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Chapter 1

Introduction

kinsol is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [26]. This suite consists of cvode, arkode, kinsol, and ida, and variants of these
with sensitivity analysis capabilities.

kinsol is a general-purpose nonlinear system solver based on Newton-Krylov solver technology.
A fixed point iteration is also included with the release of kinsol v.2.8.0 and higher.

1.1 Historical Background

The first nonlinear solver packages based on Newton-Krylov methods were written in Fortran. In
particular, the NKSOL package, written at LLNL, was the first Newton-Krylov solver package written
for solution of systems arising in the solution of partial differential equations [13]. This Fortran code
made use of Newton’s method to solve the discrete nonlinear systems and applied a preconditioned
Krylov linear solver for solution of the Jacobian system at each nonlinear iteration. The key to the
Newton-Krylov method was that the matrix-vector multiplies required by the Krylov method could
effectively be approximated by a finite difference of the nonlinear system-defining function, avoiding a
requirement for the formation of the actual Jacobian matrix. Significantly less memory was required
for the solver as a result.

In the late 1990’s, there was a push at LLNL to rewrite the nonlinear solver in C and port it to
distributed memory parallel machines. Both Newton and Krylov methods are easily implemented in
parallel, and this effort gave rise to the kinsol package. kinsol is similar to NKSOL in functionality,
except that it provides for more options in the choice of linear system methods and tolerances, and
has a more modular design to provide flexibility for future enhancements.

At present, kinsol may utilize a variety of Krylov methods provided in sundials. These methods
include the GMRES (Generalized Minimal RESidual) [38], FGMRES (Flexible Generalized Minimum
RESidual) [37], Bi-CGStab (Bi-Conjugate Gradient Stabilized) [40], TFQMR (Transpose-Free Quasi-
Minimal Residual) [23], and PCG (Preconditioned Conjugate Gradient) [25] linear iterative methods.
As Krylov methods, these require little matrix storage for solving the Newton equations as compared
to direct methods. However, the algorithms allow for a user-supplied preconditioner matrix, and, for
most problems, preconditioning is essential for an efficient solution. For very large nonlinear algebraic
systems, the Krylov methods are preferable over direct linear solver methods, and are often the only
feasible choice. Among the Krylov methods in sundials, we recommend GMRES as the best overall
choice. However, users are encouraged to compare all three, especially if encountering convergence
failures with GMRES. Bi-CGStab and TFQMR have an advantage in storage requirements, in that
the number of workspace vectors they require is fixed, while that number for GMRES depends on
the desired Krylov subspace size. FGMRES has an advantage in that it is designed to support
preconditioners that vary between iterations (e.g. iterative methods). PCG exhibits rapid convergence
and minimal workspace vectors, but only works for symmetric linear systems.

For the sake of completeness in functionality, direct linear system solvers are included in kinsol.
These include methods for both dense and banded linear systems, with Jacobians that are either



2 Introduction

user-supplied or generated internally by difference quotients. kinsol also includes interfaces to the
sparse direct solvers KLU [16, 3], and the threaded sparse direct solver, SuperLU MT [31, 18, 9].

In the process of translating NKSOL into C, the overall kinsol organization has been changed
considerably. One key feature of the kinsol organization is that a separate module devoted to
vector operations was created. This module facilitated extension to multiprosessor environments with
minimal impact on the rest of the solver. The vector module design is shared across the sundials
suite. This nvector module is written in terms of abstract vector operations with the actual routines
attached by a particular implementation (such as serial or parallel) of nvector. This abstraction
allows writing the sundials solvers in a manner independent of the actual nvector implementation
(which can be user-supplied), as well as allowing more than one nvector module linked into an
executable file. sundials (and thus kinsol) is supplied with serial, MPI-parallel, and both OpenMP
and Pthreads thread-parallel nvector implementations.

There are several motivations for choosing the C language for kinsol. First, a general movement
away from Fortran and toward C in scientific computing was apparent. Second, the pointer, struc-
ture, and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for kinsol because
of the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease
of interfacing the solver to applications written in Fortran.

1.2 Changes from previous versions

Changes in v5.7.0

A new nvector implementation based on the sycl abstraction layer has been added targeting Intel
GPUs. At present the only sycl compiler supported is the DPC++ (Intel oneAPI) compiler. See
Section 7.12 for more details. This module is considered experimental and is subject to major changes
even in minor releases.

A new sunmatrix and sunlinsol implementation were added to interface with the MAGMA
linear algebra library. Both the matrix and the linear solver support general dense linear systems as
well as block diagonal linear systems, and both are targeted at GPUs (AMD or NVIDIA). See Section
9.13 for more details.

Changes in v5.6.1

Fixed a bug in the sundials CMake which caused an error if the CMAKE CXX STANDARD and
SUNDIALS RAJA BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

Changes in v5.6.0

A new nvector implementation based on the AMD ROCm HIP platform has been added. This
vector can target NVIDIA or AMD GPUs. See 7.10 for more details. This module is considered
experimental and is subject to change from version to version.

The RAJA nvector implementation has been updated to support the HIP backend in addi-
tion to the CUDA backend. Users can choose the backend when configuring SUNDIALS by using
the SUNDIALS RAJA BACKENDS CMake variable. This module remains experimental and is subject to
change from version to version.

A new optional operation, N VGetDeviceArrayPointer, was added to the N Vector API. This
operation is useful for N Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA
N Vector.

The SUNMATRIX CUSPARSE and SUNLINEARSOLVER CUSOLVERSP BATCHQR imple-
mentations no longer require the SUNDIALS CUDA N Vector. Instead, they require that the vec-
tor utilized provides the N VGetDeviceArrayPointer operation, and that the pointer returned by
N VGetDeviceArrayPointer is a valid CUDA device pointer.
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Changes in v5.5.0

Refactored the sundials build system. CMake 3.12.0 or newer is now required. Users will likely see
deprecation warnings, but otherwise the changes should be fully backwards compatible for almost all
users. sundials now exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

Changes in v5.4.0

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory manage-
ment needs such as using memory pools. This is paired with new constructors for the nvector cuda
and nvector raja modules that accept a SUNMemoryHelper object. Refer to sections 6.1,10.1, 7.9
and 7.11 for more information.

The NVECTOR RAJA module has been updated to mirror the NVECTOR CUDA module. Notably, the
update adds managed memory support to the NVECTOR RAJA module. Users of the module will need
to update any calls to the N VMake Raja function because that signature was changed. This module
remains experimental and is subject to change from version to version.

The NVECTOR TRILINOS module has been updated to work with Trilinos 12.18+. This update
changes the local ordinal type to always be an int.

Added support for CUDA v11.

Changes in v5.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function
is NULL or, if preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the cuda kernel launch parameters for the NVECTOR CUDA and SUNMATRIX CUSPARSE

modules. These modules remain experimental and are subject to change from version to version. In
addition, the NVECTOR CUDA kernels were rewritten to be more flexible. Most users should see equiva-
lent performance or some improvement, but a select few may observe minor performance degradation
with the default settings. Users are encouraged to contact the sundials team about any perfomance
changes that they notice.

Added new capabilities for monitoring the solve phase in the sunnonlinsol newton and sun-
nonlinsol fixedpoint modules, and the sundials iterative linear solver modules. sundials must
be built with the CMake option SUNDIALS BUILD WITH MONITORING to use these capabilties.

Added the optional function KINSetJacTimesVecSysFn to specify an alternative system function
for computing Jacobian-vector products with the internal difference quotient approximation.

Changes in v5.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL com-
piler. When building the Fortran 2003 interfaces with an XL compiler it is recommended to set
CMAKE Fortran COMPILER to f2003, xlf2003, or xlf2003 r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes
missing on some SUNDIALS API functions.

Added a new SUNMatrix implementation, SUNMATRIX CUSPARSE, that interfaces to the sparse ma-
trix implementation from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL CUSOLVER BATCHQR

linear solver has been updated to use this matrix, therefore, users of this module will need to update
their code. These modules are still considered to be experimental, thus they are subject to breaking
changes even in minor releases.

Changes in v5.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.
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Fixed a build system bug related to finding PETSc when using the CMake variables PETSC INCLUDES

and PETSC LIBRARIES instead of PETSC DIR.

Added a new build system option, CUDA ARCH, that can be used to specify the CUDA architecture
to compile for.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying
file pointers that are useful when using the Fortran 2003 interfaces.

Added support for constant damping when using Anderson acceleration. See Chatper 2 and the
description of the KINSetDampingAA function for more details.

Changes in v5.0.0

Build system changes

• Increased the minimum required CMake version to 3.5 for most sundials configurations, and
3.10 when CUDA or OpenMP with device offloading are enabled.

• The CMake option BLAS ENABLE and the variable BLAS LIBRARIES have been removed to simplify
builds as sundials packages do not use BLAS directly. For third party libraries that require
linking to BLAS, the path to the BLAS library should be included in the LIBRARIES variable
for the third party library e.g., SUPERLUDIST LIBRARIES when enabling SuperLU DIST.

• Fixed a bug in the build system that prevented the nvector pthreads module from being
built.

NVECTOR module changes

• Two new functions were added to aid in creating custom nvector objects. The constructor
N VNewEmpty allocates an “empty” generic nvector with the object’s content pointer and the
function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
nvector API by ensuring only required operations need to be set. Additionally, the function
N VCopyOps(w, v) has been added to copy the operation function pointers between vector ob-
jects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the nvector API by ensuring all operations are
copied when cloning objects. See §7.1.6 for more details.

• Two new nvector implementations, nvector manyvector and nvector mpimanyvector,
have been created to support flexible partitioning of solution data among different processing
elements (e.g., CPU + GPU) or for multi-physics problems that couple distinct MPI-based sim-
ulations together. This implementation is accompanied by additions to user documentation and
sundials examples. See §7.15 and §7.16 for more details.

• One new required vector operation and ten new optional vector operations have been added to
the nvector API. The new required operation, N VGetLength, returns the global length of an
N Vector. The optional operations have been added to support the new
nvector mpimanyvector implementation. The operation N VGetCommunicator must be im-
plemented by subvectors that are combined to create an nvector mpimanyvector, but is not
used outside of this context. The remaining nine operations are optional local reduction oper-
ations intended to eliminate unnecessary latency when performing vector reduction operations
(norms, etc.) on distributed memory systems. The optional local reduction vector operations
are N VDotProdLocal, N VMaxNormLocal, N VMinLocal, N VL1NormLocal, N VWSqrSumLocal,
N VWSqrSumMaskLocal, N VInvTestLocal, N VConstrMaskLocal, and N VMinQuotientLocal.
If an nvector implementation defines any of the local operations as NULL, then the nvec-
tor mpimanyvector will call standard nvector operations to complete the computation.
See §7.1.4 for more details.
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• An additional nvector implementation, nvector mpiplusx, has been created to support
the MPI+X paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The
implementation is accompanied by additions to user documentation and sundials examples.
See §7.17 for more details.

• The * MPICuda and * MPIRaja functions have been removed from the nvector cuda and
nvector raja implementations respectively. Accordingly, the nvector mpicuda.h,
nvector mpiraja.h, libsundials nvecmpicuda.lib, and libsundials nvecmpicudaraja.lib

files have been removed. Users should use the nvector mpiplusx module coupled in conjunc-
tion with the nvector cuda or nvector raja modules to replace the functionality. The
necessary changes are minimal and should require few code modifications. See the programs
in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the nvec-
tor mpiplusx module with the nvector cuda and nvector raja modules respectively.

• Fixed a memory leak in the nvector petsc module clone function.

• Made performance improvements to the nvector cuda module. Users who utilize a non-default
stream should no longer see default stream synchronizations after memory transfers.

• Added a new constructor to the nvector cuda module that allows a user to provide custom
allocate and free functions for the vector data array and internal reduction buffer. See §7.9.1
for more details.

• Added new Fortran 2003 interfaces for most nvector modules. See Chapter 7 for more details
on how to use the interfaces.

• Added three new nvector utility functions, FN VGetVecAtIndexVectorArray,
FN VSetVecAtIndexVectorArray, and FN VNewVectorArray, for working with N Vector arrays
when using the Fortran 2003 interfaces. See §7.1.6 for more details.

SUNMatrix module changes

• Two new functions were added to aid in creating custom sunmatrix objects. The constructor
SUNMatNewEmpty allocates an “empty” generic sunmatrix with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
sunmatrix API by ensuring only required operations need to be set. Additionally, the function
SUNMatCopyOps(A, B) has been added to copy the operation function pointers between matrix
objects. When used in clone routines for custom matrix objects these functions also will ease the
introduction of any new optional operations to the sunmatrix API by ensuring all operations
are copied when cloning objects. See §8.1.2 for more details.

• A new operation, SUNMatMatvecSetup, was added to the sunmatrix API to perform any setup
necessary for computing a matrix-vector product. This operation is useful for sunmatrix imple-
mentations which need to prepare the matrix itself, or communication structures before perform-
ing the matrix-vector product. Users who have implemented custom sunmatrix modules will
need to at least update their code to set the corresponding ops structure member, matvecsetup,
to NULL. See §8.1.1 for more details.

• The generic sunmatrix API now defines error codes to be returned by sunmatrix operations.
Operations which return an integer flag indiciating success/failure may return different values
than previously. See §8.1.3 for more details.

• A new sunmatrix (and sunlinsol) implementation was added to facilitate the use of the
SuperLU DIST library with sundials. See §8.6 for more details.

• Added new Fortran 2003 interfaces for most sunmatrix modules. See Chapter 8 for more details
on how to use the interfaces.
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SUNLinearSolver module changes

• A new function was added to aid in creating custom sunlinsol objects. The constructor
SUNLinSolNewEmpty allocates an “empty” generic sunlinsol with the object’s content pointer
and the function pointers in the operations structure initialized to NULL. When used in the
constructor for custom objects this function will ease the introduction of any new optional
operations to the sunlinsol API by ensuring only required operations need to be set. See §9.3
for more details.

• The return type of the sunlinsol API function SUNLinSolLastFlag has changed from long

int to sunindextype to be consistent with the type used to store row indices in dense and
banded linear solver modules.

• Added a new optional operation to the sunlinsol API, SUNLinSolGetID, that returns a
SUNLinearSolver ID for identifying the linear solver module.

• The sunlinsol API has been updated to make the initialize and setup functions optional.

• A new sunlinsol (and sunmatrix) implementation was added to facilitate the use of the
SuperLU DIST library with sundials. See §9.10 for more details.

• Added a new sunlinsol implementation, SUNLinearSolver cuSolverSp batchQR, which lever-
ages the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal
linear systems on NVIDIA GPUs. See §9.12 for more details.

• Added three new accessor functions to the sunlinsol klu module, SUNLinSol KLUGetSymbolic,
SUNLinSol KLUGetNumeric, and SUNLinSol KLUGetCommon, to provide user access to the under-
lying KLU solver structures. See §9.9.2 for more details.

• Added new Fortran 2003 interfaces for most sunlinsol modules. See Chapter 9 for more details
on how to use the interfaces.

KINSOL changes

• Fixed a bug in the kinsol linear solver interface where the auxiliary scalar sJpnorm was not
computed when necessary with the Picard iteration and the auxiliary scalar sFdotJp was un-
necessarily computed in some cases.

• The KINLS interface has been updated to only zero the Jacobian matrix before calling a user-
supplied Jacobian evaluation function when the attached linear solver has type
SUNLINEARSOLVER DIRECT.

• Added a Fortran 2003 interface to kinsol. See Chapter 5 for more details.

Changes in v5.0.0-dev.0

An additional nvector implementation, nvector manyvector, was created to support flexible
partitioning of solution data among different processing elements (e.g., CPU + GPU) or for multi-
physics problems that couple distinct MPI-based simulations together (see Section 7.15 for more
details). This implementation is accompanied by additions to user documentation and sundials
examples.

Eleven new optional vector operations have been added to the nvector API to support the new
nvector manyvector implementation (see Chapter 7 for more details). Two of the operations,
N VGetCommunicator and N VGetLength, must be implemented by subvectors that are combined to
create an nvector manyvector, but are not used outside of this context. The remaining nine op-
erations are optional local reduction operations intended to eliminate unnecessary latency when per-
forming vector reduction operations (norms, etc.) on distributed memory systems. The optional local
reduction vector operations are N VDotProdLocal, N VMaxNormLocal, N VMinLocal, N VL1NormLocal,
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N VWSqrSumLocal, N VWSqrSumMaskLocal, N VInvTestLocal, N VConstrMaskLocal, and
N VMinQuotientLocal. If an nvector implementation defines any of the local operations as NULL,
then the nvector manyvector will call standard nvector operations to complete the computa-
tion.

A new sunmatrix and sunlinsol implementation was added to facilitate the use of the Su-
perLU DIST library with SUNDIALS.

A new operation, SUNMatMatvecSetup, was added to the sunmatrix API. Users who have imple-
mented custom sunmatrix modules will need to at least update their code to set the corresponding
ops structure member, matvecsetup, to NULL.

The generic sunmatrix API now defines error codes to be returned by sunmatrix operations.
Operations which return an integer flag indiciating success/failure may return different values than
previously.

Changes in v4.1.0

An additional nvector implementation was added for the Tpetra vector from the Trilinos library
to facilitate interoperability between sundials and Trilinos. This implementation is accompanied by
additions to user documentation and sundials examples.

The EXAMPLES ENABLE RAJA CMake option has been removed. The option EXAMPLES ENABLE CUDA

enables all examples that use CUDA including the RAJA examples with a CUDA back end (if the
RAJA nvector is enabled).

The implementation header file kin impl.h is no longer installed. This means users who are
directly manipulating the KINMem structure will need to update their code to use kinsol’s public
API.

Python is no longer required to run make test and make test install.

Changes in v4.0.2

Added information on how to contribute to sundials and a contributing agreement.
Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The

symbols are now included in the kinsol library, libsundials kinsol.

Changes in v4.0.1

No changes were made in this release.

Changes in v4.0.0

kinsol’s previous direct and iterative linear solver interfaces, kindls and kinspils, have been merged
into a single unified linear solver interface, kinls, to support any valid sunlinsol module. This
includes the “DIRECT” and “ITERATIVE” types as well as the new “MATRIX ITERATIVE” type.
Details regarding how kinls utilizes linear solvers of each type as well as discussion regarding intended
use cases for user-supplied sunlinsol implementations are included in Chapter 9. All kinsol example
programs and the standalone linear solver examples have been updated to use the unified linear solver
interface.

The unified interface for the new kinls module is very similar to the previous kindls and kinspils
interfaces. To minimize challenges in user migration to the new names, the previous C and Fortran
routine names may still be used; these will be deprecated in future releases, so we recommend that
users migrate to the new names soon. Additionally, we note that Fortran users, however, may need
to enlarge their iout array of optional integer outputs, and update the indices that they query for
certain linear-solver-related statistics.

