (only if using KIN NONE), and the
number of function evaluations performed so far.

2 display level 1 output and the following values for each iteration:
‖F (u)‖DF

(only for KIN NONE).
‖F (u)‖DF ,∞ (for KIN NONE and KIN LINESEARCH).

3 display level 2 output plus additional values used by the global strategy
(only if using KIN LINESEARCH), and statistical information for the linear
solver.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument printfl had an illegal value.

Notes The default value for printfl is 0.

KINSetUserData

Call flag = KINSetUserData(kin mem, user data);

Description The function KINSetUserData specifies the pointer to user-defined memory that is to
be passed to all user-supplied functions.

Arguments kin mem (void *) pointer to the kinsol memory block.

user data (void *) pointer to the user-defined memory.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

32 Using KINSOL for C Applications

Notes If specified, the pointer to user data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user data is needed in user preconditioner functions, the call to KINSetUserData !

must be made before the call to specify the linear solver.

KINSetNumMaxIters

Call flag = KINSetNumMaxIters(kin mem, mxiter);

Description The function KINSetNumMaxIters specifies the maximum number of nonlinear iterations
allowed.

Arguments kin mem (void *) pointer to the kinsol memory block.

mxiter (long int) maximum number of nonlinear iterations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The maximum number of iterations was non-positive.

Notes The default value for mxiter is MXITER DEFAULT = 200.

KINSetNoInitSetup

Call flag = KINSetNoInitSetup(kin mem, noInitSetup);

Description The function KINSetNoInitSetup specifies whether an initial call to the preconditioner
or Jacobian setup function should be made or not.

Arguments kin mem (void *) pointer to the kinsol memory block.

noInitSetup (booleantype) flag controlling whether an initial call to the precondi-
tioner or Jacobian setup function is made (pass FALSE) or not made (pass
TRUE).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for noInitSetup is FALSE, meaning that an initial call to the precon-
ditioner or Jacobian setup function will be made.

A call to this function is useful when solving a sequence of problems, in which the final
preconditioner or Jacobian value from one problem is to be used initially for the next
problem.

KINSetNoResMon

Call flag = KINSetNoResMon(kin mem, noNNIResMon);

Description The function KINSetNoResMon specifies whether or not the nonlinear residual monitoring
scheme is used to control Jacobian updating

Arguments kin mem (void *) pointer to the kinsol memory block.

noNNIResMon (booleantype) flag controlling whether residual monitoring is used (pass
FALSE) or not used (pass TRUE).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

4.5 User-callable functions 33

Notes When using a direct solver, the default value for noNNIResMon is FALSE, meaning that
the nonlinear residual will be monitored.

Residual monitoring is only available for use with the direct linear solver modules (mean-!

ing kindense, kinband, kinklu, and kinsuperlumt).

KINSetMaxSetupCalls

Call flag = KINSetMaxSetupCalls(kin mem, msbset);

Description The function KINSetMaxSetupCalls specifies the maximum number of nonlinear iter-
ations that can be performed between calls to the preconditioner or Jacobian setup
function.

Arguments kin mem (void *) pointer to the kinsol memory block.

msbset (long int) maximum number of nonlinear iterations without a call to the
preconditioner or Jacobian setup function. Pass 0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument msbset was negative.

Notes The default value for msbset is MSBSET DEFAULT = 10.

KINSetMaxSubSetupCalls

Call flag = KINSetMaxSubSetupCalls(kin mem, msbsetsub);

Description The function KINSetMaxSubSetupCalls specifies the maximum number of nonlinear
iterations between checks by the residual monitoring algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

msbsetsub (long int) maximum number of nonlinear iterations without checking the
nonlinear residual. Pass 0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument msbsetsub was negative.

Notes The default value for msbsetsub is MSBSET SUB DEFAULT = 5.

Residual monitoring is only available for use with the direct linear solver modules (mean- !

ing kindense, kinband, kinklu, and kinsuperlumt).

KINSetEtaForm

Call flag = KINSetEtaForm(kin mem, etachoice);

Description The function KINSetEtaForm specifies the method for computing the value of the η
coefficient used in the calculation of the linear solver convergence tolerance.

Arguments kin mem (void *) pointer to the kinsol memory block.

etachoice (int) flag indicating the method for computing η. The value must be one
of KIN ETACHOICE1, KIN ETACHOICE2, or KIN ETACONSTANT (see Chapter 2
for details).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

34 Using KINSOL for C Applications

KIN ILL INPUT The argument etachoice had an illegal value.

Notes The default value for etachoice is KIN ETACHOICE1.

KINSetEtaConstValue

Call flag = KINSetEtaConstValue(kin mem, eta);

Description The function KINSetEtaConstValue specifies the constant value for η in the case
etachoice = KIN ETACONSTANT.

Arguments kin mem (void *) pointer to the kinsol memory block.

eta (realtype) constant value for η. Pass 0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument eta had an illegal value

Notes The default value for eta is 0.1. The legal values are 0.0 < eta ≤ 1.0.

KINSetEtaParams

Call flag = KINSetEtaParams(kin mem, egamma, ealpha);

Description The function KINSetEtaParams specifies the parameters γ and α in the formula for η,
in the case etachoice = KIN ETACHOICE2.

Arguments kin mem (void *) pointer to the kinsol memory block.

egamma (realtype) value of the γ parameter. Pass 0.0 to indicate the default.

ealpha (realtype) value of the α parameter. Pass 0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT One of the arguments egamma or ealpha had an illegal value.

Notes The default values for egamma and ealpha are 0.9 and 2.0, respectively.

The legal values are 0.0 < egamma ≤ 1.0 and 1.0 < ealpha ≤ 2.0.

KINSetResMonConstValue

Call flag = KINSetResMonConstValue(kin mem, omegaconst);

Description The function KINSetResMonConstValue specifies the constant value for ω when using
residual monitoring.

Arguments kin mem (void *) pointer to the kinsol memory block.

omegaconst (realtype) constant value for ω. Passing 0.0 results in using Eqn. (2.4).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument omegaconst had an illegal value

Notes The default value for omegaconst is 0.9. The legal values are 0.0 < omegaconst < 1.0.

4.5 User-callable functions 35

KINSetResMonParams

Call flag = KINSetResMonParams(kin mem, omegamin, omegamax);

Description The function KINSetResMonParams specifies the parameters ωmin and ωmax in the for-
mula (2.4) for ω.

Arguments kin mem (void *) pointer to the kinsol memory block.

omegamin (realtype) value of the ωmin parameter. Pass 0.0 to indicate the default.

omegamax (realtype) value of the ωmax parameter. Pass 0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT One of the arguments omegamin or omegamax had an illegal value.

Notes The default values for omegamin and omegamax are 0.00001 and 0.9, respectively.

The legal values are 0.0 < omegamin < omegamax < 1.0.

KINSetNoMinEps

Call flag = KINSetNoMinEps(kin mem, noMinEps);

Description The function KINSetNoMinEps specifies a flag that controls whether or not the value of
ǫ, the scaled linear residual tolerance, is bounded from below.

Arguments kin mem (void *) pointer to the kinsol memory block.

noMinEps (booleantype) flag controlling the bound on ǫ.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for noMinEps is FALSE, meaning that a positive minimum value, equal
to 0.01*fnormtol, is applied to ǫ. (See KINSetFuncNormTol below.)

KINSetMaxNewtonStep

Call flag = KINSetMaxNewtonStep(kin mem, mxnewtstep);

Description The function KINSetMaxNewtonStep specifies the maximum allowable scaled length of
the Newton step.

Arguments kin mem (void *) pointer to the kinsol memory block.

mxnewtstep (realtype) maximum scaled step length (≥ 0.0). Pass 0.0 to indicate the
default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The input value was negative.

Notes The default value of mxnewtstep is 1000 ‖u0‖Du
, where u0 is the initial guess.

KINSetMaxBetaFails

Call flag = KINSetMaxBetaFails(kin mem, mxnbcf);

Description The function KINSetMaxBetaFails specifies the maximum number of β-condition fail-
ures in the linesearch algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

36 Using KINSOL for C Applications

mxnbcf (realtype) maximum number of β-condition failures. Pass 0.0 to indicate the
default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT mxnbcf was negative.

Notes The default value of mxnbcf is MXNBCF DEFAULT = 10.

KINSetRelErrFunc

Call flag = KINSetRelErrFunc(kin mem, relfunc);

Description The function KINSetRelErrFunc specifies the relative error in computing F (u), which
is used in the difference quotient approximation of the Jacobian-vector product.

Arguments kin mem (void *) pointer to the kinsol memory block.

relfunc (realtype) relative error in F (u) (relfunc ≥ 0.0). Pass 0.0 to indicate the
default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The relative error was negative.

Notes The default value for relfunc is
√

unit roundoff.

KINSetFuncNormTol

Call flag = KINSetFuncNormTol(kin mem, fnormtol);

Description The function KINSetFuncNormTol specifies the scalar used as a stopping tolerance on
the scaled maximum norm of the system function F (u).

Arguments kin mem (void *) pointer to the kinsol memory block.

fnormtol (realtype) tolerance for stopping based on scaled function norm (≥ 0.0).
Pass 0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The tolerance was negative.

Notes The default value for fnormtol is (unit roundoff)1/3.

KINSetScaledStepTol

Call flag = KINSetScaledStepTol(kin mem, scsteptol);

Description The function KINSetScaledStepTol specifies the scalar used as a stopping tolerance on
the minimum scaled step length.

Arguments kin mem (void *) pointer to the kinsol memory block.

scsteptol (realtype) tolerance for stopping based on scaled step length (≥ 0.0). Pass
0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The tolerance was non-positive.

Notes The default value for scsteptol is (unit roundoff)2/3.

4.5 User-callable functions 37

KINSetConstraints

Call flag = KINSetConstraints(kin mem, constraints);

Description The function KINSetConstraints specifies a vector that defines inequality constraints
for each component of the solution vector u.

Arguments kin mem (void *) pointer to the kinsol memory block.

constraints (N Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on ui.

1.0 then ui will be constrained to be ui ≥ 0.0.

−1.0 then ui will be constrained to be ui ≤ 0.0.

2.0 then ui will be constrained to be ui > 0.0.

−2.0 then ui will be constrained to be ui < 0.0.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The constraint vector contains illegal values.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed.

The function creates a private copy of the constraints vector. Consequently, the user-
supplied vector can be freed after the function call, and the constraints can only be
changed by calling this function.

KINSetSysFunc

Call flag = KINSetSysFunc(kin mem, func);

Description The function KINSetSysFunc specifies the user-provided function that evaluates the
nonlinear system function F (u) or G(u).

Arguments kin mem (void *) pointer to the kinsol memory block.

func (KINSysFn) user-supplied function that evaluates F (u) (or G(u) for fixed-point
iteration).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument func was NULL.

Notes The nonlinear system function is initially specified through KINInit. The option of
changing the system function is provided for a user who wishes to solve several problems
of the same size but with different functions.

KINSetMAA

Call flag = KINSetMAA(kin mem, maa);

Description The function KINSetMAA specifies the size of the subspace used with Anderson acceler-
ation in conjunction with Picard or fixed-point iteration.

Arguments kin mem (void *) pointer to the kinsol memory block.

maa (long int) subspace size for various methods. A value of 0 means no acceler-
ation, while a positive value means acceleration will be done.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

38 Using KINSOL for C Applications

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument maa was negative.

Notes This function sets the subspace size, which needs to be > 0 if Anderson Acceleration is
to be used. It also allocates additional memory necessary for Anderson Acceleration.

The default value of maa is 0, indicating no acceleration. The value of maa should always
be less than mxiter.

If the user calls the function KINSetNumMaxIters, that call should be made before the
call to KINSetMAA, as the latter uses the value of mxiter.

4.5.4.2 Dense direct linear solver optional input functions

The kindense solver needs a function to compute a dense approximation to the Jacobian matrix
J(u). This function must be of type KINDlsDenseJacFn. The user can supply his/her own dense
Jacobian function, or use the default internal difference quotient approximation that comes with the
kindense solver. To specify a user-supplied Jacobian function djac, kindense provides the function
KINDlsSetDenseJacFn. The kindense solver passes the pointer user data to the dense Jacobian
function. This allows the user to create an arbitrary structure with relevant problem data and access
it during the execution of the user-supplied Jacobian function, without using global data in the
program. The pointer user data may be specified through KINSetUserData.

KINDlsSetDenseJacFn

Call flag = KINDlsSetDenseJacFn(kin mem, djac);

Description The function KINDlsSetDenseJacFn specifies the dense Jacobian approximation func-
tion to be used.

Arguments kin mem (void *) pointer to the kinsol memory block.

djac (KINDlsDenseJacFn) user-defined dense Jacobian approximation function.

Return value The return value flag (of type int) is one of

KINDLS SUCCESS The optional value has been successfully set.

KINDLS MEM NULL The kin mem pointer is NULL.

KINDLS LMEM NULL The kindense linear solver has not been initialized.

Notes By default, kindense uses an internal difference quotient function. If NULL is passed to
djac, this default function is used.

The function type KINDlsDenseJacFn is described in §4.6.4.

The kinband solver needs a function to compute a banded approximation to the Jacobian matrix
J(u). This function must be of type KINDlsBandJacFn. The user can supply his/her own banded
Jacobian approximation function, or use the default internal difference quotient approximation that
comes with the kinband solver. To specify a user-supplied Jacobian function bjac kinband provides
the function KINDlsSetBandJacFn. The kinband solver passes the pointer user data to the banded
Jacobian approximation function. This allows the user to create an arbitrary structure with relevant
problem data and access it during the execution of the user-supplied Jacobian function, without using
global data in the program. The pointer user data may be specified through KINSetUserData.

KINDlsSetBandJacFn

Call flag = KINDlsSetBandJacFn(kin mem, bjac);

Description The function KINBandSetJacFn specifies the banded Jacobian approximation function
to be used.

Arguments kin mem (void *) pointer to the kinsol memory block.

bjac (KINDlsBandJacFn) user-defined banded Jacobian approximation function.

4.5 User-callable functions 39

Return value The return value flag (of type int) is one of

KINDLS SUCCESS The optional value has been successfully set.

KINDLS MEM NULL The kin mem pointer is NULL.

KINDLS LMEM NULL The kinband linear solver has not been initialized.

Notes By default, kinband uses an internal difference quotient approximation. If NULL is
passed to bjac, this default function is used.

The function type KINDlsBandJacFn is described in §4.6.5.

4.5.4.3 Sparse linear solvers optional input functions

The kinklu and kinsuperlumt solvers require a function to compute a compressed-sparse-column
approximation to the Jacobian matrix J(u). This function must be of type KINSlsSparseJacFn.
The user must supply a custom sparse Jacobian function since a difference-quotient approximation
would not leverage the underlying sparse matrix structure of the problem. To specify a user-supplied
Jacobian function sjac, kinklu and kinsuperlumt provide the function KINSlsSetSparseJacFn.
The kinklu and kinsuperlumt solvers pass the pointer user data to the sparse Jacobian function.
This mechanism allows the user to create an arbitrary structure with relevant problem data and
access it during the execution of the user-supplied Jacobian function, without using global data in the
program. The pointer user data may be specified through KINSetUserData.

KINSlsSetSparseJacFn

Call flag = KINSlsSetSparseJacFn(kin mem, sjac);

Description The function KINSlsSetSparseJacFn specifies the sparse Jacobian approximation func-
tion to be used.

Arguments kin mem (void *) pointer to the kinsol memory block.

sjac (KINSlsSparseJacFn) user-defined sparse Jacobian approximation function.

Return value The return value flag (of type int) is one of

KINSLS SUCCESS The optional value has been successfully set.

KINSLS MEM NULL The kin mem pointer is NULL.

KINSLS LMEM NULL The kinsls linear solver has not been initialized.

Notes The function type KINSlsSparseJacFn is described in §4.6.6.

When using a spasre dircet solver, there may be instances when the number of state variables does not
change, but the number of nonzeroes in the Jacobian does change. For the kinklu solver, we provide
a reinitialization. This reinitialization routine reinitializes the Jacobian matrix memory for the new
number of nnozeroes and sets flags for a new factorization (symbolic and numeric) to be conducted
at the next solver setup call. This routine is useful in the cases where the number of nonzeroes has
changed or if the structure of the linear system has changed which would require a new symbolic (and
numeric factorization).

KINKLUReInit

Call flag = KINKLUReInit(kin mem, n, nnz, reinit type);

Description The function KINKLUReInit reinitializes Jacobian matrix memory and flags for new
symbolic and numeric KLU factorizations.

Arguments kin mem (void *) pointer to the kinsol memory block.

n (int) number of state variables in the system.

nnz (int) number of nonzeroes in the Jacobian matrix.

reinit type (int) type of reinitialization:

40 Using KINSOL for C Applications

1 The Jacobian matrix will be destroyed and a new one will be allocated
based on the nnz value passed to this call. New symbolic and numeric
factorizations will be completed at the next solver setup.

2 Only symbolic and numeric factorizations will be completed. It is assumed
that the Jacobian size has not exceeded the size of nnz given in the prior
call to kinklu.

Return value The return value flag (of type int) is one of

KINSLS SUCCESS The reinitialization succeeded.

KINSLS MEM NULL The kin mem pointer is NULL.

KINSLS LMEM NULL The kinklu linear solver has not been initialized.

KINSLS ILL INPUT The given reinit type has an illegal value.

KINSLS MEM FAIL A memory allocation failed.

Notes The default value for reinit type is 2.

Both the kinklu and kinsuperlumt solvers can apply reordering algorithms to minimize fill-in for the
resulting sparse LU decomposition internal to the solver. The approximate minimal degree ordering
for nonsymmetric matrices given by the COLAMD algorithm is the default algorithm used within both
solvers, but alternate orderings may be chosen through one of the following two functions. The input
values to these functinos are the numeric values used in the respective packages, and the user-supplied
value will be passed directly to the package.

KINKLUSetOrdering

Call flag = KINKLUSetOrdering(kin mem, ordering choice);

Description The function KINKLUSetOrdering specifies the ordering algorithm used by kinklu for
reducing fill.

Arguments kin mem (void *) pointer to the kinsol memory block.

ordering choice (int) flag denoting algorithm choice:

0 AMD

1 COLAMD

2 natural ordering

Return value The return value flag (of type int) is one of

KINSLS SUCCESS The optional value has been successfully set.

KINSLS MEM NULL The kin mem pointer is NULL.

KINSLS ILL INPUT The supplied value of ordering choice is illegal.

Notes The default ordering choice is 1 for COLAMD.

KINSuperLUMTSetOrdering

Call flag = KINSuperLUMTSetOrdering(kin mem, ordering choice);

Description The function KINSuperLUMTSetOrdering specifies the ordering algorithm used by kin-

superlumt for reducing fill.

Arguments kin mem (void *) pointer to the kinsol memory block.

ordering choice (int) flag denoting algorithm choice:

0 natural ordering

1 minimal degree ordering on JT J

2 minimal degree ordering on JT + J

3 COLAMD

Return value The return value flag (of type int) is one of

4.5 User-callable functions 41

KINSLS SUCCESS The optional value has been successfully set.

KINSLS MEM NULL The kin mem pointer is NULL.

KINSLS ILL INPUT The supplied value of ordering choice is illegal.

Notes The default ordering choice is 3 for COLAMD.

4.5.4.4 Iterative linear solvers optional input functions

If any preconditioning is to be done with one of the kinspils linear solvers, then the user must supply a
preconditioner solve function psolve and specify its name in a call to KINSpilsSetPreconditioner.

The evaluation and preprocessing of any Jacobian-related data needed by the user’s precondi-
tioner solve function is done in the optional user-supplied function psetup. Both of these func-
tions are fully specified in §4.6. If used, the psetup function should also be specified in the call to
KINSpilsSetPreconditioner. A kinspils solver passes the pointer user data received through
KINSetUserData to the preconditioner psetup and psolve functions. This allows the user to create an
arbitrary structure with relevant problem data and access it during the execution of the user-supplied
preconditioner functions without using global data in the program.

Ther kinspils solvers require a function to compute an approximation to the product between
the Jacobian matrix J(u) and a vector v. The user can supply his/her own Jacobian-times-vector
approximation function, or use the internal difference quotient approximation that comes with the
kinspils solvers. A user-defined Jacobian-vector function must be of type KINSpilsJacTimesVecFn

and can be specified through a call to KINSpilsSetJacTimesVecFn (see §4.6.7 for specification details).
A kinspils solver passes the pointer user data received through KINSetUserData to the Jacobian-
times-vector function jtimes each time it is called.

KINSpilsSetPreconditioner

Call flag = KINSpilsSetPreconditioner(kin mem, psetup, psolve);

Description The function KINSpilsSetPreconditioner specifies the preconditioner setup and solve
functions.

Arguments kin mem (void *) pointer to the kinsol memory block.

psetup (KINSpilsPrecSetupFn) user-defined preconditioner setup function. Pass NULL
if no setup operation is to be done.

psolve (KINSpilsPrecSolveFn) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of

KINSPILS SUCCESS The optional values have been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The kinspils linear solver has not been initialized.

Notes The function type KINSpilsPrecSolveFn is described in §4.6.8. The function type
KINSpilsPrecSetupFn is described in §4.6.9.

KINSpilsSetJacTimesVecFn

Call flag = KINSpilsSetJacTimesVecFn(kin mem, jtimes);

Description The function KINSpilsSetJacTimesFn specifies the Jacobian-vector function to be used.

Arguments kin mem (void *) pointer to the kinsol memory block.

jtimes (KINSpilsJacTimesVecFn) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of

KINSPILS SUCCESS The optional value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The kinspils linear solver has not been initialized.

42 Using KINSOL for C Applications

Notes By default, the kinspils linear solvers use an internal difference quotient function
KINSpilsDQJtimes. If NULL is passed as jtimes, this default function is used.

The function type KINSpilsJacTimesVecFn is described in §4.6.7.

KINSpilsSetMaxRestarts

Call flag = KINSpilsSetMaxRestarts(kin mem, maxrs);

Description The function KINSpilsSetMaxRestarts specifies the maximum number of times the
iterative linear solver can be restarted.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxrs (int) maximum number of restarts (≥ 0).

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional value has been successfully set.

KINSPILS ILL INPUT The maximum number of restarts specified is negative.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver has not been initialized.

Notes The default value is 0 (meaning no restarts).

This option is available only for the kinspgmr and kinspfgmr linear solvers.!

4.5.5 Optional output functions

kinsol provides an extensive list of functions that can be used to obtain solver performance infor-
mation. Table 4.2 lists all optional output functions in kinsol, which are then described in detail in
the remainder of this section, beginning with those for the main kinsol solver and continuing with
those for the linear solver modules. Where the name of an output from a linear solver module would
otherwise conflict with the name of an optional output from the main solver, a suffix LS (for Linear
Solver) has been added here (e.g., lenrwLS).

4.5.5.1 Main solver optional output functions

kinsol provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements and solver performance statistics.
These optional output functions are described next.

KINGetWorkSpace

Call flag = KINGetWorkSpace(kin mem, &lenrw, &leniw);

Description The function KINGetWorkSpace returns the kinsol integer and real workspace sizes.

Arguments kin mem (void *) pointer to the kinsol memory block.

lenrw (long int) the number of realtype values in the kinsol workspace.

leniw (long int) the number of integer values in the kinsol workspace.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes In terms of the problem size N , the actual size of the real workspace is 17+5N realtype

words. The real workspace is increased by an additional N words if constraint checking
is enabled (see KINSetConstraints).

The actual size of the integer workspace (without distinction between int and long

int) is 22 + 5N (increased by N if constraint checking is enabled).