The names of all constructor routines for sundials-provided sunlinsol implementations have
been updated to follow the naming convention SUNLinSol * where * is the name of the linear solver.
The new names are SUNLinSol Band, SUNLinSol Dense, SUNLinSol KLU, SUNLinSol LapackBand,
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SUNLinSol LapackDense, SUNLinSol PCG, SUNLinSol SPBCGS, SUNLinSol SPFGMR, SUNLinSol SPGMR,
SUNLinSol SPTFQMR, and SUNLinSol SuperLUMT. Solver-specific “set” routine names have been simi-
larly standardized. To minimize challenges in user migration to the new names, the previous routine
names may still be used; these will be deprecated in future releases, so we recommend that users mi-
grate to the new names soon. All kinsol example programs and the standalone linear solver examples
have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth ar-
gument.

Three fused vector operations and seven vector array operations have been added to the nvec-
tor API. These optional operations are disabled by default and may be activated by calling vector
specific routines after creating an nvector (see Chapter 7 for more details). The new operations are
intended to increase data reuse in vector operations, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. The fused op-
erations are N VLinearCombination, N VScaleAddMulti, and N VDotProdMulti and the vector array
operations are N VLinearCombinationVectorArray, N VScaleVectorArray, N VConstVectorArray,
N VWrmsNormVectorArray, N VWrmsNormMaskVectorArray, N VScaleAddMultiVectorArray, and
N VLinearCombinationVectorArray. If an nvector implementation defines any of these operations
as NULL, then standard nvector operations will automatically be called as necessary to complete the
computation.

Multiple updates to nvector cuda were made:

• Changed N VGetLength Cuda to return the global vector length instead of the local vector length.

• Added N VGetLocalLength Cuda to return the local vector length.

• Added N VGetMPIComm Cuda to return the MPI communicator used.

• Removed the accessor functions in the namespace suncudavec.

• Changed the N VMake Cuda function to take a host data pointer and a device data pointer instead
of an N VectorContent Cuda object.

• Added the ability to set the cudaStream t used for execution of the nvector cuda kernels.
See the function N VSetCudaStreams Cuda.

• Added N VNewManaged Cuda, N VMakeManaged Cuda, and N VIsManagedMemory Cuda functions
to accommodate using managed memory with the nvector cuda.

Multiple changes to nvector raja were made:

• Changed N VGetLength Raja to return the global vector length instead of the local vector length.

• Added N VGetLocalLength Raja to return the local vector length.

• Added N VGetMPIComm Raja to return the MPI communicator used.

• Removed the accessor functions in the namespace suncudavec.

A new nvector implementation for leveraging OpenMP 4.5+ device offloading has been added,
nvector openmpdev. See §7.13 for more details.

Changes in v3.2.1

The changes in this minor release include the following:

• Fixed a bug in the cuda nvector where the N VInvTest operation could write beyond the
allocated vector data.
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• Fixed library installation path for multiarch systems. This fix changes the default library instal-
lation path to CMAKE INSTALL PREFIX/CMAKE INSTALL LIBDIR from CMAKE INSTALL PREFIX/lib.
CMAKE INSTALL LIBDIR is automatically set, but is available as a CMake option that can modi-
fied.

Changes in v3.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang)
that did not define STDC VERSION .

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when
using a GPU system. The vectors assume one GPU device per MPI rank.

Changed the name of the raja nvector library to libsundials nveccudaraja.lib from
libsundials nvecraja.lib to better reflect that we only support cuda as a backend for raja cur-
rently.

Several changes were made to the build system:

• CMake 3.1.3 is now the minimum required CMake version.

• Deprecate the behavior of the SUNDIALS INDEX TYPE CMake option and added the
SUNDIALS INDEX SIZE CMake option to select the sunindextype integer size.

• The native CMake FindMPI module is now used to locate an MPI installation.

• If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE <language> COMPILER can compile MPI programs before trying to locate and use an
MPI installation.

• The previous options for setting MPI compiler wrappers and the executable for running MPI
programs have been have been depreated. The new options that align with those used in native
CMake FindMPI module are MPI C COMPILER, MPI CXX COMPILER, MPI Fortran COMPILER, and
MPIEXEC EXECUTABLE.

• When a Fortran name-mangling scheme is needed (e.g., ENABLE LAPACK is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS F77 FUNC CASE

and SUNDIALS F77 FUNC UNDERSCORES can be used to manually set the name-mangling scheme
and bypass trying to infer the scheme.

• Parts of the main CMakeLists.txt file were moved to new files in the src and example directories
to make the CMake configuration file structure more modular.

Changes in v3.1.2

The changes in this minor release include the following:

• Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default
to locate shared libraries on OSX.

• Fixed Windows specific problem where sunindextype was not correctly defined when using
64-bit integers for the sundials index type. On Windows sunindextype is now defined as the
MSVC basic type int64.

• Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.
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• Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types,
and fixed a bug in the full reinitialization approach where the sparse SUNMatrix pointer would
go out of scope on some architectures.

• Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the
sum, but had the wrong sparsity pattern. The sum now occurs in-place, by performing the sum
backwards in the existing storage. However, it is still more efficient if the user-supplied Jacobian
routine allocates storage for the sum I + γJ manually (with zero entries if needed).

• Changed the LICENSE install path to instdir/include/sundials.

Changes in v3.1.1

The changes in this minor release include the following:

• Fixed a potential memory leak in the spgmr and spfgmr linear solvers: if “Initialize” was
called multiple times then the solver memory was reallocated (without being freed).

• Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function
to be used (to avoid compiler warnings).

• Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).

• Bugfix in sunmatrix sparse.c where we had used int instead of sunindextype in one location.

• Fixed a minor bug in KINPrintInfo where a case was missing for KIN REPTD SYSFUNC ERR

leading to an undefined info message.

• Added missing #include <stdio.h> in nvector and sunmatrix header files.

• Fixed an indexing bug in the cuda nvector implementation of N VWrmsNormMask and revised
the raja nvector implementation of N VWrmsNormMask to work with mask arrays using values
other than zero or one. Replaced double with realtype in the raja vector test functions.

• Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a sunmatrix
or sunlinsol module (e.g., iterative linear solvers or fixed pointer solver).

In addition to the changes above, minor corrections were also made to the example programs, build
system, and user documentation.

Changes in v3.1.0

Added nvector print functions that write vector data to a specified file (e.g., N VPrintFile Serial).
Added make test and make test install options to the build system for testing sundials after

building with make and installing with make install respectively.

Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation
and ease in the interfacing of custom linear solvers and interoperability with linear solver libraries.
Specific changes include:

• Added generic SUNMATRIX module with three provided implementations: dense, banded and
sparse. These replicate previous SUNDIALS Dls and Sls matrix structures in a single object-
oriented API.

• Added example problems demonstrating use of generic SUNMATRIX modules.
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• Added generic SUNLinearSolver module with eleven provided implementations: sundials na-
tive dense, sundials native banded, LAPACK dense, LAPACK band, KLU, SuperLU MT,
SPGMR, SPBCGS, SPTFQMR, SPFGMR, and PCG. These replicate previous SUNDIALS
generic linear solvers in a single object-oriented API.

• Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

• Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER
objects.

• Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND,
IDAKLU, ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils
interfaces and SUNLINEARSOLVER/SUNMATRIX modules. The exception is CVDIAG, a
diagonal approximate Jacobian solver available to CVODE and CVODES.

• Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLIN-
EARSOLVER objects, along with updated Dls and Spils linear solver interfaces.

• Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow spec-
ification of a user-provided ”JTSetup” routine. This change supports users who wish to set
up data structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where
the cost of one JTSetup setup per Newton iteration can be amortized between multiple JTimes
calls.

Two additional nvector implementations were added – one for cuda and one for raja vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users are
advised that these vectors both move all data to the GPU device upon construction, and speedup will
only be realized if the user also conducts the right-hand-side function evaluation on the device. In
addition, these vectors assume the problem fits on one GPU. Further information about raja, users
are referred to th web site, https://software.llnl.gov/RAJA/. These additions are accompanied by
additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32 t or int64 t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
sundials.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE

have been changed to SUNTRUE and SUNFALSE respectively.
Temporary vectors were removed from preconditioner setup and solve routines for all packages. It

is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

The file include/sundials fconfig.h was added. This file contains sundials type information
for use in Fortran programs.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of
high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get sundials release
version information at runtime.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS ENABLE and BLAS LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing
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EXAMPLES ENABLE to EXAMPLES ENABLE C, changing CXX ENABLE to EXAMPLES ENABLE CXX, changing
F90 ENABLE to EXAMPLES ENABLE F90, and adding an EXAMPLES ENABLE F77 option.

A bug fix was done to correct the fcmix name translation for FKIN SPFGMR.
Corrections and additions were made to the examples, to installation-related files, and to the user

documentation.

Changes in v2.9.0

Two additional nvector implementations were added – one for Hypre (parallel) vectors, and one for
PETSc vectors. These additions are accompanied by additions to various interface functions and to
user documentation.

Each nvector module now includes a function, N VGetVectorID, that returns the nvector
module name.

The Picard iteration return was chanegd to always return the newest iterate upon success. A
minor bug in the line search was fixed to prevent an infinite loop when the beta condition fails and
lamba is below the minimum size.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver linit function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

Corrections were made to three Fortran interface functions. The Anderson acceleration scheme
was enhanced by use of QR updating.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU MT,
including support for CSR format when using KLU.

The functions FKINCREATE and FKININIT were added to split the FKINMALLOC routine into
two pieces. FKINMALLOC remains for backward compatibility, but documentation for it has been
removed.

A new examples was added for use of the OpenMP vector.
Minor corrections and additions were made to the kinsol solver, to the Fortran interfaces, to the

examples, to installation-related files, and to the user documentation.

Changes in v2.8.0

Two major additions were made to the globalization strategy options (KINSol argument strategy).
One is fixed-point iteration, and the other is Picard iteration. Both can be accelerated by use of the
Anderson acceleration method. See the relevant paragraphs in Chapter 2.

Three additions were made to the linear system solvers that are available for use with the kinsol
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the nvector module. As part of
these additions, a sparse matrix (CSC format) structure was added to kinsol. Finally, a variation of
GMRES called Flexible GMRES was added.

Otherwise, only relatively minor modifications were made to kinsol:
In function KINStop, two return values were corrected to make the values of uu and fval consistent.
A bug involving initialization of mxnewtstep was fixed. The error affects the case of repeated user

calls to KINSol with no intervening call to KINSetMaxNewtonStep.
A bug in the increments for difference quotient Jacobian approximations was fixed in function

kinDlsBandDQJac.
In KINLapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an

illegal input error for DGBTRF/DGBTRS.
In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,

SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
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SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

In the FKINSOL module, an incorrect return value ier in FKINfunc was fixed.
In the FKINSOL optional input routines FKINSETIIN, FKINSETRIN, and FKINSETVIN, the optional

fourth argument key length was removed, with hardcoded key string lengths passed to all strncmp
tests.

In all FKINSOL examples, integer declarations were revised so that those which must match a C
type long int are declared INTEGER*8, and a comment was added about the type match. All other
integer declarations are just INTEGER. Corresponding minor corrections were made to the user guide.

Two new nvector modules have been added for thread-parallel computing environments — one
for OpenMP, denoted NVECTOR OPENMP, and one for Pthreads, denoted NVECTOR PTHREADS.

With this version of sundials, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The func-
tion NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays,
respectively.

A large number of errors have been fixed. Three major logic bugs were fixed – involving updating
the solution vector, updating the linesearch parameter, and a missing error return. Three minor
errors were fixed – involving setting etachoice in the Matlab/kinsol interface, a missing error case
in KINPrintInfo, and avoiding an exponential overflow in the evaluation of omega. In each linear
solver interface function, the linear solver memory is freed on an error return, and the **Free function
now includes a line setting to NULL the main memory pointer to the linear solver memory. In the
installation files, we modified the treatment of the macro SUNDIALS USE GENERIC MATH, so that
the parameter GENERIC MATH LIB is either defined (with no value) or not defined.

Changes in v2.6.0

This release introduces a new linear solver module, based on BLAS and LAPACK for both dense and
banded matrices.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the already present family of scaled precondi-
tioned iterative linear solvers, the direct solvers, including the new LAPACK-based ones, were also
organized into a direct family); (b) maintaining a single pointer to user data, optionally specified
through a Set-type function; (c) a general streamlining of the band-block-diagonal preconditioner
module distributed with the solver.

Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire sundials source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including sundials header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
were made to the build system: all exported header files are now installed in separate subdirectories
of the installation include directory.

The functions in the generic dense linear solver (sundials dense and sundials smalldense) were
modified to work for rectangular m×n matrices (m ≤ n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.
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Changes in v2.4.0

kinspbcg, kinsptfqmr, kindense, and kinband modules have been added to interface with the
Scaled Preconditioned Bi-CGStab (spbcgs), Scaled Preconditioned Transpose-Free Quasi-Minimal
Residual (sptfqmr), dense, and band linear solver modules, respectively. (For details see Chapter
4.) Corresponding additions were made to the Fortran interface module fkinsol. At the same
time, function type names for Scaled Preconditioned Iterative Linear Solvers were added for the
user-supplied Jacobian-times-vector and preconditioner setup and solve functions.

Regarding the Fortran interface module fkinsol, optional inputs are now set using FKINSETIIN

(integer inputs), FKINSETRIN (real inputs), and FKINSETVIN (vector inputs). Optional outputs are
still obtained from the IOUT and ROUT arrays which are owned by the user and passed as arguments
to FKINMALLOC.

The kindense and kinband linear solver modules include support for nonlinear residual moni-
toring which can be used to control Jacobian updating.

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (kinsol and sundials ). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see
Appendix A.

Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. Additionally, to resolve potential variable scope issues, all SUNDIALS
solvers release user data right after its use. The build system has been further improved to make it
more robust.

Changes in v2.2.1

The changes in this minor sundials release affect only the build system.

Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, kinsol now provides a
set of routines (with prefix KINSet) to change the default values for various quantities controlling the
solver and a set of extraction routines (with prefix KINGet) to extract statistics after return from the
main solver routine. Similarly, each linear solver module provides its own set of Set- and Get-type
routines. For more details see Chapter 4.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobian-
vector products and preconditioner information) were simplified by reducing the number of arguments.
The same information that was previously accessible through such arguments can now be obtained
through Get-type functions.

Installation of kinsol (and all of sundials) has been completely redesigned and is now based on
configure scripts.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions and specific examples. We expect that
some readers will want to concentrate on the general instructions, while others will refer mostly to
the examples, and the organization is intended to accommodate both styles.

There are different possible levels of usage of kinsol. The most casual user, with a small nonlinear
system, can get by with reading all of Chapter 2, then Chapter 4 through §4.5.3 only, and looking at
examples in [15]. In a different direction, a more expert user with a nonlinear system may want to
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(a) use a package preconditioner (§4.7), (b) supply his/her own Jacobian or preconditioner routines
(§4.6), (c) supply a new nvector module (Chapter 7), or even (d) supply a different linear solver
module (§3.2 and Chapter 9).

The structure of this document is as follows:

• In Chapter 2, we provide short descriptions of the numerical methods implemented by kinsol
for the solution of nonlinear systems.

• The following chapter describes the structure of the sundials suite of solvers (§3.1) and the
software organization of the kinsol solver (§3.2).

• Chapter 4 is the main usage document for kinsol for C applications. It includes a complete
description of the user interface for the solution of nonlinear algebraic systems.

• In Chapter 5.1.5, we describe fkinsol, an interface module for the use of kinsol with Fortran
applications.

• Chapter 7 gives a brief overview of the generic nvector module shared among the various
components of sundials, and details on the four nvector implementations provided with
sundials.

• Chapter 8 gives a brief overview of the generic sunmatrix module shared among the vari-
ous components of sundials, and details on the sunmatrix implementations provided with
sundials: a dense implementation (§8.3), a banded implementation (§8.4) and a sparse imple-
mentation (§8.5).

• Chapter 9 gives a brief overview of the generic sunlinsol module shared among the various
components of sundials. This chapter contains details on the sunlinsol implementations
provided with sundials. The chapter also contains details on the sunlinsol implementations
provided with sundials that interface with external linear solver libraries.

• Finally, in the appendices, we provide detailed instructions for the installation of kinsol, within
the structure of sundials (Appendix A), as well as a list of all the constants used for input to
and output from kinsol functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as KINInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules are
written in all capitals. Usage and installation instructions that constitute important warnings are
marked with a triangular symbol in the margin. !

Acknowledgments. We wish to acknowledge the contributions to previous versions of the kinsol
code and user guide by Allan G. Taylor.

1.4 SUNDIALS Release License

All sundials packages are released open source, under the BSD 3-Clause license. The only require-
ments of the license are preservation of copyright and a standard disclaimer of liability. The full text
of the license and an additional notice are provided below and may also be found in the LICENSE
and NOTICE files provided with all sundials packages.

If you are using sundials with any third party libraries linked in (e.g., LAPACK, KLU, Su- !

perLU MT, petsc, or hypre), be sure to review the respective license of the package as that license
may have more restrictive terms than the sundials license. For example, if someone builds sundials
with a statically linked KLU, the build is subject to terms of the LGPL license (which is what KLU
is released with) and not the sundials BSD license anymore.
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1.4.1 BSD 3-Clause License

Copyright (c) 2002-2021, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to en-
dorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Govern-
ment. Neither the United States Government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

1.4.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)

UCRL-CODE-155951 (CVODE)

UCRL-CODE-155950 (CVODES)

UCRL-CODE-155952 (IDA)

UCRL-CODE-237203 (IDAS)
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LLNL-CODE-665877 (KINSOL)





Chapter 2

Mathematical Considerations

kinsol solves nonlinear algebraic systems in real N -space.
Using Newton’s method, or the Picard iteration, one can solve

F (u) = 0 , F : RN → RN , (2.1)

given an initial guess u0. Using a fixed-point iteration, the convergence of which can be improved
with Anderson acceleration, one can solve

G(u) = u , G : RN → RN , (2.2)

given an initial guess u0.

Basic Newton iteration

Depending on the linear solver used, kinsol can employ either an Inexact Newton method [11, 13,
17, 19, 30], or a Modified Newton method. At the highest level, kinsol implements the following
iteration scheme:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

(a) Solve J(un)δn = −F (un)

(b) Set un+1 = un + λδn, 0 < λ ≤ 1

(c) Test for convergence

Here, un is the nth iterate to u, and J(u) = F ′(u) is the system Jacobian. At each stage in the
iteration process, a scalar multiple of the step δn, is added to un to produce a new iterate, un+1. A
test for convergence is made before the iteration continues.

Newton method variants

For solving the linear system given in step (2a), kinsol provides several choices, including the option
of a user-supplied linear solver module. The linear solver modules distributed with sundials are
organized in two families, a direct family comprising direct linear solvers for dense, banded, or sparse
matrices and a spils family comprising scaled preconditioned iterative (Krylov) linear solvers. The
methods offered through these modules are as follows:

• dense direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),
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• band direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

• sparse direct solver interfaces, using either the KLU sparse solver library [16, 3], or the thread-
enabled SuperLU MT sparse solver library [31, 18, 9] (serial or threaded vector modules only)
[Note that users will need to download and install the klu or superlumt packages independent
of kinsol],

• spgmr, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

• spfgmr, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver,

• spbcgs, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

• sptfqmr, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver, or

• pcg, a scaled preconditioned CG (Conjugate Gradient method) solver.