4.5 User-callable functions 43

Table 4.2: Optional outputs from kinsol, kindls, kinsls, and kinspils

Optional output Function name
KINSOL main solver

Size of kinsol real and integer workspaces KINGetWorkSpace

Number of function evaluations KINGetNumFuncEvals

Number of nonlinear iterations KINGetNumNolinSolvIters

Number of β-condition failures KINGetNumBetaCondFails

Number of backtrack operations KINGetNumBacktrackOps

Scaled norm of F KINGetFuncNorm

Scaled norm of the step KINGetStepLength

KINDLS linear solvers
Size of real and integer workspaces KINDlsGetWorkSpace

No. of Jacobian evaluations KINDlsGetNumJacEvals

No. of F calls for D.Q. Jacobian evals. KINDlsGetNumFuncEvals

Last return from a kindls function KINDlsGetLastFlag

KINSLS linear solvers
No. of Jacobian evaluations KINSlsGetNumJacEvals

Last return from a linear solver function KINSlsGetLastFlag

Name of constant associated with a return flag KINSlsGetReturnFlagName

KINSPILS linear solvers
Size of real and integer workspaces KINSpilsGetWorkSpace

No. of linear iterations KINSpilsGetNumLinIters

No. of linear convergence failures KINSpilsGetNumConvFails

No. of preconditioner evaluations KINSpilsGetNumPrecEvals

No. of preconditioner solves KINSpilsGetNumPrecSolves

No. of Jacobian-vector product evaluations KINSpilsGetNumJtimesEvals

No. of F calls for D.Q. Jacobian-vector evals. KINSpilsGetNumFuncEvals

Last return from a linear solver function KINSpilsGetLastFlag

44 Using KINSOL for C Applications

KINGetNumFuncEvals

Call flag = KINGetNumFuncEvals(kin mem, &nfevals);

Description The function KINGetNumFuncEvals returns the number of evaluations of the system
function.

Arguments kin mem (void *) pointer to the kinsol memory block.

nfevals (long int) number of calls to the user-supplied function that evaluates F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetNumNonlinSolvIters

Call flag = KINGetNumNonlinSolvIters(kin mem, &nniters);

Description The function KINGetNumNonlinSolvIters returns the number of nonlinear iterations.

Arguments kin mem (void *) pointer to the kinsol memory block.

nniters (long int) number of nonlinear iterations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetNumBetaCondFails

Call flag = KINGetNumBetaCondFails(kin mem, &nbcfails);

Description The function KINGetNumBetaCondFails returns the number of β-condition failures.

Arguments kin mem (void *) pointer to the kinsol memory block.

nbcfails (long int) number of β-condition failures.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetNumBacktrackOps

Call flag = KINGetNumBacktrackOps(kin mem, &nbacktr);

Description The function KINGetNumBacktrackOps returns the number of backtrack operations (step
length adjustments) performed by the line search algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

nbacktr (long int) number of backtrack operations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetFuncNorm

Call flag = KINGetFuncNorm(kin mem, &fnorm);

Description The function KINGetFuncNorm returns the scaled Euclidean ℓ2 norm of the nonlinear
system function F (u) evaluated at the current iterate.

Arguments kin mem (void *) pointer to the kinsol memory block.

4.5 User-callable functions 45

fnorm (realtype) current scaled norm of F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetStepLength

Call flag = KINGetStepLength(kin mem, &steplength);

Description The function KINGetStepLength returns the scaled Euclidean ℓ2 norm of the step used
during the previous iteration.

Arguments kin mem (void *) pointer to the kinsol memory block.

steplength (realtype) scaled norm of the Newton step.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

4.5.5.2 Dense direct linear solvers optional output functions

The following optional outputs are available from the kindls module: workspace requirements, num-
ber of calls to the Jacobian routine, number of calls to the system function routine for difference
quotient Jacobian approximation, and last return value from a kindls function.

KINDlsGetWorkSpace

Call flag = KINDlsGetWorkSpace(kin mem, &lenrwLS, &leniwLS);

Description The function KINDlsGetWorkSpace returns the kindense real and integer workspace
sizes.

Arguments kin mem (void *) pointer to the kinsol memory block.

lenrwLS (long int) the number of realtype values in the kindls workspace.

leniwLS (long int) the number of integer values in the kindls workspace.

Return value The return value flag (of type int) is one of

KINDLS SUCCESS The optional output value has been successfully set.

KINDLS MEM NULL The kin mem pointer is NULL.

KINDLS LMEM NULL The kindense linear solver has not been initialized.

Notes For the kindense linear soler, in terms of the problem size N , the actual size of the
real workspace is N2 realtype words, and the actual size of the integer workspace is
N integer words.

For the kinband linear solver, in terms of the problem size N and Jacobian half-
bandwidths, the actual size of the real workspace, in realtype words, is approximately
(2 mupper+3 mlower +2)N , and the actual size of the integer workspace is N integer
words.

KINDlsGetNumJacEvals

Call flag = KINDlsGetNumJacEvals(kin mem, &njevals);

Description The function KINDlsGetNumJacEvals returns the number of calls to the dense Jacobian
approximation function.

Arguments kin mem (void *) pointer to the kinsol memory block.

njevals (long int) the number of calls to the Jacobian function.

46 Using KINSOL for C Applications

Return value The return value flag (of type int) is one of

KINDLS SUCCESS The optional output value has been successfully set.

KINDLS MEM NULL The kin mem pointer is NULL.

KINDLS LMEM NULL The kindense linear solver has not been initialized.

KINDlsGetNumFuncEvals

Call flag = KINDlsGetNumFuncEvals(kin mem, &nfevalsLS);

Description The function KINDlsGetNumFuncEvals returns the number of calls to the user system
function used to compute the difference quotient approximation to the dense or banded
Jacobian.

Arguments kin mem (void *) pointer to the kinsol memory block.

nfevalsLS (long int) the number of calls to the user system function.

Return value The return value flag (of type int) is one of

KINDLS SUCCESS The optional output value has been successfully set.

KINDLS MEM NULL The kin mem pointer is NULL.

KINDLS LMEM NULL The kindense or kinband linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the internal difference quotient function is
used.

KINDlsGetLastFlag

Call flag = KINDlsGetLastFlag(kin mem, &lsflag);

Description The function KINDlsGetLastFlag returns the last return value from a kindense rou-
tine.

Arguments kin mem (void *) pointer to the kinsol memory block.

lsflag (long int) the value of the last return flag from a kindense function.

Return value The return value flag (of type int) is one of

KINDLS SUCCESS The optional output value has been successfully set.

KINDLS MEM NULL The kin mem pointer is NULL.

KINDLS LMEM NULL The kindense linear solver has not been initialized.

Notes If the kindls setup function failed (KINSol returned KIN LSETUP FAIL), then lsflag is
equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the dense Jacobian matrix. For all other
failures, lsflag is negative.

4.5.5.3 Sparse direct linear solvers optional output functions

The following optional outputs are available from the kinsls module: number of calls to the Jacobian
routine and last return value from a kinsls function.

KINSlsGetNumJacEvals

Call flag = KINSlsGetNumJacEvals(kin mem, &njevals);

Description The function KINSlsGetNumJacEvals returns the number of calls to the sparse Jacobian
approximation function.

Arguments kin mem (void *) pointer to the kinsol memory block.

njevals (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of

4.5 User-callable functions 47

KINSLS SUCCESS The optional output value has been successfully set.

KINSLS MEM NULL The kin mem pointer is NULL.

KINSLS LMEM NULL The kinsls linear solver has not been initialized.

KINSlsGetLastFlag

Call flag = KINSlsGetLastFlag(kin mem, &lsflag);

Description The function KINSlsGetLastFlag returns the last return value from a kinsls routine.

Arguments kin mem (void *) pointer to the kinsol memory block.

lsflag (long int) the value of the last return flag from a kinsls function.

Return value The return value flag (of type int) is one of

KINSLS SUCCESS The optional output value has been successfully set.

KINSLS MEM NULL The kin mem pointer is NULL.

KINSLS LMEM NULL The kinsls linear solver has not been initialized.

Notes

KINSlsGetReturnFlagName

Call name = KINSlsGetReturnFlagName(lsflag);

Description The function KINSlsGetReturnFlagName returns the name of the kinsls constant cor-
responding to lsflag.

Arguments The only argument, of type long int, is a return flag from a kinsls function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.5.4 Iterative linear solvers optional output functions

The following optional outputs are available from the kinspils modules: workspace requirements,
number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector product routine, number of calls to
the system function routine for difference quotient Jacobian-vector product approximation, and last
return value from a linear solver function.

KINSpilsGetWorkSpace

Call flag = KINSpilsGetWorkSpace(kin mem, &lenrwLS, &leniwLS);

Description The function KINSpilsGetWorkSpace returns the global sizes of the linear solver real
and integer workspaces.

Arguments kin mem (void *) pointer to the kinsol memory block.

lenrwLS (long int) the number of realtype values in the linear solver workspace.

leniwLS (long int) the number of integer values in the linear solver workspace.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output values have been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver has not been initialized.

Notes In terms of the problem size N and maximum subspace size maxl, the actual size of the
real workspace, in realtype words, is roughly:
(maxl+3) ∗ N+ maxl ∗(maxl+4) + 1 for kinspgmr,
(2maxl+3) ∗ N+ maxl ∗(maxl+4) + 1 for kinspfgmr,

48 Using KINSOL for C Applications

7 ∗ N for kinspbcg, and
11 ∗ N for kinsptfqmr.

In a parallel setting, this value is global, summed over all processes.

KINSpilsGetNumLinIters

Call flag = KINSpilsGetNumLinIters(kin mem, &nliters);

Description The function KINSpilsGetNumLinIters returns the cumulative number of linear itera-
tions.

Arguments kin mem (void *) pointer to the kinsol memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPLIS LMEM NULL The linear solver module has not been initialized.

KINSpilsGetNumConvFails

Call flag = KINSpilsGetNumConvFails(kin mem, &nlcfails);

Description The function KINSpilsGetNumConvFails returns the cumulative number of linear con-
vergence failures.

Arguments kin mem (void *) pointer to the kinsol memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver module has not been initialized.

KINSpilsGetNumPrecEvals

Call flag = KINSpilsGetNumPrecEvals(kin mem, &npevals);

Description The function KINSpilsGetNumPrecEvals returns the number of preconditioner evalua-
tions, i.e., the number of calls made to psetup.

Arguments kin mem (void *) pointer to the kinsol memory block.

npevals (long int) the current number of calls to psetup.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver module has not been initialized.

KINSpilsGetNumPrecSolves

Call flag = KINSpilsGetNumPrecSolves(kin mem, &npsolves);

Description The function KINSpilsGetNumPrecSolves returns the cumulative number of calls made
to the preconditioner solve function, psolve.

Arguments kin mem (void *) pointer to the kinsol memory block.

npsolves (long int) the current number of calls to psolve.

Return value The return value flag (of type int) is one of:

4.5 User-callable functions 49

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver module has not been initialized.

KINSpilsGetNumJtimesEvals

Call flag = KINSpilsGetNumJtimesEvals(kin mem, &njvevals);

Description The function KINSpilsGetNumJtimesEvals returns the cumulative number made to the
Jacobian-vector product function, jtimes.

Arguments kin mem (void *) pointer to the kinsol memory block.

njvevals (long int) the current number of calls to jtimes.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver module has not been initialized.

KINSpilsGetNumFuncEvals

Call flag = KINSpilsGetNumFuncEvals(kin mem, &nfevalsLS);

Description The function KINSpilsGetNumFuncEvals returns the number of calls to the user system
function for difference quotient Jacobian-vector product approximations.

Arguments kin mem (void *) pointer to the kinsol memory block.

nfevalsLS (long int) the number of calls to the user system function.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver module has not been initialized.

Notes The value nfevalsLS is incremented only if the default KINSpilsDQJtimes difference
quotient function is used.

KINSpilsGetLastFlag

Call flag = KINSpilsGetLastFlag(kin mem, &lsflag);

Description The function KINSpilsGetLastFlag returns the last return value from a kinspils rou-
tine.

Arguments kin mem (void *) pointer to the kinsol memory block.

lsflag (long int) the value of the last return flag from a kinspils function.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver module has not been initialized.

Notes If the kinspils setup function failed (KINSOL returned KIN LSETUP FAIL), lsflag will
be set to SPGMR PSET FAIL UNREC, SPFGMR PSET FAIL UNREC, SPBCG PSET FAIL UNREC,
or SPTFQMR PSET FAIL UNREC.

If the kinspgmr solve function failed (KINSol returned KIN LSOLVE FAIL), lsflag con-
tains the error return flag from SpgmrSolve and will be one of: SPGMR MEM NULL, indicat-
ing that the spgmr memory is NULL; SPGMR ATIMES FAIL UNREC, indicating an unrecov-
erable failure in the Jacobian-times-vector function; SPGMR PSOLVE FAIL UNREC, indicat-
ing that the preconditioner solve function, psolve, failed unrecoverably; SPGMR GS FAIL,

50 Using KINSOL for C Applications

indicating a failure in the Gram-Schmidt procedure; or SPGMR QRSOL FAIL, indicating
that the matrix R was found to be singular during the QR solve phase.

If the kinspfgmr solve function failed (KINSol returned KIN LSOLVE FAIL), lsflag
contains the error return flag from SpfgmrSolve and will be a similar value to one of
the return codes for kinspgmr.

If the kinspbcg solve function failed (KINSol returned KIN LSOLVE FAIL), lsflag con-
tains the error return flag from SpbcgSolve and will be one of: SPBCG MEM NULL, indi-
cating that the spbcg memory is NULL; SPBCG ATIMES FAIL UNREC, indicating an unre-
coverable failure in the Jacobian-times-vector function; or SPBCG PSOLVE FAIL UNREC,
indicating that the preconditioner solve function, psolve, failed unrecoverably.

If the kinsptfqmr solve function failed (KINSol returned KIN LSOLVE FAIL), lsflag
contains the error return flag from SptfqmrSolve and will be one of: SPTFQMR MEM NULL,
indicating that the sptfqmr memory is NULL; SPTFQMR ATIMES FAIL UNREC, indicating
an unrecoverable failure in the J∗v function; or SPTFQMR PSOLVE FAIL UNREC, indicating
that the preconditioner solve function, psolve, failed unrecoverably.

4.6 User-supplied functions

The user-supplied functions consist of one function defining the nonlinear system, (optionally) a
function that handles error and warning messages, (optionally) a function that handles informational
messages, (optionally) a function that provides Jacobian-related information for the linear solver, and
(optionally) one or two functions that define the preconditioner for use in any of the Krylov iterative
algorithms.

4.6.1 Problem-defining function

The user must provide a function of type KINSysFn defined as follows:

KINSysFn

Definition typedef int (*KINSysFn)(N Vector u, N Vector fval, void *user data);

Purpose This function computes F (u) (or G(u) for fixed-point iteration and Anderson accelera-
tion) for a given value of the vector u.

Arguments u is the current value of the variable vector, u.

fval is the output vector F (u).

user data is a pointer to user data, the pointer user data passed to KINSetUserData.

Return value A KINSysFn function should return 0 if successful, a positive value if a recoverable error
occurred (in which case kinsol will attempt to correct), or a negative value if it failed
unrecoverably (in which case the solution process is halted and KIN SYSFUNC FAIL is
returned).

Notes Allocation of memory for fval is handled within kinsol.

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to
by errfp (see KINSetErrFile), the user may provide a function of type KINErrHandlerFn to process
any such messages. The function type KINErrHandlerFn is defined as follows:

4.6 User-supplied functions 51

KINErrHandlerFn

Definition typedef void (*KINErrHandlerFn)(int error code, const char *module,

const char *function, char *msg,

void *eh data);

Purpose This function processes error and warning messages from kinsol and its sub-modules.

Arguments error code is the error code.

module is the name of the kinsol module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.

eh data is a pointer to user data, the same as the eh data parameter passed to
KINSetErrHandlerFn.

Return value A KINErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (KIN WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error code to 0.

4.6.3 Informational message handler function

As an alternative to the default behavior of directing informational (meaning non-error) messages
to the file pointed to by infofp (see KINSetInfoFile), the user may provide a function of type
KINInfoHandlerFn to process any such messages. The function type KINInfoHandlerFn is defined as
follows:

KINInfoHandlerFn

Definition typedef void (*KINInfoHandlerFn)(const char *module, const char *function,

char *msg, void *ih data);

Purpose This function processes informational messages from kinsol and its sub-modules.

Arguments module is the name of the kinsol module reporting the information.

function is the name of the function reporting the information.

msg is the message.

ih data is a pointer to user data, the same as the ih data parameter passed to
KINSetInfoHandlerFn.

Return value A KINInfoHandlerFn function has no return value.

4.6.4 Jacobian information (direct method with dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is used (KINDense or KINLapackDense
is called in Step 7 of §4.4), the user may provide a function of type KINDlsDenseJacFn defined by

KINDlsDenseJacFn

Definition typedef int (*KINDlsDenseJacFn)(long int N, N Vector u, N Vector fu,

DlsMat J, void *user data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the dense Jacobian J(u) or an approximation to it.

Arguments N is the problem size.

u is the current (unscaled) iterate.

fu is the current value of the vector F (u).

J is the output approximate Jacobian matrix, J = ∂F/∂u.

user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

52 Using KINSOL for C Applications

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by KINDenseJacFn as temporary storage or work space.

Return value A function of type KINDlsDenseJacFn should return 0 if successful or a non-zero value
otherwise.

Notes A user-supplied dense Jacobian function must load the N by N dense matrix J with an
approximation to the Jacobian matrix J(u) at u. Only nonzero elements need to be
loaded into J because J is set to the zero matrix before the call to the Jacobian function.
The type of J is DlsMat.

The accessor macros DENSE ELEM and DENSE COL allow the user to read and write dense
matrix elements without making explicit references to the underlying representation of
the DlsMat type. DENSE ELEM(J, i, j) references the (i, j)-th element of the dense
matrix J (i, j= 0 . . . N −1). This macro is for use in small problems in which efficiency
of access is not a major concern. Thus, in terms of indices m and n running from 1 to
N , the Jacobian element Jm,n can be loaded with the statement DENSE ELEM(J, m-1,

n-1) = Jm,n. Alternatively, DENSE COL(J, j) returns a pointer to the storage for the
jth column of J (j= 0 . . . N − 1), and the elements of the jth column are then accessed
via ordinary array indexing. Thus Jm,n can be loaded with the statements col n =

DENSE COL(J, n-1); col n[m-1] = Jm,n. For large problems, it is more efficient to
use DENSE COL than to use DENSE ELEM. Note that both of these macros number rows
and columns starting from 0, not 1.

The DlsMat type and the accessor macros DENSE ELEM and DENSE COL are documented
in §8.1.3.

If the user’s KINDlsDenseJacFn function uses difference quotient approximations, it
may need to access quantities not in the call list. To obtain these, the user will need
to add the kin mem structure to their user data and use the KINGet* functions de-
scribed in §4.5.5.1. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundials types.h.

For the sake of uniformity, the argument N is of type long int, even in the case that
the Lapack dense solver is to be used.

4.6.5 Jacobian information (direct method with banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is used (KINBand or KINLapackBand
is called in Step 7 of §4.4), the user may provide a function of type KINDlsBandJacFn defined by:

KINDlsBandJacFn

Definition typedef int (*KINDlsBandJacFn)(long int N, long int mupper,

long int mlower, N Vector u, N Vector fu,

DlsMat J, void *user data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the banded Jacobian J(u) or a banded approximation to it.

Arguments N is the problem size.

mlower

mupper are the lower and upper half-bandwidths of the Jacobian.

u is the current (unscaled) iterate.

fu is the current value of the vector F (u).

J is the output approximate Jacobian matrix, J = ∂F/∂u.

user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

4.6 User-supplied functions 53

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by KINBandJacFn as temporary storage or work space.

Return value A function of type KINDlsBandJacFn should return 0 if successful or a non-zero value
otherwise.

Notes A user-supplied band Jacobian function must load the band matrix J of type DlsMat

with the elements of the Jacobian J(u) at u. Only nonzero elements need to be loaded
into J because J is preset to zero before the call to the Jacobian function.

The accessor macros BAND ELEM, BAND COL, and BAND COL ELEM allow the user to read
and write band matrix elements without making specific references to the underlying
representation of the DlsMat type. BAND ELEM(J, i, j) references the (i, j)th ele-
ment of the band matrix J, counting from 0. This macro is for use in small problems
in which efficiency of access is not a major concern. Thus, in terms of indices m and
n running from 1 to N with (m,n) within the band defined by mupper and mlower,
the Jacobian element Jm,n can be loaded with the statement BAND ELEM(J, m-1, n-1)

= Jm,n. The elements within the band are those with -mupper ≤ m-n ≤ mlower. Al-
ternatively, BAND COL(J, j) returns a pointer to the diagonal element of the jth col-
umn of J, and if we assign this address to realtype *col j, then the ith element of
the jth column is given by BAND COL ELEM(col j, i, j), counting from 0. Thus for
(m,n) within the band, Jm,n can be loaded by setting col n = BAND COL(J, n-1);

BAND COL ELEM(col n, m-1, n-1) = Jm,n. The elements of the jth column can also
be accessed via ordinary array indexing, but this approach requires knowledge of the
underlying storage for a band matrix of type DlsMat. The array col n can be indexed
from −mupper to mlower. For large problems, it is more efficient to use the combination
of BAND COL and BAND COL ELEM than to use the BAND ELEM. As in the dense case, these
macros all number rows and columns starting from 0, not 1.

The DlsMat type and the accessor macros BAND ELEM, BAND COL, and BAND COL ELEM

are documented in §8.1.4.

If the user’s KINDlsBandJacFn function uses difference quotient approximations, it may
need to access quantities not in the call list. To obtain these, the user will need
to add the kin mem structure to their user data and use the KINGet* functions de-
scribed in §4.5.5.1. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundials types.h.

For the sake of uniformity, the arguments N, mlower, and mupper are of type long int,
even in the case that the Lapack band solver is to be used.

4.6.6 Jacobian information (direct method with sparse Jacobian)

If the direct linear solver with sparse treatment of the Jacobian is used (KINKLU or KINSuperLUMT is
called in Step 7 of §4.4), the user may provide a function of type KINSlsSparseJacFn defined by

KINSlsSparseJacFn

Definition typedef int (*KINSlsSparseJacFn)(N Vector u, N Vector fu,

SlsMat J, void *user data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the sparse Jacobian J(u) or an approximation to it.

Arguments u is the current (unscaled) iterate.

fu is the current value of the vector F (u).

J is the output approximate Jacobian matrix, J = ∂F/∂u.

54 Using KINSOL for C Applications

user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by KINSlsSparseJacFn as temporary storage or work space.

Return value A function of type KINSlsSparseJacFn should return 0 if successful or a non-zero value
otherwise.

Notes A user-supplied sparse Jacobian function must load the compressed-sparse-column ma-
trix J with an approximation to the Jacobian matrix J(u) at the point (u). Storage for
J already exists on entry to this function, although the user should ensure that suffi-
cient space is allocated in J to hold the nonzero values to be set; if the existing space
is insufficient the user may reallocate the data and row index arrays as needed. The
type of J is SlsMat, and the amount of allocated space is available within the SlsMat

structure as NNZ. The SlsMat type is further documented in the Section §8.2.

If the user’s KINSlsSparseJacFn function uses difference quotient approximations to
set the specific nonzero matrix entries, then it may need to access quantities not in the
argument list. To obtain these, use the KINGet* functions described in §4.5.5.1. The
unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.6.7 Jacobian information (matrix-vector product)

If one of the Krylov iterative linear solvers spgmr, spbcg, or sptfqmr is selected (KINSp* is called in
step 7 of §4.4), the user may provide a jtimes function of type KINSpilsJacTimesVecFn to compute
products Jv. If such a function is not supplied, the default is a difference quotient approximation of
these products.

KINSpilsJacTimesVecFn

Definition typedef int (*KINSpilsJacTimesVecFn)(N Vector v, N Vector Jv,

N Vector u, booleantype new u,

void *user data);

Purpose This jtimes function computes the product Jv (or an approximation to it).

Arguments v is the vector by which the Jacobian must be multiplied to the right.

Jv is the computed output vector.

u is the current value of the dependent variable vector.

new u is a flag, input from kinsol and possibly reset by the user’s jtimes function,
indicating whether the iterate vector u has been updated since the last call to
jtimes. This is useful if the jtimes function computes and saves Jacobian
data that depends on u for use in computing J(u)v. The input value of new u

is TRUE following an update by kinsol, and in that case any saved Jacobian
data depending on u should be recomputed. The jtimes routine should then
set new u to FALSE, so that on subsequent calls to jtimes with the same u,
the saved data can be reused.

user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

Return value The value to be returned by the Jacobian-times-vector function should be 0 if successful.
If a recoverable failure occurred, the return value should be positive. In this case,
kinsol will attempt to correct by calling the preconditioner setup function. If this
information is current, kinsol halts. If the Jacobian-times-vector function encounters
an unrecoverable error, it should return a negative value, prompting kinsol to halt.