When using a direct linear solver, the linear system in 2(a) is solved exactly, thus resulting in a
Modified Newton method (the Jacobian matrix is normally out of date; see below1). Note that the
dense, band, and sparse direct linear solvers can only be used with the serial and threaded vector
representations.

When using an iterative linear solver, the linear system in (2a) is solved only approximately,
thus resulting in an Inexact Newton method. Here right preconditioning is available by way of the
preconditioning setup and solve routines supplied by the user, in which case the iterative method is
applied to the linear systems (JP−1)(Pδ) = −F , where P denotes the right preconditioning matrix.

Additionally, it is possible for users to supply a matrix-based iterative linear solver to kinsol,
resulting in a Modified Inexact Newton method. As with the direct linear solvers, the Jacobian
matrix is updated infrequently; similarly as with iterative linear solvers the linear system is solved
only approximately.

Jacobian information update strategy

In general, unless specified otherwise by the user, kinsol strives to update Jacobian information (the
actual system Jacobian J in the case of matrix-based linear solvers, and the preconditioner matrix P
in the case of iterative linear solvers) as infrequently as possible to balance the high costs of matrix
operations against other costs. Specifically, these updates occur when:

• the problem is initialized,

• ‖λδn−1‖Du,∞ > 1.5 (Inexact Newton only),

• mbset= 10 nonlinear iterations have passed since the last update,

• the linear solver failed recoverably with outdated Jacobian information,

• the global strategy failed with outdated Jacobian information, or

• ‖λδn‖Du,∞ < steptol with outdated Jacobian or preconditioner information.

kinsol allows, through optional solver inputs, changes to the above strategy. Indeed, the user can
disable the initial Jacobian information evaluation or change the default value of mbset, the number
of nonlinear iterations after which a Jacobian information update is enforced.

1kinsol allows the user to enforce a Jacobian evaluation at each iteration thus allowing for an Exact Newton iteration.
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Scaling

To address the case of ill-conditioned nonlinear systems, kinsol allows prescribing scaling factors both
for the solution vector and for the residual vector. For scaling to be used, the user should supply values
Du, which are diagonal elements of the scaling matrix such that Duun has all components roughly the
same magnitude when un is close to a solution, and DF , which are diagonal scaling matrix elements
such that DFF has all components roughly the same magnitude when un is not too close to a solution.
In the text below, we use the following scaled norms:

‖z‖Du
= ‖Duz‖2, ‖z‖DF

= ‖DF z‖2, ‖z‖Du,∞ = ‖Duz‖∞, and ‖z‖DF ,∞ = ‖DF z‖∞ (2.3)

where ‖ · ‖∞ is the max norm. When scaling values are provided for the solution vector, these values
are automatically incorporated into the calculation of the perturbations used for the default difference
quotient approximations for Jacobian information; see (2.7) and (2.9) below.

Globalization strategy

Two methods of applying a computed step δn to the previously computed solution vector are imple-
mented. The first and simplest is the standard Newton strategy which applies step 2(b) as above
with λ always set to 1. The other method is a global strategy, which attempts to use the direction
implied by δn in the most efficient way for furthering convergence of the nonlinear problem. This
technique is implemented in the second strategy, called Linesearch. This option employs both the
α and β conditions of the Goldstein-Armijo linesearch given in [19] for step 2(b), where λ is chosen
to guarantee a sufficient decrease in F relative to the step length as well as a minimum step length
relative to the initial rate of decrease of F . One property of the algorithm is that the full Newton
step tends to be taken close to the solution.

kinsol implements a backtracking algorithm to first find the value λ such that un + λδn satisfies
the sufficient decrease condition (or α-condition)

F (un + λδn) ≤ F (un) + α∇F (un)Tλδn ,

where α = 10−4. Although backtracking in itself guarantees that the step is not too small, kinsol
secondly relaxes λ to satisfy the so-called β-condition (equivalent to Wolfe’s curvature condition):

F (un + λδn) ≥ F (un) + β∇F (un)Tλδn ,

where β = 0.9. During this second phase, λ is allowed to vary in the interval [λmin, λmax] where

λmin =
steptol

‖δ̄n‖∞
, δ̄jn =

δjn

1/Dj
u + |uj |

,

and λmax corresponds to the maximum feasible step size at the current iteration (typically λmax =
stepmax/‖δn‖Du

). In the above expressions, vj denotes the jth component of a vector v.
For more details, the reader is referred to [19].

Nonlinear iteration stopping criteria

Stopping criteria for the Newton method are applied to both of the nonlinear residual and the step
length. For the former, the Newton iteration must pass a stopping test

‖F (un)‖DF ,∞ < ftol ,

where ftol is an input scalar tolerance with a default value of U1/3. Here U is the machine unit
roundoff. For the latter, the Newton method will terminate when the maximum scaled step is below
a given tolerance

‖λδn‖Du,∞ < steptol ,

where steptol is an input scalar tolerance with a default value of U2/3. Only the first condition
(small residual) is considered a successful completion of kinsol. The second condition (small step)
may indicate that the iteration is stalled near a point for which the residual is still unacceptable.
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Additional constraints

As a user option, kinsol permits the application of inequality constraints, ui > 0 and ui < 0, as well
as ui ≥ 0 and ui ≤ 0, where ui is the ith component of u. Any such constraint, or no constraint, may
be imposed on each component. kinsol will reduce step lengths in order to ensure that no constraint
is violated. Specifically, if a new Newton iterate will violate a constraint, the maximum step length
along the Newton direction that will satisfy all constraints is found, and δn in Step 2(b) is scaled to
take a step of that length.

Residual monitoring for Modified Newton method

When using a matrix-based linear solver, in addition to the strategy described above for the update
of the Jacobian matrix, kinsol also provides an optional nonlinear residual monitoring scheme to
control when the system Jacobian is updated. Specifically, a Jacobian update will also occur when
mbsetsub= 5 nonlinear iterations have passed since the last update and

‖F (un)‖DF
> ω‖F (um)‖DF

,

where un is the current iterate and um is the iterate at the last Jacobian update. The scalar ω is
given by

ω = min
(
ωmin e

max(0,ρ−1), ωmax

)
, (2.4)

with ρ defined as

ρ =
‖F (un)‖DF

ftol
, (2.5)

where ftol is the input scalar tolerance discussed before. Optionally, a constant value ωconst can be
used for the parameter ω.

The constants controlling the nonlinear residual monitoring algorithm can be changed from their
default values through optional inputs to kinsol. These include the parameters ωmin and ωmax, the
constant value ωconst, and the threshold mbsetsub.

Stopping criteria for iterative linear solvers

When using an Inexact Newton method (i.e. when an iterative linear solver is used), the convergence
of the overall nonlinear solver is intimately coupled with the accuracy with which the linear solver in
2(a) above is solved. kinsol provides three options for stopping criteria for the linear system solver,
including the two algorithms of Eisenstat and Walker [21]. More precisely, the Krylov iteration must
pass a stopping test

‖Jδn + F‖DF
< (ηn + U)‖F‖DF

,

where ηn is one of:

Eisenstat and Walker Choice 1

ηn =
| ‖F (un)‖DF

− ‖F (un−1) + J(un−1)δn‖DF
|

‖F (un−1)‖DF

,

Eisenstat and Walker Choice 2

ηn = γ

(
‖F (un)‖DF

‖F (un−1)‖DF

)α
,

where default values of γ and α are 0.9 and 2, respectively.

Constant η
ηn = constant,

with 0.1 as the default.

The default strategy is ”Eisenstat and Walker Choice 1”. For both options 1 and 2, appropriate
safeguards are incorporated to ensure that η does not decrease too quickly [21].
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Difference quotient Jacobian approximations

With the dense and banded matrix-based linear solvers, the Jacobian may be supplied by a user
routine, or approximated by difference quotients, at the user’s option. In the latter case, we use the
usual approximation

J ij = [F i(u+ σje
j)− F i(u)]/σj . (2.6)

The increments σj are given by

σj =
√
U max

{
|uj |, 1/Dj

u

}
. (2.7)

In the dense case, this scheme requires N evaluations of F , one for each column of J . In the band
case, the columns of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the number
of F evaluations equal to the bandwidth. The parameter U above can (optionally) be replaced by a
user-specified value, relfunc.

We note that with sparse and user-supplied matrix-based linear solvers, the Jacobian must be
supplied by a user routine, i.e. it is not approximated internally within kinsol.

In the case of a matrix-free iterative linear solver, Jacobian information is needed only as matrix-
vector products Jv. If a routine for Jv is not supplied, these products are approximated by directional
difference quotients as

J(u)v ≈ [F (u+ σv)− F (u)]/σ , (2.8)

where u is the current approximation to a root of (2.1), and σ is a scalar. The choice of σ is taken
from [13] and is given by

σ =
max{|uT v|, uTtyp|v|}

‖v‖22
sign(uT v)

√
U , (2.9)

where utyp is a vector of typical values for the absolute values of the solution (and can be taken to be
inverses of the scale factors given for u as described below). This formula is suitable for scaled vectors
u and v, and so is applied to Duu and Duv. The parameter U above can (optionally) be replaced
by a user-specified value, relfunc. Convergence of the Newton method is maintained as long as the
value of σ remains appropriately small, as shown in [11].

Basic Fixed Point iteration

The basic fixed-point iteration scheme implemented in kinsol is given by:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

(a) Set un+1 = G(un).

(b) Test for convergence.

Here, un is the nth iterate to u. At each stage in the iteration process, function G is applied to the
current iterate to produce a new iterate, un+1. A test for convergence is made before the iteration
continues.

For Picard iteration, as implemented in kinsol, we consider a special form of the nonlinear function
F , such that F (u) = Lu − N(u), where L is a constant nonsingular matrix and N is (in general)
nonlinear. Then the fixed-point function G is defined as G(u) = u − L−1F (u). The Picard iteration
is given by:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

(a) Set un+1 = G(un) = un − L−1F (un).

(b) Test F (un+1) for convergence.
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Here, un is the nth iterate to u. Within each iteration, the Picard step is computed then added to
un to produce the new iterate. Next, the nonlinear residual function is evaluated at the new iterate,
and convergence is checked. Noting that L−1N(u) = u−L−1F (u), the above iteration can be written
in the same form as a Newton iteration except that here, L is in the role of the Jacobian. Within
kinsol, however, we leave this in a fixed-point form as above. For more information, see p. 182 of
[35].

Anderson Acceleration

The Picard and fixed point methods can be significantly accelerated using Anderson’s method [10, 41,
22, 34]. Anderson acceleration can be formulated as follows:

1. Set u0 = an initial guess and m ≥ 1

2. Set u1 = G(u0)

3. For n = 1, 2, ... until convergence do:

(a) Set mn = min{m,n}
(b) Set Fn = (fn−mn , . . . , fn), where fi = G(ui)− ui
(c) Determine α(n) = (α

(n)
0 , . . . , α

(n)
mn) that solves minα ‖FnαT ‖2 such that

∑mn

i=0 αi = 1

(d) Set un+1 = β
∑mn

i=0 α
(n)
i G(un−mn+i) + (1− β)

∑mn

i=0 α
(n)
i un−mn+i

(e) Test for convergence

It has been implemented in kinsol by turning the constrained linear least-squares problem in Step
(c) into an unconstrained one leading to the algorithm given below:

1. Set u0 = an initial guess and m ≥ 1

2. Set u1 = G(u0)

3. For n = 1, 2, ... until convergence do:

(a) Set mn = min{m,n}
(b) Set ∆Fn = (∆fn−mn

, . . . ,∆fn−1), where ∆fi = fi+1 − fi and fi = G(ui)− ui
(c) Determine γ(n) = (γ

(n)
0 , . . . , γ

(n)
mn−1) that solves minγ ‖fn −∆Fnγ

T ‖2

(d) Set un+1 = G(un)−
∑mn−1
i=0 γ

(n)
i ∆gn−mn+i− (1− β)(f(un)−

∑mn−1
i=0 γ

(n)
i ∆fn−mn+i) with

∆gi = G(ui+1)−G(ui)

(e) Test for convergence

The least-squares problem in (c) is solved by applying a QR factorization to ∆Fn = QnRn and
solving Rnγ = QTnfn. By default the damping is disabled i.e., β = 1.0.

Fixed-point - Anderson Acceleration Stopping Criterion

The default stopping criterion is

‖G(un+1)− un+1‖DF ,∞ < gtol ,

where DF is a user-defined diagonal matrix that can be the identity or a scaling matrix chosen so
that the components of DF (G(u) − u) have roughly the same order of magnitude. Note that when
using Anderson acceleration, convergence is checked after the acceleration is applied.
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Picard - Anderson Acceleration Stopping Criterion

The default stopping criterion is
‖F (un+1)‖DF ,∞ < ftol ,

where DF is a user-defined diagonal matrix that can be the identity or a scaling matrix chosen so
that the components of DFF (u) have roughly the same order of magnitude. Note that when using
Anderson acceleration, convergence is checked after the acceleration is applied.





Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode and arkode (for ODE
systems), kinsol (for nonlinear algebraic systems), and ida (for differential-algebraic systems). In
addition, sundials also includes variants of cvode and ida with sensitivity analysis capabilities
(using either forward or adjoint methods), called cvodes and idas, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Figures 3.1 and 3.2). The
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Figure 3.1: High-level diagram of the sundials suite.
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Figure 3.2: Directory structure of the sundials source tree.

following is a list of the solver packages presently available, and the basic functionality of each:

• cvode, a solver for stiff and nonstiff ODE systems dy/dt = f(t, y) based on Adams and BDF
methods;

• cvodes, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

• arkode, a solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems Mdy/dt =
f1(t, y) + f2(t, y) based on Runge-Kutta methods;

• ida, a solver for differential-algebraic systems F (t, y, ẏ) = 0 based on BDF methods;

• idas, a solver for differential-algebraic systems with sensitivity analysis capabilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0.

Note for modules that provide interfaces to third-party libraries (i.e., LAPACK, klu, superlumt,
SuperLU DIST, hypre, petsc, Trilinos, and raja) users will need to download and compile those
packages independently.

3.2 KINSOL organization

The kinsol package is written in the ANSI C language. This section summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the kinsol package is shown in Figure 3.3. The central solver mod-
ule, implemented in the files kinsol.h, kinsol impl.h and kinsol.c, deals with the solution of a
nonlinear algebraic system using either an Inexact Newton method or a line search method for the



3.2 KINSOL organization 29
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Figure 3.3: Overall structure diagram of the kinsol package. Modules specific to kinsol begin with
“KIN” (kinls and kinbbdpre), all other items correspond to generic sundials vector, matrix, and
solver modules (see Figure 3.1).

global strategy. Although this module contains logic for the Newton iteration, it has no knowledge of
the method used to solve the linear systems that arise. For any given user problem, one of the linear
system solver modules is specified, and is then invoked as needed.

kinsol now has a single unified linear solver interface, kinls, supporting both direct and iterative
linear solvers built using the generic sunlinsol API (see Chapter 9). These solvers may utilize a
sunmatrix object (see Chapter 8) for storing Jacobian information, or they may be matrix-free.
Since kinsol can operate on any valid sunlinsol implementation, the set of linear solver modules
available to kinsol will expand as new sunlinsol modules are developed.

For users employing dense or banded Jacobian matrices, kinls includes algorithms for their ap-
proximation through difference quotients, but the user also has the option of supplying the Jacobian
(or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, kinls includes an algorithm for the approx-
imation by difference quotients of the product between the Jacobian matrix and a vector, Jv. Again,
the user has the option of providing routines for this operation, in two phases: setup (preprocessing
of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again
in two phases: setup and solve. While there is no default choice of preconditioner analogous to
the difference-quotient approximation in the direct case, the references [12, 14], together with the
example and demonstration programs included with kinsol, offer considerable assistance in building
preconditioners.

kinsol’s linear solver interface consists of four primary phases, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the solution, as required to achieve convergence. The
call list within the central kinsol module to each of the associated functions is fixed, thus allowing
the central module to be completely independent of the linear system method.

kinsol also provides a preconditioner module called kinbbdpre for use with any of the Krylov
iterative linear solvers. It works in conjunction with nvector parallel and generates a precondi-
tioner that is a block-diagonal matrix with each block being a banded matrix, as further described in
§4.7.
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All state information used by kinsol to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the kinsol package, and so, in this
respect, it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the kinsol memory structure. The reentrancy of kinsol was motivated
by the anticipated multicomputer extension, but is also essential in a uniprocessor setting where two
or more problems are solved by intermixed calls to the package from within a single user program.



Chapter 4

Using KINSOL for C Applications

This chapter is concerned with the use of kinsol for the solution of nonlinear systems. The following
subsections treat the header files, the layout of the user’s main program, description of the kinsol
user-callable routines, and user-supplied functions. The sample programs described in the companion
document [15] may also be helpful. Those codes may be used as templates (with the removal of some
lines involved in testing), and are included in the kinsol package.

Users with applications written in Fortran should see Chapter 5.1.5, which describes the For-
tran/C interface module.

The user should be aware that not all sunlinsol and sunmatrix modules are compatible with
all nvector implementations. Details on compatability are given in the documentation for each
sunmatrix module (Chapter 8) and each sunlinsol module (Chapter 9). For example, nvec-
tor parallel is not compatible with the dense, banded, or sparse sunmatrix types, or with the
corresponding dense, banded, or sparse sunlinsol modules. Please check Chapters 8 and 9 to verify
compatability between these modules. In addition to that documentation, we note that the precon-
ditioner module kinbbdpre can only be used with nvector parallel. It is not recommended to
use a threaded vector module with SuperLU MT unless it is the nvector openmp module, and
SuperLU MT is also compiled with OpenMP.

kinsol uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of kinsol, following the procedure described in
Appendix A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by kinsol. The relevant library files are

• libdir/libsundials kinsol.lib,

• libdir/libsundials nvec*.lib (one to four files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include/kinsol

• incdir/include/sundials

• incdir/include/nvector

• incdir/include/sunmatrix
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• incdir/include/sunlinsol

The directories libdir and incdir are the install library and include directories, respectively. For a
default installation, these are builddir/lib and builddir/include, respectively, where builddir was
defined in Appendix A.

4.2 Data types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials
solvers for all floating-point data, the definition of the integer type sunindextype, which is used
for vector and matrix indices, and booleantype, which is used for certain logic operations within
sundials.

4.2.1 Floating point types

The type realtype can be float, double, or long double, with the default being double. The user
can change the precision of the sundials solvers arithmetic at the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials
uses the RCONST macro internally to declare all of its floating-point constants.

Additionally, sundials defines several macros for common mathematical functions e.g., fabs,
sqrt, exp, etc. in sundials math.h. The macros are prefixed with SUNR and expand to the appro-
priate C function based on the realtype. For example, the macro SUNRabs expands to the C function
fabs when realtype is double, fabsf when realtype is float, and fabsl when realtype is long

double.
A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical

function macros is precision-independent except for any calls to precision-specific library functions.
Our example programs use realtype, RCONST, and the SUNR macros. Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype) and call the appropriate math library functions directly. Thus, a previously existing
piece of ANSI C code can use sundials without modifying the code to use realtype, RCONST, or the
SUNR macros so long as the sundials libraries use the correct precision (for details see §A.1.2).