4.6 User-supplied functions 55

Notes If a user-defined routine is not given, then an internal kinspgmr function, using differ-
ence quotient approximations, is used.

If the user-provided KINSpilsJacTimesVecFn function needs the unit roundoff, this can
be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.6.8 Preconditioning (linear system solution)

If preconditioning is used, then the user must provide a C function to solve the linear system Pz = r
where P is the preconditioner matrix, approximating (at least crudely) the system Jacobian J =
∂F/∂u. This function must be of type KINSpilsPrecSolveFn, defined as follows:

KINSpilsPrecSolveFn

Definition typedef int (*KINSpilsPrecSolveFn)(N Vector u, N Vector uscale,

N Vector fval, N Vector fscale,

N Vector v, void *user data,

N Vector tmp);

Purpose This function solves the preconditioning system Pz = r.

Arguments u is the current (unscaled) value of the iterate.

uscale is a vector containing diagonal elements of the scaling matrix for u.

fval is the vector F (u) evaluated at u.

fscale is a vector containing diagonal elements of the scaling matrix for fval.

v on input, v is set to the right-hand side vector of the linear system, r. On
output, v must contain the solution z of the linear system Pz = r.

user data is a pointer to user data, the same as the user data parameter passed to
the function KINSetUserData.

tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error,
and negative for an unrecoverable error.

Notes If the preconditioner solve function fails recoverably and if the preconditioner informa-
tion (set by the preconditioner setup function) is out of date, kinsol attempts to correct
by calling the setup function. If the preconditioner data is current, kinsol halts.

4.6.9 Preconditioning (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then
this needs to be done in a user-supplied C function of type KINSpilsPrecSetupFn, defined as follows:

KINSpilsPrecSetupFn

Definition typedef int (*KINSpilsPrecSetupFn)(N Vector u, N Vector uscale,

N Vector fval, N Vector fscale,

void *user data, N Vector tmp1,

N Vector tmp2);

Purpose This function evaluates and/or preprocesses Jacobian-related data needed by the pre-
conditioner solve function.

Arguments The arguments of a KINSpilsPrecSetupFn are as follows:

u is the current (unscaled) value of the iterate.

uscale is a vector containing diagonal elements of the scaling matrix for u.

56 Using KINSOL for C Applications

fval is the vector F (u) evaluated at u.

fscale is a vector containing diagonal elements of the scaling matrix for fval.

user data is a pointer to user data, the same as the user data parameter passed to
the function KINSetUserData.

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by KINSpilsPrecSetupFn as temporary storage or work space.

Return value The value to be returned by the preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, any other value re-
sulting in halting the kinsol solver.

Notes The user-supplied preconditioner setup subroutine should compute the right precondi-
tioner matrix P (stored in the memory block referenced by the user data pointer) used
to form the scaled preconditioned linear system

(DF J(u)P−1D−1
u) · (DuPx) = −DF F (u) ,

where Du and DF denote the diagonal scaling matrices whose diagonal elements are
stored in the vectors uscale and fscale, respectively.

The preconditioner setup routine will not be called prior to every call made to the
preconditioner solve function, but will instead be called only as often as necessary to
achieve convergence of the Newton iteration.

If the user’s KINSpilsPrecSetupFn function uses difference quotient approximations,
it may need to access quantities not in the call list. To obtain these, the user will
need to add the kin mem structure to their user data and use the KINGet* functions
described in §4.5.5.1. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundials types.h.

If the preconditioner solve routine requires no preparation, then a preconditioner setup
function need not be given.

4.7 A parallel band-block-diagonal preconditioner module

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, kinsol provides a band-block-diagonal preconditioner module kinbbdpre, to
be used with the parallel N Vector module described in §6.2.

This module provides a preconditioner matrix for kinsol that is block-diagonal with banded
blocks. The blocking corresponds to the distribution of the dependent variable vector u amongst the
processes. Each preconditioner block is generated from the Jacobian of the local part (associated with
the current process) of a given function G(u) approximating F (u) (G = F is allowed). The blocks
are generated by each process via a difference quotient scheme, utilizing a specified band structure.
This structure is given by upper and lower half-bandwidths, mudq and mldq, defined as the number
of non-zero diagonals above and below the main diagonal, respectively. However, from the resulting
approximate Jacobain blocks, only a matrix of bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of
G, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if the
couplings in the system outside a certain bandwidth are considerably weaker than those within the
band. Reducing mukeep and mlkeep while keeping mudq and mldq at their true values, discards the
elements outside the narrower band. Reducing both pairs has the additional effect of lumping the
outer Jacobian elements into the computed elements within the band, and requires more caution and
experimentation to see whether the lower cost of narrower band matrices offsets the loss of accuracy
in the blocks.

4.7 A parallel band-block-diagonal preconditioner module 57

The kinbbdpre module calls two user-provided functions to construct P : a required function Gloc

(of type KINLocalFn) which approximates the nonlinear system function function G(u) ≈ F (u) and
which is computed locally, and an optional function Gcomm (of type KINCommFn) which performs all
interprocess communication necessary to evaluate the approximate function G. These are in addition
to the user-supplied nonlinear system function that evaluates F (u). Both functions take as input
the same pointer user data as that passed by the user to KINSetUserData and passed to the user’s
function func, and neither function has a return value. The user is responsible for providing space
(presumably within user data) for components of u that are communicated by Gcomm from the other
processes, and that are then used by Gloc, which should not do any communication.

KINLocalFn

Definition typedef void (*KINLocalFn)(long int Nlocal, N Vector u,

N Vector gval, void *user data);

Purpose This Gloc function computes G(u), and outputs the resulting vector as gval.

Arguments Nlocal is the local vector length.

u is the current value of the iterate.

gval is the output vector.

user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

Return value A KINLocalFn function type does not have a return value.

Notes This function must assume that all interprocess communication of data needed to cal-
culate gval has already been done, and this data is accessible within user data.

Memory for u and gval is handled within the preconditioner module.

The case where G is mathematically identical to F is allowed.

KINCommFn

Definition typedef void (*KINCommFn)(long int Nlocal, N Vector u, void *user data);

Purpose This Gcomm function performs all interprocess communications necessary for the execu-
tion of the Gloc function above, using the input vector u.

Arguments Nlocal is the local vector length.

u is the current value of the iterate.

user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

Return value A KINCommFn function type does not have a return value.

Notes The Gcomm function is expected to save communicated data in space defined within the
structure user data.

Each call to the Gcomm function is preceded by a call to the system function func with
the same u argument. Thus Gcomm can omit any communications done by func if
relevant to the evaluation of Gloc. If all necessary communication was done in func,
then Gcomm = NULL can be passed in the call to KINBBDPrecInit (see below).

Besides the header files required for the solution of a nonlinear problem (see §4.3), to use the
kinbbdpre module, the main program must include the header file kinbbdpre.h which declares the
needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in
the user main program. Steps that are unchanged from the user main program presented in §4.4 are
grayed out.

1. Initialize MPI

58 Using KINSOL for C Applications

2. Set problem dimensions

3. Set vector with initial guess

4. Create kinsol object

5. Set optional inputs

6. Allocate internal memory

7. Attach iterative linear solver, one of:

flag = KINSpgmr(kin mem, maxl);

flag = KINSpfgmr(kin mem, maxl);

flag = KINSpbcg(kin mem, maxl);

flag = KINSptfqmr(kin mem, maxl);

8. Initialize the kinbbdpre preconditioner module

Specify the upper and lower half-bandwidth pairs (mudq, mldq) and (mukeep, mlkeep), and call

flag = KINBBDPrecInit(kin mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel u, Gloc, Gcomm);

to allocate memory for and initialize the internal preconditoner data. The last two arguments of
KINBBDPrecInit are the two user-supplied functions described above.

9. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner data, setup function, or solve function
through calls to kinspils optional input functions.

10. Solve problem

11. Get optional output

Additional optional outputs associated with kinbbdpre are available by way of two routines
described below, KINBBDPrecGetWorkSpace and KINBBDPrecGetNumGfnEvals.

12. Deallocate memory for solution vector

13. Free solver memory

14. Finalize MPI

The user-callable function that initializes kinbbdpre (step 8), is described in more detail below.

KINBBDPrecInit

Call flag = KINBBDPrecInit(kin mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel u, Gloc, Gcomm);

Description The function KINBBDPrecInit initializes and allocates memory for the kinbbdpre pre-
conditioner.

Arguments kin mem (void *) pointer to the kinsol memory block.

Nlocal (long int) local vector length.

mudq (long int) upper half-bandwidth to be used in the difference-quotient Jaco-
bian approximation.

mldq (long int) lower half-bandwidth to be used in the difference-quotient Jaco-
bian approximation.

4.7 A parallel band-block-diagonal preconditioner module 59

mukeep (long int) upper half-bandwidth of the retained banded approximate Jaco-
bian block.

mlkeep (long int) lower half-bandwidth of the retained banded approximate Jaco-
bian block.

dq rel u (realtype) the relative increment in components of u used in the difference
quotient approximations. The default is dq rel u=

√
unit roundoff, which

can be specified by passing dq rel u= 0.0.

Gloc (KINLocalFn) the C function which computes the approximation G(u) ≈
F (u).

Gcomm (KINCommFn) the optional C function which performs all interprocess commu-
nication required for the computation of G(u).

Return value The return value flag (of type int) is one of

KINSPILS SUCCESS The call to KINBBDPrecInit was successful.

KINSPILS MEM NULL The kin mem pointer was NULL.

KINSPILS MEM FAIL A memory allocation request has failed.

KINSPILS LMEM NULL A kinspils linear solver was not attached.

KINSPILS ILL INPUT The supplied vector implementation was not compatible with
block band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference-quotient cal-
culation of the approximate Jacobian is negative or exceeds the value Nlocal−1, it is
replaced with 0 or Nlocal−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of G, when smaller values may provide greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same for every process.

The following two optional output functions are available for use with the kinbbdpre module:

KINBBDPrecGetWorkSpace

Call flag = KINBBDPrecGetWorkSpace(kin mem, &lenrwBBDP, &leniwBBDP);

Description The function KINBBDPrecGetWorkSpace returns the local kinbbdpre real and integer
workspace sizes.

Arguments kin mem (void *) pointer to the kinsol memory block.

lenrwBBDP (long int) local number of realtype values in the kinbbdpre workspace.

leniwBBDP (long int) local number of integer values in the kinbbdpre workspace.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer was NULL.

KINSPILS PMEM NULL The kinbbdpre preconditioner has not been initialized.

Notes In terms of the local vector dimension Nlocal and smu = min(Nl−1, mukeep + mlkeep),
the actual size of the real workspace is (2 mlkeep + mukeep + smu +2) Nlocal realtype
words, and the actual size of the integer workspace is Nlocal integer words. These values
are local to the current processor.

The workspaces referred to here exist in addition to those given by the corresponding
KINSp*GetWorkSpace function.

60 Using KINSOL for C Applications

KINBBDPrecGetNumGfnEvals

Call flag = KINBBDPrecGetNumGfnEvals(kin mem, &ngevalsBBDP);

Description The function KINBBDPrecGetNumGfnEvals returns the number of calls to the user Gloc
function due to the difference quotient approximation of the Jacobian blocks used within
kinbbdpre’s preconditioner setup function.

Arguments kin mem (void *) pointer to the kinsol memory block.

ngevalsBBDP (long int) the number of calls to the user Gloc function.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer was NULL.

KINSPILS PMEM NULL The kinbbdpre preconditioner has not been initialized.

In addition to the ngevalsBBDP Gloc evaluations, the costs associated with kinbbdpre also include
nlinsetups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and
nfevalsLS right-hand side function evaluations, where nlinsetups is an optional kinsol output and
npsolves and nfevalsLS are linear solver optional outputs (see §4.5.5).

Chapter 5

FKINSOL, an Interface Module for
FORTRAN Applications

The fkinsol interface module is a package of C functions which support the use of the kinsol solver,
for the solution of nonlinear systems F (u) = 0, in a mixed Fortran/C setting. While kinsol is
written in C, it is assumed here that the user’s calling program and user-supplied problem-defining
routines are written in Fortran. This package provides the necessary interface to kinsol for all
supplied serial and the parallel nvector implementations.

5.1 Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user routines
called by them, appear as dummy names which are mapped to actual values by a series of definitions
in the header files. By default, those mapping definitions depend in turn on the C macro F77 FUNC

defined in the header file sundials config.h. The mapping defined by F77 FUNC in turn transforms
the C interface names to match the name-mangling approach used by the supplied Fortran compiler.

By “name-mangling”, we mean that due to the case-independent nature of the Fortran language,
Fortran compilers convert all subroutine and object names to use either all lower-case or all upper-
case characters, and append either zero, one or two underscores as a prefix or suffix to the name. For
example, the Fortran subroutine MyFunction() will be changed to one of myfunction, MYFUNCTION,
myfunction , MYFUNCTION , and so on, depending on the Fortran compiler used.

sundials determines this name-mangling scheme at configuration time (see Appendix A).

5.2 Fortran Data Types

Throughout this documentation, we will refer to data types according to their usage in C. The equiv-
alent types to these may vary, depending on your computer architecture and on how SUNDIALS was
compiled (see Appendix A). A Fortran user should first determine the equivalent types for their
architecture and compiler, and then take care that all arguments passed through this Fortran/C
interface are declared of the appropriate type.

Integers: sundials uses both int and long int types:

• int – equivalent to an INTEGER or INTEGER*4 in Fortran

• long int – this will depend on the computer architecture:

– 32-bit architecture – equivalent to an INTEGER or INTEGER*4 in Fortran

– 64-bit architecture – equivalent to an INTEGER*8 in Fortran

62 FKINSOL, an Interface Module for FORTRAN Applications

Real numbers: As discussed in Appendix A, at compilation sundials allows the configuration
option --with-precision, that accepts values of single, double or extended (the default is double).
This choice dictates the size of a realtype variable. The corresponding Fortran types for these
realtype sizes are:

• single – equivalent to a REAL or REAL*4 in Fortran

• double – equivalent to a DOUBLE PRECISION or REAL*8 in Fortran

• extended – equivalent to a REAL*16 in Fortran

5.3 FKINSOL routines

The user-callable functions, with the corresponding kinsol functions, are as follows:

• Interface to the nvector modules

– FNVINITS (defined by nvector serial) interfaces to N VNewEmpty Serial.

– FNVINITOMP (defined by nvector openmp) interfaces to N VNewEmpty OpenMP.

– FNVINITPTS (defined by nvector pthreads) interfaces to N VNewEmpty Pthreads.

– FNVINITP (defined by nvector parallel) interfaces to N VNewEmpty Parallel.

• Interface to the main kinsol module

– FKINMALLOC interfaces to KINCreate, KINSetUserData, and KINInit.

– FKINSETIIN and FKINSETRIN interface to KINSet* functions.

– FKINSETVIN interfaces to KINSetConstraints.

– FKINSOL interfaces to KINSol, KINGet* functions, and to the optional output functions for
the selected linear solver module.

– FKINFREE interfaces to KINFree.

• Interface to the linear solver modules

– FKINDENSE interfaces to KINDense.

– FKINDENSESETJAC interfaces to KINDlsSetDenseJacFn.

– FKINLAPACKDENSE interfaces to KINLapackDense.

– FKINLAPACKDENSESETJAC interfaces to KINDlsSetDenseJacFn.

– FKINBAND interfaces to KINBand.

– FKINBANDSETJAC interfaces to KINDlsSetBandJacFn.

– FKINLAPACKBAND interfaces to KINLapackBand.

– FKINLAPACKBANDSETJAC interfaces to KINDlsSetBandJacFn.

– FKINKLU interfaces to KINKLU.

– FKINKLUREINIT interfaces to KINKLUReInit.

– FKINSUPERLUMT interfaces to KINSuperLUMT.

– FKINSPGMR interfaces to KINSpgmr and spgmr optional input functions.

– FKINSPFGMR interfaces to KINSpfgmr and spfgmr optional input functions.

– FKINSPBCG interfaces to KINSpbcg and spbcg optional input functions.

– FKINSPTFQMR interfaces to KINSptfqmr and sptfqmr optional input functions.

– FKINSPILSSETJAC interfaces to KINSpilsSetJacTimesVecFn.

– FKINSPILSSETPREC interfaces to KINSpilsSetPreconditioner.

5.4 Usage of the FKINSOL interface module 63

The user-supplied functions, each listed with the corresponding internal interface function which
calls it (and its type within kinsol), are as follows:

fkinsol routine kinsol function kinsol type of
(Fortran, user-supplied) (C, interface) interface function

FKFUN FKINfunc KINSysFn

FKDJAC FKINDenseJac KINDlsDenseJacFn

FKINLapackDenseJac KINDlsDenseJacFn

FKBJAC FKINBandJac KINDlsBandJacFn

FKINLapackBandJac KINDlsBandJacFn

FKINSPJAC FKINSparseJac KINSlsSparseJacFn

FKPSET FKINPSet KINSpilsPrecSetupFn

FKPSOL FKINPSol KINSpilsPrecSolveFn

FKJTIMES FKINJtimes KINSpilsJacTimesVecFn

In contrast to the case of direct use of kinsol, the names of all user-supplied routines here are fixed,
in order to maximize portability for the resulting mixed-language program.

5.4 Usage of the FKINSOL interface module

The usage of fkinsol requires calls to a few different interface functions, depending on the method
options selected, and one or more user-supplied routines which define the problem to be solved. These
function calls and user routines are summarized separately below. Some details are omitted, and
the user is referred to the description of the corresponding kinsol functions for information on the
arguments of any given user-callable interface routine, or of a given user-supplied function called by
an interface function.

In the instructions below, steps marked [S] apply to the NVECTOR module nvector serial,
steps marked [O] apply to nvector openmp, steps marked [T] apply to nvector pthreads, while
steps marked [P] apply to nvector parallel,

1. Nonlinear system function specification

The user must, in all cases, supply the following Fortran routine

SUBROUTINE FKFUN (U, FVAL, IER)

DIMENSION U(*), FVAL(*)

It must set the FVAL array to F (u), the system function, as a function of U = u. IER is an error
return flag which should be set to 0 if successful, a positive value if a recoverable error occurred
(in which case kinsol will attempt to correct), or a negative value if it failed unrecoverably (in
which case the solution process is halted).

2. nvector module initialization

[S] To initialize the serial nvector module, the user must make the following call:

CALL FNVINITS (KEY, NEQ, IER)

where KEY is the solver id (KEY = 3 for kinsol), NEQ is the size of vectors, and IER is a return
completion flag which is 0 on success and −1 if a failure occurred.

[O] To initialize the nvector openmp nvector module, the user must make the following call:

CALL FNVINITOMP(KEY, NEQ, NUMTHREADS, IER)

64 FKINSOL, an Interface Module for FORTRAN Applications

where KEY is the solver id (KEY = 3 for kinsol), NEQ is the size of vectors, NUMTHREADS is the
number of threads, and IER is a return completion flag which is 0 on success and −1 if a failure
occurred.

[T] To initialize the nvector pthreads nvector module, the user must make the following
call:

CALL FNVINITPTS(KEY, NEQ, NUMTHREADS, IER)

where KEY is the solver id (KEY = 3 for kinsol), NEQ is the size of vectors, NUMTHREADS is the
number of threads, and IER is a return completion flag which is 0 on success and −1 if a failure
occurred.

[P] To initialize the distributed memory parallel vector module, the user must make the following
call:

CALL FNVINITP (COMM, KEY, NLOCAL, NGLOBAL, IER)

in which the arguments are: COMM = MPI communicator, KEY = 3 for kinsol, NLOCAL = the local
size of vectors on this processor, and NGLOBAL = the system size (and the global size of all vectors,
equal to the sum of all values of NLOCAL). The return flag IER is set to 0 on a successful return
and to −1 otherwise.

NOTE: The integers NEQ, NLOCAL, and NGLOBAL should be declared so as to match C type long

int.

If the header file sundials config.h defines SUNDIALS MPI COMM F2C to be 1 (meaning the MPI!

implementation used to build sundials includes the MPI Comm f2c function), then COMM can be
any valid MPI communicator. Otherwise, MPI COMM WORLD will be used, so just pass an integer
value as a placeholder.

3. Problem specification

To set various problem and solution parameters and allocate internal memory, make the following
call:

FKINMALLOC

Call CALL FKINMALLOC (IOUT, ROUT, IER)

Description This function specifies the optional output arrays, allocates internal memory, and
initializes kinsol.

Arguments IOUT is an integer array for integer optional outputs.
ROUT is a real array for real optional outputs.

Return value IER is the return completion flag. Values are 0 for successful return and −1 other-
wise. See printed message for details in case of failure.

Notes The user integer data array IOUT must be declared as INTEGER*4 or INTEGER*8

according to the C type long int.

The optional outputs associated with the main kinsol integrator are listed in Ta-
ble 5.2.

4. Set optional inputs

Call FKINSETIIN, FKINSETRIN, and/or FKINSETVIN, to set desired optional inputs, if any. See §5.5
for details.

5. Linear solver specification

5.4 Usage of the FKINSOL interface module 65

The solution method in kinsol involves the solution of linear systems related to the Jacobian of
the nonlinear system. The user of fkinsol must call a routine with a specific name to make the
desired choice of linear solver.

[S] Dense treatment of the linear system

To use the direct dense linear solver based on the internal kinsol implementation, the user must
make the call:

CALL FKINDENSE (NEQ, IER)

where NEQ is the size of the nonlinear system. The argument IER is an error return flag which is
0 for success , −1 if a memory allocation failure occurred, or −2 for illegal input.

Alternatively, to use the Lapack-based direct dense linear solver, the user must make the call:

CALL FKINLAPACKDENSE(NEQ, IER)

where the arguments have the same meanings as for FKINDENSE, except that here NEQ must be
declared so as to match C type int.

As an option when using the dense linear solver, the user may supply a routine that computes a
dense approximation of the system Jacobian J = ∂F/∂u. If supplied, it must have the following
form:

SUBROUTINE FKDJAC (NEQ, U, FVAL, DJAC, WK1, WK2, IER)

DIMENSION U(*), FVAL(*), DJAC(NEQ,*), WK1(*), WK2(*)

Typically this routine will use only NEQ, U, and DJAC. It must compute the Jacobian and store it
columnwise in DJAC. The input arguments U and FVAL contain the current values of u and F (u),
respectively. The vectors WK1 and WK2, of length NEQ, are provided as work space for use in FKDJAC.
IER is an error return flag which should be set to 0 if successful, a positive value if a recoverable
error occurred (in which case kinsol will attempt to correct), or a negative value if FKDJAC failed
unrecoverably (in which case the solution process is halted). NOTE: The argument NEQ has a type
consistent with C type long int even in the case when the Lapack dense solver is to be used.

If the FKDJAC routine is provided, then, following the call to FKINDENSE, the user must make the
call:

CALL FKINDENSESETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is an
error return flag which is 0 for success or non-zero if an error occurred. If using the Lapack-based
direct dense linear solver, the use of a Jacobian approximation supplied by the user is indicated
through the call

CALL FKINLAPACKDENSESETJAC (FLAG, IER)

Optional outputs specific to the dense case are listed in Table 5.2.

[S] Band treatment of the linear system

To use the direct band linear solver based on the internal kinsol implementation, the user must
make the call:

CALL FKINBAND (NEQ, MU, ML, IER)

66 FKINSOL, an Interface Module for FORTRAN Applications

The arguments are: MU, the upper half-bandwidth; ML, the lower half-bandwidth; and IER, an
error return flag which is 0 for success , −1 if a memory allocation failure occurred, or −2 in case
an input has an illegal value.

Alternatively, to use the Lapack-based direct band linear solver, the user must make the call:

CALL FKINLAPACKBAND(NEQ, MU, ML, IER)

where the arguments have the same meanings as for FKINBAND, except that here NEQ, MU, and ML

must be declared so as to match C type int.

As an option when using the band linear solver, the user may supply a routine that computes a
band approximation of the system Jacobian J = ∂F/∂u. If supplied, it must have the following
form:

SUBROUTINE FKBJAC (NEQ, MU, ML, MDIM, U, FVAL, BJAC, WK1, WK2, IER)

DIMENSION U(*), FVAL(*), BJAC(MDIM,*), WK1(*), WK2(*)

Typically this routine will use only NEQ, MU, ML, U, and BJAC. It must load the MDIM by N array BJAC

with the Jacobian matrix at the current u in band form. Store in BJAC(k, j) the Jacobian element
Ji,j with k = i− j+ MU +1 (k = 1 · · · ML + MU + 1) and j = 1 · · ·N . The input arguments U and
FVAL contain the current values of u, and F (u), respectively. The vectors WK1 and WK2 of length
NEQ are provided as work space for use in FKBJAC. IER is an error return flag, which should be
set to 0 if successful, a positive value if a recoverable error occurred (in which case kinsol will
attempt to correct), or a negative value if FKBJAC failed unrecoverably (in which case the solution
process is halted). NOTE: The arguments NEQ, MU, ML, and MDIM have a type consistent with C

type long int even in the case when the Lapack band solver is to be used.

If the FKBJAC routine is provided, then, following the call to FKINBAND, the user must make the
call:

CALL FKINBANDSETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is an
error return flag which is 0 for success or non-zero if an error occurred. If using the Lapack-based
direct band linear solver, the use of a Jacobian approximation supplied by the user is indicated
through the call

CALL FKINLAPACKNBANDSETJAC (FLAG, IER)

Optional outputs specific to the band case are listed in Table 5.2.

[S] Sparse direct treatment of the linear system

To use the KLU sparse direct linear solver, the user must make the call:

CALL FKINKLU (NEQ, NNZ, ORDERING, IER)

where NEQ is the size of the nonlinear system, NNZ is the maximum number of nonzeros in the
Jacobian matrix, and ORDERING is the matrix ordering desired with possible values from the KLU
package (0 = AMD, 1 = COLAMD). The argument IER is an error return flag which is 0 for
success or negative for an error.

The kinsol KLU solver will reuse much of the factorization information from one nonlinear
iteration to the next. If at any time the user wants to force a full refactorization or if the number
of nonzeros in the Jacobian matrix changes, the user should make the call

CALL FKINKLUREINIT(NEQ, NNZ, REINIT_TYPE)

5.4 Usage of the FKINSOL interface module 67

where NEQ is the size of the nonlinear system, NNZ is the maximum number of nonzeros in the
Jacobian matrix, and REINIT TYPE is 1 or 2. For a value of 1, the matrix will be destroyed and
a new one will be allocated with NNZ nonzeros. For a value of 2, only symbolic and numeric
factorizations will be completed.

Alternatively, to use the SuperLUMT linear solver, the user must make the call:

CALL FKINSUPERLUMT (NEQ, NNZ, ORDERING, IER)

where the arguments have the same meanings as for FKINKLU, except that here possible values
for ORDERING derive from the superlumt package and include: 0 for Natural ordering, 1 for
Minimum degree on AT A, 2 for Minimum degree on AT + A, and 3 for COLAMD.

If the either of the sparse direct interface packages are used, then the user must supply the
FKINSPJAC routine that computes a compressed-sparse-column approximation of the system Ja-
cobian J = dF (y)/dy. If supplied, it must have the following form:

SUBROUTINE FKINSPJAC(Y, FY, N, NNZ, JDATA, JRVALS,

& JCPTRS, WK1, WK2, IER)

Typically this routine will use only N, NNZ, JDATA, JRVALS and JCPTRS. It must load the N by
N compressed sparse column matrix with storage for NNZ nonzeros, stored in the arrays JDATA

(nonzero values), JRVALS (row indices for each nonzero), JCOLPTRS (indices for start of each
column), with the Jacobian matrix at the current (y) in CSC form (see sundials sparse.h

for more information). The arguments are Y, an array containing state variables, FY, an array
containing residual values, N, the number of matrix rows/columns in the Jacobian, NNZ, allocated
length of nonzero storage, JDATA, nonzero values in the Jacobian (of length NNZ), JRVALS, row
indices for each nonzero in Jacobian (of length NNZ), JCPTRS, pointers to each Jacobian column
in the two preceding arrays (of length N+1), WK*, work arrays containing temporary workspace of
same size as Y, and IER, error return code (0 if successful, ¿0 if a recoverable error occurred, or ¡0
if an unrecoverable error ocurred.)

Optional outputs specific to the dense case are listed in Table 5.2.

[S][P] SPGMR and SPFGMR treatment of the linear systems

For the Scaled Preconditioned GMRES or the Scaled Preconditioned Flexible GMRES solution
of the linear systems, the user must make either the call

CALL FKINSPGMR (MAXL, MAXLRST, IER)

or the call

CALL FKINSPFGMR (MAXL, MAXLRST, IER)

The arguments are as follows. MAXL is the maximum Krylov subspace dimension. MAXLRST is the
maximum number of restarts. IER is an error return flag which is 0 to indicate success, −1 if a
memory allocation failure occurred, or −2 to indicate an illegal input.

Optional outputs specific to the spgmr and spfgmr cases are listed in Table 5.2.

For descriptions of the relevant optional user-supplied routines, see User-supplied routines for
SPGMR/SPFMGR/SPBCG/SPTFQMR below.

[S][P] SPBCG treatment of the linear systems

For the Scaled Preconditioned Bi-CGStab solution of the linear systems, the user must make the
call

CALL FKINSPBCG (MAXL, IER)

68 FKINSOL, an Interface Module for FORTRAN Applications

Its arguments are the same as those with the same names for FKINSPGMR.

Optional outputs specific to the spbcg case are listed in Table 5.2.

For descriptions of the relevant optional user-supplied routines, see below.

[S][P] SPTFQMR treatment of the linear systems

For the Scaled Preconditioned Transpose-Free Quasi-Minimal Residual solution of the linear sys-
tems, the user must make the call

CALL FKINSPTFQMR (MAXL, IER)

Its arguments are the same as those with the same names for FKINSPGMR.

Optional outputs specific to the sptfqmr case are listed in Table 5.2.

For descriptions of the relevant optional user-supplied routines, see below.

[S][P] Functions used by SPGMR/SPFGMR/SPBCG/SPTFQMR

An optional user-supplied routine, FKINJTIMES (see below), can be provided for Jacobian-vector
products. (Note that this routine is required if Picard iteration is being used.) If it is, then,
following the call to FKINSPGMR, FKINSPFGMR, FKINSPBCG, or FKINSPTFQMR, the user must make
the call:

CALL FKINSPILSSETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian-times-vector approximation. The
argument IER is an error return flag which is 0 for success or non-zero if an error occurred.

If preconditioning is to be done, then the user must call

CALL FKINSPILSSETPREC (FLAG, IER)

with FLAG 6= 0. The return flag IER is 0 if successful, or negative if a memory error occurred. In
addition, the user program must include preconditioner routines FKPSOL and FKPSET (see below).

[S][P] User-supplied routines for SPGMR/SPFGMR/SPBCG/SPTFQMR

With treatment of the linear systems by any of the Krylov iterative solvers, there are three optional
user-supplied routines — FKINJTIMES, FKPSOL, and FKPSET. The specifications for these routines
are given below.

As an option when using the spgmr, spfgmr, spbcg, or sptfqmr linear solvers, the user may
supply a routine that computes the product of the system Jacobian J = ∂F/∂u and a given vector
v. If supplied, it must have the following form:

SUBROUTINE FKINJTIMES (V, FJV, NEWU, U, IER)

DIMENSION V(*), FJV(*), U(*)

Typically this routine will use only U, V, and FJV. It must compute the product vector Jv, where
the vector v is stored in V, and store the product in FJV. The input argument U contains the
current value of u. On return, set IER = 0 if FKINJTIMES was successful, and nonzero otherwise.
NEWU is a flag to indicate if U has been changed since the last call; if it has, then NEWU = 1, and
FKINJTIMES should recompute any saved Jacobian data it uses and reset NEWU to 0. (See §4.6.7.)

If preconditioning is to be included, the following routine must be supplied, for solution of the
preconditioner linear system:

SUBROUTINE FKPSOL (U, USCALE, FVAL, FSCALE, VTEM, FTEM, IER)

DIMENSION U(*), USCALE(*), FVAL(*), FSCALE(*), VTEM(*), FTEM(*)

5.5 FKINSOL optional input and output 69

Typically this routine will use only U, FVAL, VTEM and FTEM. It must solve the preconditioned linear
system Pz = r, where r = VTEM is input, and store the solution z in VTEM as well. Here P is the
right preconditioner. If scaling is being used, the routine supplied must also account for scaling
on either coordinate or function value, as given in the arrays USCALE and FSCALE, respectively.

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed,
then the following routine can be used for the evaluation and preprocessing of the preconditioner:

SUBROUTINE FKPSET (U, USCALE, FVAL, FSCALE, VTEMP1, VTEMP2, IER)

DIMENSION U(*), USCALE(*), FVAL(*), FSCALE(*), VTEMP1(*), VTEMP2(*)

It must perform any evaluation of Jacobian-related data and preprocessing needed for the solution
of the preconditioned linear systems by FKPSOL. The variables U through FSCALE are for use in
the preconditioning setup process. Typically, the system function FKFUN is called before any calls
to FKPSET, so that FVAL will have been updated. U is the current solution iterate. The arrays
VTEMP1 and VTEMP2 are available for work space. If scaling is being used, USCALE and FSCALE are
available for those operations requiring scaling.

On return, set IER = 0 if FKPSET was successful, or set IER = 1 if an error occurred.

If the user calls FKINSPILSSETPREC, the routine FKPSET must be provided, even if it is not needed, !

and then it should return IER = 0.

6. Problem solution

Solving the nonlinear system is accomplished by making the following call:

CALL FKINSOL (U, GLOBALSTRAT, USCALE, FSCALE, IER)

The arguments are as follows. U is an array containing the initial guess on input, and the solution
on return. GLOBALSTRAT is an integer (type INTEGER) defining the global strategy choice (0 specifies
Inexact Newton, 1 indicates Newton with line search, 2 indicates Picard iteration, and 3 indicates
Fixed Point iteration). USCALE is an array of scaling factors for the U vector. FSCALE is an array
of scaling factors for the FVAL vector. IER is an integer completion flag and will have one of the
following values: 0 to indicate success, 1 to indicate that the initial guess satisfies F (u) = 0 within
tolerances, 2 to indicate apparent stalling (small step), or a negative value to indicate an error or
failure. These values correspond to the KINSol returns (see §4.5.3 and §B.2). The values of the
optional outputs are available in IOPT and ROPT (see Table 5.2).

7. Memory deallocation

To free the internal memory created by the call to FKINMALLOC, make the call

CALL FKINFREE

5.5 FKINSOL optional input and output

In order to keep the number of user-callable fkinsol interface routines to a minimum, optional inputs
to the kinsol solver are passed through only three routines: FKINSETIIN for integer optional inputs,
FKINSETRIN for real optional inputs, and FKINSETVIN for real vector (array) optional inputs. These
functions should be called as follows:

CALL FKINSETIIN (KEY, IVAL, IER)

CALL FKINSETRIN (KEY, RVAL, IER)

CALL FKINSETVIN (KEY, VVAL, IER)

70 FKINSOL, an Interface Module for FORTRAN Applications

Table 5.1: Keys for setting fkinsol optional inputs

Integer optional inputs FKINSETIIN
Key Optional input Default value

PRNT LEVEL Verbosity level of output 0
MAX NITER Maximum no. of nonlinear iterations 200
ETA FORM Form of η coefficient 1 (KIN ETACHOICE1)

MAX SETUPS Maximum no. of iterations without prec. setup 10
MAX SP SETUPS Maximum no. of iterations without residual check 5
NO INIT SETUP No initial preconditioner setup FALSE

NO MIN EPS Lower bound on ǫ FALSE

NO RES MON No residual monitoring FALSE

Real optional inputs (FKINSETRIN)
Key Optional input Default value

FNORM TOL Function-norm stopping tolerance uround1/3

SSTEP TOL Scaled-step stopping tolerance uround2/3

MAX STEP Max. scaled length of Newton step 1000‖Duu0‖2

RERR FUNC Relative error for F.D. Jv
√

uround
ETA CONST Constant value of η 0.1
ETA PARAMS Values of γ and α 0.9 and 2.0
RMON CONST Constant value of ω 0.9

RMON PARAMS Values of ωmin and ωmax 0.00001 and 0.9

where KEY is a quoted string indicating which optional input is set, IVAL is the integer input value to
be used, RVAL is the real input value to be used, and VVAL is the input real array to be used. IER is
an integer return flag which is set to 0 on success and a negative value if a failure occurred. For the
legal values of KEY in calls to FKINSETIIN and FKINSETRIN, see Table 5.1. The one legal value of KEY
for FKINSETVIN is CONSTR VEC, for providing the array of inequality constraints to be imposed on the
solution, if any. The integer IVAL should be declared in a manner consistent with C type long int.

The optional outputs from the kinsol solver are accessed not through individual functions, but
rather through a pair of arrays, IOUT (integer type) of dimension at least 15, and ROUT (real type) of
dimension at least 2. These arrays are owned (and allocated) by the user and are passed as arguments
to FKINMALLOC. Table 5.2 lists the entries in these two arrays and specifies the optional variable as
well as the kinsol function which is actually called to extract the optional output.

For more details on the optional inputs and outputs, see §4.5.4 and §4.5.5.

5.6 Usage of the FKINBBD interface to KINBBDPRE

The fkinbbd interface sub-module is a package of C functions which, as part of the fkinsol interface
module, support the use of the kinsol solver with the parallel nvector parallel module and
the kinbbdpre preconditioner module (see §4.7), for the solution of nonlinear problems in a mixed
Fortran/C setting.

The user-callable functions in this package, with the corresponding kinsol and kinbbdpre func-
tions, are as follows:

• FKINBBDINIT interfaces to KINBBDPrecInit.

• FKINBBDOPT interfaces to kinbbdpre optional output functions.

In addition to the Fortran right-hand side function FKFUN, the user-supplied functions used by
this package, are listed below, each with the corresponding interface function which calls it (and its
type within kinbbdpre or kinsol):

5.6 Usage of the FKINBBD interface to KINBBDPRE 71

Table 5.2: Description of the fkinsol optional output arrays IOUT and ROUT

Integer output array IOUT

Index Optional output kinsol function
kinsol main solver

1 LENRW KINGetWorkSpace

2 LENIW KINGetWorkSpace

3 NNI KINGetNumNonlinSolvIters

4 NFE KINGetNumFuncEvals

5 NBCF KINGetNumBetaCondFails

6 NBKTRK KINGetNumBacktrackOps

kindense, kinband linear solver
7 LENRWLS KINDlsGetWorkSpace

8 LENIWLS KINDlsGetWorkSpace

9 LS FLAG KINDlsGetLastFlag

10 NFELS KINDlsGetNumFuncEvals

11 NJE KINDlsGetNumJacEvals

kinsparse linear solver
8 LS FLAG KINSlsGetLastFlag

10 NJE KINSlsGetNumJacEvals

kinspgmr, kinspfgmr, kinspbcg, kinsptfqmr linear solvers
7 LENRWLS KINSpilsGetWorkSpace

8 LENIWLS KINSpilsGetWorkSpace

9 LS FLAG KINSpilsGetLastFlag

10 NFELS KINSpilsGetNumFuncEvals

11 NJTV KINSpilsGetNumJacEvals

12 NPE KINSpilsGetNumPrecEvals

13 NPS KINSpilsGetNumPrecSolves

14 NLI KINSpilsGetNumLinIters

15 NCFL KINSpilsGetNumConvFails

Real output array ROUT

Index Optional output kinsol function
1 FNORM KINGetFuncNorm

2 SSTEP KINGetStepLength

72 FKINSOL, an Interface Module for FORTRAN Applications

fkinbbd routine kinsol function kinsol type of
(Fortran, user-supplied) (C, interface) interface function

FKLOCFN FKINgloc KINLocalFn

FKCOMMF FKINgcomm KINCommFn

FKJTIMES FKINJtimes KINSpilsJacTimesVecFn

As with the rest of the fkinsol routines, the names of all user-supplied routines here are fixed, in
order to maximize portability for the resulting mixed-language program. Additionally, based on flags
discussed above in §5.3, the names of the user-supplied routines are mapped to actual values through
a series of definitions in the header file fkinbbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main
program described in §5.4 are grayed-out.

1. Nonlinear system function specification

2. nvector module initialization

3. Problem specification

4. Set optional inputs

5. Linear solver specification

First, specify one of the kinspils iterative linear solvers, by calling one of FKINSPGMR, FKINSPFGRM,
FKINSPBCG, or FKINSPTFQMR.

To initialize the kinbbdpre preconditioner, make the following call:

CALL FKINBBDINIT (NLOCAL, MUDQ, MLDQ, MU, ML, IER)

The arguments are as follows. NLOCAL is the local size of vectors for this process. MUDQ and MLDQ

are the upper and lower half-bandwidths to be used in the computation of the local Jacobian blocks
by difference quotients; these may be smaller than the true half-bandwidths of the Jacobian of
the local block of G, when smaller values may provide greater efficiency. MU and ML are the upper
and lower half-bandwidths of the band matrix that is retained as an approximation of the local
Jacobian block; these may be smaller than MUDQ and MLDQ. IER is a return completion flag. A
value of 0 indicates success, while a value of −1 indicates that a memory failure occurred or that
an input had an illegal value.

Optionally, to specify that spgmr, spfgmr, spbcg, or sptfqmr should use the supplied FKJTIMES,
make the call

CALL FKINSPILSSETJAC (FLAG, IER)

with FLAG 6= 0. (See step 5 in §5.4).

6. Problem solution

7. kinbbdpre Optional outputs

Optional outputs specific to the spgmr, spfgmr, spbcg, or sptfqmr solver are listed in Table
5.2. To obtain the optional outputs associated with the kinbbdpre module, make the following
call:

CALL FKINBBDOPT (LENRBBD, LENIBBD, NGEBBD)

The arguments should be consistent with C type long int. Their returned values are as follows:
LENRBBD is the length of real preconditioner work space, in realtype words. LENIBBD is the length
of integer preconditioner work space, in integer words. These sizes are local to the current process.
NGEBBD is the cumulative number of G(u) evaluations (calls to FKLOCFN) so far.

5.6 Usage of the FKINBBD interface to KINBBDPRE 73

8. Memory deallocation

(The memory allocated for the fkinbbd module is deallocated automatically by FKINFREE.)

9. User-supplied routines

The following two routines must be supplied for use with the kinbbdpre module:

SUBROUTINE FKLOCFN (NLOC, ULOC, GLOC, IER)

DIMENSION ULOC(*), GLOC(*)

This routine is to evaluate the function G(u) approximating F (possibly identical to F), in terms
of the array ULOC (of length NLOC), which is the sub-vector of u local to this processor. The
resulting (local) sub-vector is to be stored in the array GLOC. IER is an error return flag which
should be set to 0 if successful, a positive value if a recoverable error occurred (in which case
kinsol will attempt to correct), or a negative value if FKLOCFN failed unrecoverably (in which
case the solution process is halted).

SUBROUTINE FKCOMMFN (NLOC, ULOC, IER)

DIMENSION ULOC(*)

This routine is to perform the inter-processor communication necessary for the FKLOCFN routine.
Each call to FKCOMMFN is preceded by a call to the system function routine FKFUN with the same
argument ULOC. IER is an error return flag which should be set to 0 if successful, a positive value
if a recoverable error occurred (in which case kinsol will attempt to correct), or a negative value
if FKCOMMFN failed recoverably (in which case the solution process is halted).

The subroutine FKCOMMFN must be supplied even if it is not needed and must return IER = 0. !

Optionally, the user can supply a routine FKINJTIMES for the evaluation of Jacobian-vector prod-
ucts, as described above in step 5 in §5.4. Note that this routine is required if using Picard
iteration.

Chapter 6

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vectors
(of type N Vector) through a set of operations defined by the particular nvector implementation.
Users can provide their own specific implementation of the nvector module, or use one of four
provided within sundials – a serial implementation and three parallel implementations. The generic
operations are described below. In the sections following, the implementations provided with sundials

are described.
The generic N Vector type is a pointer to a structure that has an implementation-dependent

content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector (*nvclone)(N_Vector);

N_Vector (*nvcloneempty)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, long int *, long int *);

realtype* (*nvgetarraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);

76 Description of the NVECTOR module

realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);

realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic nvector module defines and implements the vector operations acting on N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector

implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector

module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Table 6.1 contains a complete list of all vector operations defined by the generic nvector module.
Finally, note that the generic nvector module defines the functions N VCloneVectorArray and

N VCloneEmptyVectorArray. Both functions create (by cloning) an array of count variables of type
N Vector, each of the same type as an existing N Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);

N_Vector *N_VCloneEmptyVectorArray(int count, N_Vector w);

and their definitions are based on the implementation-specific N VClone and N VCloneEmpty opera-
tions, respectively.

An array of variables of type N Vector can be destroyed by calling N VDestroyVectorArray, whose
prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.

77

Table 6.1: Description of the NVECTOR operations

Name Usage and Description

N VClone v = N VClone(w);

Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not copy the vector, but rather allocates storage
for the new vector.

N VCloneEmpty v = N VCloneEmpty(w);

Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not allocate storage for data.

N VDestroy N VDestroy(v);

Destroys the N Vector v and frees memory allocated for its internal
data.

N VSpace N VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N Vector. lrw contains the num-
ber of realtype words and liw contains the number of integer words.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied nvector

module if that information is not of interest.

N VGetArrayPointer vdata = N VGetArrayPointer(v);

Returns a pointer to a realtype array from the N Vector v. Note
that this assumes that the internal data in N Vector is a contiguous
array of realtype. This routine is only used in the solver-specific in-
terfaces to the dense and banded (serial) linear solvers, the sparse lin-
ear solvers (serial and threaded), and in the interfaces to the banded
(serial) and band-block-diagonal (parallel) preconditioner modules pro-
vided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);

Overwrites the data in an N Vector with a given array of realtype.
Note that this assumes that the internal data in N Vector is a contigu-
ous array of realtype. This routine is only used in the interfaces to
the dense (serial) linear solver, hence need not exist in a user-supplied
nvector module for a parallel environment.

N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax+ by, where a and b are realtype scalars
and x and y are of type N Vector: zi = axi + byi, i = 0, . . . , n − 1.

N VConst N VConst(c, z);

Sets all components of the N Vector z to realtype c: zi = c, i =
0, . . . , n − 1.

continued on next page

78 Description of the NVECTOR module

continued from last page

Name Usage and Description

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector

inputs x and y: zi = xiyi, i = 0, . . . , n − 1.

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector

inputs x and y: zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested
for 0 values. It should only be called with a y that is guaranteed to have
all nonzero components.

N VScale N VScale(c, x, z);

Scales the N Vector x by the realtype scalar c and returns the result
in z: zi = cxi, i = 0, . . . , n − 1.

N VAbs N VAbs(x, z);

Sets the components of the N Vector z to be the absolute values of the
components of the N Vector x: yi = |xi|, i = 0, . . . , n − 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may
not check for division by 0. It should be called only with an x which is
guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);

Adds the realtype scalar b to all components of x and returns the result
in the N Vector z: zi = xi + b, i = 0, . . . , n − 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.
N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root-mean-square norm of the N Vector x with

realtype weight vector w: m =

√

(

∑n−1
i=0 (xiwi)2

)

/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N Vector x with
realtype weight vector w built using only the elements of x correspond-
ing to nonzero elements of the N Vector id:

m =

√

(

∑n−1
i=0 (xiwisign(idi))2

)

/n.

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.

continued on next page

6.1 The NVECTOR SERIAL implementation 79

continued from last page

Name Usage and Description

N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean ℓ2 norm of the N Vector x with

realtype weight vector w: m =
√

∑n−1
i=0 (xiwi)2.

N VL1Norm m = N VL1Norm(x);

Returns the ℓ1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.
N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the realtype scalar c

and returns an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0
otherwise.

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the com-
ponents of the N Vector x, with prior testing for zero values: zi =
1.0/xi, i = 0, . . . , n−1. This routine returns a boolean assigned to TRUE

if all components of x are nonzero (successful inversion) and returns
FALSE otherwise.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if ci = 1,
xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint on xi if
ci = 0. This routine returns a boolean assigned to FALSE if any element
failed the constraint test and assigned to TRUE if all passed. It also
sets a mask vector m, with elements equal to 1.0 where the constraint
test failed, and 0.0 where the test passed. This routine is used only for
constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-
wise dividing numi by denomi. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG REAL (defined
in the header file sundials types.h) is returned.