4.2.2 Integer types used for indexing

The type sunindextype is used for indexing array entries in sundials modules (e.g., vectors lengths
and matrix sizes) as well as for storing the total problem size. During configuration sunindextype

may be selected to be either a 32- or 64-bit signed integer with the default being 64-bit. See §A.1.2
for the configuration option to select the desired size of sunindextype. When using a 32-bit integer
the total problem size is limited to 231− 1 and with 64-bit integers the limit is 263− 1. For users with
problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype.
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A user program which uses sunindextype to handle indices will work with both index storage types
except for any calls to index storage-specific external libraries. Our C and C++ example programs
use sunindextype. Users can, however, use any compatible type (e.g., int, long int, int32 t,
int64 t, or long long int) in their code, assuming that this usage is consistent with the typedef
for sunindextype on their architecture. Thus, a previously existing piece of ANSI C code can use
sundials without modifying the code to use sunindextype, so long as the sundials libraries use the
appropriate index storage type (for details see §A.1.2).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• kinsol/kinsol.h, the header file for kinsol, which defines several types and various constants,
and includes function prototypes. This includes the header file for kinls, kinsol/kinsol ls.h.

kinsol.h also includes sundials types.h, which defines the types realtype, sunindextype, and
booleantype and constants SUNFALSE and SUNTRUE.

The calling program must also include an nvector implementation header file, of the form
nvector/nvector ***.h. See Chapter 7 for the appropriate name. This file in turn includes the
header file sundials nvector.h which defines the abstract N Vector data type.

If using a Newton or Picard nonlinear solver that requires the solution of a linear system, then
a linear solver module header file will be required. The header files corresponding to the various
sundials-provided linear solver modules available for use with kinsol are:

• Direct linear solvers:

– sunlinsol/sunlinsol dense.h, which is used with the dense linear solver module, sun-
linsol dense;

– sunlinsol/sunlinsol band.h, which is used with the banded linear solver module, sun-
linsol band;

– sunlinsol/sunlinsol lapackdense.h, which is used with the LAPACK package dense
linear solver module, sunlinsol lapackdense;

– sunlinsol/sunlinsol lapackband.h, which is used with the LAPACK package banded
linear solver module, sunlinsol lapackband;

– sunlinsol/sunlinsol klu.h, which is used with the klu sparse linear solver module,
sunlinsol klu;

– sunlinsol/sunlinsol superlumt.h, which is used with the superlumt sparse linear
solver module, sunlinsol superlumt;

• Iterative linear solvers:

– sunlinsol/sunlinsol spgmr.h, which is used with the scaled, preconditioned GMRES
Krylov linear solver module, sunlinsol spgmr;

– sunlinsol/sunlinsol spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, sunlinsol spfgmr;

– sunlinsol/sunlinsol spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, sunlinsol spbcgs;

– sunlinsol/sunlinsol sptfqmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, sunlinsol sptfqmr;

– sunlinsol/sunlinsol pcg.h, which is used with the scaled, preconditioned CG Krylov
linear solver module, sunlinsol pcg;
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The header files for the sunlinsol dense and sunlinsol lapackdense linear solver modules
include the file sunmatrix/sunmatrix dense.h, which defines the sunmatrix dense matrix module,
as as well as various functions and macros acting on such matrices.

The header files for the sunlinsol band and sunlinsol lapackband linear solver modules in-
clude the file sunmatrix/sunmatrix band.h, which defines the sunmatrix band matrix module, as
as well as various functions and macros acting on such matrices.

The header files for the sunlinsol klu and sunlinsol superlumt sparse linear solvers include
the file sunmatrix/sunmatrix sparse.h, which defines the sunmatrix sparse matrix module, as
well as various functions and macros acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials iterative.h,
which enumerates the kind of preconditioning, and (for the spgmr and spfgmr solvers) the choices
for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
kinFoodWeb kry p example (see [15]), preconditioning is done with a block-diagonal matrix. For this,
even though the sunlinsol spgmr linear solver is used, the header sundials/sundials dense.h is
included for access to the underlying generic dense matrix arithmetic routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the solution of a
nonlinear system problem. Most of the steps are independent of the nvector, sunmatrix, and
sunlinsol implementations used. For the steps that are not, refer to Chapter 7, 8, and 9 for the
specific name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate

For example, call MPI Init to initialize MPI if used, or set num threads, the number of threads
to use within the threaded vector functions, if used.

2. Set problem dimensions etc.

This generally includes the problem size N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vector with initial guess

To set the vector u of initial guess values, use the appropriate functions defined by the particular
nvector implementation.

For native sundials vector implementations, use a call of the form u = N VMake ***(..., udata)

if the realtype array udata containing the initial values of u already exists. Otherwise, create
a new vector by making a call of the form u = N VNew ***(...), and then set its elements by
accessing the underlying data with a call of the form ydata = N VGetArrayPointer(u). See
§7.3-7.6 for details.

For the hypre and petsc vector wrappers, first create and initialize the underlying vector and
then create an nvector wrapper with a call of the form u = N VMake ***(uvec), where uvec is
a hypre or petsc vector. Note that calls like N VNew ***(...) and N VGetArrayPointer(...)

are not available for these vector wrappers. See §7.7 and §7.8 for details.

4. Create kinsol object

Call kin mem = KINCreate() to create the kinsol memory block. KINCreate returns a pointer
to the kinsol memory structure. See §4.5.1 for details.

5. Allocate internal memory

Call KINInit(...) to specify the problem defining function F , allocate internal memory for
kinsol, and initialize kinsol. KINInit returns a flag to indicate success or an illegal argument
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value. See §4.5.1 for details.

6. Create matrix object

If a matrix-based linear solver is to be used within a Newton or Picard iteration, then a template
Jacobian matrix must be created by using the appropriate functions defined by the particular
sunmatrix implementation.

For the sundials-supplied sunmatrix implementations, the matrix object may be created using
a call of the form

SUNMatrix J = SUNBandMatrix(...);

or

SUNMatrix J = SUNDenseMatrix(...);

or

SUNMatrix J = SUNSparseMatrix(...);

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

7. Create linear solver object

If a Newton or Picard iteration is chosen, then the desired linear solver object must be created by
using the appropriate functions defined by the particular sunlinsol implementation.

For any of the sundials-supplied sunlinsol implementations, the linear solver object may be
created using a call of the form

SUNLinearSolver LS = SUNLinSol *(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §4.5.2 and
Chapter 9.

8. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to
that linear solver. See the documentation for each sunlinsol module in Chapter 9 for details.

9. Attach linear solver module

If a Newton or Picard iteration is chosen, initialize the kinls linear solver interface by attaching
the linear solver object (and matrix object, if applicable) with one of the following calls (for details
see §4.5.2):

ier = KINSetLinearSolver(...);

10. Set optional inputs

Call KINSet* routines to change from their default values any optional inputs that control the
behavior of kinsol. See §4.5.4 for details.

11. Solve problem

Call ier = KINSol(...) to solve the nonlinear problem for a given initial guess. See §4.5.3 for
details.

12. Get optional outputs

Call KINGet* functions to obtain optional output. See §4.5.5 for details.

13. Deallocate memory for solution vector

Upon completion of the solution, deallocate memory for the vector u by calling the appropriate
destructor function defined by the nvector implementation:
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N VDestroy(u);

14. Free solver memory

Call KINFree(&kin mem) to free the memory allocated for kinsol.

15. Free linear solver and matrix memory

Call SUNLinSolFree and SUNMatDestroy to free any memory allocated for the linear solver and
matrix objects created above.

16. Finalize MPI, if used

Call MPI Finalize() to terminate MPI.

sundials provides some linear solvers only as a means for users to get problems running and not
as highly efficient solvers. For example, if solving a dense system, we suggest using the LAPACK
solvers if the size of the linear system is > 50, 000. (Thanks to A. Nicolai for his testing and rec-
ommendation.) Table 4.1 shows the linear solver interfaces available as sunlinsol modules and the
vector implementations required for use. As an example, one cannot use the dense direct solver inter-
faces with the MPI-based vector implementation. However, as discussed in Chapter 9 the sundials
packages operate on generic sunlinsol objects, allowing a user to develop their own solvers should
they so desire.

Table 4.1: sundials linear solver interfaces and vector implementations that can be used for each.
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Dense X X X X
Band X X X X

LapackDense X X X X
LapackBand X X X X

klu X X X X
superlumt X X X X

spgmr X X X X X X X X X
spfgmr X X X X X X X X X
spbcgs X X X X X X X X X

sptfqmr X X X X X X X X X
pcg X X X X X X X X X

User Supp. X X X X X X X X X

4.5 User-callable functions

This section describes the kinsol functions that are called by the user to set up and solve a nonlinear
problem. Some of these are required. However, starting with §4.5.4, the functions listed involve
optional inputs/outputs or restarting, and those paragraphs can be skipped for a casual use of kinsol.
In any case, refer to §4.4 for the correct order of these calls.

The return flag (when present) for each of these routines is a negative integer if an error occurred,
and non-negative otherwise.

4.5.1 KINSOL initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the problem solution is complete, as it frees the kinsol memory block created and allocated by the
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first two calls.

KINCreate

Call kin mem = KINCreate();

Description The function KINCreate instantiates a kinsol solver object.

Arguments This function has no arguments.

Return value If successful, KINCreate returns a pointer to the newly created kinsol memory block
(of type void *). If an error occurred, KINCreate prints an error message to stderr

and returns NULL.

KINInit

Call flag = KINInit(kin mem, func, tmpl);

Description The function KINInit specifies the problem-defining function, allocates internal mem-
ory, and initializes kinsol.

Arguments kin mem (void *) pointer to the kinsol memory block returned by KINCreate.

func (KINSysFn) is the C function which computes the system function F (or G(u)
for fixed-point iteration) in the nonlinear problem. This function has the form
func(u, fval, user data). (For full details see §4.6.1.)

tmpl (N Vector) is any N Vector (e.g. the initial guess vector u) which is used as a
template to create (by cloning) necessary vectors in kin mem.

Return value The return value flag (of type int) will be one of the following:

KIN SUCCESS The call to KINInit was successful.

KIN MEM NULL The kinsol memory block was not initialized through a previous call
to KINCreate.

KIN MEM FAIL A memory allocation request has failed.

KIN ILL INPUT An input argument to KINInit has an illegal value.

Notes If an error occurred, KINInit sends an error message to the error handler function.

KINFree

Call KINFree(&kin mem);

Description The function KINFree frees the memory allocated by a previous call to KINCreate.

Arguments The argument is the address of the pointer to the kinsol memory block returned by
KINCreate (of type void *).

Return value The function KINFree has no return value.

4.5.2 Linear solver specification function

As previously explained, Newton and Picard iterations require the solution of linear systems of the
form Jδ = −F . Solution of these linear systems is handled using the kinls linear solver interface.
This interface supports all valid sunlinsol modules. Here, matrix-based sunlinsol modules utilize
sunmatrix objects to store the Jacobian matrix J = ∂F/∂u and factorizations used throughout the
solution process. Conversely, matrix-free sunlinsol modules instead use iterative methods to solve
the linear systems of equations, and only require the action of the Jacobian on a vector, Jv.

With most iterative linear solvers, preconditioning can be done on the left only, on the right only,
on both the left and the right, or not at all. However, only right preconditioning is supported within
kinls. If preconditioning is done, user-supplied functions define the linear operator corresponding
to a right preconditioner matrix P , which should approximate the system Jacobian matrix J . For
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the specification of a preconditioner, see the iterative linear solver sections in §4.5.4 and §4.6. A
preconditioner matrix P must approximate the Jacobian J , at least crudely.

To specify a generic linear solver to kinsol, after the call to KINCreate but before any calls
to KINSol, the user’s program must create the appropriate sunlinsol object and call the function
KINSetLinearSolver, as documented below. To create the SUNLinearSolver object, the user may
call one of the sundials-packaged sunlinsol module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of such constructor routines includes SUNLinSol Dense, SUNLinSol Band, SUNLinSol LapackDense,
SUNLinSol LapackBand, SUNLinSol KLU, SUNLinSol SuperLUMT, SUNLinSol SPGMR, SUNLinSol SPFGMR,
SUNLinSol SPBCGS, SUNLinSol SPTFQMR, and SUNLinSol PCG.

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use
of each of the generic linear solvers involves certain constants, functions and possibly some macros,
that are likely to be needed in the user code. These are available in the corresponding header file
associated with the specific sunmatrix or sunlinsol module in question, as described in Chapters
8 and 9.

Once this solver object has been constructed, the user should attach it to kinsol via a call to
KINSetLinearSolver. The first argument passed to this function is the kinsol memory pointer
returned by KINCreate; the second argument is the desired sunlinsol object to use for solving
Newton or Picard systems. The third argument is an optional sunmatrix object to accompany
matrix-based sunlinsol inputs (for matrix-free linear solvers, the third argument should be NULL). A
call to this function initializes the kinls linear solver interface, linking it to the main kinsol solver,
and allows the user to specify additional parameters and routines pertinent to their choice of linear
solver.

KINSetLinearSolver

Call flag = KINSetLinearSolver(kin mem, LS, J);

Description The function KINSetLinearSolver attaches a generic sunlinsol object LS and corre-
sponding template Jacobian sunmatrix object J (if applicable) to kinsol, initializing
the kinls linear solver interface.

Arguments kin mem (void *) pointer to the kinsol memory block.

LS (SUNLinearSolver) sunlinsol object to use for solving Newton linear sys-
tems.

J (SUNMatrix) sunmatrix object for used as a template for the Jacobian (or
NULL if not applicable).

Return value The return value flag (of type int) is one of

KINLS SUCCESS The kinls initialization was successful.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS ILL INPUT The kinls interface is not compatible with the LS or J input objects
or is incompatible with the current nvector module.

KINLS SUNLS FAIL A call to the LS object failed.

KINLS MEM FAIL A memory allocation request failed.

Notes If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used
in the solve process, so if additional storage is required within the sunmatrix object
(e.g. for factorization of a banded matrix), ensure that the input object is allocated
with sufficient size (see the documentation of the particular sunmatrix type in Chapter
8 for further information).

The previous routines KINDlsSetLinearSolver and KINSpilsSetLinearSolver are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.
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4.5.3 KINSOL solver function

This is the central step in the solution process, the call to solve the nonlinear algebraic system.

KINSol

Call flag = KINSol(kin mem, u, strategy, u scale, f scale);

Description The function KINSol computes an approximate solution to the nonlinear system.

Arguments kin mem (void *) pointer to the kinsol memory block.

u (N Vector) vector set to initial guess by user before calling KINSol, but
which upon return contains an approximate solution of the nonlinear system
F (u) = 0.

strategy (int) strategy used to solve the nonlinear system. It must be of the follow-
ing:
KIN NONE basic Newton iteration
KIN LINESEARCH Newton with globalization
KIN FP fixed-point iteration with Anderson Acceleration (no linear solver
needed)
KIN PICARD Picard iteration with Anderson Acceleration (uses a linear solver)

u scale (N Vector) vector containing diagonal elements of scaling matrix Du for vec-
tor u chosen so that the components of Du·u (as a matrix multiplication) all
have roughly the same magnitude when u is close to a root of F (u).

f scale (N Vector) vector containing diagonal elements of scaling matrixDF for F (u)
chosen so that the components of DF · F (u) (as a matrix multiplication) all
have roughly the same magnitude when u is not too near a root of F (u). In
the case of a fixed-point iteration, consider F (u) = G(u)− u.

Return value On return, KINSol returns the approximate solution in the vector u if successful. The
return value flag (of type int) will be one of the following:

KIN SUCCESS

KINSol succeeded; the scaled norm of F (u) is less than fnormtol.

KIN INITIAL GUESS OK

The guess u = u0 satisfied the system F (u) = 0 within the tolerances specified (the
scaled norm of F (u0) is less than 0.01*fnormtol).

KIN STEP LT STPTOL

kinsol stopped based on scaled step length. This means that the current iterate may
be an approximate solution of the given nonlinear system, but it is also quite possible
that the algorithm is “stalled” (making insufficient progress) near an invalid solution,
or that the scalar scsteptol is too large (see KINSetScaledStepTol in §4.5.4 to
change scsteptol from its default value).

KIN MEM NULL

The kinsol memory block pointer was NULL.

KIN ILL INPUT

An input parameter was invalid.

KIN NO MALLOC

The kinsol memory was not allocated by a call to KINCreate.

KIN MEM FAIL

A memory allocation failed.

KIN LINESEARCH NONCONV

The line search algorithm was unable to find an iterate sufficiently distinct from the
current iterate, or could not find an iterate satisfying the sufficient decrease condition.



40 Using KINSOL for C Applications

Failure to satisfy the sufficient decrease condition could mean the current iterate
is “close” to an approximate solution of the given nonlinear system, the difference
approximation of the matrix-vector product J(u)v is inaccurate, or the real scalar
scsteptol is too large.

KIN MAXITER REACHED

The maximum number of nonlinear iterations has been reached.

KIN MXNEWT 5X EXCEEDED

Five consecutive steps have been taken that satisfy the inequality ‖Dup‖L2 > 0.99
mxnewtstep, where p denotes the current step and mxnewtstep is a scalar upper
bound on the scaled step length. Such a failure may mean that ‖DFF (u)‖L2 asymp-
totes from above to a positive value, or the real scalar mxnewtstep is too small.

KIN LINESEARCH BCFAIL

The line search algorithm was unable to satisfy the “beta-condition” for MXNBCF +1
nonlinear iterations (not necessarily consecutive), which may indicate the algorithm
is making poor progress.

KIN LINSOLV NO RECOVERY

The user-supplied routine psolve encountered a recoverable error, but the precondi-
tioner is already current.

KIN LINIT FAIL

The kinls initialization routine (linit) encountered an error.

KIN LSETUP FAIL

The kinls setup routine (lsetup) encountered an error; e.g., the user-supplied routine
pset (used to set up the preconditioner data) encountered an unrecoverable error.

KIN LSOLVE FAIL

The kinls solve routine (lsolve) encountered an error; e.g., the user-supplied routine
psolve (used to to solve the preconditioned linear system) encountered an unrecov-
erable error.

KIN SYSFUNC FAIL

The system function failed in an unrecoverable manner.

KIN FIRST SYSFUNC ERR

The system function failed recoverably at the first call.

KIN REPTD SYSFUNC ERR

The system function had repeated recoverable errors. No recovery is possible.

Notes The components of vectors u scale and f scale should be strictly positive.

KIN SUCCESS = 0, KIN INITIAL GUESS OK = 1, and KIN STEP LT STPTOL = 2. All
remaining return values are negative and therefore a test flag < 0 will trap all KINSol
failures.