6.1 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {

long int length;

booleantype own_data;

realtype *data;

};

The following five macros are provided to access the content of an nvector serial vector. The suffix
S in the names denotes the serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

80 Description of the NVECTOR module

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ((N_VectorContent_Serial)(v->content))

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) (NV_CONTENT_S(v)->own_data)

#define NV_DATA_S(v) (NV_CONTENT_S(v)->data)

#define NV_LENGTH_S(v) (NV_CONTENT_S(v)->length)

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n − 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) (NV_DATA_S(v)[i])

The nvector serial module defines serial implementations of all vector operations listed in Table
6.1. Their names are obtained from those in Table 6.1 by appending the suffix Serial. The module
nvector serial provides the following additional user-callable routines:

• N VNew Serial

This function creates and allocates memory for a serial N Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(long int vec_length);

• N VNewEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(long int vec_length);

• N VMake Serial

This function creates and allocates memory for a serial vector with user-provided data array.

N_Vector N_VMake_Serial(long int vec_length, realtype *v_data);

• N VCloneVectorArray Serial

This function creates (by cloning) an array of count serial vectors.

N_Vector *N_VCloneVectorArray_Serial(int count, N_Vector w);

• N VCloneEmptyVectorArray Serial

This function creates (by cloning) an array of count serial vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneEmptyVectorArray_Serial(int count, N_Vector w);

6.2 The NVECTOR PARALLEL implementation 81

• N VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Serial or with N VCloneEmptyVectorArray Serial.

void N_VDestroyVectorArray_Serial(N_Vector *vs, int count);

• N VPrint Serial

This function prints the content of a serial vector to stdout.

void N_VPrint_Serial(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• N VNewEmpty Serial, N VMake Serial, and N VCloneEmptyVectorArray Serial set the field !

own data = FALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not attempt
to free the pointer data for any N Vector with own data set to FALSE. In such a case, it is the
user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector serial implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.2 The NVECTOR PARALLEL implementation

The nvector parallel implementation of the nvector module provided with sundials is based on
MPI. It defines the content field of N Vector to be a structure containing the global and local lengths
of the vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, an
a boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

long int local_length;

long int global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The following seven macros are provided to access the content of a nvector parallel vector. The
suffix P in the names denotes the distributed memory parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorParallelContent.

Implementation:

#define NV_CONTENT_P(v) ((N_VectorContent_Parallel)(v->content))

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

82 Description of the NVECTOR module

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) (NV_CONTENT_P(v)->own_data)

#define NV_DATA_P(v) (NV_CONTENT_P(v)->data)

#define NV_LOCLENGTH_P(v) (NV_CONTENT_P(v)->local_length)

#define NV_GLOBLENGTH_P(v) (NV_CONTENT_P(v)->global_length)

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) (NV_CONTENT_P(v)->comm)

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n − 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) (NV_DATA_P(v)[i])

The nvector parallel module defines parallel implementations of all vector operations listed in
Table 6.1 Their names are obtained from those in Table 6.1 by appending the suffix Parallel. The
module nvector parallel provides the following additional user-callable routines:

• N VNew Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VNewEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VMake Parallel

This function creates and allocates memory for a parallel vector with user-provided data array.

6.3 The NVECTOR OPENMP implementation 83

N_Vector N_VMake_Parallel(MPI_Comm comm,

long int local_length,

long int global_length,

realtype *v_data);

• N VCloneVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors.

N_Vector *N_VCloneVectorArray_Parallel(int count, N_Vector w);

• N VCloneEmptyVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneEmptyVectorArray_Parallel(int count, N_Vector w);

• N VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Parallel or with N VCloneEmptyVectorArray Parallel.

void N_VDestroyVectorArray_Parallel(N_Vector *vs, int count);

• N VPrint Parallel

This function prints the content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneEmptyVectorArray Parallel set the !

field own data = FALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will not
attempt to free the pointer data for any N Vector with own data set to FALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.3 The NVECTOR OPENMP implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel
threads with shared memory, sundials provides an implementation of nvector using OpenMP,
called nvector openmp, and an implementation using pThreads, called nvector pthreads. Test-
ing has shown that vectors should be of length at least 100, 000 before the overhead associated with
creating and using the threads is made up by the parallelism in the vector calculations.

The OpenMP nvector implementation provided with sundials, nvector openmp, defines the
content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using OpenMP.

84 Description of the NVECTOR module

struct _N_VectorContent_OpenMP {

long int length;

booleantype own_data;

realtype *data;

int num_threads;

};

The following six macros are provided to access the content of an nvector openmp vector. The
suffix OMP in the names denotes the OpenMP version.

• NV CONTENT OMP

This routine gives access to the contents of the OpenMP vector N Vector.

The assignment v cont = NV CONTENT OMP(v) sets v cont to be a pointer to the OpenMP
N Vector content structure.

Implementation:

#define NV_CONTENT_OMP(v) ((N_VectorContent_OpenMP)(v->content))

• NV OWN DATA OMP, NV DATA OMP, NV LENGTH OMP, NV NUM THREADS OMP

These macros give individual access to the parts of the content of a OpenMP N Vector.

The assignment v data = NV DATA OMP(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA OMP(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH OMP(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMP(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS OMP(v) sets v num threads to be the num-
ber of threads from v. On the other hand, the call NV NUM THREADS OMP(v) = num threads v

sets the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_OMP(v) (NV_CONTENT_OMP(v)->own_data)

#define NV_DATA_OMP(v) (NV_CONTENT_OMP(v)->data)

#define NV_LENGTH_OMP(v) (NV_CONTENT_OMP(v)->length)

#define NV_NUM_THREADS_OMP(v) (NV_CONTENT_OMP(v)->num_threads)

• NV Ith OMP

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith OMP(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n − 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) (NV_DATA_OMP(v)[i])

The nvector openmp module defines OpenMP implementations of all vector operations listed in
Table 6.1. Their names are obtained from those in Table 6.1 by appending the suffix OpenMP. The
module nvector openmp provides the following additional user-callable routines:

• N VNew OpenMP

This function creates and allocates memory for a OpenMP N Vector. Arguments are the vector
length and number of threads.

N_Vector N_VNew_OpenMP(long int vec_length, int num_threads);

6.4 The NVECTOR PTHREADS implementation 85

• N VNewEmpty OpenMP

This function creates a new OpenMP N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_OpenMP(long int vec_length, int num_threads);

• N VMake OpenMP

This function creates and allocates memory for a OpenMP vector with user-provided data array.

N_Vector N_VMake_OpenMP(long int vec_length, realtype *v_data, int num_threads);

• N VCloneVectorArray OpenMP

This function creates (by cloning) an array of count OpenMP vectors.

N_Vector *N_VCloneVectorArray_OpenMP(int count, N_Vector w);

• N VCloneEmptyVectorArray OpenMP

This function creates (by cloning) an array of count OpenMP vectors, each with an empty
(NULL) data array.

N_Vector *N_VCloneEmptyVectorArray_OpenMP(int count, N_Vector w);

• N VDestroyVectorArray OpenMP

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray OpenMP or with N VCloneEmptyVectorArray OpenMP.

void N_VDestroyVectorArray_OpenMP(N_Vector *vs, int count);

• N VPrint OpenMP

This function prints the content of a OpenMP vector to stdout.

void N_VPrint_OpenMP(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA OMP(v) and then access v data[i] within the loop
than it is to use NV Ith OMP(v,i) within the loop.

• N VNewEmpty OpenMP, N VMake OpenMP, and N VCloneEmptyVectorArray OpenMP set the field !

own data = FALSE. N VDestroy OpenMP and N VDestroyVectorArray OpenMP will not attempt
to free the pointer data for any N Vector with own data set to FALSE. In such a case, it is the
user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmp implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.4 The NVECTOR PTHREADS implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel
threads with shared memory, sundials provides an implementation of nvector using OpenMP,
called nvector openmp, and an implementation using pThreads, called nvector pthreads. Test-
ing has shown that vectors should be of length at least 100, 000 before the overhead associated with
creating and using the threads is made up by the parallelism in the vector calculations.

The Pthreads nvector implementation provided with sundials, nvector pthreads, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using POSIX threads (Pthreads).

86 Description of the NVECTOR module

struct _N_VectorContent_Pthreads {

long int length;

booleantype own_data;

realtype *data;

int num_threads;

};

The following six macros are provided to access the content of an nvector pthreads vector. The
suffix PT in the names denotes the Pthreads version.

• NV CONTENT PT

This routine gives access to the contents of the Pthreads vector N Vector.

The assignment v cont = NV CONTENT PT(v) sets v cont to be a pointer to the Pthreads
N Vector content structure.

Implementation:

#define NV_CONTENT_PT(v) ((N_VectorContent_Pthreads)(v->content))

• NV OWN DATA PT, NV DATA PT, NV LENGTH PT, NV NUM THREADS PT

These macros give individual access to the parts of the content of a Pthreads N Vector.

The assignment v data = NV DATA PT(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA PT(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH PT(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH PT(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS PT(v) sets v num threads to be the number
of threads from v. On the other hand, the call NV NUM THREADS PT(v) = num threads v sets
the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_PT(v) (NV_CONTENT_PT(v)->own_data)

#define NV_DATA_PT(v) (NV_CONTENT_PT(v)->data)

#define NV_LENGTH_PT(v) (NV_CONTENT_PT(v)->length)

#define NV_NUM_THREADS_PT(v) (NV_CONTENT_PT(v)->num_threads)

• NV Ith PT

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith PT(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n − 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) (NV_DATA_PT(v)[i])

The nvector pthreads module defines Pthreads implementations of all vector operations listed in
Table 6.1. Their names are obtained from those in Table 6.1 by appending the suffix Pthreads. The
module nvector pthreads provides the following additional user-callable routines:

• N VNew Pthreads

This function creates and allocates memory for a Pthreads N Vector. Arguments are the vector
length and number of threads.

N_Vector N_VNew_Pthreads(long int vec_length, int num_threads);

6.5 NVECTOR Examples 87

• N VNewEmpty Pthreads

This function creates a new Pthreads N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Pthreads(long int vec_length, int num_threads);

• N VMake Pthreads

This function creates and allocates memory for a Pthreads vector with user-provided data array.

N_Vector N_VMake_Pthreads(long int vec_length, realtype *v_data, int num_threads);

• N VCloneVectorArray Pthreads

This function creates (by cloning) an array of count Pthreads vectors.

N_Vector *N_VCloneVectorArray_Pthreads(int count, N_Vector w);

• N VCloneEmptyVectorArray Pthreads

This function creates (by cloning) an array of count Pthreads vectors, each with an empty
(NULL) data array.

N_Vector *N_VCloneEmptyVectorArray_Pthreads(int count, N_Vector w);

• N VDestroyVectorArray Pthreads

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Pthreads or with N VCloneEmptyVectorArray Pthreads.

void N_VDestroyVectorArray_Pthreads(N_Vector *vs, int count);

• N VPrint Pthreads

This function prints the content of a Pthreads vector to stdout.

void N_VPrint_Pthreads(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA PT(v) and then access v data[i] within the loop than
it is to use NV Ith PT(v,i) within the loop.

• N VNewEmpty Pthreads, N VMake Pthreads, and N VCloneEmptyVectorArray Pthreads set the !

field own data = FALSE. N VDestroy Pthreads and N VDestroyVectorArray Pthreads will not
attempt to free the pointer data for any N Vector with own data set to FALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector pthreads implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.5 NVECTOR Examples

Eddy to put text here.

88 Description of the NVECTOR module

6.6 NVECTOR functions used by KINSOL

In Table 6.2 below, we list the vector functions in the nvector module used within the kinsol

package. The table also shows, for each function, which of the code modules uses the function. The
kinsol column shows function usage within the main solver module, while the remaining five columns
show function usage within each of the seven kinsol linear solvers, the kinbbdpre preconditioner
module, and the fkinsol module. Here kindls stands for kindense and kinband; kinspils stands
for kinspgmr, kinspfgmr, kinspbcg, and kinsptfqmr; and kinsls stands for kinklu and kinsu-

perlumt.
There is one subtlety in the kinspils column hidden by the table, explained here for the case of the

kinspgmr module. The N VDotProd function is called both within the interface file kinsol spgmr.c

and within the implementation files sundials spgmr.c and sundials iterative.c for the generic
spgmr solver upon which the kinspgmr solver is built. Also, although N VDiv and N VProd are
not called within the interface file kinsol spgmr.c, they are called within the implementation file
sundials spgmr.c, and so are required by the kinspgmr solver module. Analogous statements
apply to the kinspfgmr, kinspbcg and kinsptfqmr modules, except that the latter two do not
use sundials iterative.c. This issue does not arise for the direct kinsol linear solvers because
the generic dense and band solvers (used in the implementation of kindense and kinband) do not
make calls to any vector functions.

At this point, we should emphasize that the kinsol user does not need to know anything about
the usage of vector functions by the kinsol code modules in order to use kinsol. The information is
presented as an implementation detail for the interested reader.

Table 6.2: List of vector functions usage by kinsol code modules

k
in

s
o
l

k
in

d
l
s

k
in

s
p
il

s

k
in

s
l
s

k
in

b
b
d
p
r
e

f
k
in

s
o
l

N VClone X X X

N VCloneEmpty X

N VDestroy X X X X

N VSpace X

N VGetArrayPointer X X X X

N VSetArrayPointer X X

N VLinearSum X X X

N VConst X

N VProd X X X X

N VDiv X X

N VScale X X X X X

N VAbs X

N VInv X

N VDotProd X X X X

N VMaxNorm X

N VMin X

N VWL2Norm X X

N VL1Norm X

N VConstrMask X

N VMinQuotient X

The vector functions listed in Table 6.1 that are not used by kinsol are: N VAddConst, N VWrmsNorm,
N VWrmsNormMask, N VCompare, and N VInvTest. Therefore a user-supplied nvector module for kin-

sol could omit these five functions.

Chapter 7

Providing Alternate Linear Solver
Modules

The central kinsol module interfaces with a linear solver module by way of calls to four functions.
These are denoted here by linit, lsetup, lsolve, and lfree. Briefly, their purposes are as follows:

• linit: initialize memory specific to the linear solver;

• lsetup: evaluate and preprocess the Jacobian or preconditioner;

• lsolve: solve the linear system;

• lfree: free the linear solver memory.

A linear solver module must also provide a user-callable specification function (like that described
in §4.5.2) which will attach the above four functions to the main kinsol memory block. The kinsol

memory block is a structure defined in the header file kinsol impl.h. A pointer to such a structure is
defined as the type KINMem. The four fields in a KINMem structure that must point to the linear solver’s
functions are kin linit, kin lsetup, kin lsolve, and kin lfree, respectively. Note that of the four
interface functions, only the lsolve function is required. The lfree function must be provided only
if the solver specification function makes any memory allocation. For any of the functions that are not

provided, the corresponding field should be set to NULL. The linear solver specification function must
also set the value of the field kin setupNonNull in the kinsol memory block — to TRUE if lsetup is
used, or FALSE otherwise.

Typically, the linear solver will require a block of memory specific to the solver, and a principal
function of the specification function is to allocate that memory block, and initialize it. Then the field
kin lmem in the kinsol memory block is available to attach a pointer to that linear solver memory.
This block can then be used to facilitate the exchange of data between the four interface functions.

If the linear solver involves adjustable parameters, the specification function should set the default
values of those. User-callable functions may be defined that could, optionally, override the default
parameter values.

We encourage the use of performance counters in connection with the various operations involved
with the linear solver. Such counters would be members of the linear solver memory block, would
be initialized in the linit function, and would be incremented by the lsetup and lsolve functions.
Then, user-callable functions would be needed to obtain the values of these counters.

For consistency with the existing kinsol linear solver modules, we recommend that the return
value of the specification function be 0 for a successful return, and a negative value if an error occurs.
Possible error conditions include: the pointer to the main kinsol memory block is NULL, an input is
illegal, the nvector implementation is not compatible, or a memory allocation fails.

These four functions, which interface between kinsol and the linear solver module, necessarily
have fixed call sequences. Thus a user wishing to implement another linear solver within the kinsol

90 Providing Alternate Linear Solver Modules

package must adhere to this set of interfaces. The following is a complete description of the call list
for each of these functions. Note that the call list of each function includes a pointer to the main
kinsol memory block, by which the function can access various data related to the kinsol solution.
The contents of this memory block are given in the file kinsol impl.h (but not reproduced here, for
the sake of space).

7.1 Initialization function

The type definition of linit is

linit

Definition int (*linit)(KINMem kin mem);

Purpose The purpose of linit is to complete initializations for a specific linear solver, such as
counters and statistics. It should also set pointers to data blocks that will later be
passed to functions associated with the linear solver. The linit function is called once
only, at the start of the problem, by KINSol.

Arguments kin mem is the kinsol memory pointer of type KINMem.

Return value An linit function should return 0 if it has successfully initialized the kinsol linear
solver, and a negative value otherwise.

7.2 Setup function

The type definition of lsetup is

lsetup

Definition int (*lsetup)(KINMem kin mem);

Purpose The job of lsetup is to prepare the linear solver for subsequent calls to lsolve, in the
solution of linear systems Ax = b. The exact nature of this system depends on the
input strategy to KINSol. In the cases strategy = KIN NONE or KIN LINESEARCH, A
is the Jacobian J = ∂F/∂u. If strategy = KIN PICARD, A is the approximate Jacobian
matrix L. If strategy = KIN FP, linear systems do not arise.

The lsetup function may call a user-supplied function, or a function within the linear
solver module, to compute Jacobian-related data that is required by the linear solver.
It may also preprocess that data as needed for lsolve, which may involve calling a
generic function (such as for LU factorization). This data may be intended either for
direct use (in a direct linear solver) or for use in a preconditioner (in a preconditioned
iterative linear solver).

The lsetup function is not called at every Newton iteration, but only as frequently
as the solver determines that it is appropriate to perform the setup task. In this way,
Jacobian-related data generated by lsetup is expected to be used over a number of
Newton iterations.

Arguments kin mem is the kinsol memory pointer of type KINMem.

Return value The lsetup function should return 0 if successful and a non-zero value otherwise.

Notes The current values of u and F (u) can be accessed by lsetup through the fields kin uu

and kin fval (respectively) in kin mem. If needed, the scaling vectors u scale and
f scale can be accessed by lsetup through the fields kin uscale and kin fscale

(respectively) in kin mem.

7.3 Solve function 91

7.3 Solve function

The type definition of lsolve is

lsolve

Definition int (*lsolve)(KINMem kin mem, N Vector x, N Vector b,

realtype *sJpnorm, realtype *sFdotJp);

Purpose The lsolve function must solve the linear system Ax = b, where A is either the Jacobian
J = ∂F/∂u (evaluated at the current iterate), or the approximate Jacobian, L, in the
case of Picard iteration. The right-hand side vector, b, is input.

Arguments kin mem is the kinsol memory pointer of type KINMem.

x is a vector set to an initial guess prior to calling lsolve. On return it should
contain the solution to Jx = b.

b is the right-hand side vector b, set to −F (u), evaluated at the current iterate.

sJpnorm is a pointer to a real scalar to be computed by lsolve. The returned value
sJpnorm should be equal to ‖DF Jp‖2, the scaled L2 norm of the product Jp,
where p (= x) is the computed solution of the linear system Jp = b, and the
scaling is that given by DF . This value is not needed in all cases. See below.

sFdotJp is a pointer to a real scalar to be computed by lsolve. The returned value
sFdotJp should be equal to (DF F) · (DF Jp), the dot product of the scaled
F vector and the scaled vector Jp, where p (= x) is the computed solution
of the linear system Jp = b, and the scaling is that given by DF . This value
is not needed in all cases. See below.

Return value lsolve should return 0 if successful. If an error occurs and recovery could be possible
by calling the lsetup function again, then it should return a positive value. Otherwise,
lsolve should return a negative value.

Notes The current values of u and F (u) can be accessed by lsolve through the fields kin uu

and kin fval (respectively) in kin mem, and the scaling vectors u scale and f scale

can be accessed through the fields kin uscale and kin fscale (respectively) in kin mem.

In the case of a direct solver, sJpnorm can be ignored, and sFdotJp can be computed with lines
of the form

N_VProd(b, f_scale, b);

N_VProd(b, f_scale, b);

*sFdotJp = N_VDotProd(fval, b);

in which Jp is taken to be equal to the input right-hand side b, and f scale and fval (= F (u)) are
taken from kin mem.

In the case of an iterative solver, the two terms, sJpnorm and sFdotJp, can be computed with
lines of the form

ret = KINSpilsAtimes(kin_mem, x, b);

*sJpnorm = N_VWL2Norm(b, f_scale);

N_VProd(b, f_scale, b);

N_VProd(b, f_scale, b);

*sFdotJp = N_VDotProd(fval, b);

following the computation of the solution vector x, in which f scale and fval (= F (u)) are taken
from kin mem.

The values sFdotJp and sFdotJp need not be set in all cases, and so for maximum efficiency,
the lsolve function could do these calculations conditionally, depending on the value of the input
strategy to KINSol, and the choice (given by etachoice) of Forcing Term in the Krylov iteration
stopping test (see KINSetEtaForm). The precise conditions are as follows: First, if strategy is KIN FP,
neither of these quantities need to be computed. In the other cases, if the linear solver is iterative

92 Providing Alternate Linear Solver Modules

and etachoice = KIN ETACHOICE1 (the default) then both sFdotJp and sFdotJp must be set. If
strategy is KIN LINESEARCH, then sFdotJp must be set, regardless of the linear solver type.

The values of strategy and etachoice are available from the fields kin global strategy and
kin etaflag (respectively) in kin mem.

7.4 Memory deallocation function

The type definition of lfree is

lfree

Definition void (*lfree)(KINMem kin mem);

Purpose The lfree function should free any memory allocated by the linear solver.

Arguments kin mem is the kinsol memory pointer of type KINMem.

Return value The lfree function has no return value.

Notes This function is called once a problem has been completed and the linear solver is no
longer needed.

Chapter 8

General Use Linear Solver
Components in SUNDIALS

In this chapter, we describe seven generic linear solver code modules that are included in sundials,
but which are of potential use as generic packages in themselves, either in conjunction with the use
of sundials or separately.

These generic modules in sundials are organized in three families, the dls family, which includes
direct linear solvers appropriate for sequential computations; the sls family, which includes sparse
matrices; and the spils family, which includes scaled preconditioned iterative (Krylov) linear solvers.
The solvers in each family share common data structures and functions.

The dls family contains the following two generic linear solvers:

• The dense package, a linear solver for dense matrices either specified through a matrix type
(defined below) or as simple arrays.

• The band package, a linear solver for banded matrices either specified through a matrix type
(defined below) or as simple arrays.

Note that this family also includes the Blas/Lapack linear solvers (dense and band) available to the
sundials solvers, but these are not discussed here.

The sls family contains a sparse matrix package and interfaces between it and two sparse direct
solver packages:

• The klu package, a linear solver for compressed-sparse-column matrices, [1, 7].

• The superlumt package, a threaded linear solver for compressed-sparse-column matrices, [2,
16, 9].

The spils family contains the following generic linear solvers:

• The spgmr package, a solver for the scaled preconditioned GMRES method.

• The spfgmr package, a solver for the scaled preconditioned Flexible GMRES method.

• The spbcg package, a solver for the scaled preconditioned Bi-CGStab method.

• The sptfqmr package, a solver for the scaled preconditioned TFQMR method.

For reasons related to installation, the names of the files involved in these packages begin with the
prefix sundials . But despite this, each of the dls and spils solvers is in fact generic, in that it is
usable completely independently of sundials.

For the sake of space, the functions for the dense and band modules that work with a matrix
type and the functions in the spgmr, spfgmr, spbcg, and sptfqmr modules are only summarized
briefly, since they are less likely to be of direct use in connection with a sundials solver. However, the

94 General Use Linear Solver Components in SUNDIALS

functions for dense matrices treated as simple arrays and sparse matrices are fully described, because
we expect that they will be useful in the implementation of preconditioners used with the combination
of one of the sundials solvers and one of the spils linear solvers.