4.5.4 Optional input functions

There are numerous optional input parameters that control the behavior of the kinsol solver. kinsol
provides functions that can be used to change these from their default values. Table 4.2 lists all
optional input functions in kinsol which are then described in detail in the remainder of this section,
beginning with those for the main kinsol solver and continuing with those for the kinls linear solver
interface. For the most casual use of kinsol, the reader can skip to §4.6.

We note that, on error return, all of these functions also send an error message to the error handler
function. We also note that all error return values are negative, so a test flag < 0 will catch any
error.
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Table 4.2: Optional inputs for kinsol and kinls

Optional input Function name Default
KINSOL main solver

Error handler function KINSetErrHandlerFn internal fn.
Pointer to an error file KINSetErrFile stderr

Info handler function KINSetInfoHandlerFn internal fn.
Pointer to an info file KINSetInfoFile stdout

Data for problem-defining function KINSetUserData NULL

Verbosity level of output KINSetPrintLevel 0
Max. number of nonlinear iterations KINSetNumMaxIters 200
No initial matrix setup KINSetNoInitSetup SUNFALSE

No residual monitoring∗ KINSetNoResMon SUNFALSE

Max. iterations without matrix setup KINSetMaxSetupCalls 10
Max. iterations without residual check∗ KINSetMaxSubSetupCalls 5
Form of η coefficient KINSetEtaForm KIN ETACHOICE1

Constant value of η KINSetEtaConstValue 0.1
Values of γ and α KINSetEtaParams 0.9 and 2.0
Values of ωmin and ωmax

∗ KINSetResMonParams 0.00001 and 0.9
Constant value of ω∗ KINSetResMonConstValue 0.9
Lower bound on ε KINSetNoMinEps SUNFALSE

Max. scaled length of Newton step KINSetMaxNewtonStep 1000‖Duu0‖2
Max. number of β-condition failures KINSetMaxBetaFails 10

Rel. error for D.Q. Jv KINSetRelErrFunc
√

uround
Function-norm stopping tolerance KINSetFuncNormTol uround1/3

Scaled-step stopping tolerance KINSetScaledSteptol uround2/3

Inequality constraints on solution KINSetConstraints NULL

Nonlinear system function KINSetSysFunc none
Anderson Acceleration subspace size KINSetMAA 0
Anderson Acceleration damping parameter KINSetDampingAA 1.0

KINLS linear solver interface
Jacobian function KINSetJacFn DQ
Preconditioner functions and data KINSetPreconditioner NULL, NULL, NULL
Jacobian-times-vector function and data KINSetJacTimesVecFn internal DQ,

NULL

Jacobian-times-vector system function KINSetJacTimesVecSysFn NULL
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4.5.4.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if either of the functions KINSetErrFile
or KINSetErrHandlerFn is to be called, that call should be first, in order to take effect for any later
error message.

KINSetErrFile

Call flag = KINSetErrFile(kin mem, errfp);

Description The function KINSetErrFile specifies the pointer to the file where all kinsol messages
should be directed when the default kinsol error handler function is used.

Arguments kin mem (void *) pointer to the kinsol memory block.

errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value of NULL disables all future error message output (except for the case
in which the kinsol memory pointer is NULL). This use of KINSetErrFile is strongly
discouraged.

If KINSetErrFile is to be called, it should be called before any other optional input!

functions, in order to take effect for any later error message.

KINSetErrHandlerFn

Call flag = KINSetErrHandlerFn(kin mem, ehfun, eh data);

Description The function KINSetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments kin mem (void *) pointer to the kinsol memory block.

ehfun (KINErrHandlerFn) is the user’s C error handler function (see §4.6.2).

eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The function ehfun and data pointer eh data have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default internal error handler function directs error messages to the file specified
by the file pointer errfp (see KINSetErrFile above).

Error messages indicating that the kinsol solver memory is NULL will always be directed
to stderr.

KINSetInfoFile

Call flag = KINSetInfoFile(kin mem, infofp);

Description The function KINSetInfoFile specifies the pointer to the file where all informative
(non-error) messages should be directed.

Arguments kin mem (void *) pointer to the kinsol memory block.

infofp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for infofp is stdout.
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KINSetInfoHandlerFn

Call flag = KINSetInfoHandlerFn(kin mem, ihfun, ih data);

Description The function KINSetInfoHandlerFn specifies the optional user-defined function to be
used in handling informative (non-error) messages.

Arguments kin mem (void *) pointer to the kinsol memory block.

ihfun (KINInfoHandlerFn) is the user’s C information handler function (see §4.6.3).

ih data (void *) pointer to user data passed to ihfun every time it is called.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The function ihfun and data pointer ih data have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default internal information handler function directs informative (non-error) mes-
sages to the file specified by the file pointer infofp (see KINSetInfoFile above).

KINSetPrintLevel

Call flag = KINSetPrintLevel(kin mem, printfl);

Description The function KINSetPrintLevel specifies the level of verbosity of the output.

Arguments kin mem (void *) pointer to the kinsol memory block.

printfl (int) flag indicating the level of verbosity. Must be one of:

0 no information displayed.

1 for each nonlinear iteration display the following information: the scaled
Euclidean `2 norm of the system function evaluated at the current iterate,
the scaled norm of the Newton step (only if using KIN NONE), and the
number of function evaluations performed so far.

2 display level 1 output and the following values for each iteration:
‖F (u)‖DF

(only for KIN NONE).
‖F (u)‖DF ,∞ (for KIN NONE and KIN LINESEARCH).

3 display level 2 output plus additional values used by the global strategy
(only if using KIN LINESEARCH), and statistical information for iterative
linear solver modules.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument printfl had an illegal value.

Notes The default value for printfl is 0.

KINSetUserData

Call flag = KINSetUserData(kin mem, user data);

Description The function KINSetUserData specifies the pointer to user-defined memory that is to
be passed to all user-supplied functions.

Arguments kin mem (void *) pointer to the kinsol memory block.

user data (void *) pointer to the user-defined memory.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.
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Notes If specified, the pointer to user data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user data is needed in user linear solver or preconditioner functions, the call to !

KINSetUserData must be made before the call to specify the linear solver module.

KINSetNumMaxIters

Call flag = KINSetNumMaxIters(kin mem, mxiter);

Description The function KINSetNumMaxIters specifies the maximum number of nonlinear iterations
allowed.

Arguments kin mem (void *) pointer to the kinsol memory block.

mxiter (long int) maximum number of nonlinear iterations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The maximum number of iterations was non-positive.

Notes The default value for mxiter is MXITER DEFAULT = 200.

KINSetNoInitSetup

Call flag = KINSetNoInitSetup(kin mem, noInitSetup);

Description The function KINSetNoInitSetup specifies whether an initial call to the preconditioner
or Jacobian setup function should be made or not.

Arguments kin mem (void *) pointer to the kinsol memory block.

noInitSetup (booleantype) flag controlling whether an initial call to the precondi-
tioner or Jacobian setup function is made (pass SUNFALSE) or not made
(pass SUNTRUE).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for noInitSetup is SUNFALSE, meaning that an initial call to the
preconditioner or Jacobian setup function will be made.

A call to this function is useful when solving a sequence of problems, in which the final
preconditioner or Jacobian value from one problem is to be used initially for the next
problem.

KINSetNoResMon

Call flag = KINSetNoResMon(kin mem, noNNIResMon);

Description The function KINSetNoResMon specifies whether or not the nonlinear residual monitoring
scheme is used to control Jacobian updating

Arguments kin mem (void *) pointer to the kinsol memory block.

noNNIResMon (booleantype) flag controlling whether residual monitoring is used (pass
SUNFALSE) or not used (pass SUNTRUE).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.
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Notes When using a direct solver, the default value for noNNIResMon is SUNFALSE, meaning
that the nonlinear residual will be monitored.

Residual monitoring is only available for use with matrix-based linear solver modules.!

KINSetMaxSetupCalls

Call flag = KINSetMaxSetupCalls(kin mem, msbset);

Description The function KINSetMaxSetupCalls specifies the maximum number of nonlinear iter-
ations that can be performed between calls to the preconditioner or Jacobian setup
function.

Arguments kin mem (void *) pointer to the kinsol memory block.

msbset (long int) maximum number of nonlinear iterations without a call to the
preconditioner or Jacobian setup function. Pass 0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument msbset was negative.

Notes The default value for msbset is MSBSET DEFAULT = 10.

The value of msbset should be a multiple of msbsetsub (see KINSetMaxSubSetupCalls).

KINSetMaxSubSetupCalls

Call flag = KINSetMaxSubSetupCalls(kin mem, msbsetsub);

Description The function KINSetMaxSubSetupCalls specifies the maximum number of nonlinear
iterations between checks by the residual monitoring algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

msbsetsub (long int) maximum number of nonlinear iterations without checking the
nonlinear residual. Pass 0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument msbsetsub was negative.

Notes The default value for msbsetsub is MSBSET SUB DEFAULT = 5.

The value of msbset (see KINSetMaxSetupCalls) should be a multiple of msbsetsub.

Residual monitoring is only available for use with matrix-based linear solver modules. !

KINSetEtaForm

Call flag = KINSetEtaForm(kin mem, etachoice);

Description The function KINSetEtaForm specifies the method for computing the value of the η
coefficient used in the calculation of the linear solver convergence tolerance.

Arguments kin mem (void *) pointer to the kinsol memory block.

etachoice (int) flag indicating the method for computing η. The value must be one
of KIN ETACHOICE1, KIN ETACHOICE2, or KIN ETACONSTANT (see Chapter 2
for details).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.
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KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument etachoice had an illegal value.

Notes The default value for etachoice is KIN ETACHOICE1.

When using either KIN ETACHOICE1 or KIN ETACHOICE2 the safeguard

ηn = max(ηn, ηsafe)

is applied when ηsafe > 0.1. For KIN ETACHOICE1

ηsafe = η
1+

√
5

2
n−1

and for KIN ETACHOICE2

ηsafe = γηαn−1

where γ and α can be set with KINSetEtaParams.

The following safeguards are always applied when using either KIN ETACHOICE1 or
KIN ETACHOICE2 so that ηmin ≤ ηn ≤ ηmax:

ηn = max(ηn, ηmin)

ηn = min(ηn, ηmax)

where ηmin = 10−4 and ηmax = 0.9.

KINSetEtaConstValue

Call flag = KINSetEtaConstValue(kin mem, eta);

Description The function KINSetEtaConstValue specifies the constant value for η in the case
etachoice = KIN ETACONSTANT.

Arguments kin mem (void *) pointer to the kinsol memory block.

eta (realtype) constant value for η. Pass 0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument eta had an illegal value

Notes The default value for eta is 0.1. The legal values are 0.0 < eta ≤ 1.0.

KINSetEtaParams

Call flag = KINSetEtaParams(kin mem, egamma, ealpha);

Description The function KINSetEtaParams specifies the parameters γ and α in the formula for η,
in the case etachoice = KIN ETACHOICE2.

Arguments kin mem (void *) pointer to the kinsol memory block.

egamma (realtype) value of the γ parameter. Pass 0.0 to indicate the default.

ealpha (realtype) value of the α parameter. Pass 0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT One of the arguments egamma or ealpha had an illegal value.

Notes The default values for egamma and ealpha are 0.9 and 2.0, respectively.

The legal values are 0.0 < egamma ≤ 1.0 and 1.0 < ealpha ≤ 2.0.
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KINSetResMonConstValue

Call flag = KINSetResMonConstValue(kin mem, omegaconst);

Description The function KINSetResMonConstValue specifies the constant value for ω when using
residual monitoring.

Arguments kin mem (void *) pointer to the kinsol memory block.

omegaconst (realtype) constant value for ω. Passing 0.0 results in using Eqn. (2.4).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument omegaconst had an illegal value

Notes The default value for omegaconst is 0.9. The legal values are 0.0 < omegaconst < 1.0.

KINSetResMonParams

Call flag = KINSetResMonParams(kin mem, omegamin, omegamax);

Description The function KINSetResMonParams specifies the parameters ωmin and ωmax in the for-
mula (2.4) for ω.

Arguments kin mem (void *) pointer to the kinsol memory block.

omegamin (realtype) value of the ωmin parameter. Pass 0.0 to indicate the default.

omegamax (realtype) value of the ωmax parameter. Pass 0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT One of the arguments omegamin or omegamax had an illegal value.

Notes The default values for omegamin and omegamax are 0.00001 and 0.9, respectively.

The legal values are 0.0 < omegamin < omegamax < 1.0.

KINSetNoMinEps

Call flag = KINSetNoMinEps(kin mem, noMinEps);

Description The function KINSetNoMinEps specifies a flag that controls whether or not the value of
ε, the scaled linear residual tolerance, is bounded from below.

Arguments kin mem (void *) pointer to the kinsol memory block.

noMinEps (booleantype) flag controlling the bound on ε. If SUNFALSE is passed the
value of ε is constrained and if SUNTRUE is passed then ε is not constrained.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for noMinEps is SUNFALSE, meaning that a positive minimum value,
equal to 0.01*fnormtol, is applied to ε (see KINSetFuncNormTol below).

KINSetMaxNewtonStep

Call flag = KINSetMaxNewtonStep(kin mem, mxnewtstep);

Description The function KINSetMaxNewtonStep specifies the maximum allowable scaled length of
the Newton step.

Arguments kin mem (void *) pointer to the kinsol memory block.
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mxnewtstep (realtype) maximum scaled step length (≥ 0.0). Pass 0.0 to indicate the
default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The input value was negative.

Notes The default value of mxnewtstep is 1000 ‖u0‖Du
, where u0 is the initial guess.

KINSetMaxBetaFails

Call flag = KINSetMaxBetaFails(kin mem, mxnbcf);

Description The function KINSetMaxBetaFails specifies the maximum number of β-condition fail-
ures in the linesearch algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

mxnbcf (realtype) maximum number of β-condition failures. Pass 0.0 to indicate the
default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT mxnbcf was negative.

Notes The default value of mxnbcf is MXNBCF DEFAULT = 10.

KINSetRelErrFunc

Call flag = KINSetRelErrFunc(kin mem, relfunc);

Description The function KINSetRelErrFunc specifies the relative error in computing F (u), which
is used in the difference quotient approximation to the Jacobian matrix [see Eq.(2.7)]
or the Jacobian-vector product [see Eq.(2.9)]. The value stored is

√
relfunc.

Arguments kin mem (void *) pointer to the kinsol memory block.

relfunc (realtype) relative error in F (u) (relfunc ≥ 0.0). Pass 0.0 to indicate the
default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The relative error was negative.

Notes The default value for relfunc is U = unit roundoff.

KINSetFuncNormTol

Call flag = KINSetFuncNormTol(kin mem, fnormtol);

Description The function KINSetFuncNormTol specifies the scalar used as a stopping tolerance on
the scaled maximum norm of the system function F (u).

Arguments kin mem (void *) pointer to the kinsol memory block.

fnormtol (realtype) tolerance for stopping based on scaled function norm (≥ 0.0).
Pass 0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.
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KIN ILL INPUT The tolerance was negative.

Notes The default value for fnormtol is (unit roundoff)1/3.

KINSetScaledStepTol

Call flag = KINSetScaledStepTol(kin mem, scsteptol);

Description The function KINSetScaledStepTol specifies the scalar used as a stopping tolerance on
the minimum scaled step length.

Arguments kin mem (void *) pointer to the kinsol memory block.

scsteptol (realtype) tolerance for stopping based on scaled step length (≥ 0.0). Pass
0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The tolerance was non-positive.

Notes The default value for scsteptol is (unit roundoff)2/3.

KINSetConstraints

Call flag = KINSetConstraints(kin mem, constraints);

Description The function KINSetConstraints specifies a vector that defines inequality constraints
for each component of the solution vector u.

Arguments kin mem (void *) pointer to the kinsol memory block.

constraints (N Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on ui.

1.0 then ui will be constrained to be ui ≥ 0.0.

−1.0 then ui will be constrained to be ui ≤ 0.0.

2.0 then ui will be constrained to be ui > 0.0.

−2.0 then ui will be constrained to be ui < 0.0.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The constraint vector contains illegal values.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed. If a NULL vector is supplied, constraint
checking will be disabled.

The function creates a private copy of the constraints vector. Consequently, the user-
supplied vector can be freed after the function call, and the constraints can only be
changed by calling this function.

KINSetSysFunc

Call flag = KINSetSysFunc(kin mem, func);

Description The function KINSetSysFunc specifies the user-provided function that evaluates the
nonlinear system function F (u) or G(u).

Arguments kin mem (void *) pointer to the kinsol memory block.

func (KINSysFn) user-supplied function that evaluates F (u) (or G(u) for fixed-point
iteration).
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Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument func was NULL.

Notes The nonlinear system function is initially specified through KINInit. The option of
changing the system function is provided for a user who wishes to solve several problems
of the same size but with different functions.

KINSetMAA

Call flag = KINSetMAA(kin mem, maa);

Description The function KINSetMAA specifies the size of the subspace used with Anderson acceler-
ation in conjunction with Picard or fixed-point iteration.

Arguments kin mem (void *) pointer to the kinsol memory block.

maa (long int) subspace size for various methods. A value of 0 means no acceler-
ation, while a positive value means acceleration will be done.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument maa was negative.

Notes This function sets the subspace size, which needs to be > 0 if Anderson Acceleration is
to be used. It also allocates additional memory necessary for Anderson Acceleration.

The default value of maa is 0, indicating no acceleration. The value of maa should always
be less than mxiter.

This function MUST be called before calling KINInit.

If the user calls the function KINSetNumMaxIters, that call should be made before the
call to KINSetMAA, as the latter uses the value of mxiter.

KINSetDampingAA

Call flag = KINSetDampingAA(kin mem, beta);

Description The function KINSetDampingAA specifies the value of the Anderson acceleration damping
paramter.

Arguments kin mem (void *) pointer to the kinsol memory block.

beta (realtype) the damping parameter value 0 < beta ≤ 1.0.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument beta was zero or negative.

Notes This function sets the damping parameter value, which needs to be greater than zero
and less than one if damping is to be used. A value ≥ 1 disables damping.

The default value of beta is 1.0, indicating no damping.
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4.5.4.2 Linear solver interface optional input functions

For matrix-based linear solver modules, the kinls solver interface needs a function to compute an
approximation to the Jacobian matrix J(u). This function must be of type KINLsJacFn. The user
can supply a Jacobian function, or if using a dense or banded matrix J can use the default internal
difference quotient approximation that comes with the kinls solver. To specify a user-supplied Jaco-
bian function jac, kinls provides the function KINSetJacFn. The kinls interface passes the pointer
user data to the Jacobian function. This allows the user to create an arbitrary structure with rele-
vant problem data and access it during the execution of the user-supplied Jacobian function, without
using global data in the program. The pointer user data may be specified through KINSetUserData.

KINSetJacFn

Call flag = KINSetJacFn(kin mem, jac);

Description The function KINSetJacFn specifies the Jacobian approximation function to be used.

Arguments kin mem (void *) pointer to the kinsol memory block.

jac (KINLsJacFn) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes By default, kinls uses an internal difference quotient function for dense and band
matrices. If NULL is passed to jac, this default function is used. An error will occur if
no jac is supplied when using a sparse or user-supplied matrix.

This function must be called after the kinls linear solver interface has been initialized
through a call to KINSetLinearSolver.

The function type KINLsJacFn is described in §4.6.4.

The previous routine KINDlsSetJacFn is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

When using matrix-free linear solver modules, the kinls linear solver interface requires a function to
compute an approximation to the product between the Jacobian matrix J(u) and a vector v. The user
can supply his/her own Jacobian-times-vector approximation function, or use the internal difference
quotient approximation that comes with the kinls solver interface.

A user-defined Jacobian-vector function must be of type KINLsJacTimesVecFn and can be specified
through a call to KINLsSetJacTimesVecFn (see §4.6.5 for specification details). The pointer user data

received through KINSetUserData (or a pointer to NULL if user data was not specified) is passed to
the Jacobian-times-vector function jtimes each time it is called. This allows the user to create an
arbitrary structure with relevant problem data and access it during the execution of the user-supplied
functions without using global data in the program.

KINSetJacTimesVecFn

Call flag = KINSetJacTimesVecFn(kin mem, jtimes);

Description The function KINSetJacTimesVecFn specifies the Jacobian-vector product function.

Arguments kin mem (void *) pointer to the kinsol memory block.

jtimes (KINLsJacTimesVecFn) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.
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KINLS LMEM NULL The kinls linear solver has not been initialized.

KINLS SUNLS FAIL An error occurred when setting up the system matrix-times-vector
routines in the sunlinsol object used by the kinls interface.

Notes The default is to use an internal difference quotient for jtimes. If NULL is passed as
jtimes, this default is used.

This function must be called after the kinls linear solver interface has been initialized
through a call to KINSetLinearSolver.

The function type KINLsJacTimesVecFn is described in §4.6.5.

The previous routine KINSpilsSetJacTimesVecFn is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

When using the internal difference quotient the user may optionally supply an alternative system
function for use in the Jacobian-vector product approximation by calling KINSetJacTimesVecSysFn.
The alternative system function should compute a suitable (and differentiable) approximation of the
system function provided to KINInit. For example, as done in [20] when solving the nonlinear systems
that arise in the implicit integration of ordinary differential equations, the alternative function may
use lagged values when evaluating a nonlinearity to avoid differencing a potentially non-differentiable
factor.

KINSetJacTimesVecSysFn

Call flag = KINSetJacTimesVecSysFn(kin mem, jtimesSysFn);

Description The function KINSetJacTimesVecSysFn specifies an alternative system function for use
in the internal Jacobian-vector product difference quotient approximation.

Arguments kin mem (void *) pointer to the kinsol memory block.

jtimesSysFn (KINSysFn) is the C function which computes the alternative system func-
tion to use in Jacobian-vector product difference quotient approximations.
This function has the form func(u, fval, user data). (For full details
see §4.6.1.)

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver has not been initialized.

KINLS ILL INPUT The internal difference quotient approximation is disabled.

Notes The default is to use the system function provided to KINInit in the internal difference
quotient. If the input system function is NULL, the default is used.

This function must be called after the kinls linear solver interface has been initialized
through a call to KINSetLinearSolver.

F2003 Name FKINSetJacTimesVecSysFn

When using an iterative linear solver, the user may supply a preconditioning operator to aid in
solution of the system. This operator consists of two user-supplied functions, psetup and psolve,
that are supplied to kinls using the function KINSetPreconditioner. The psetup function supplied
to this routine should handle evaluation and preprocessing of any Jacobian data needed by the user’s
preconditioner solve function, psolve. Both of these functions are fully specified in §4.6. The user
data pointer received through KINSetUserData (or a pointer to NULL if user data was not specified) is
passed to the psetup and psolve functions. This allows the user to create an arbitrary structure with
relevant problem data and access it during the execution of the user-supplied preconditioner functions
without using global data in the program.



4.5 User-callable functions 53

KINSetPreconditioner

Call flag = KINSetPreconditioner(kin mem, psetup, psolve);

Description The function KINSetPreconditioner specifies the preconditioner setup and solve func-
tions.

Arguments kin mem (void *) pointer to the kinsol memory block.

psetup (KINLsPrecSetupFn) user-defined function to set up the preconditioner. Pass
NULL if no setup operation is necessary.

psolve (KINLsPrecSolveFn) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional values have been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver has not been initialized.

KINLS SUNLS FAIL An error occurred when setting up preconditioning in the sunlinsol
object used by the kinls interface.

Notes The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the kinls linear solver interface has been initialized
through a call to KINSetLinearSolver.

The function type KINLsPrecSolveFn is described in §4.6.6.

The function type KINLsPrecSetupFn is described in §4.6.7.

The previous routine KINSpilsSetPreconditioner is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

4.5.5 Optional output functions

kinsol provides an extensive list of functions that can be used to obtain solver performance informa-
tion. Table 4.3 lists all optional output functions in kinsol, which are then described in detail in the
remainder of this section, beginning with those for the main kinsol solver and continuing with those
for the kinls linear solver interface. Where the name of an output from a linear solver module would
otherwise conflict with the name of an optional output from the main solver, a suffix LS (for Linear
Solver) has been added here (e.g., lenrwLS).

4.5.5.1 SUNDIALS version information

The following functions provide a way to get sundials version information at runtime.

SUNDIALSGetVersion

Call flag = SUNDIALSGetVersion(version, len);

Description The function SUNDIALSGetVersion fills a character array with sundials version infor-
mation.

Arguments version (char *) character array to hold the sundials version information.

len (int) allocated length of the version character array.

Return value If successful, SUNDIALSGetVersion returns 0 and version contains the sundials ver-
sion information. Otherwise, it returns −1 and version is not set (the input character
array is too short).

Notes A string of 25 characters should be sufficient to hold the version information. Any
trailing characters in the version array are removed.
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Table 4.3: Optional outputs from kinsol and kinls

Optional output Function name
KINSOL main solver

Size of kinsol real and integer workspaces KINGetWorkSpace

Number of function evaluations KINGetNumFuncEvals

Number of nonlinear iterations KINGetNumNolinSolvIters

Number of β-condition failures KINGetNumBetaCondFails

Number of backtrack operations KINGetNumBacktrackOps

Scaled norm of F KINGetFuncNorm

Scaled norm of the step KINGetStepLength

KINLS linear solver interface
Size of real and integer workspaces KINGetLinWorkSpace

No. of Jacobian evaluations KINGetNumJacEvals

No. of F calls for D.Q. Jacobian[-vector] evals. KINGetNumLinFuncEvals

No. of linear iterations KINGetNumLinIters

No. of linear convergence failures KINGetNumLinConvFails

No. of preconditioner evaluations KINGetNumPrecEvals

No. of preconditioner solves KINGetNumPrecSolves

No. of Jacobian-vector product evaluations KINGetNumJtimesEvals

Last return from a kinls function KINGetLastLinFlag

Name of constant associated with a return flag KINGetLinReturnFlagName

SUNDIALSGetVersionNumber

Call flag = SUNDIALSGetVersionNumber(&major, &minor, &patch, label, len);

Description The function SUNDIALSGetVersionNumber set integers for the sundials major, minor,
and patch release numbers and fills a character array with the release label if applicable.

Arguments major (int) sundials release major version number.

minor (int) sundials release minor version number.

patch (int) sundials release patch version number.

label (char *) character array to hold the sundials release label.

len (int) allocated length of the label character array.

Return value If successful, SUNDIALSGetVersionNumber returns 0 and the major, minor, patch, and
label values are set. Otherwise, it returns −1 and the values are not set (the input
character array is too short).

Notes A string of 10 characters should be sufficient to hold the label information. If a label
is not used in the release version, no information is copied to label. Any trailing
characters in the label array are removed.

4.5.5.2 Main solver optional output functions

kinsol provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements and solver performance statistics.
These optional output functions are described next.

KINGetWorkSpace

Call flag = KINGetWorkSpace(kin mem, &lenrw, &leniw);

Description The function KINGetWorkSpace returns the kinsol integer and real workspace sizes.

Arguments kin mem (void *) pointer to the kinsol memory block.
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lenrw (long int) the number of realtype values in the kinsol workspace.

leniw (long int) the number of integer values in the kinsol workspace.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes In terms of the problem size N , the actual size of the real workspace is 17+5N realtype

words. The real workspace is increased by an additional N words if constraint checking
is enabled (see KINSetConstraints).

The actual size of the integer workspace (without distinction between int and long

int) is 22 + 5N (increased by N if constraint checking is enabled).

KINGetNumFuncEvals

Call flag = KINGetNumFuncEvals(kin mem, &nfevals);

Description The function KINGetNumFuncEvals returns the number of evaluations of the system
function.

Arguments kin mem (void *) pointer to the kinsol memory block.

nfevals (long int) number of calls to the user-supplied function that evaluates F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetNumNonlinSolvIters

Call flag = KINGetNumNonlinSolvIters(kin mem, &nniters);

Description The function KINGetNumNonlinSolvIters returns the number of nonlinear iterations.

Arguments kin mem (void *) pointer to the kinsol memory block.

nniters (long int) number of nonlinear iterations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetNumBetaCondFails

Call flag = KINGetNumBetaCondFails(kin mem, &nbcfails);

Description The function KINGetNumBetaCondFails returns the number of β-condition failures.

Arguments kin mem (void *) pointer to the kinsol memory block.

nbcfails (long int) number of β-condition failures.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.
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KINGetNumBacktrackOps

Call flag = KINGetNumBacktrackOps(kin mem, &nbacktr);

Description The function KINGetNumBacktrackOps returns the number of backtrack operations (step
length adjustments) performed by the line search algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

nbacktr (long int) number of backtrack operations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetFuncNorm

Call flag = KINGetFuncNorm(kin mem, &fnorm);

Description The function KINGetFuncNorm returns the scaled Euclidean `2 norm of the nonlinear
system function F (u) evaluated at the current iterate.

Arguments kin mem (void *) pointer to the kinsol memory block.

fnorm (realtype) current scaled norm of F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetStepLength

Call flag = KINGetStepLength(kin mem, &steplength);

Description The function KINGetStepLength returns the scaled Euclidean `2 norm of the step used
during the previous iteration.

Arguments kin mem (void *) pointer to the kinsol memory block.

steplength (realtype) scaled norm of the Newton step.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

4.5.5.3 kinls linear solver interface optional output functions

The following optional outputs are available from the kinls module: workspace requirements, number
of calls to the Jacobian routine, number of calls to the system function routine for difference quotient
Jacobian or Jacobian-vector approximation, number of linear iterations, number of linear convergence
failures, number of calls to the preconditioner setup and solve routines, number of calls to the Jacobian-
vector product routine, and last return value from a kinls function.

KINGetLinWorkSpace

Call flag = KINGetLinWorkSpace(kin mem, &lenrwLS, &leniwLS);

Description The function KINGetLinWorkSpace returns the kinls real and integer workspace sizes.

Arguments kin mem (void *) pointer to the kinsol memory block.

lenrwLS (long int) the number of realtype values in the kinls workspace.

leniwLS (long int) the number of integer values in the kinls workspace.

Return value The return value flag (of type int) is one of
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KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within this interface and to memory allocated by the sunlinsol object attached
to it. The template Jacobian matrix allocated by the user outside of kinls is not
included in this report.

In a parallel setting, the above values are global (i.e., summed over all processors).

The previous routines KINDlsGetWorkspace and KINSpilsGetWorkspace are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these
will be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

KINGetNumJacEvals

Call flag = KINGetNumJacEvals(kin mem, &njevals);

Description The function KINGetNumJacEvals returns the cummulative number of calls to the kinls
Jacobian approximation function.

Arguments kin mem (void *) pointer to the kinsol memory block.

njevals (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The previous routine KINDlsGetNumJacEvals is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

KINGetNumLinFuncEvals

Call flag = KINGetNumLinFuncEvals(kin mem, &nfevalsLS);

Description The function KINGetNumLinFuncEvals returns the number of calls to the user system
function used to compute the difference quotient approximation to the Jacobian or to
the Jacobian-vector product.

Arguments kin mem (void *) pointer to the kinsol memory block.

nfevalsLS (long int) the number of calls to the user system function.

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The value nfevalsLS is incremented only if one of the default internal difference quotient
functions is used.

The previous routines KINDlsGetNumFuncEvals and KINSpilsGetNumFuncEvals are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.
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KINGetNumLinIters

Call flag = KINGetNumLinIters(kin mem, &nliters);

Description The function KINGetNumLinIters returns the cumulative number of linear iterations.

Arguments kin mem (void *) pointer to the kinsol memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The previous routine KINSpilsGetNumLinIters is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

KINGetNumLinConvFails

Call flag = KINGetNumLinConvFails(kin mem, &nlcfails);

Description The function KINGetNumLinConvFails returns the cumulative number of linear conver-
gence failures.

Arguments kin mem (void *) pointer to the kinsol memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The previous routine KINSpilsGetNumConvFails is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

KINGetNumPrecEvals

Call flag = KINGetNumPrecEvals(kin mem, &npevals);

Description The function KINGetNumPrecEvals returns the cumulative number of preconditioner
evaluations, i.e., the number of calls made to psetup.

Arguments kin mem (void *) pointer to the kinsol memory block.

npevals (long int) the current number of calls to psetup.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The previous routine KINSpilsGetNumPrecEvals is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.
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KINGetNumPrecSolves

Call flag = KINGetNumPrecSolves(kin mem, &npsolves);

Description The function KINGetNumPrecSolves returns the cumulative number of calls made to
the preconditioner solve function, psolve.

Arguments kin mem (void *) pointer to the kinsol memory block.

npsolves (long int) the current number of calls to psolve.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The previous routine KINSpilsGetNumPrecSolves is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

KINGetNumJtimesEvals

Call flag = KINGetNumJtimesEvals(kin mem, &njvevals);

Description The function KINGetNumJtimesEvals returns the cumulative number made to the Jacobian-
vector product function, jtimes.

Arguments kin mem (void *) pointer to the kinsol memory block.

njvevals (long int) the current number of calls to jtimes.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The previous routine KINSpilsGetNumJtimesEvals is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

KINGetLastLinFlag

Call flag = KINGetLastLinFlag(kin mem, &lsflag);

Description The function KINGetLastLinFlag returns the last return value from a kinls routine.

Arguments kin mem (void *) pointer to the kinsol memory block.

lsflag (long int) the value of the last return flag from a kinls function.

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes If the kinls setup function failed (i.e. KINSolve returned KIN LSETUP FAIL) when
using the sunlinsol dense or sunlinsol band modules, then the value of lsflag is
equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the (dense or banded) Jacobian matrix.

If the kinls setup function failed when using another sunlinsol module, then lsflag

will be SUNLS PSET FAIL UNREC, SUNLS ASET FAIL UNREC, or SUNLS PACKAGE FAIL UNREC.

If the kinls solve function failed (i.e., KINSol returned KIN LSOLVE FAIL), then lsflag

contains the error return flag from the sunlinsol object, which will be one of the



60 Using KINSOL for C Applications

following:
SUNLS MEM NULL, indicating that the sunlinsol memory is NULL;
SUNLS ATIMES FAIL UNREC, indicating an unrecoverable failure in the Jacobian-times-
vector function;
SUNLS PSOLVE FAIL UNREC, indicating that the preconditioner solve function, psolve,
failed with an unrecoverable error;
SUNLS GS FAIL, indicating a failure in the Gram-Schmidt procedure (generated only in
spgmr or spfgmr);
SUNLS QRSOL FAIL, indicating that the matrix R was found to be singular during the
QR solve phase (spgmr and spfgmr only); or
SUNLS PACKAGE FAIL UNREC, indicating an unrecoverable failure in an external iterative
linear solver package.

The previous routines KINDlsGetLastFlag and KINSpilsGetLastFlag are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these
will be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

KINGetLinReturnFlagName

Call name = KINGetLinReturnFlagName(lsflag);

Description The function KINGetLinReturnFlagName returns the name of the kinls constant cor-
responding to lsflag.

Arguments The only argument, of type long int, is a return flag from an kinls function.

Return value The return value is a string containing the name of the corresponding constant.

Notes The previous routines KINDlsGetReturnFlagName and KINSpilsGetReturnFlagName

are now wrappers for this routine, and may still be used for backward-compatibility.
However, these will be deprecated in future releases, so we recommend that users tran-
sition to the new routine name soon.

4.6 User-supplied functions

The user-supplied functions consist of one function defining the nonlinear system, (optionally) a
function that handles error and warning messages, (optionally) a function that handles informational
messages, (optionally) one or two functions that provides Jacobian-related information for the linear
solver, and (optionally) one or two functions that define the preconditioner for use in any of the Krylov
iterative algorithms.

4.6.1 Problem-defining function

The user must provide a function of type KINSysFn defined as follows:

KINSysFn

Definition typedef int (*KINSysFn)(N Vector u, N Vector fval, void *user data);

Purpose This function computes F (u) (or G(u) for fixed-point iteration and Anderson accelera-
tion) for a given value of the vector u.

Arguments u is the current value of the variable vector, u.

fval is the output vector F (u).

user data is a pointer to user data, the pointer user data passed to KINSetUserData.
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Return value A KINSysFn function should return 0 if successful, a positive value if a recoverable error
occurred (in which case kinsol will attempt to correct), or a negative value if it failed
unrecoverably (in which case the solution process is halted and KIN SYSFUNC FAIL is
returned).

Notes Allocation of memory for fval is handled within kinsol.

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to
by errfp (see KINSetErrFile), the user may provide a function of type KINErrHandlerFn to process
any such messages. The function type KINErrHandlerFn is defined as follows:

KINErrHandlerFn

Definition typedef void (*KINErrHandlerFn)(int error code, const char *module,

const char *function, char *msg,

void *eh data);

Purpose This function processes error and warning messages from kinsol and its sub-modules.

Arguments error code is the error code.

module is the name of the kinsol module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.

eh data is a pointer to user data, the same as the eh data parameter passed to
KINSetErrHandlerFn.

Return value A KINErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (KIN WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error code to 0.

4.6.3 Informational message handler function

As an alternative to the default behavior of directing informational (meaning non-error) messages
to the file pointed to by infofp (see KINSetInfoFile), the user may provide a function of type
KINInfoHandlerFn to process any such messages. The function type KINInfoHandlerFn is defined as
follows:

KINInfoHandlerFn

Definition typedef void (*KINInfoHandlerFn)(const char *module,

const char *function, char *msg,

void *ih data);

Purpose This function processes informational messages from kinsol and its sub-modules.

Arguments module is the name of the kinsol module reporting the information.

function is the name of the function reporting the information.

msg is the message.

ih data is a pointer to user data, the same as the ih data parameter passed to
KINSetInfoHandlerFn.

Return value A KINInfoHandlerFn function has no return value.

4.6.4 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e., a non-NULL sunmatrix object J was supplied to
KINSetLinearSolver), the user may provide a function of type KINLsJacFn defined as follows
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KINLsJacFn

Definition typedef int (*KINLsJacFn)(N Vector u, N Vector fu,

SUNMatrix J, void *user data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the Jacobian matrix J(u) (or an approximation to it).