8.1 The DLS modules: DENSE and BAND

The files comprising the dense generic linear solver, and their locations in the sundials srcdir, are
as follows:

• header files (located in srcdir/include/sundials)
sundials direct.h, sundials dense.h,
sundials types.h, sundials math.h, sundials config.h

• source files (located in srcdir/src/sundials)
sundials direct.c, sundials dense.c, sundials math.c

The files comprising the band generic linear solver are as follows:

• header files (located in srcdir/include/sundials)
sundials direct.h, sundials band.h,
sundials types.h, sundials math.h, sundials config.h

• source files (located in srcdir/src/sundials)
sundials direct.c, sundials band.c, sundials math.c

Only two of the preprocessing directives in the header file sundials config.h are relevant to the
dense and band packages by themselves (see §?? for details):

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions: #define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the macros SUNMIN and SUNMAX,
and the function SUNRabs.

The files listed above for either module can be extracted from the sundials srcdir and compiled
by themselves into a separate library or into a larger user code.

8.1.1 Type DlsMat

The type DlsMat, defined in sundials direct.h is a pointer to a structure defining a generic matrix,
and is used with all linear solvers in the dls family:

typedef struct _DlsMat {

int type;

long int M;

long int N;

long int ldim;

long int mu;

long int ml;

long int s_mu;

realtype *data;

long int ldata;

realtype **cols;

} *DlsMat;

8.1 The DLS modules: DENSE and BAND 95

For the dense module, the relevant fields of this structure are as follows. Note that a dense matrix
of type DlsMat need not be square.

type - SUNDIALS DENSE (=1)

M - number of rows

N - number of columns

ldim - leading dimension (ldim ≥ M)

data - pointer to a contiguous block of realtype variables

ldata - length of the data array (= ldim·N). The (i,j)-th element of a dense matrix A of type DlsMat

(with 0 ≤ i < M and 0 ≤ j < N) is given by the expression (A->data)[0][j*M+i]

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense matrix A of type DlsMat (with 0 ≤ i < M and 0 ≤
j < N) is given by the expression (A->cols)[j][i]

For the band module, the relevant fields of this structure are as follows (see Figure 8.1 for a diagram
of the underlying data representation in a banded matrix of type DlsMat). Note that only square
band matrices are allowed.

type - SUNDIALS BAND (=2)

M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 ≤ mu < min(M,N)

ml - lower half-bandwidth, 0 ≤ ml < min(M,N)

s mu - storage upper bandwidth, mu ≤ s mu < N. The LU decomposition routine writes the LU
factors into the storage for A. The upper triangular factor U, however, may have an upper
bandwidth as big as min(N-1,mu+ml) because of partial pivoting. The s mu field holds the upper
half-bandwidth allocated for A.

ldim - leading dimension (ldim ≥ s mu)

data - pointer to a contiguous block of realtype variables. The elements of a banded matrix of type
DlsMat are stored columnwise (i.e. columns are stored one on top of the other in memory). Only
elements within the specified half-bandwidths are stored. data is a pointer to ldata contiguous
locations which hold the elements within the band of A.

ldata - length of the data array (= ldim·(s mu+ml+1)

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th
column. This pointer may be treated as an array indexed from s mu−mu (to access the uppermost
element within the band in the j-th column) to s mu+ml (to access the lowest element within the
band in the j-th column). Indices from 0 to s mu−mu−1 give access to extra storage elements
required by the LU decomposition function. Finally, cols[j][i-j+s mu] is the (i, j)-th element,
j−mu ≤ i ≤ j+ml.

96 General Use Linear Solver Components in SUNDIALS

A (type BandMat)

size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

Figure 8.1: Diagram of the storage for a banded matrix of type DlsMat. Here A is an N × N band
matrix of type DlsMat with upper and lower half-bandwidths mu and ml, respectively. The rows and
columns of A are numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The
greyed out areas of the underlying component storage are used by the BandGBTRF and BandGBTRS

routines.

8.1 The DLS modules: DENSE and BAND 97

8.1.2 Accessor macros for the DLS modules

The macros below allow a user to efficiently access individual matrix elements without writing out
explicit data structure references and without knowing too much about the underlying element storage.
The only storage assumption needed is that elements are stored columnwise and that a pointer to the
j-th column of elements can be obtained via the DENSE COL or BAND COL macros. Users should use
these macros whenever possible.

The following two macros are defined by the dense module to provide access to data in the DlsMat
type:

• DENSE ELEM

Usage : DENSE ELEM(A,i,j) = a ij; or a ij = DENSE ELEM(A,i,j);

DENSE ELEM references the (i,j)-th element of the M × N DlsMat A, 0 ≤ i < M , 0 ≤ j < N .

• DENSE COL

Usage : col j = DENSE COL(A,j);

DENSE COL references the j-th column of the M × N DlsMat A, 0 ≤ j < N . The type of the
expression DENSE COL(A,j) is realtype * . After the assignment in the usage above, col j

may be treated as an array indexed from 0 to M − 1. The (i, j)-th element of A is referenced
by col j[i].

The following three macros are defined by the band module to provide access to data in the DlsMat
type:

• BAND ELEM

Usage : BAND ELEM(A,i,j) = a ij; or a ij = BAND ELEM(A,i,j);

BAND ELEM references the (i,j)-th element of the N ×N band matrix A, where 0 ≤ i, j ≤ N −1.
The location (i,j) should further satisfy j−(A->mu) ≤ i ≤ j+(A->ml).

• BAND COL

Usage : col j = BAND COL(A,j);

BAND COL references the diagonal element of the j-th column of the N × N band matrix A, 0 ≤
j ≤ N − 1. The type of the expression BAND COL(A,j) is realtype *. The pointer returned by
the call BAND COL(A,j) can be treated as an array which is indexed from −(A->mu) to (A->ml).

• BAND COL ELEM

Usage : BAND COL ELEM(col j,i,j) = a ij; or a ij = BAND COL ELEM(col j,i,j);

This macro references the (i,j)-th entry of the band matrix A when used in conjunction with
BAND COL to reference the j-th column through col j. The index (i,j) should satisfy j−(A->mu)
≤ i ≤ j+(A->ml).

8.1.3 Functions in the DENSE module

The dense module defines two sets of functions with corresponding names. The first set contains
functions (with names starting with a capital letter) that act on dense matrices of type DlsMat. The
second set contains functions (with names starting with a lower case letter) that act on matrices
represented as simple arrays.

The following functions for DlsMat dense matrices are available in the dense package. For full
details, see the header files sundials direct.h and sundials dense.h.

• NewDenseMat: allocation of a DlsMat dense matrix;

• DestroyMat: free memory for a DlsMat matrix;

98 General Use Linear Solver Components in SUNDIALS

• PrintMat: print a DlsMat matrix to standard output.

• NewLintArray: allocation of an array of long int integers for use as pivots with DenseGETRF

and DenseGETRS;

• NewIntArray: allocation of an array of int integers for use as pivots with the Lapack dense
solvers;

• NewRealArray: allocation of an array of realtype for use as right-hand side with DenseGETRS;

• DestroyArray: free memory for an array;

• SetToZero: load a matrix with zeros;

• AddIdentity: increment a square matrix by the identity matrix;

• DenseCopy: copy one matrix to another;

• DenseScale: scale a matrix by a scalar;

• DenseGETRF: LU factorization with partial pivoting;

• DenseGETRS: solution of Ax = b using LU factorization (for square matrices A);

• DensePOTRF: Cholesky factorization of a real symmetric positive matrix;

• DensePOTRS: solution of Ax = b using the Cholesky factorization of A;

• DenseGEQRF: QR factorization of an m × n matrix, with m ≥ n;

• DenseORMQR: compute the product w = Qv, with Q calculated using DenseGEQRF;

• DenseMatvec: compute the product y = Ax, for an M by N matrix A;

The following functions for small dense matrices are available in the dense package:

• newDenseMat

newDenseMat(m,n) allocates storage for an m by n dense matrix. It returns a pointer to the newly
allocated storage if successful. If the memory request cannot be satisfied, then newDenseMat

returns NULL. The underlying type of the dense matrix returned is realtype**. If we allocate
a dense matrix realtype** a by a = newDenseMat(m,n), then a[j][i] references the (i,j)-th
element of the matrix a, 0 ≤ i < m, 0 ≤ j < n, and a[j] is a pointer to the first element in
the j-th column of a. The location a[0] contains a pointer to m × n contiguous locations which
contain the elements of a.

• destroyMat

destroyMat(a) frees the dense matrix a allocated by newDenseMat;

• newLintArray

newLintArray(n) allocates an array of n integers, all long int. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• newIntArray

newIntArray(n) allocates an array of n integers, all int. It returns a pointer to the first element
in the array if successful. It returns NULL if the memory request could not be satisfied.

• newRealArray

newRealArray(n) allocates an array of n realtype values. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

8.1 The DLS modules: DENSE and BAND 99

• destroyArray

destroyArray(p) frees the array p allocated by newLintArray, newIntArray, or newRealArray;

• denseCopy

denseCopy(a,b,m,n) copies the m by n dense matrix a into the m by n dense matrix b;

• denseScale

denseScale(c,a,m,n) scales every element in the m by n dense matrix a by the scalar c;

• denseAddIdentity

denseAddIdentity(a,n) increments the square n by n dense matrix a by the identity matrix
In;

• denseGETRF

denseGETRF(a,m,n,p) factors the m by n dense matrix a, using Gaussian elimination with row
pivoting. It overwrites the elements of a with its LU factors and keeps track of the pivot rows
chosen in the pivot array p.

A successful LU factorization leaves the matrix a and the pivot array p with the following
information:

1. p[k] contains the row number of the pivot element chosen at the beginning of elimination
step k, k = 0, 1, ...,n−1.

2. If the unique LU factorization of a is given by Pa = LU , where P is a permutation matrix,
L is an m by n lower trapezoidal matrix with all diagonal elements equal to 1, and U is an
n by n upper triangular matrix, then the upper triangular part of a (including its diagonal)
contains U and the strictly lower trapezoidal part of a contains the multipliers, I −L. If a
is square, L is a unit lower triangular matrix.

denseGETRF returns 0 if successful. Otherwise it encountered a zero diagonal element during
the factorization, indicating that the matrix a does not have full column rank. In this case
it returns the column index (numbered from one) at which it encountered the zero.

• denseGETRS

denseGETRS(a,n,p,b) solves the n by n linear system ax = b. It assumes that a (of size
n × n) has been LU-factored and the pivot array p has been set by a successful call to
denseGETRF(a,n,n,p). The solution x is written into the b array.

• densePOTRF

densePOTRF(a,m) calculates the Cholesky decomposition of the m by m dense matrix a, assumed
to be symmetric positive definite. Only the lower triangle of a is accessed and overwritten with
the Cholesky factor.

• densePOTRS

densePOTRS(a,m,b) solves the m by m linear system ax = b. It assumes that the Cholesky
factorization of a has been calculated in the lower triangular part of a by a successful call to
densePOTRF(a,m).

• denseGEQRF

denseGEQRF(a,m,n,beta,wrk) calculates the QR decomposition of the m by n matrix a (m ≥
n) using Householder reflections. On exit, the elements on and above the diagonal of a contain
the n by n upper triangular matrix R; the elements below the diagonal, with the array beta,
represent the orthogonal matrix Q as a product of elementary reflectors. The real array wrk, of
length m, must be provided as temporary workspace.

100 General Use Linear Solver Components in SUNDIALS

• denseORMQR

denseORMQR(a,m,n,beta,v,w,wrk) calculates the product w = Qv for a given vector v of length
n, where the orthogonal matrix Q is encoded in the m by n matrix a and the vector beta of
length n, after a successful call to denseGEQRF(a,m,n,beta,wrk). The real array wrk, of length
m, must be provided as temporary workspace.

• denseMatvec

denseMatvec(a,x,y,m,n) calculates the product y = ax for a given vector x of length n, and m

by n matrix a.

8.1.4 Functions in the BAND module

The band module defines two sets of functions with corresponding names. The first set contains
functions (with names starting with a capital letter) that act on band matrices of type DlsMat. The
second set contains functions (with names starting with a lower case letter) that act on matrices
represented as simple arrays.

The following functions for DlsMat banded matrices are available in the band package. For full
details, see the header files sundials direct.h and sundials band.h.

• NewBandMat: allocation of a DlsMat band matrix;

• DestroyMat: free memory for a DlsMat matrix;

• PrintMat: print a DlsMat matrix to standard output.

• NewLintArray: allocation of an array of int integers for use as pivots with BandGBRF and
BandGBRS;

• NewIntArray: allocation of an array of int integers for use as pivots with the Lapack band
solvers;

• NewRealArray: allocation of an array of realtype for use as right-hand side with BandGBRS;

• DestroyArray: free memory for an array;

• SetToZero: load a matrix with zeros;

• AddIdentity: increment a square matrix by the identity matrix;

• BandCopy: copy one matrix to another;

• BandScale: scale a matrix by a scalar;

• BandGBTRF: LU factorization with partial pivoting;

• BandGBTRS: solution of Ax = b using LU factorization;

• BandMatvec: compute the product y = Ax, for a square band matrix A;

The following functions for small band matrices are available in the band package:

• newBandMat

newBandMat(n, smu, ml) allocates storage for an n by n band matrix with lower half-bandwidth
ml.

• destroyMat

destroyMat(a) frees the band matrix a allocated by newBandMat;

8.2 The SLS module 101

• newLintArray

newLintArray(n) allocates an array of n integers, all long int. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• newIntArray

newIntArray(n) allocates an array of n integers, all int. It returns a pointer to the first element
in the array if successful. It returns NULL if the memory request could not be satisfied.

• newRealArray

newRealArray(n) allocates an array of n realtype values. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• destroyArray

destroyArray(p) frees the array p allocated by newLintArray, newIntArray, or newRealArray;

• bandCopy

bandCopy(a,b,n,a smu, b smu,copymu, copyml) copies the n by n band matrix a into the n

by n band matrix b;

• bandScale

bandScale(c,a,n,mu,ml,smu) scales every element in the n by n band matrix a by c;

• bandAddIdentity

bandAddIdentity(a,n,smu) increments the n by n band matrix a by the identity matrix;

• bandGETRF

bandGETRF(a,n,mu,ml,smu,p) factors the n by n band matrix a, using Gaussian elimination
with row pivoting. It overwrites the elements of a with its LU factors and keeps track of the
pivot rows chosen in the pivot array p.

• bandGETRS

bandGETRS(a,n,smu,ml,p,b) solves the n by n linear system ax = b. It assumes that a (of
size n × n) has been LU-factored and the pivot array p has been set by a successful call to
bandGETRF(a,n,mu,ml,smu,p). The solution x is written into the b array.

• bandMatvec

bandMatvec(a,x,y,n,mu,ml,smu) calculates the product y = ax for a given vector x of length
n, and n by n band matrix a.

8.2 The SLS module

sundials provides a compressed-sparse-column matrix type and sparse matrix support functions. In
addition, sundials provides interfaces to the publically available KLU and SuperLU MT sparse direct
solver packages. The files comprising the sls matrix module, used in the klu and superlumt linear
solver packages, and their locations in the sundials srcdir, are as follows:

• header files (located in srcdir/include/sundials)
sundials sparse.h, sundials klu impl.h,
sundials superlumt impl.h, sundials types.h,
sundials math.h, sundials config.h

• source files (located in srcdir/src/sundials)
sundials sparse.c, sundials math.c

102 General Use Linear Solver Components in SUNDIALS

Only two of the preprocessing directives in the header file sundials config.h are relevant to the sls

package by itself (see §?? for details):

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions: #define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the macros SUNMIN and SUNMAX,
and the function SUNRabs.

8.2.1 Type SlsMat

The type SlsMat, defined in sundials sparse.h is a pointer to a structure defining a generic
compressed-sparse-column matrix, and is used with all linear solvers in the sls family:

typedef struct _SlsMat {

int M;

int N;

int NNZ;

realtype *data;

int *rowvals;

int *colptrs;

} *SlsMat;

The fields of this structure are as follows (see Figure 8.2 for a diagram of the underlying compressed-
sparse-column representation in a sparse matrix of type SlsMat). Note that a sparse matrix of type
SlsMat need not be square.

M - number of rows

N - number of columns

NNZ - maximum number of nonzero entries in the matrix (allocated length of data and rowvals

arrays)

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the values of
the nonzero entries in the matrix

rowvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices
of each nonzero entry held in data

colptrs - pointer to a contiguous block of int variables (of length N+1). Each entry provides the
index of the first column entry into the data and rowvals arrays, e.g. if colptr[3]=7, then the
first nonzero entry in the fourth column of the matrix is located in data[7], and is located in
row rowvals[7] of the matrix. The last entry contains the total number of nonzero values in the
matrix and hence points one past the end of the active data in the data and rowvals arrays.

For example, the 5 × 4 matrix

0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5

could be stored in a SlsMat structure as either

8.2 The SLS module 103

M = 5;

N = 4;

NNZ = 8;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};

rowvals = {1, 3, 0, 2, 0, 1, 3, 4};

colptrs = {0, 2, 4, 5, 8};

or

M = 5;

N = 4;

NNZ = 10;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};

rowvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};

colptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with *

may contain any values). Note in both cases that the final value in colptrs is 8. The work associated
with operations on the sparse matrix is proportional to this value and so one should use the best
understanding of the number of nonzeroes here.

8.2.2 Functions in the SLS module

The sls module defines functions that act on sparse matrices of type SlsMat. For full details, see the
header file sundials sparse.h.

• NewSparseMat

NewSparseMat(M, N, NNZ) allocates storage for an M by N sparse matrix, with storage for up
to NNZ nonzero entries.

• SlsConvertDls

SlsConvertDls(A) converts a dense or band matrix A of type DlsMat into a new sparse matrix
of type SlsMat by retaining only the nonzero values of the matrix A.

• DestroySparseMat

DestroySparseMat(A) frees the memory for a sparse matrix A allocated by either NewSparseMat
or SlsConvertDls.

• SlsSetToZero(A) zeros out the SlsMat matrix A. The storage for A is left unchanged.

• CopySparseMat

CopySparseMat(A, B) copies the SlsMat A into the SlsMat B. It is assumed that the matrices
have the same row/column dimensions. If B has insufficient storage to hold all the nonzero
entries of A, the data and row index arrays in B are reallocated to match those in A.

• ScaleSparseMat

ScaleSparseMat(c, A) scales every element in the SlsMat A by the realtype scalar c.

• AddIdentitySparseMat

AddIdentitySparseMat(A) increments the SlsMat A by the identity matrix. If A is not square,
only the existing diagonal values are incremented. Resizes the data and rowvals arrays of A to
allow for new nonzero entries on the diagonal.

• SlsAddMat

SlsAddMat(A, B) adds two SlsMat matrices A and B, placing the result back in A. Resizes the
data and rowvals arrays of A upon completion to exactly match the nonzero storage for the
result. Upon successful completion, the return value is zero; otherwise -1 is returned.

104 General Use Linear Solver Components in SUNDIALS

colptrs

M

rowvals data

NNZNA (type SlsMat)

k

nz

0

j

A(rowvals[nz−1],N−1)

A(rowvals[k],N−1)

A(rowvals[j],1)

A(rowvals[1],0)

A(rowvals[0],0)

column 0

column N−1

unused
storage

Figure 8.2: Diagram of the storage for a compressed-sparse-column matrix of type SlsMat. Here A

is an M × N sparse matrix of type SlsMat with storage for up to NNZ nonzero entries (the allocated
length of both data and rowvals). The entries in rowvals may assume values from 0 to M − 1,
corresponding to the row index (zero-based) of each nonzero value. The entries in data contain the
values of the nonzero entries, with the row i, column j entry of A (again, zero-based) denoted as
A(i,j). The colptrs array contains N + 1 entries; the first N denote the starting index of each
column within the rowvals and data arrays, while the final entry points one past the final nonzero
entry. Here, although NNZ values are allocated, only nz are actually filled in; the greyed-out portions
of data and rowvals indicate extra allocated space.

8.3 The SPILS modules: SPGMR, SPFGMR, SPBCG, and SPTFQMR 105

• ReallocSparseMat

ReallocSparseMat(A) eliminates unused storage in the SlsMat A by resizing the internal data
and rowvals arrays to contain exactly colptrs[N] values.

• SlsMatvec

SlsMatvec(A, x, y) computes the sparse matrix-vector product, y = Ax. If the SlsMat A is a
sparse matrix of dimension M × N , then it is assumed that x is a realtype array of length N ,
and y is a realtype array of length M . Upon successful completion, the return value is zero;
otherwise -1 is returned.

• PrintSparseMat

PrintSparseMat(A) Prints the SlsMat matrix A to standard output.

8.2.3 The KLU solver

klu is a sparse matrix factorization and solver library written by Tim Davis [1, 7]. klu has a symbolic
factorization routine that computes the permutation of the linear system matrix to block triangular
form and the permutations that will pre-order the diagonal blocks (the only ones that need to be
factored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural, or an ordering given by the
user). Note that SUNDIALS uses the COLAMD ordering by default with klu.

klu breaks the factorization into two separate parts. The first is a symbolic factorization and the
second is a numeric factorization that returns the factored matrix along with final pivot information.
klu also has a refactor routine that can be called instead of the numeric factorization. This routine
will reuse the pivot information. This routine also returns diagnostic information that a user can
examine to determine if numerical stability is being lost and a full numerical factorization should be
done instead of the refactor.

The klu interface in sundials will perform the symbolic factorization once. It then calls the
numerical factorization once and will call the refactor routine until estimates of the numerical condi-
tioning suggest a new factorization should be completed. The klu interface also has a ReInit routine
that can be used to force a full refactorization at the next solver setup call.

In order to use the sundials interface to klu, it is assumed that klu has been installed on the
system prior to installation of sundials, and that sundials has been configured appropriately to link
with klu (see Appendix A for details).

Designed for serial calculations only, klu is supported for calculations employing sundials’ serial
or shared-memory parallel nvector modules (see Sections 6.1, 6.3 and 6.4 for details).

8.2.4 The SUPERLUMT solver

superlumt is a threaded sparse matrix factorization and solver library written by X. Sherry Li
[2, 16, 9]. The package performs matrix factorization using threads to enhance efficiency in shared
memory parallel environments. It should be noted that threads are only used in the factorization step.

In order to use the sundials interface to superlumt, it is assumed that superlumt has been
installed on the system prior to installation of sundials, and that sundials has been configured
appropriately to link with superlumt (see Appendix A for details).

Designed for serial and threaded calculations only, superlumt is supported for calculations em-
ploying sundials’ serial or shared-memory parallel nvector modules (see Sections 6.1, 6.3 and 6.4
for details).

8.3 The SPILS modules: SPGMR, SPFGMR, SPBCG, and
SPTFQMR

The spils modules contain implementations of some of the most commonly use scaled preconditioned
Krylov solvers. A linear solver module from the spils family can only be used in conjunction with any

106 General Use Linear Solver Components in SUNDIALS

nvector implementation library.

8.3.1 The SPGMR module

The spgmr package, in the files sundials spgmr.h and sundials spgmr.c, includes an implemen-
tation of the scaled preconditioned GMRES method. A separate code module, implemented in
sundials iterative.(h,c), contains auxiliary functions that support spgmr, as well as the other
Krylov solvers in sundials (spfgmr, spbcg, and sptfqmr). For full details, including usage instruc-
tions, see the header files sundials spgmr.h and sundials iterative.h.

The files comprising the spgmr generic linear solver, and their locations in the sundials srcdir,
are as follows:

• header files (located in srcdir/include/sundials)
sundials spgmr.h, sundials iterative.h, sundials nvector.h,
sundials types.h, sundials math.h, sundials config.h

• source files (located in srcdir/src/sundials)
sundials spgmr.c, sundials iterative.c, sundials nvector.c

Only two of the preprocessing directives in the header file sundials config.h are required to use the
spgmr package by itself (see §?? for details):

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions:
#define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the macros SUNMIN, SUNMAX, and
SUNSQR, and the functions SUNRabs and SUNRsqrt.

The generic nvector files, sundials nvector.(h,c) are needed for the definition of the generic
N Vector type and functions. The nvector functions used by the spgmr module are: N VDotProd,
N VLinearSum, N VScale, N VProd, N VDiv, N VConst, N VClone, N VCloneVectorArray, N VDestroy,
and N VDestroyVectorArray.