Arguments u is the current (unscaled) iterate.

fu is the current value of the vector F (u).

J is the output approximate Jacobian matrix, J = ∂F/∂u, of type SUNMatrix.

user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by the KINJacFn function as temporary storage or work space.

Return value A function of type KINLsJacFn should return 0 if successful or a non-zero value other-
wise.

Notes Information regarding the structure of the specific sunmatrix structure (e.g. number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific sunmatrix interface functions (see Chapter 8 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER DIRECT), the
Jacobian matrix J(u) is zeroed out prior to calling the user-supplied Jacobian function
so only nonzero elements need to be loaded into J.

If the user’s KINLsJacFn function uses difference quotient approximations, it may need
to access quantities not in the call list. These quantities may include the scale vectors
and the unit roundoff. To obtain the scale vectors, the user will need to add to user data

pointers to u scale and/or f scale as needed. The unit roundoff can be accessed as
UNIT ROUNDOFF defined in sundials types.h.

dense:
A user-supplied dense Jacobian function must load the N × N dense matrix J with
an approximation to the Jacobian matrix J(u) at the point (u). The accessor macros
SM ELEMENT D and SM COLUMN D allow the user to read and write dense matrix ele-
ments without making explicit references to the underlying representation of the sun-
matrix dense type. SM ELEMENT D(J, i, j) references the (i, j)-th element of the
dense matrix J (with i, j = 0 . . . N − 1). This macro is meant for small problems for
which efficiency of access is not a major concern. Thus, in terms of the indices m
and n ranging from 1 to N , the Jacobian element Jm,n can be set using the state-
ment SM ELEMENT D(J, m-1, n-1) = Jm,n. Alternatively, SM COLUMN D(J, j) returns
a pointer to the first element of the j-th column of J (with j = 0 . . . N − 1), and the
elements of the j-th column can then be accessed using ordinary array indexing. Con-
sequently, Jm,n can be loaded using the statements col n = SM COLUMN D(J, n-1);

col n[m-1] = Jm,n. For large problems, it is more efficient to use SM COLUMN D than to
use SM ELEMENT D. Note that both of these macros number rows and columns starting
from 0. The sunmatrix dense type and accessor macros are documented in §8.3.

banded:
A user-supplied banded Jacobian function must load the N × N banded matrix J with
an approximation to the Jacobian matrix J(u) at the point (u). The accessor macros
SM ELEMENT B, SM COLUMN B, and SM COLUMN ELEMENT B allow the user to read and write
banded matrix elements without making specific references to the underlying represen-
tation of the sunmatrix band type. SM ELEMENT B(J, i, j) references the (i, j)-th
element of the banded matrix J, counting from 0. This macro is meant for use in small
problems for which efficiency of access is not a major concern. Thus, in terms of the
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indices m and n ranging from 1 to N with (m,n) within the band defined by mupper and
mlower, the Jacobian element Jm,n can be loaded using the statement SM ELEMENT B(J,

m-1, n-1) = Jm,n. The elements within the band are those with -mupper ≤ m-n ≤
mlower. Alternatively, SM COLUMN B(J, j) returns a pointer to the diagonal element of
the j-th column of J, and if we assign this address to realtype *col j, then the i-th
element of the j-th column is given by SM COLUMN ELEMENT B(col j, i, j), count-
ing from 0. Thus, for (m,n) within the band, Jm,n can be loaded by setting col n

= SM COLUMN B(J, n-1); and SM COLUMN ELEMENT B(col n, m-1, n-1) = Jm,n. The
elements of the j-th column can also be accessed via ordinary array indexing, but this
approach requires knowledge of the underlying storage for a band matrix of type sun-
matrix band. The array col n can be indexed from −mupper to mlower. For large
problems, it is more efficient to use SM COLUMN B and SM COLUMN ELEMENT B than to
use the SM ELEMENT B macro. As in the dense case, these macros all number rows and
columns starting from 0. The sunmatrix band type and accessor macros are docu-
mented in §8.4.

sparse:
A user-supplied sparse Jacobian function must load the N × N compressed-sparse-column
or compressed-sparse-row matrix J with an approximation to the Jacobian matrix J(u)
at the point (u). Storage for J already exists on entry to this function, although the
user should ensure that sufficient space is allocated in J to hold the nonzero values
to be set; if the existing space is insufficient the user may reallocate the data and
index arrays as needed. The amount of allocated space in a sunmatrix sparse object
may be accessed using the macro SM NNZ S or the routine SUNSparseMatrix NNZ. The
sunmatrix sparse type and accessor macros are documented in §8.5.

The previous function type KINDlsJacFn is identical to KINLsJacFn, and may still be
used for backward-compatibility. However, this will be deprecated in future releases, so
we recommend that users transition to the new function type name soon.

4.6.5 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued sunmatrix was supplied to
KINSetLinearSolver), the user may provide a function of type KINLsJacTimesVecFn in the following
form, to compute products Jv. If such a function is not supplied, the default is a difference quotient
approximation of these products.

KINLsJacTimesVecFn

Definition typedef int (*KINLsJacTimesVecFn)(N Vector v, N Vector Jv,

N Vector u, booleantype *new u,

void *user data);

Purpose This jtimes function computes the product Jv (or an approximation to it).

Arguments v is the vector by which the Jacobian must be multiplied to the right.

Jv is the computed output vector.

u is the current value of the dependent variable vector.

new u is a flag, input from kinsol and possibly reset by the user’s jtimes function,
indicating whether the iterate vector u has been updated since the last call to
jtimes. This is useful if the jtimes function computes and saves Jacobian
data that depends on u for use in computing J(u)v. The input value of
new u is SUNTRUE following an update by kinsol, and in that case any saved
Jacobian data depending on u should be recomputed. The jtimes routine
should then set new u to SUNFALSE, so that on subsequent calls to jtimes

with the same u, the saved data can be reused.
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user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

Return value The value returned by the Jacobian-times-vector function should be 0 if successful.
If a recoverable failure occurred, the return value should be positive. In this case,
kinsol will attempt to correct by calling the preconditioner setup function. If this
information is current, kinsol halts. If the Jacobian-times-vector function encounters
an unrecoverable error, it should return a negative value, prompting kinsol to halt.

Notes If a user-defined routine is not given, then an internal jtimes function, using a difference
quotient approximation, is used.

This function must return a value of J ∗ v that uses the current value of J , i.e. as
evaluated at the current u.

If the user’s KINLsJacTimesVecFn function uses difference quotient approximations,
it may need to access quantities not in the call list. These might include the scale
vectors and the unit roundoff. To obtain the scale vectors, the user will need to add to
user data pointers to u scale and/or f scale as needed. The unit roundoff can be
accessed as UNIT ROUNDOFF defined in sundials types.h.

The previous function type KINSpilsJacTimesVecFn is identical to KINLsJacTimesVecFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

4.6.6 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a sunlinsol solver module, then the user must pro-
vide a function to solve the linear system Pz = r where P is the preconditioner matrix, approximating
(at least crudely) the system Jacobian J = ∂F/∂u. This function must be of type KINLsPrecSolveFn,
defined as follows:

KINLsPrecSolveFn

Definition typedef int (*KINLsPrecSolveFn)(N Vector u, N Vector uscale,

N Vector fval, N Vector fscale,

N Vector v, void *user data);

Purpose This function solves the preconditioning system Pz = r.

Arguments u is the current (unscaled) value of the iterate.

uscale is a vector containing diagonal elements of the scaling matrix for u.

fval is the vector F (u) evaluated at u.

fscale is a vector containing diagonal elements of the scaling matrix for fval.

v on input, v is set to the right-hand side vector of the linear system, r. On
output, v must contain the solution z of the linear system Pz = r.

user data is a pointer to user data, the same as the user data parameter passed to
the function KINSetUserData.

Return value The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error,
and negative for an unrecoverable error.

Notes If the preconditioner solve function fails recoverably and if the preconditioner informa-
tion (set by the preconditioner setup function) is out of date, kinsol attempts to correct
by calling the setup function. If the preconditioner data is current, kinsol halts.

The previous function type KINSpilsPrecSolveFn is identical to KINLsPrecSolveFn,
and may still be used for backward-compatibility. However, this will be deprecated in
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future releases, so we recommend that users transition to the new function type name
soon.

4.6.7 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then
this needs to be done in a user-supplied function of type KINLsPrecSetupFn, defined as follows:

KINLsPrecSetupFn

Definition typedef int (*KINLsPrecSetupFn)(N Vector u, N Vector uscale,

N Vector fval, N Vector fscale,

void *user data);

Purpose This function evaluates and/or preprocesses Jacobian-related data needed by the pre-
conditioner solve function.

Arguments u is the current (unscaled) value of the iterate.

uscale is a vector containing diagonal elements of the scaling matrix for u.

fval is the vector F (u) evaluated at u.

fscale is a vector containing diagonal elements of the scaling matrix for fval.

user data is a pointer to user data, the same as the user data parameter passed to
the function KINSetUserData.

Return value The value to be returned by the preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, any other value re-
sulting in halting the kinsol solver.

Notes The user-supplied preconditioner setup subroutine should compute the right precondi-
tioner matrix P (stored in the memory block referenced by the user data pointer) used
to form the scaled preconditioned linear system

(DFJ(u)P−1D−1u ) · (DuPx) = −DFF (u) ,

where Du and DF denote the diagonal scaling matrices whose diagonal elements are
stored in the vectors uscale and fscale, respectively.

The preconditioner setup routine will not be called prior to every call made to the
preconditioner solve function, but will instead be called only as often as necessary to
achieve convergence of the Newton iteration.

If the user’s KINLsPrecSetupFn function uses difference quotient approximations, it may
need to access quantities not in the call list. These might include the scale vectors and
the unit roundoff. To obtain the scale vectors, the user will need to add to user data

pointers to u scale and/or f scale as needed. The unit roundoff can be accessed as
UNIT ROUNDOFF defined in sundials types.h.

If the preconditioner solve routine requires no preparation, then a preconditioner setup
function need not be given.

The previous function type KINSpilsPrecSetupFn is identical to KINLsPrecSetupFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

4.7 A parallel band-block-diagonal preconditioner module

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, kinsol provides a band-block-diagonal preconditioner module kinbbdpre, to
be used with the parallel N Vector module described in §7.4.
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This module provides a preconditioner matrix for kinsol that is block-diagonal with banded
blocks. The blocking corresponds to the distribution of the dependent variable vector u amongst the
processes. Each preconditioner block is generated from the Jacobian of the local part (associated with
the current process) of a given function G(u) approximating F (u) (G = F is allowed). The blocks
are generated by each process via a difference quotient scheme, utilizing a specified band structure.
This structure is given by upper and lower half-bandwidths, mudq and mldq, defined as the number
of non-zero diagonals above and below the main diagonal, respectively. However, from the resulting
approximate Jacobain blocks, only a matrix of bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of
G, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if the
couplings in the system outside a certain bandwidth are considerably weaker than those within the
band. Reducing mukeep and mlkeep while keeping mudq and mldq at their true values, discards the
elements outside the narrower band. Reducing both pairs has the additional effect of lumping the
outer Jacobian elements into the computed elements within the band, and requires more caution and
experimentation to see whether the lower cost of narrower band matrices offsets the loss of accuracy
in the blocks.

The kinbbdpre module calls two user-provided functions to construct P : a required function
Gloc (of type KINBBDLocalFn) which approximates the nonlinear system function G(u) ≈ F (u) and
which is computed locally, and an optional function Gcomm (of type KINBBDCommFn) which performs all
interprocess communication necessary to evaluate the approximate function G. These are in addition
to the user-supplied nonlinear system function that evaluates F (u). Both functions take as input
the same pointer user data as that passed by the user to KINSetUserData and passed to the user’s
function func, and neither function has a return value. The user is responsible for providing space
(presumably within user data) for components of u that are communicated by Gcomm from the other
processes, and that are then used by Gloc, which should not do any communication.

KINBBDLocalFn

Definition typedef int (*KINBBDLocalFn)(sunindextype Nlocal, N Vector u,

N Vector gval, void *user data);

Purpose This Gloc function computes G(u), and outputs the resulting vector as gval.

Arguments Nlocal is the local vector length.

u is the current value of the iterate.

gval is the output vector.

user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

Return value A KINBBDLocalFn function should return 0 if successful or a non-zero value if an error
occured.

Notes This function must assume that all interprocess communication of data needed to cal-
culate gval has already been done, and this data is accessible within user data.

Memory for u and gval is handled within the preconditioner module.

The case where G is mathematically identical to F is allowed.

KINBBDCommFn

Definition typedef int (*KINBBDCommFn)(sunindextype Nlocal, N Vector u,

void *user data);

Purpose This Gcomm function performs all interprocess communications necessary for the execu-
tion of the Gloc function above, using the input vector u.

Arguments Nlocal is the local vector length.

u is the current value of the iterate.
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user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

Return value A KINBBDCommFn function should return 0 if successful or a non-zero value if an error
occured.

Notes The Gcomm function is expected to save communicated data in space defined within the
structure user data.

Each call to the Gcomm function is preceded by a call to the system function func with
the same u argument. Thus Gcomm can omit any communications done by func if
relevant to the evaluation of Gloc. If all necessary communication was done in func,
then Gcomm = NULL can be passed in the call to KINBBDPrecInit (see below).

Besides the header files required for the solution of a nonlinear problem (see §4.3), to use the
kinbbdpre module, the main program must include the header file kinbbdpre.h which declares the
needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in
the user main program. Steps that are unchanged from the user main program presented in §4.4 are
grayed out.

1. Initialize parallel or multi-threaded environment

2. Set problem dimensions, etc.

3. Set vector with initial guess

4. Create kinsol object

5. Allocate internal memory

6. Create linear solver object

When creating the iterative linear solver object, specify use of right preconditioning (PREC RIGHT)
as kinsol only supports right preconditioning.

7. Attach linear solver module

8. Initialize the kinbbdpre preconditioner module

Specify the upper and lower half-bandwidth pairs (mudq, mldq) and (mukeep, mlkeep), and call

flag = KINBBDPrecInit(kin mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel u, Gloc, Gcomm);

to allocate memory for and initialize the internal preconditoner data. The last two arguments of
KINBBDPrecInit are the two user-supplied functions described above.

9. Set optional inputs

Note that the user should not overwrite the preconditioner data, setup function, or solve function
through calls to KINSetPreconditioner optional input functions.

10. Solve problem

11. Get optional output

Additional optional outputs associated with kinbbdpre are available by way of two routines
described below, KINBBDPrecGetWorkSpace and KINBBDPrecGetNumGfnEvals.

12. Deallocate memory for solution vector

13. Free solver memory
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14. Free linear solver memory

15. Finalize MPI, if used

The user-callable function that initializes kinbbdpre (step 8), is described in more detail below.

KINBBDPrecInit

Call flag = KINBBDPrecInit(kin mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel u, Gloc, Gcomm);

Description The function KINBBDPrecInit initializes and allocates memory for the kinbbdpre pre-
conditioner.

Arguments kin mem (void *) pointer to the kinsol memory block.

Nlocal (sunindextype) local vector length.

mudq (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldq (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mukeep (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.

mlkeep (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.

dq rel u (realtype) the relative increment in components of u used in the difference
quotient approximations. The default is dq rel u=

√
unit roundoff, which

can be specified by passing dq rel u= 0.0.

Gloc (KINBBDLocalFn) the C function which computes the approximation G(u) ≈
F (u).

Gcomm (KINBBDCommFn) the optional C function which performs all interprocess com-
munication required for the computation of G(u).

Return value The return value flag (of type int) is one of

KINLS SUCCESS The call to KINBBDPrecInit was successful.

KINLS MEM NULL The kin mem pointer was NULL.

KINLS MEM FAIL A memory allocation request has failed.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

KINLS ILL INPUT The supplied vector implementation was not compatible with the
block band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference-quotient cal-
culation of the approximate Jacobian is negative or exceeds the value Nlocal−1, it is
replaced with 0 or Nlocal−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of G, when smaller values may provide greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same for every process.

The following two optional output functions are available for use with the kinbbdpre module:

KINBBDPrecGetWorkSpace

Call flag = KINBBDPrecGetWorkSpace(kin mem, &lenrwBBDP, &leniwBBDP);

Description The function KINBBDPrecGetWorkSpace returns the local kinbbdpre real and integer
workspace sizes.
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Arguments kin mem (void *) pointer to the kinsol memory block.

lenrwBBDP (long int) local number of realtype values in the kinbbdpre workspace.

leniwBBDP (long int) local number of integer values in the kinbbdpre workspace.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer was NULL.

KINLS PMEM NULL The kinbbdpre preconditioner has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within the kinbbdpre module (the banded matrix approximation, banded sun-
linsol object, temporary vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding
KINGetLinWorkSpace function.

KINBBDPrecGetNumGfnEvals

Call flag = KINBBDPrecGetNumGfnEvals(kin mem, &ngevalsBBDP);

Description The function KINBBDPrecGetNumGfnEvals returns the number of calls to the user Gloc
function due to the difference quotient approximation of the Jacobian blocks used within
kinbbdpre’s preconditioner setup function.

Arguments kin mem (void *) pointer to the kinsol memory block.

ngevalsBBDP (long int) the number of calls to the user Gloc function.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer was NULL.

KINLS PMEM NULL The kinbbdpre preconditioner has not been initialized.

In addition to the ngevalsBBDP Gloc evaluations, the costs associated with kinbbdpre also include
nlinsetups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and
nfevalsLS right-hand side function evaluations, where nlinsetups is an optional kinsol output and
npsolves and nfevalsLS are linear solver optional outputs (see §4.5.5).





Chapter 5

Using KINSOL for Fortran
Applications

A Fortran 2003 module (fkinsol mod) as well as a Fortran 77 style interface (fkinsol) are provided
to support the use of kinsol, for the solution of nonlinear systems F (u) = 0, in a mixed Fortran/C
setting. While kinsol is written in C, it is assumed here that the user’s calling program and user-
supplied problem-defining routines are written in Fortran.

5.1 KINSOL Fortran 2003 Interface Module

The fkinsol mod Fortran module defines interfaces to most kinsol C functions using the intrinsic
iso c binding module which provides a standardized mechanism for interoperating with C. All in-
terfaced functions are named after the corresponding C function, but with a leading ‘F’. For example,
the kinsol function KINCreate is interfaced as FKINCreate. Thus, the steps to use kinsol and the
function calls in Fortran 2003 are identical (ignoring language differences) to those in C. The C func-
tions with Fortran 2003 interfaces indicate this in their description in Chapter 4. The Fortran 2003
kinsol interface module can be accessed by the use statement, i.e. use fkinsol mod, and linking to
the library libsundials fkinsol mod.lib in addition to libsundials kinsol.lib.

The Fortran 2003 interface modules were generated with SWIG Fortran, a fork of SWIG [29].
Users who are interested in the SWIG code used in the generation process should contact the sundials
development team.