The nine files listed above can be extracted from the sundials srcdir and compiled by themselves
into an spgmr library or into a larger user code.

The following functions are available in the spgmr package:

• SpgmrMalloc: allocation of memory for SpgmrSolve;

• SpgmrSolve: solution of Ax = b by the spgmr method;

• SpgmrFree: free memory allocated by SpgmrMalloc.

The following functions are available in the support package sundials iterative.(h,c):

• ModifiedGS: performs modified Gram-Schmidt procedure;

• ClassicalGS: performs classical Gram-Schmidt procedure;

• QRfact: performs QR factorization of Hessenberg matrix;

• QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact.

8.3 The SPILS modules: SPGMR, SPFGMR, SPBCG, and SPTFQMR 107

8.3.2 The SPFGMR module

The spfgmr package, in the files sundials spfgmr.h and sundials spfgmr.c, includes an imple-
mentation of the scaled preconditioned Flexible GMRES method. For full details, including usage
instructions, see the file sundials spfgmr.h.

The files needed to use the spfgmr module by itself are the same as for the spgmr module, but
with sundials spfgmr.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the spfgmr package:

• SpfgmrMalloc: allocation of memory for SpfgmrSolve;

• SpfgmrSolve: solution of Ax = b by the spfgmr method;

• SpfgmrFree: free memory allocated by SpfgmrMalloc.

8.3.3 The SPBCG module

The spbcg package, in the files sundials spbcgs.h and sundials spbcgs.c, includes an implemen-
tation of the scaled preconditioned Bi-CGStab method. For full details, including usage instructions,
see the file sundials spbcgs.h.

The files needed to use the spbcg module by itself are the same as for the spgmr module, but
with sundials spbcgs.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the spbcg package:

• SpbcgMalloc: allocation of memory for SpbcgSolve;

• SpbcgSolve: solution of Ax = b by the spbcg method;

• SpbcgFree: free memory allocated by SpbcgMalloc.

8.3.4 The SPTFQMR module

The sptfqmr package, in the files sundials sptfqmr.h and sundials sptfqmr.c, includes an imple-
mentation of the scaled preconditioned TFQMR method. For full details, including usage instructions,
see the file sundials sptfqmr.h.

The files needed to use the sptfqmr module by itself are the same as for the spgmr module, but
with sundials sptfqmr.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the sptfqmr package:

• SptfqmrMalloc: allocation of memory for SptfqmrSolve;

• SptfqmrSolve: solution of Ax = b by the sptfqmr method;

• SptfqmrFree: free memory allocated by SptfqmrMalloc.

Appendix A

SUNDIALS Package Installation
Procedure

The installation of any sundials package is accomplished by installing the sundials suite as a whole,
according to the instructions that follow. The same procedure applies whether or not the downloaded
file contains one or all solvers in sundials.

The sundials suite (or individual solvers) are distributed as compressed archives (.tar.gz). The
name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of: sundials,
cvode, cvodes, ida, idas, or kinsol, and x.y.z represents the version number (of the sundials suite
or of the individual solver). To begin the installation, first uncompress and expand the sources, by
issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.6.0 of sundials, CMake is the only supported method of installation.

The explanations on the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

srcdir is the directory solver-x.y.z created above; i.e., the directory containing the sundials

sources.

builddir is the (temporary) directory under which sundials is built.

installdir is the directory under which the sundials exported header files and libraries will be
installed. Typically, header files are exported under a directory installdir/include while
libraries are installed under installdir/lib, with installdir specified at configuration time.

• For sundials CMake-based installation, in-source builds are prohibited; in other words, the
build directory builddir can not be the same as srcdir and such an attempt will lead to an error.
This prevents “polluting” the source tree and allows efficient builds for different configurations
and/or options.

• The installation directory installdir can not be the same as the source directory srcdir. !

• By default, only the libraries and header files are exported to the installation directory installdir.
If enabled by the user (with the appropriate toggle for CMake), the examples distributed with
sundials will be built together with the solver libraries but the installation step will result
in exporting (by default in a subdirectory of the installation directory) the example sources
and sample outputs together with automatically generated configuration files that reference the
installed sundials headers and libraries. As such, these configuration files for the sundials

examples can be used as ”templates” for your own problems. CMake installs CMakeLists.txt

files and also (as an option available only under Unix/Linux) makefiles. Note this installation

110 SUNDIALS Package Installation Procedure

approach also allows the option of building the sundials examples without having to install
them. (This can be used as a sanity check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in ”undefined symbol” errors at link time.)

A.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix
and Linux Makefiles, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the
same configuration file. In addition, CMake also provides a GUI front end and which allows an
interactive build and installation process.

The sundials build process requires CMake version 2.8.1 or higher and a working compiler. On
Unix-like operating systems, it also requires Make (and curses, including its development libraries, for
the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio. While many Linux
distributions offer CMake, the version included is probably out of date. Many new CMake features
have been added recently, and you should download the latest version from http://www.cmake.org.
Build instructions for CMake (only necessary for Unix-like systems) can be found on the CMake
website. Once CMake is installed, Linux/Unix users will be able to use ccmake, while Windows users
will be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install sundials, it is always
required to use a separate build directory. While in-source builds are possible, they are explicitly
prohibited by the sundials CMake scripts (one of the reasons being that, unlike autotools, CMake
does not provide a make distclean procedure and it is therefore difficult to clean-up the source tree
after an in-source build). By ensuring a separate build directory, it is an easy task for the user to
clean-up all traces of the build by simply removing the build directory. CMake does generate a make

clean which will remove files generated by the compiler and linker.

A.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The installdir defaults to /usr/local and can be changed by setting the
CMAKE INSTALL PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based
GUI by using the ccmake command. Examples for using both methods will be presented. For the
examples shown it is assumed that there is a top level sundials directory with appropriate source,
build and install directories:

% mkdir (...)sundials/installdir

% mkdir (...)sundials/builddir

% cd (...)sundials/builddir

Building with the GUI

Using CMake with the GUI follows this general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string

A.1 CMake-based installation 111

– For file and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

To build the default configuration using the GUI, from the builddir enter the ccmake command
and point to the sourcedir:

% ccmake ../sourcedir

The default configuration screen is shown in Figure A.1.

Figure A.1: Default configuration screen. Note: Initial screen is empty. To get this default config-
uration, press ’c’ repeatedly (accepting default values denoted with asterisk) until the ’g’ option is
available.

The default installdir for both sundials and corresponding examples can be changed by setting
the CMAKE INSTALL PREFIX and the EXAMPLES INSTALL PATH as shown in figure A.2.

Pressing the (g key) will generate makefiles including all dependencies and all rules to build sun-

dials on this system. Back at the command prompt, you can now run:

% make

112 SUNDIALS Package Installation Procedure

Figure A.2: Changing the installdir for sundials and corresponding examples

To install sundials in the installation directory specified in the configuration, simply run:

% make install

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with
the cmake command. The following will build the default configuration:

% cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/installdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/installdir/examples \

> ../sourcedir

% make

% make test

A.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based sundials configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only.

BUILD ARKODE - Build the ARKODE library
Default: ON

A.1 CMake-based installation 113

BUILD CVODE - Build the CVODE library
Default: ON

BUILD CVODES - Build the CVODES library
Default: ON

BUILD IDA - Build the IDA library
Default: ON

BUILD IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD SHARED LIBS - Build shared libraries
Default: OFF

BUILD STATIC LIBS - Build static libraries
Default: ON

CMAKE BUILD TYPE - Choose the type of build, options are: None (CMAKE C FLAGS used) Debug
Release RelWithDebInfo MinSizeRel
Default:

CMAKE C COMPILER - C compiler
Default: /usr/bin/cc

CMAKE C FLAGS - Flags for C compiler
Default:

CMAKE C FLAGS DEBUG - Flags used by the compiler during debug builds
Default: -g

CMAKE C FLAGS MINSIZEREL - Flags used by the compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE C FLAGS RELEASE - Flags used by the compiler during release builds
Default: -O3 -DNDEBUG

CMAKE Fortran COMPILER - Fortran compiler
Default: /usr/bin/gfortran
Note: Fortran support (and all related options) are triggered only if either Fortran-C support is
enabled (FCMIX ENABLE is ON) or Blas/Lapack support is enabled (LAPACK ENABLE is ON).

CMAKE Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS DEBUG - Flags used by the compiler during debug builds
Default:

CMAKE Fortran FLAGS MINSIZEREL - Flags used by the compiler during release minsize builds
Default:

CMAKE Fortran FLAGS RELEASE - Flags used by the compiler during release builds
Default:

CMAKE INSTALL PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Exported
sundials header files and libraries will be installed under subdirectories include and lib of
CMAKE INSTALL PREFIX, respectively.

114 SUNDIALS Package Installation Procedure

EXAMPLES ENABLE - Build the sundials examples
Default: ON

EXAMPLES INSTALL - Install example files
Default: ON
Note: This option is triggered only if building example programs is enabled (EXAMPLES ENABLE

ON). If the user requires installation of example programs then the sources and sample output
files for all sundials modules that are currently enabled will be exported to the directory
specified by EXAMPLES INSTALL PATH. A CMake configuration script will also be automatically
generated and exported to the same directory. Additionally, if the configuration is done under
a Unix-like system, makefiles for the compilation of the example programs (using the installed
sundials libraries) will be automatically generated and exported to the directory specified by
EXAMPLES INSTALL PATH.

EXAMPLES INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will an examples subdirectory created under
CMAKE INSTALL PREFIX.

FCMIX ENABLE - Enable Fortran-C support
Default: OFF

KLU ENABLE - Enable KLU support
Default: OFF

LAPACK ENABLE - Enable Lapack support
Default: OFF
Note: Setting this option to ON will trigger the two additional options see below.

LAPACK LIBRARIES - Lapack (and Blas) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
Note: CMake will search for these libraries in your LD LIBRARY PATH prior to searching default
system paths.

MPI ENABLE - Enable MPI support
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI MPICC - mpicc program
Default:

MPI RUN COMMAND - Specify run command for MPI
Default: mpirun
Note: This can either be set to mpirun for OpenMPI or srun if jobs are managed by SLURM -
Simple Linux Utility for Resource Management as exists on LLNL’s high performance computing
clusters.

MPI MPIF77 - mpif77 program
Default:
Note: This option is triggered only if using MPI compiler scripts (MPI USE MPISCRIPTS is ON)
and Fortran-C support is enabled (FCMIx ENABLE is ON).

OPENMP ENABLE - Enable OpenMP support
Default: OFF
Turn on support for the OpenMP based nvector.

A.1 CMake-based installation 115

PTHREAD ENABLE - Enable Pthreads support
Default: OFF
Turn on support for the Pthreads based nvector.

SUNDIALS PRECISION - Precision used in sundials, options are: double, single or extended
Default: double

SUPERLUMT ENABLE - Enable SUPERLU MT support
Default: OFF

TESTRUNNER - Location of testRunner script
Default: sourcedir/testRunner

USE GENERIC MATH - Use generic (stdc) math libraries
Default: ON

A.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.
To configure sundials using the default C and Fortran compilers, and default mpicc and mpif77

parallel compilers, enable compilation of examples,and install libraries, headers, and example sources
under subdirectories of /home/myname/sundials/, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/installdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/installdir/examples \

> -DMPI_ENABLE=ON \

> -DFCMIX_ENABLE=ON \

> /home/myname/sundials/sourcedir

%

% make install

%

To disable installation of the examples, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/installdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/installdir/examples \

> -DMPI_ENABLE=ON \

> -DFCMIX_ENABLE=ON \

> -DEXAMPLES_INSTALL=OFF \

> /home/myname/sundials/sourcedir

%

% make install

%

A.1.4 Working with external Libraries

The sundials Suite contains many options to enable implementation flexibility when developing
solutions. The following are some notes addressing specific configurations when using the supported
third party libraries.

Building with LAPACK and BLAS

To enable LAPACK and BLAS libraries, set the LAPACK ENABLE option to ON. If the directory contain-
ing the LAPACK and BLAS libraries is in the LD LIBRARY PATH environment variable, CMake will
set the LAPACK LIBRARIES variable accordingly, otherwise CMake will attemp to find the LAPACK

116 SUNDIALS Package Installation Procedure

and BLAS libraries in standard system locations. To explicitly tell CMake what libraries to use, the
LAPACK LIBRARIES varible can be set to the desired libraries. Example:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/installdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/installdir/examples \

> -DLAPACK_LIBRARIES=/mypath/lib/liblapack.so;/mypath/lib/libblas.so \

> /home/myname/sundials/sourcedir

%

% make install

%

Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the
Texas A&M University website: http://faculty.cse.tamu.edu/davis/suitesparse.html sundi-

als has been tested with SuiteSparse version 4.2.1. To enable KLU, set KLU ENABLE to ON, set
KLU INCLUDE DIR to the include path of the KLU installation and set KLU LIBRARY DIR to the
lib path of the KLU installation. The CMake configure will result in populating the variables:
AMD LIBRARY, AMD LIBRARY DIR, BTF LIBRARY, BTF LIBRARY DIR, COLAMD LIBRARY, COLAMD LIBRARY DIR,
and KLU LIBRARY

Building with SuperLU MT

The SuperLU MT libraries are available for download from the Lawrence Berkeley National Labo-
ratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu mt. sundials has been
tested with SuperLU MT version 2.4. To enable SuperLU MT, set SUPERLUMT ENABLE to ON, set
SUPERLUMT INCLUDE DIR to the SRC path of the SuperLU MT installation and set SUPERLUMT LIBRARY DIR

to the lib path of the SuperLU MT installation. Also, the SUPERLUMT THREAD TYPE must be set to
either Pthread or OpenMP.
Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having either OPENMP ENABLE or PTHREAD ENABLE set to ON then SuperLU MT should be set to use
the same threading type.!

A.2 Building and Running Examples

Each of the sundials solvers is distributed with a set of examples demonstrating basic usage. To
build and install the examples, set both EXAMPLES ENABLE and EXAMPLES INSTALL to ON. Specify the
installation path for the examples with the variable EXAMPLES INSTALL PATH. CMake will generate
CMakeLists.txt configuration files (and Makefile files if on Linux/Unix) that reference the installed

sundials headers and libraries.
From within the installed example directory, run CMake (either with the GUI or command line) to
compile the example code. The resulting output from running the example can be compared with
example output bundled in the sundials distribution.
NOTE: There will likely differences in the output due to machine architecture, compiler versions, use
of third party libraries etc.!

These examples with the installed configuration files can be used as ”templates” for user developed
solutions.

A.3 Configuring, building, and installing on Windows

Use CMakeSetup from the CMake install location. Make sure to select the appropriate source and
the build directory. Also, make sure to pick the appropriate generator (on Visual Studio 6, pick the

A.4 Installed libraries and exported header files 117

Visual Studio 6 generator). Some CMake versions will ask you to select the generator the first time
you press Configure instead of having a drop-down menu in the main dialog.

CMake will now create Visual Studio project files. You should now be able to open the sundials

project (or workspace) file. Make sure to select the appropriate build type (Debug, Release, ...). To
build sundials, simply build the ALL BUILD target. To install sundials, simply run the INSTALL

target within the build system.

A.4 Installed libraries and exported header files

Using the CMake sundials build system, the command

% make install

will install the libraries under libdir and the public header files under includedir. The default values
for these directories are instdir/lib and instdir/include, respectively, but can be changed using the
configure script options --prefix, --exec-prefix, --includedir and --libdir (see the appropri-
ate CMake options). For example, a global installation of sundials on a *NIX system could be
accomplished using

% configure --prefix=/opt/sundials-2.1.1

Although all installed libraries reside under libdir, the public header files are further organized into
subdirectories under includedir.

The installed libraries and exported header files are listed for reference in Tables A.1 and A.2.
The file extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in the
Tables, names are relative to libdir for libraries and to includedir for header files.

A typical user program need not explicitly include any of the shared sundials header files from
under the includedir/sundials directory since they are explicitly included by the appropriate solver
header files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and safe to
do so (e.g., the functions declared in sundials dense.h could be used in building a preconditioner).

118 SUNDIALS Package Installation Procedure

Table A.1: sundials libraries and header files

shared Libraries n/a
Header files sundials/sundials config.h sundials/sundials types.h

sundials/sundials math.h
sundials/sundials nvector.h sundials/sundials fnvector.h
sundials/sundials direct.h sundials/sundials lapack.h
sundials/sundials dense.h sundials/sundials band.h
sundials/sundials sparse.h
sundials/sundials iterative.h sundials/sundials spgmr.h
sundials/sundials spbcgs.h sundials/sundials sptfqmr.h
sundials/sundials pcg.h sundials/sundials spfgmr.h

nvector serial Libraries libsundials nvecserial.lib libsundials fnvecserial.a
Header files nvector/nvector serial.h

nvector parallel Libraries libsundials nvecparallel.lib libsundials fnvecparallel.a
Header files nvector/nvector parallel.h

nvector openmp Libraries libsundials nvecopenmp.lib libsundials fnvecopenmp.a
Header files nvector/nvector openmp.h

nvector pthreads Libraries libsundials nvecpthreads.lib libsundials fnvecpthreads.a
Header files nvector/nvector pthreads.h

cvode Libraries libsundials cvode.lib libsundials fcvode.a
Header files cvode/cvode.h cvode/cvode impl.h

cvode/cvode direct.h cvode/cvode lapack.h
cvode/cvode dense.h cvode/cvode band.h
cvode/cvode diag.h
cvode/cvode sparse.h cvode/cvode klu.h
cvode/cvode superlumt.h
cvode/cvode spils.h cvode/cvode spgmr.h
cvode/cvode sptfqmr.h cvode/cvode spbcgs.h
cvode/cvode bandpre.h cvode/cvode bbdpre.h

cvodes Libraries libsundials cvodes.lib
Header files cvodes/cvodes.h cvodes/cvodes impl.h

cvodes/cvodes direct.h cvodes/cvodes lapack.h
cvodes/cvodes dense.h cvodes/cvodes band.h
cvodes/cvodes diag.h
cvodes/cvodes sparse.h cvodes/cvodes klu.h
cvodes/cvodes superlumt.h
cvodes/cvodes spils.h cvodes/cvodes spgmr.h
cvodes/cvodes sptfqmr.h cvodes/cvodes spbcgs.h
cvodes/cvodes bandpre.h cvodes/cvodes bbdpre.h

arkode Libraries libsundials arkode.lib libsundials farkode.a
Header files arkode/arkode.h arkode/arkode impl.h

arkode/arkode direct.h arkode/arkode lapack.h
arkode/arkode dense.h arkode/arkode band.h
arkode/arkode sparse.h arkode/arkode klu.h
arkode/arkode superlumt.h
arkode/arkode spils.h arkode/arkode spgmr.h
arkode/arkode sptfqmr.h arkode/arkode spbcgs.h
arkode/arkode pcg.h arkode/arkode spfgmr.h
arkode/arkode bandpre.h arkode/arkode bbdpre.h

A.4 Installed libraries and exported header files 119

Table A.2: sundials libraries and header files (cont.)

ida Libraries libsundials ida.lib libsundials fida.a
Header files ida/ida.h ida/ida impl.h

ida/ida direct.h ida/ida lapack.h
ida/ida dense.h ida/ida band.h
ida/ida sparse.h ida/ida klu.h
ida/ida superlumt.h
ida/ida spils.h ida/ida spgmr.h
ida/ida spbcgs.h ida/ida sptfqmr.h
ida/ida bbdpre.h

idas Libraries libsundials idas.lib
Header files idas/idas.h idas/idas impl.h

idas/idas direct.h idas/idas lapack.h
idas/idas dense.h idas/idas band.h
idas/idas sparse.h idas/idas klu.h
idas/idas superlumt.h
idas/idas spils.h idas/idas spgmr.h
idas/idas spbcgs.h idas/idas sptfqmr.h
idas/idas bbdpre.h

kinsol Libraries libsundials kinsol.lib libsundials fkinsol.a
Header files kinsol/kinsol.h kinsol/kinsol impl.h

kinsol/kinsol direct.h kinsol/kinsol lapack.h
kinsol/kinsol dense.h kinsol/kinsol band.h
kinsol/kinsol sparse.h kinsol/kinsol klu.h
kinsol/kinsol superlumt.h
kinsol/kinsol spils.h kinsol/kinsol spgmr.h
kinsol/kinsol spbcgs.h kinsol/kinsol sptfqmr.h
kinsol/kinsol bbdpre.h kinsol/kinsol spfgmr.h

Appendix B

KINSOL Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

B.1 KINSOL input constants

kinsol main solver module

KIN ETACHOICE1 1 Use Eisenstat and Walker Choice 1 for η.
KIN ETACHOICE2 2 Use Eisenstat and Walker Choice 2 for η.
KIN ETACONSTANT 3 Use constant value for η.
KIN NONE 0 Use inexact Newton globalization.
KIN LINESEARCH 1 Use linesearch globalization.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC RIGHT 2 Preconditioning on the right.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

B.2 KINSOL output constants

kinsol main solver module

KIN SUCCESS 0 Successful function return.
KIN INITIAL GUESS OK 1 The initial user-supplied guess already satisfies the stopping

criterion.
KIN STEP LT STPTOL 2 The stopping tolerance on scaled step length was satisfied.
KIN WARNING 99 A non-fatal warning. The solver will continue.
KIN MEM NULL -1 The kin mem argument was NULL.
KIN ILL INPUT -2 One of the function inputs is illegal.
KIN NO MALLOC -3 The kinsol memory was not allocated by a call to

KINMalloc.
KIN MEM FAIL -4 A memory allocation failed.
KIN LINESEARCH NONCONV -5 The linesearch algorithm was unable to find an iterate suffi-

ciently distinct from the current iterate.

122 KINSOL Constants

KIN MAXITER REACHED -6 The maximum number of nonlinear iterations has been
reached.

KIN MXNEWT 5X EXCEEDED -7 Five consecutive steps have been taken that satisfy a scaled
step length test.

KIN LINESEARCH BCFAIL -8 The linesearch algorithm was unable to satisfy the β-
condition for nbcfails iterations.

KIN LINSOLV NO RECOVERY -9 The user-supplied routine preconditioner slve function failed
recoverably, but the preconditioner is already current.

KIN LINIT FAIL -10 The linear solver’s initialization function failed.
KIN LSETUP FAIL -11 The linear solver’s setup function failed in an unrecoverable

manner.
KIN LSOLVE FAIL -12 The linear solver’s solve function failed in an unrecoverable

manner.
KIN SYSFUNC FAIL -13 The system function failed in an unrecoverable manner.
KIN FIRST SYSFUNC ERR -14 The system function failed recoverably at the first call.
KIN REPTD SYSFUNC ERR -15 The system function had repeated recoverable errors.

kindls linear solver module

KINDLS SUCCESS 0 Successful function return.
KINDLS MEM NULL -1 The kin mem argument was NULL.
KINDLS LMEM NULL -2 The kindls linear solver has not been initialized.
KINDLS ILL INPUT -3 The kindls solver is not compatible with the current nvec-

tor module.
KINDLS MEM FAIL -4 A memory allocation request failed.
KINDLS JACFUNC UNRECVR -5 The Jacobian function failed in an unrecoverable manner.
KINDLS JACFUNC RECVR -6 The Jacobian function had a recoverable error.

kinsls linear solver module

KINSLS SUCCESS 0 Successful function return.
KINSLS MEM NULL -1 The kin mem argument was NULL.
KINSLS LMEM NULL -2 The kinsls linear solver has not been initialized.
KINSLS ILL INPUT -3 The kinsls solver is not compatible with the current nvec-

tor module or other input is invalid.
KINSLS MEM FAIL -4 A memory allocation request failed.
KINSLS JAC NOSET -5 The Jacobian evaluation routine was not been set before the

linear solver setup routine was called.
KINSLS PACKAGE FAIL -6 An external package call return a failure error code.
KINSLS JACFUNC UNRECVR -7 The Jacobian function failed in an unrecoverable manner.
KINSLS JACFUNC RECVR -8 The Jacobian function had a recoverable error.

kinspils linear solver modules

KINSPILS SUCCESS 0 Successful function return.
KINSPILS MEM NULL -1 The kin mem argument was NULL.
KINSPILS LMEM NULL -2 The kinspils linear solver has not been initialized.
KINSPILS ILL INPUT -3 The kinspils solver is not compatible with the current nvec-

tor module, or an input value was illegal.

B.2 KINSOL output constants 123

KINSPILS MEM FAIL -4 A memory allocation request failed.
KINSPILS PMEM NULL -5 The preconditioner module has not been initialized.

spgmr generic linear solver module

SPGMR SUCCESS 0 Converged.
SPGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPGMR CONV FAIL 2 Failure to converge.
SPGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPGMR ATIMES FAIL REC 5 The Jacobian-times-vector function failed recoverably.
SPGMR PSET FAIL REC 6 The preconditioner setup routine failed recoverably.
SPGMR MEM NULL -1 The spgmr memory is NULL
SPGMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.
SPGMR PSET FAIL UNREC -6 The preconditioner setup routine failed unrecoverably.

spfgmr generic linear solver module (only available in kinsol and arkode)

SPFGMR SUCCESS 0 Converged.
SPFGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPFGMR CONV FAIL 2 Failure to converge.
SPFGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPFGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPFGMR ATIMES FAIL REC 5 The Jacobian-times-vector function failed recoverably.
SPFGMR PSET FAIL REC 6 The preconditioner setup routine failed recoverably.
SPFGMR MEM NULL -1 The spfgmr memory is NULL
SPFGMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPFGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPFGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPFGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.
SPFGMR PSET FAIL UNREC -6 The preconditioner setup routine failed unrecoverably.

spbcg generic linear solver module

SPBCG SUCCESS 0 Converged.
SPBCG RES REDUCED 1 No convergence, but the residual norm was reduced.
SPBCG CONV FAIL 2 Failure to converge.
SPBCG PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPBCG ATIMES FAIL REC 4 The Jacobian-times-vector function failed recoverably.
SPBCG PSET FAIL REC 5 The preconditioner setup routine failed recoverably.
SPBCG MEM NULL -1 The spbcg memory is NULL
SPBCG ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPBCG PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.

124 KINSOL Constants

SPBCG PSET FAIL UNREC -4 The preconditioner setup routine failed unrecoverably.

sptfqmr generic linear solver module

SPTFQMR SUCCESS 0 Converged.
SPTFQMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPTFQMR CONV FAIL 2 Failure to converge.
SPTFQMR PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPTFQMR ATIMES FAIL REC 4 The Jacobian-times-vector function failed recoverably.
SPTFQMR PSET FAIL REC 5 The preconditioner setup routine failed recoverably.
SPTFQMR MEM NULL -1 The sptfqmr memory is NULL
SPTFQMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed.
SPTFQMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPTFQMR PSET FAIL UNREC -4 The preconditioner setup routine failed unrecoverably.

Bibliography

[1] KLU Sparse Matrix Factorization Library. http://faculty.cse.tamu.edu/davis/suitesparse.html.

[2] SuperLU MT Threaded Sparse Matrix Factorization Library. http://crd-legacy.lbl.gov/ xiaoye/-
SuperLU/.

[3] D. G. Anderson. Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Ma-

chinery, 12:547–560, 1965.

[4] P. N. Brown. A local convergence theory for combined inexact-Newton/finite difference projection
methods. SIAM J. Numer. Anal., 24(2):407–434, 1987.

[5] P. N. Brown and Y. Saad. Hybrid Krylov Methods for Nonlinear Systems of Equations. SIAM

J. Sci. Stat. Comput., 11:450–481, 1990.

[6] A. M. Collier and R. Serban. Example Programs for KINSOL v2.7.0. Technical Report UCRL-
SM-208114, LLNL, 2011.

[7] T. A. Davis and P. N. Ekanathan. Algorithm 907: KLU, a direct sparse solver for circuit
simulation problems. ACM Trans. Math. Softw., 37(3), 2010.

[8] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton Methods. SIAM J. Numer.

Anal., 19:400–408, 1982.

[9] J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal algorithm for
sparse gaussian elimination. SIAM J. Matrix Analysis and Applications, 20(4):915–952, 1999.

[10] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Non-

linear Equations. SIAM, Philadelphia, 1996.

[11] S. C. Eisenstat and H. F. Walker. Choosing the Forcing Terms in an Inexact Newton Method.
SIAM J. Sci. Comput., 17:16–32, 1996.

[12] H. Fang and Y. Saad. Two classes of secant methods for nonlinear acceleration. Numer. Linear

Algebra Appl., 16:197–221, 2009.

[13] R. W. Freund. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear
Systems. SIAM J. Sci. Comp., 14:470–482, 1993.

[14] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.
Woodward. SUNDIALS, suite of nonlinear and differential/algebraic equation solvers. ACM

Trans. Math. Softw., (31):363–396, 2005.

[15] C. T. Kelley. Iterative Methods for Solving Linear and Nonlinear Equations. SIAM, Philadelphia,
1995.

[16] X. S. Li. An overview of SuperLU: Algorithms, implementation, and user interface. ACM Trans.

Math. Softw., 31(3):302–325, September 2005.

126 BIBLIOGRAPHY

[17] P. A. Lott, H. F. Walker, C. S. Woodward, and U. M. Yang. An accelerated Picard method for
nonlinear systems related to variably saturated flow. Adv. Wat. Resour., 38:92–101, 2012.

[18] J. M. Ortega and W. C. Rheinbolt. Iterative solution of nonlinear equations in several variables.
SIAM, Philadelphia, 2000. Originally published in 1970 by Academic Press.

[19] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.,
14(2):461–469, 1993.

[20] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp., 7:856–869, 1986.

[21] H. A. Van Der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the
Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp., 13:631–644, 1992.

[22] H. F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM Jour. Num.

Anal., 49(4):1715–1735, 2011.

Index

AddIdentitySparseMat, 103
Anderson acceleration

definition, 12
Anderson acceleration UA

definition, 12

band generic linear solver
functions, 100

small matrix, 100–101
macros, 97
type DlsMat, 94–97

BAND COL, 53, 97
BAND COL ELEM, 53, 97
BAND ELEM, 53, 97
bandAddIdentity, 101
bandCopy, 101
bandGETRF, 101
bandGETRS, 101
bandMatvec, 101
bandScale, 101
Bi-CGStab method, 107
BIG REAL, 18, 79

CopySparseMat, 103

data types
Fortran, 61

dense generic linear solver
functions

large matrix, 97–98
small matrix, 98–100

macros, 97
type DlsMat, 94–97

DENSE COL, 52, 97
DENSE ELEM, 52, 97
denseAddIdentity, 99
denseCopy, 99
denseGEQRF, 99
denseGETRF, 99
denseGETRS, 99
denseMatvec, 100
denseORMQR, 100
densePOTRF, 99
densePOTRS, 99

denseScale, 99
destroyArray, 99, 101
destroyMat, 98, 100
DestroySparseMat, 103
DlsMat, 52, 53, 94

eh data, 51
error message

user-defined handler, 30
error messages, 28

redirecting, 28
user-defined handler, 50

ETA CONST, 70
ETA FORM, 70
ETA PARAMS, 70

FGMRES method, 107
Fixed-point iteration

definition, 11
fixed-point system

definition, 7
FKBJAC, 66
FKCOMMFN, 73
FKDJAC, 65
FKFUN, 63
FKINBAND, 65
FKINBANDSETJAC, 66
fkinbbd interface module

interface to the kinbbdpre module, 70
FKINBBDINIT, 72
FKINBBDOPT, 72
FKINDENSE, 65
FKINDENSESETJAC, 65
FKINFREE, 69
FKINJTIMES, 68, 73
FKINKLU, 66
FKINKLURENIT, 66
FKINMALLOC, 64
FKINSETIIN, 69, 70
FKINSETRIN, 69, 70
FKINSETVIN, 69, 70
FKINSOL, 69
fkinsol interface module

interface to the kinbbdpre module, 73

128 INDEX

optional input and output, 69
usage, 63–69
user-callable functions, 62–63
user-supplied functions, 63

FKINSPBCG, 67
FKINSPFGMR, 67
FKINSPGMR, 67
FKINSPILSSETJAC, 68, 72
FKINSPILSSETPREC, 68
FKINSPJAC, 67
FKINSPTFQMR, 68
FKINSUPERLUMT, 67
FKLOCFN, 73
FKPSET, 69
FKPSOL, 68
FNORM TOL, 70
FNVINITOMP, 63
FNVINITP, 64
FNVINITPTS, 64
FNVINITS, 63

generic linear solvers
band, 94
dense, 94
klu, 101
sls, 101
spbcg, 107
spfgmr, 107
spgmr, 106
sptfqmr, 107
superlumt, 101
use in kinsol, 16

GMRES method, 106

half-bandwidths, 23, 52–53, 58
header files, 18, 57

ih data, 51
Inexact Newton iteration

definition, 7
info message

user-defined handler, 30
info messages

redirecting, 30
informational messages

user-defined handler, 51
IOUT, 70, 71

Jacobian approximation function
band

difference quotient, 38
use in fkinsol, 66
user-supplied, 38, 52–53

dense
difference quotient, 38

use in fkinsol, 65
user-supplied, 38, 51–52

Jacobian times vector
difference quotient, 41
use in fkinsol, 68
user-supplied, 41, 54–55

sparse
user-supplied, 39, 53–54

KIN ETACHOICE1, 33
KIN ETACHOICE2, 33
KIN ETACONSTANT, 33
KIN FIRST SYSFUNC ERR, 28
KIN FP, 27
KIN ILL INPUT, 22, 27, 31–38
KIN INITIAL GUESS OK, 27
KIN LINESEARCH, 27
KIN LINESEARCH BCFAIL, 28
KIN LINESEARCH NONCONV, 27
KIN LINIT FAIL, 28
KIN LINSOLV NO RECOVERY, 28
KIN LSETUP FAIL, 28
KIN LSOLVE FAIL, 28
KIN MAXITER REACHED, 27
KIN MEM FAIL, 22
KIN MEM NULL, 22, 27, 30–38, 42, 44, 45
KIN MXNEWT 5X EXCEEDED, 28
KIN NO MALLOC, 27
KIN NONE, 27
KIN PICARD, 27
KIN REPTD SYSFUNC ERR, 28
KIN STEP LT STPTOL, 27
KIN SUCCESS, 22, 27, 30–37, 42, 44, 45
KIN SYSFUNC FAIL, 28
KIN WARNING, 51
kinband linear solver

Jacobian approximation used by, 38
memory requirements, 45
nvector compatibility, 23
optional input, 38–39
optional output, 45–46
selection of, 23
use in fkinsol, 65

KINBand, 20, 23, 52
KINBandSetJacFn, 38
kinbbdpre preconditioner

optional output, 59–60
usage, 57–58
user-callable functions, 58–59
user-supplied functions, 56–57

KINBBDPrecGetNumGfnEvals, 60
KINBBDPrecGetWorkSpace, 59
KINBBDPrecInit, 58
KINCreate, 21

INDEX 129

kindense linear solver
Jacobian approximation used by, 38
memory requirements, 45
nvector compatibility, 23
optional input, 38–39
optional output, 45–46
selection of, 23
use in fkinsol, 65

KINDense, 20, 23, 51
KINDLS ILL INPUT, 23, 24
KINDLS LMEM NULL, 38, 39, 45, 46
KINDLS MEM FAIL, 23, 24
KINDLS MEM NULL, 23, 24, 38, 39, 45, 46
KINDLS SUCCESS, 23, 24, 38, 39, 45, 46
KINDlsBandJacFn, 52
KINDlsDenseJacFn, 51
KINDlsGetLastFlag, 46
KINDlsGetNumFuncEvals, 46
KINDlsGetNumJacEvals, 45
KINDlsGetWorkSpace, 45
KINDlsSetDenseJacFn, 38
KINErrHandlerFn, 50
KINFree, 22
KINGetFuncNorm, 44
KINGetNumBacktrackOps, 44
KINGetNumBetaCondFails, 44
KINGetNumFuncEvals, 44
KINGetNumNonlinSolvIters, 44
KINGetStepLength, 45
KINGetWorkSpace, 42
KINInfoHandlerFn, 51
KINInit, 22
KINKLU, 20, 23, 24, 53
kinklu linear solver

Jacobian approximation used by, 39
matrix reordering algorithm specification, 40
nvector compatibility, 24
optional input, 39–41
optional output, 46–47
reinitialization, 39
selection of, 24

KINKLUReInit, 39
KINKLUSetOrdering, 40
KINLapackBand, 20, 23, 24
KINLapackDense, 20, 23
KINSetConstraints, 37
KINSetErrFile, 30
KINSetErrHandlerFn, 30
KINSetEtaConstValue, 34
KINSetEtaForm, 33
KINSetEtaParams, 34
KINSetFuncNormTol, 36
KINSetInfoFile, 30
KINSetInfoHandlerFn, 31

KINSetMAA, 37
KINSetMaxBetaFails, 35
KINSetMaxNewtonStep, 35
KINSetMaxSetupCalls, 33
KINSetMaxSubSetupCalls, 33
KINSetNoInitSetup, 32
KINSetNoMinEps, 35
KINSetNoResMon, 32
KINSetNumMaxIters, 32
KINSetPrintLevel, 31
KINSetRelErrFunc, 36
KINSetResMonConstValue, 34
KINSetResMonParams, 35
KINSetScaledStepTol, 36
KINSetSysFunc, 37
KINSetUserData, 31
KINSLS ILL INPUT, 24, 25, 40, 41
KINSLS LMEM NULL, 39, 40, 47
KINSLS MEM FAIL, 24, 25, 40
KINSLS MEM NULL, 24, 25, 39–41, 47
KINSLS PACKAGE FAIL, 24, 25
KINSLS SUCCESS, 24, 25, 39–41, 47
KINSlsGetLastFlag, 47
KINSlsGetNumJacEvals, 46
KINSlsGetReturnFlagName, 47
KINSlsSetSparseJacFn, 39
KINSlsSparseJacFn, 53
kinsol

brief description of, 1
motivation for writing in C, 2
package structure, 13
relationship to NKSOL, 1

kinsol linear solvers
built on generic solvers, 23
header files, 18
implementation details, 16
kinband, 23
kindense, 23
kinklu, 24
kinspbcg, 26
kinspfgmr, 25
kinspgmr, 25
kinsptfqmr, 26
kinsuperlumt, 25
list of, 13–15
nvector compatibility, 17
selecting one, 23

KINSol, 21, 27
kinsol.h, 18
kinsol band.h, 19
kinsol dense.h, 18
kinsol klu.h, 19
kinsol lapack.h, 19
kinsol spbcgs.h, 19

130 INDEX

kinsol spfgmr.h, 19
kinsol spgmr.h, 19
kinsol sptfqmr.h, 19
kinsol superlumt.h, 19
KINSOLkinsol linear solvers

selecting one, 22
kinsparse linear solver

use in fkinsol, 66
kinspbcg linear solver

Jacobian approximation used by, 41
memory requirements, 47
optional input, 41–42
optional output, 47–50
preconditioner setup function, 41, 55
preconditioner solve function, 41, 55
selection of, 26
use in fkinsol, 67

KINSpbcg, 21, 23, 26
kinspfgmr linear solver

Jacobian approximation used by, 41
memory requirements, 47
optional input, 41–42
optional output, 47–50
preconditioner setup function, 41, 55
preconditioner solve function, 41, 55
selection of, 25
use in fkinsol, 67

KINSpfgmr, 20, 23, 26
kinspgmr linear solver

Jacobian approximation used by, 41
memory requirements, 47
optional input, 41–42
optional output, 47–50
preconditioner setup function, 41, 55
preconditioner solve function, 41, 55
selection of, 25
use in fkinsol, 67

KINSpgmr, 20, 23, 25
KINSPILS ILL INPUT, 25, 26, 42, 59
KINSPILS LMEM NULL, 41, 42, 47–49, 59
KINSPILS MEM FAIL, 25, 26, 59
KINSPILS MEM NULL, 25, 26, 41, 42, 47–49
KINSPILS PMEM NULL, 59, 60
KINSPILS SUCCESS, 25, 26, 41, 42, 47–49
KINSpilsGetLastFlag, 49
KINSpilsGetNumConvFails, 48
KINSpilsGetNumFuncEvals, 49
KINSpilsGetNumJtimesEvals, 49
KINSpilsGetNumLinIters, 48
KINSpilsGetNumPrecEvals, 48
KINSpilsGetNumPrecSolves, 48
KINSpilsGetWorkSpace, 47
KINSpilsJacTimesVecFn, 54
KINSpilsPrecSetupFn, 55

KINSpilsPrecSolveFn, 55
KINSpilsSetJacTimesFn, 41
KINSpilsSetMaxRestarts, 42
KINSpilsSetPreconditioner, 41
KINSPLIS LMEM NULL, 48
kinsptfqmr linear solver

Jacobian approximation used by, 41
memory requirements, 47
optional input, 41–42
optional output, 47–50
preconditioner setup function, 41, 55
preconditioner solve function, 41, 55
selection of, 26
use in fkinsol, 68

KINSptfqmr, 21, 23, 26
kinsuperlumt linear solver

Jacobian approximation used by, 39
matrix reordering algorithm specification, 40
nvector compatibility, 25
optional input, 39–41
optional output, 46–47
selection of, 25

KINSuperLUMT, 20, 23, 25
KINSuperLUMTSetOrdering, 40
KINSysFn, 22, 50
klu sparse linear solver

type SlsMat, 102

linit, 90

MAX NITER, 70
MAX SETUPS, 70
MAX SP SETUPS, 70
MAX STEP, 70
memory requirements

kinband linear solver, 45
kinbbdpre preconditioner, 59
kindense linear solver, 45
kinsol solver, 42
kinspfgmr linear solver, 47
kinspgmr linear solver, 47

Modified Newton iteration
definition, 7

MPI, 5

N VCloneEmptyVectorArray, 76
N VCloneEmptyVectorArray OpenMP, 85
N VCloneEmptyVectorArray Parallel, 83
N VCloneEmptyVectorArray Pthreads, 87
N VCloneEmptyVectorArray Serial, 80
N VCloneVectorArray, 76
N VCloneVectorArray OpenMP, 85
N VCloneVectorArray Parallel, 83
N VCloneVectorArray Pthreads, 87
N VCloneVectorArray Serial, 80

INDEX 131

N VDestroyVectorArray, 76
N VDestroyVectorArray OpenMP, 85
N VDestroyVectorArray Parallel, 83
N VDestroyVectorArray Pthreads, 87
N VDestroyVectorArray Serial, 81
N Vector, 18, 75
N VMake OpenMP, 85
N VMake Parallel, 82
N VMake Pthreads, 87
N VMake Serial, 80
N VNew OpenMP, 84
N VNew Parallel, 82
N VNew Pthreads, 86
N VNew Serial, 80
N VNewEmpty OpenMP, 85
N VNewEmpty Parallel, 82
N VNewEmpty Pthreads, 87
N VNewEmpty Serial, 80
N VPrint OpenMP, 85
N VPrint Parallel, 83
N VPrint Pthreads, 87
N VPrint Serial, 81
newBandMat, 100
newDenseMat, 98
newIntArray, 98, 101
newLintArray, 98, 101
newRealArray, 98, 101
NewSparseMat, 103
NO INIT SETUP, 70
NO MIN EPS, 70
NO RES MON, 70
nonlinear system

definition, 7
NV COMM P, 82
NV CONTENT OMP, 84
NV CONTENT P, 81
NV CONTENT PT, 86
NV CONTENT S, 79
NV DATA OMP, 84
NV DATA P, 81
NV DATA PT, 86
NV DATA S, 80
NV GLOBLENGTH P, 81
NV Ith OMP, 84
NV Ith P, 82
NV Ith PT, 86
NV Ith S, 80
NV LENGTH OMP, 84
NV LENGTH PT, 86
NV LENGTH S, 80
NV LOCLENGTH P, 81
NV NUM THREADS OMP, 84
NV NUM THREADS PT, 86
NV OWN DATA OMP, 84

NV OWN DATA P, 81
NV OWN DATA PT, 86
NV OWN DATA S, 80
NVECTOR module, 75
nvector openmp.h, 18
nvector parallel.h, 18
nvector pthreads.h, 18
nvector serial.h, 18

openMP, 5
optional input

band linear solver, 38–39
dense linear solver, 38–39
iterative linear solver, 41–42
solver, 28–38
sparse linear solver, 39–41

optional output
band linear solver, 45–46
band-block-diagonal preconditioner, 59–60
dense linear solver, 45–46
iterative linear solver, 47–50
solver, 42–45
sparse linear solver, 46–47

Picard iteration
definition, 11

portability, 18
Fortran, 61

preconditioning
setup and solve phases, 16
user-supplied, 41, 55

PrintSparseMat, 105
PRNT LEVEL, 70
problem-defining function, 50
Pthreads, 5

RCONST, 18
ReallocSparseMat, 105
realtype, 18
RERR FUNC, 70
RMON CONST, 70
RMON PARAMS, 70
ROUT, 70, 71

ScaleSparseMat, 103
sls sparse linear solver

functions
small matrix, 103–105

SlsAddMat, 103
SlsConvertDls, 103
SlsMat, 102
SlsMatvec, 105
SMALL REAL, 18
spbcg generic linear solver

description of, 107

132 INDEX

functions, 107
spfgmr generic linear solver

description of, 107
functions, 107

spgmr generic linear solver
description of, 106
functions, 106
support functions, 106

sptfqmr generic linear solver
description of, 107
functions, 107

SSTEP TOL, 70
sundials nvector.h, 18
sundials types.h, 18
superlumt sparse linear solver

type SlsMat, 102

TFQMR method, 107

UNIT ROUNDOFF, 18
User main program

fkinbbd usage, 72
fkinsol usage, 63
kinbbdpre usage, 57
kinsol usage, 19

user data, 50, 57

	List of Tables
	List of Figures
	Introduction
	Historical Background
	Changes from previous versions
	Reading this User Guide

	Mathematical Considerations
	Code Organization
	SUNDIALS organization
	KINSOL organization

	Using KINSOL for C Applications
	Access to library and header files
	Data types
	Header files
	A skeleton of the user's main program
	User-callable functions
	KINSOL initialization and deallocation functions
	Linear solver specification functions
	KINSOL solver function
	Optional input functions
	Main solver optional input functions
	Dense direct linear solver optional input functions
	Sparse linear solvers optional input functions
	Iterative linear solvers optional input functions

	Optional output functions
	Main solver optional output functions
	Dense direct linear solvers optional output functions
	Sparse direct linear solvers optional output functions
	Iterative linear solvers optional output functions

	User-supplied functions
	Problem-defining function
	Error message handler function
	Informational message handler function
	Jacobian information (direct method with dense Jacobian)
	Jacobian information (direct method with banded Jacobian)
	Jacobian information (direct method with sparse Jacobian)
	Jacobian information (matrix-vector product)
	Preconditioning (linear system solution)
	Preconditioning (Jacobian data)

	A parallel band-block-diagonal preconditioner module

	FKINSOL, an Interface Module for FORTRAN Applications
	Important note on portability
	Fortran Data Types
	FKINSOL routines
	Usage of the FKINSOL interface module
	FKINSOL optional input and output
	Usage of the FKINBBD interface to KINBBDPRE

	Description of the NVECTOR module
	The NVECTOR_SERIAL implementation
	The NVECTOR_PARALLEL implementation
	The NVECTOR_OPENMP implementation
	The NVECTOR_PTHREADS implementation
	NVECTOR Examples
	NVECTOR functions used by KINSOL

	Providing Alternate Linear Solver Modules
	Initialization function
	Setup function
	Solve function
	Memory deallocation function

	General Use Linear Solver Components in SUNDIALS
	The DLS modules: DENSE and BAND
	Type DlsMat
	Accessor macros for the DLS modules
	Functions in the DENSE module
	Functions in the BAND module

	The SLS module
	Type SlsMat
	Functions in the SLS module
	The KLU solver
	The SUPERLUMT solver

	The SPILS modules: SPGMR, SPFGMR, SPBCG, and SPTFQMR
	The SPGMR module
	The SPFGMR module
	The SPBCG module
	The SPTFQMR module

	SUNDIALS Package Installation Procedure
	CMake-based installation
	Configuring, building, and installing on Unix-like systems
	Configuration options (Unix/Linux)
	Configuration examples
	Working with external Libraries

	Building and Running Examples
	Configuring, building, and installing on Windows
	Installed libraries and exported header files

	KINSOL Constants
	KINSOL input constants
	KINSOL output constants

	Bibliography
	Index