5.1.1 SUNDIALS Fortran 2003 Interface Modules

All of the generic sundials modules provide Fortran 2003 interface modules. Many of the generic
module implementations provide Fortran 2003 interfaces (a complete list of modules with Fortran
2003 interfaces is given in Table 5.1). A module can be accessed with the use statement, e.g. use

fnvector openmp mod, and linking to the Fortran 2003 library in addition to the C library, e.g.
libsundials fnvecpenmp mod.lib and libsundials nvecopenmp.lib.

The Fortran 2003 interfaces leverage the iso c binding module and the bind(C) attribute to
closely follow the sundials C API (ignoring language differences). The generic sundials structures,
e.g. N Vector, are interfaced as Fortran derived types, and function signatures are matched but with
an F prepending the name, e.g. FN VConst instead of N VConst. Constants are named exactly as they
are in the C API. Accordingly, using sundials via the Fortran 2003 interfaces looks just like using
it in C. Some caveats stemming from the language differences are discussed in the section 5.1.3. A
discussion on the topic of equivalent data types in C and Fortran 2003 is presented in section 5.1.2.

Further information on the Fortran 2003 interfaces specific to modules is given in the nvector,
sunmatrix, sunlinsol, and sunnonlinsol alongside the C documentation (chapters 7, 8, 9, and
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?? respectively). For details on where the Fortran 2003 module (.mod) files and libraries are installed
see Appendix A.

Table 5.1: Summary of Fortran 2003 interfaces for shared sundials modules.

Module Fortran 2003 Module Name
NVECTOR fsundials nvector mod

nvector serial fnvector serial mod

nvector parallel fnvector parallel mod

nvector openmp fnvector openmp mod

nvector pthreads fnvector pthreads mod

nvector parhyp Not interfaced
nvector petsc Not interfaced
nvector cuda Not interfaced
nvector raja Not interfaced
nvector manyvector fnvector manyvector mod

nvector mpimanyvector fnvector mpimanyvector mod

nvector mpiplusx fnvector mpiplusx mod

SUNMatrix fsundials matrix mod

sunmatrix band fsunmatrix band mod

sunmatrix dense fsunmatrix dense mod

sunmatrix sparse fsunmatrix sparse mod

SUNLinearSolver fsundials linearsolver mod

sunlinsol band fsunlinsol band mod

sunlinsol dense fsunlinsol dense mod

sunlinsol lapackband Not interfaced
sunlinsol lapackdense Not interfaced
sunlinsol klu fsunlinsol klu mod

sunlinsol superlumt Not interfaced
sunlinsol superludist Not interfaced
sunlinsol spgmr fsunlinsol spgmr mod

sunlinsol spfgmr fsunlinsol spfgmr mod

sunlinsol spbcgs fsunlinsol spbcgs mod

sunlinsol sptfqmr fsunlinsol sptfqmr mod

sunlinsol pcg fsunlinsol pcg mod

SUNNonlinearSolver fsundials nonlinearsolver mod

sunnonlinsol newton fsunnonlinsol newton mod

sunnonlinsol fixedpoint fsunnonlinsol fixedpoint mod

5.1.2 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive
types map to the iso c binding type equivalent. sundials generic types map to a Fortran derived
type. However, the handling of pointer types is not always clear as they can depend on the parameter
direction. Table 5.2 presents a summary of the type equivalencies with the parameter direction in
mind.

Currently, the Fortran 2003 interfaces are only compatible with sundials builds where the realtype!

is double precision and the sunindextype size is 64-bits.
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Table 5.2: C/Fortran 2003 Equivalent Types

C type Parameter Direction Fortran 2003 type
double in, inout, out, return real(c double)

int in, inout, out, return integer(c int)

long in, inout, out, return integer(c long)

booleantype in, inout, out, return integer(c int)

realtype in, inout, out, return real(c double)

sunindextype in, inout, out, return integer(c long)

double* in, inout, out real(c double), dimension(*)

double* return real(c double), pointer, dimension(:)

int* in, inout, out integer(c int), dimension(*)

int* return integer(c int), pointer, dimension(:)

long* in, inout, out integer(c long), dimension(*)

long* return integer(c long), pointer, dimension(:)

realtype* in, inout, out real(c double), dimension(*)

realtype* return real(c double), pointer, dimension(:)

sunindextype* in, inout, out integer(c long), dimension(*)

sunindextype* return integer(c long), pointer, dimension(:)

realtype[] in, inout, out real(c double), dimension(*)

sunindextype[] in, inout, out integer(c long), dimension(*)

N Vector in, inout, out type(N Vector)

N Vector return type(N Vector), pointer

SUNMatrix in, inout, out type(SUNMatrix)

SUNMatrix return type(SUNMatrix), pointer

SUNLinearSolver in, inout, out type(SUNLinearSolver)

SUNLinearSolver return type(SUNLinearSolver), pointer

SUNNonlinearSolver in, inout, out type(SUNNonlinearSolver)

SUNNonlinearSolver return type(SUNNonlinearSolver), pointer

FILE* in, inout, out, return type(c ptr)

void* in, inout, out, return type(c ptr)

T** in, inout, out, return type(c ptr)

T*** in, inout, out, return type(c ptr)

T**** in, inout, out, return type(c ptr)

5.1.3 Notable Fortran/C usage differences

While the Fortran 2003 interface to sundials closely follows the C API, some differences are inevitable
due to the differences between Fortran and C. In this section, we note the most critical differences.
Additionally, section 5.1.2 discusses equivalencies of data types in the two languages.

5.1.3.1 Creating generic sundials objects

In the C API a generic sundials object, such as an N Vector, is actually a pointer to an underlying
C struct. However, in the Fortran 2003 interface, the derived type is bound to the C struct, not the
pointer to the struct. E.g., type(N Vector) is bound to the C struct generic N Vector not the
N Vector type. The consequence of this is that creating and declaring sundials objects in Fortran is
nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;

x = N_VNew_Serial(N);

Fortran code:
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type(N_Vector), pointer :: x

x => FN_VNew_Serial(N)

Note that in the Fortran declaration, the vector is a type(N Vector), pointer, and that the
pointer assignment operator is then used.

5.1.3.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when
they are return values versus arguments to a function. Additionally, pointers which are meant to be
out parameters, not arrays, in the C API must still be declared as a rank-1 array in Fortran. The
reason for this is partially due to the Fortran 2003 standard for C bindings, and partially due to the
tool used to generate the interfaces. Regardless, the code snippets below illustrate the differences.

C code:

N_Vector x

realtype* xdata;

long int leniw, lenrw;

x = N_VNew_Serial(N);

/* capturing a returned array/pointer */

xdata = N_VGetArrayPointer(x)

/* passing array/pointer to a function */

N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */

N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x

real(c_double), pointer :: xdataptr(:)

real(c_double) :: xdata(N)

integer(c_long) :: leniw(1), lenrw(1)

x => FN_VNew_Serial(x)

! capturing a returned array/pointer

xdataptr => FN_VGetArrayPointer(x)

! passing array/pointer to a function

call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters

call FN_VSpace(x, leniw, lenrw)

5.1.3.3 Passing procedure pointers and user data

Since functions/subroutines passed to sundials will be called from within C code, the Fortran proce-
dure must have the attribute bind(C). Additionally, when providing them as arguments to a Fortran
2003 interface routine, it is required to convert a procedure’s Fortran address to C with the Fortran
intrinsic c funloc.

Typically when passing user data to a sundials function, a user may simply cast some custom
data structure as a void*. When using the Fortran 2003 interfaces, the same thing can be achieved.
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Note, the custom data structure does not have to be bind(C) since it is never accessed on the C side.

C code:

MyUserData* udata;

void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type(MyUserData) :: udata

type(c_ptr) :: cvode_mem

ierr = FCVodeSetUserData(cvode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem
parameters, within modules, and thus do not need the SUNDIALS-provided user data pointers to
pass such data back to user-supplied functions. These users should supply the c null ptr input for
user data arguments to the relevant sundials functions.

5.1.3.4 Passing NULL to optional parameters

In the sundials C API some functions have optional parameters that a caller can pass NULL to. If the
optional parameter is of a type that is equivalent to a Fortran type(c ptr) (see section 5.1.2), then a
Fortran user can pass the intrinsic c null ptr. However, if the optional parameter is of a type that is
not equivalent to type(c ptr), then a caller must provide a Fortran pointer that is dissociated. This
is demonstrated in the code example below.

C code:

SUNLinearSolver LS;

N_Vector x, b;

! SUNLinSolSolve expects a SUNMatrix or NULL

! as the second parameter.

ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS

type(SUNMatrix), pointer :: A

type(N_Vector), pointer :: x, b

A => null()

! SUNLinSolSolve expects a type(SUNMatrix), pointer

! as the second parameter. Therefore, we cannot

! pass a c_null_ptr, rather we pass a disassociated A.

ierr = FSUNLinSolSolve(LS, A, x, b)

5.1.3.5 Working with N Vector arrays

Arrays of N Vector objects are interfaced to Fortran 2003 as opaque type(c ptr). As such, it is
not possible to directly index an array of N Vector objects returned by the N Vector “VectorArray”
operations, or packages with sensitivity capablities. Instead, sundials provides a utility function
FN VGetVecAtIndexVectorArray that can be called for accessing a vector in a vector array. The
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example below demonstrates this:

C code:

N_Vector x;

N_Vector* vecs;

vecs = N_VCloneVectorArray(count, x);

for (int i=0; i < count; ++i)

N_VConst(vecs[i]);

Fortran code:

type(N_Vector), pointer :: x, xi

type(c_ptr) :: vecs

vecs = FN_VCloneVectorArray(count, x)

do index, count

xi => FN_VGetVecAtIndexVectorArray(vecs, index)

call FN_VConst(xi)

enddo

sundials also provides the functions FN VSetVecAtIndexVectorArray and FN VNewVectorArray

for working with N Vector arrays. These functions are particularly useful for users of the Fortran
interface to the nvector manyvector or nvector mpimanyvector when creating the subvector
array. Both of these functions along with FN VGetVecAtIndexVectorArray are further described in
Chapter 7.1.6.

5.1.3.6 Providing file pointers

Expert sundials users may notice that there are a few advanced functions in the sundials C API
that take a FILE * argument. Since there is no portable way to convert between a Fortran file descrip-
tor and a C file pointer, sundials provides two utility functions for creating a FILE * and destroying
it. These functions are defined in the module fsundials futils mod.

FSUNDIALSFileOpen

Call fp = FSUNDIALSFileOpen(filename, mode)

Description The function allocates a FILE * by calling the C function fopen.

Arguments filename (character(kind=C CHAR, len=*)) - the path to the file to open

mode (character(kind=C CHAR, len=*)) - the mode string given to fopen It
should begin with one of the following characters:

“r” - open text file for reading

“r+” - open text file for reading and writing

“w” - truncate text file to zero length or create it for writing

“w+” - open text file for reading or writing, create it if it does not exist

“a” - open for appending, see documentation of “fopen“ for your sys-
tem/compiler

“a+” - open for reading and appending, see documentation for “fopen“
for your system/compiler

Return value This returns a type(C PTR) which is a FILE* in C. If it is NULL, then there was an error
opening the file.
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FSUNDIALSFileClose

Call call FSUNDIALSFileClose(fp)

Description The function deallocates a FILE* by calling the C function fclose.

Arguments fp (type(C PTR)) - the file pointer (type FILE* in C)

Return value None

5.1.4 Important notes on portability

The sundials Fortran 2003 interface should be compatible with any compiler supporting the Fortran
2003 ISO standard. However, it has only been tested and confirmed to be working with GNU Fortran
4.9+ and Intel Fortran 18.0.1+.

Upon compilation of sundials, Fortran module (.mod) files are generated for each Fortran 2003
interface. These files are highly compiler specific, and thus it is almost always necessary to compile a
consuming application with the same compiler used to generate the modules.

5.1.5 FKINSOL, an Interface Module for FORTRAN Applications

The fkinsol interface module is a package of C functions which support the use of the kinsol solver,
for the solution of nonlinear systems F (u) = 0, in a mixed Fortran/C setting. While kinsol is
written in C, it is assumed here that the user’s calling program and user-supplied problem-defining
routines are written in Fortran. This package provides the necessary interface to kinsol for all
supplied serial and parallel nvector implementations.

5.2 Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user routines
called by them, appear as dummy names which are mapped to actual values by a series of definitions
in the header files. By default, those mapping definitions depend in turn on the C macro F77 FUNC

defined in the header file sundials config.h. The mapping defined by F77 FUNC in turn transforms
the C interface names to match the name-mangling approach used by the supplied Fortran compiler.

By “name-mangling”, we mean that due to the case-independent nature of the Fortran language,
Fortran compilers convert all subroutine and object names to use either all lower-case or all upper-
case characters, and append either zero, one or two underscores as a prefix or suffix to the name. For
example, the Fortran subroutine MyFunction() will be changed to one of myfunction, MYFUNCTION,
myfunction , MYFUNCTION , and so on, depending on the Fortran compiler used.

sundials determines this name-mangling scheme at configuration time (see Appendix A).

5.3 Fortran Data Types

Throughout this documentation, we will refer to data types according to their usage in C. The equiv-
alent types to these may vary, depending on your computer architecture and on how SUNDIALS was
compiled (see Appendix A). A Fortran user should first determine the equivalent types for their
architecture and compiler, and then take care that all arguments passed through this Fortran/C
interface are declared of the appropriate type.

Integers: While sundials uses the configurable sunindextype type as the integer type for vector
and matrix indices for its C code, the Fortran interfaces are more restricted. The sunindextype

is only used for index values and pointers when filling sparse matrices. As for C, the sunindextype

can be configured to be a 32- or 64-bit signed integer by setting the variable SUNDIALS INDEX TYPE

at compile time (See Appendix A). The default value is int64 t. A Fortran user should set this
variable based on the integer type used for vector and matrix indices in their Fortran code. The
corresponding Fortran types are:
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• int32 t – equivalent to an INTEGER or INTEGER*4 in Fortran

• int64 t – equivalent to an INTEGER*8 in Fortran

In general, for the Fortran interfaces in sundials, flags of type int, vector and matrix lengths,
counters, and arguments to *SETIN() functions all have long int type, and sunindextype is only
used for index values and pointers when filling sparse matrices. Note that if an F90 (or higher) user
wants to find out the value of sunindextype, they can include sundials fconfig.h.

Real numbers: As discussed in Appendix A, at compilation sundials allows the configura-
tion option SUNDIALS PRECISION, that accepts values of single, double or extended (the default is
double). This choice dictates the size of a realtype variable. The corresponding Fortran types for
these realtype sizes are:

• single – equivalent to a REAL or REAL*4 in Fortran

• double – equivalent to a DOUBLE PRECISION or REAL*8 in Fortran

• extended – equivalent to a REAL*16 in Fortran

5.3.1 FKINSOL routines

The user-callable functions, with the corresponding kinsol functions, are as follows:

• Interface to the nvector modules

– FNVINITS (defined by nvector serial) interfaces to N VNewEmpty Serial.

– FNVINITP (defined by nvector parallel) interfaces to N VNewEmpty Parallel.

– FNVINITOMP (defined by nvector openmp) interfaces to N VNewEmpty OpenMP.

– FNVINITPTS (defined by nvector pthreads) interfaces to N VNewEmpty Pthreads.

• Interface to the sunmatrix modules

– FSUNBANDMATINIT (defined by sunmatrix band) interfaces to SUNBandMatrix.

– FSUNDENSEMATINIT (defined by sunmatrix dense) interfaces to SUNDenseMatrix.

– FSUNSPARSEMATINIT (defined by sunmatrix sparse) interfaces to SUNSparseMatrix.

• Interface to the sunlinsol modules

– FSUNBANDLINSOLINIT (defined by sunlinsol band) interfaces to SUNLinSol Band.

– FSUNDENSELINSOLINIT (defined by sunlinsol dense) interfaces to SUNLinSol Dense.

– FSUNKLUINIT (defined by sunlinsol klu) interfaces to SUNLinSol KLU.

– FSUNKLUREINIT (defined by sunlinsol klu) interfaces to SUNLinSol KLUReinit.

– FSUNLAPACKBANDINIT (defined by sunlinsol lapackband) interfaces to SUNLinSol LapackBand.

– FSUNLAPACKDENSEINIT (defined by sunlinsol lapackdense) interfaces to SUNLinSol LapackDense.

– FSUNPCGINIT (defined by sunlinsol pcg) interfaces to SUNLinSol PCG.

– FSUNSPBCGSINIT (defined by sunlinsol spbcgs) interfaces to SUNLinSol SPBCGS.

– FSUNSPFGMRINIT (defined by sunlinsol spfgmr) interfaces to SUNLinSol SPFGMR.

– FSUNSPGMRINIT (defined by sunlinsol spgmr) interfaces to SUNLinSol SPGMR.

– FSUNSPTFQMRINIT (defined by sunlinsol sptfqmr) interfaces to SUNLinSol SPTFQMR.

– FSUNSUPERLUMTINIT (defined by sunlinsol superlumt) interfaces to SUNLinSol SuperLUMT.

• Interface to the main kinsol module

– FKINCREATE interfaces to KINCreate.
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– FKINSETIIN and FKINSETRIN interface to KINSet* functions.

– FKININIT interfaces to KINInit.

– FKINSETVIN interfaces to KINSetConstraints.

– FKINSOL interfaces to KINSol, KINGet* functions, and to the optional output functions for
the selected linear solver module.

– FKINFREE interfaces to KINFree.

• Interface to the kinls module

– FKINLSINIT interfaces to KINSetLinearSolver.

– FKINLSSETJAC interfaces to KINSetJacTimesVecFn.

– FKINLSSETPREC interfaces to KINSetPreconditioner.

– FKINDENSESETJAC interfaces to KINSetJacFn.

– FKINBANDSETJAC interfaces to KINSetJacFn.

– FKINSPARSESETJAC interfaces to KINSetJacFn.

The user-supplied functions, each listed with the corresponding internal interface function which
calls it (and its type within kinsol), are as follows:

fkinsol routine kinsol function kinsol type of
(Fortran, user-supplied) (C, interface) interface function

FKFUN FKINfunc KINSysFn

FKDJAC FKINDenseJac KINLsJacFn

FKBJAC FKINBandJac KINLsJacFn

FKINSPJAC FKINSparseJac KINLsJacFn

FKPSET FKINPSet KINLsPrecSetupFn

FKPSOL FKINPSol KINLsPrecSolveFn

FKJTIMES FKINJtimes KINLsJacTimesVecFn

In contrast to the case of direct use of kinsol, the names of all user-supplied routines here are fixed,
in order to maximize portability for the resulting mixed-language program.

5.3.2 Usage of the FKINSOL interface module

The usage of fkinsol requires calls to a few different interface functions, depending on the method
options selected, and one or more user-supplied routines which define the problem to be solved. These
function calls and user routines are summarized separately below. Some details are omitted, and
the user is referred to the description of the corresponding kinsol functions for information on the
arguments of any given user-callable interface routine, or of a given user-supplied function called by
an interface function.

1. Nonlinear system function specification

The user must, in all cases, supply the following Fortran routine

SUBROUTINE FKFUN (U, FVAL, IER)

DIMENSION U(*), FVAL(*)

It must set the FVAL array to F (u), the system function, as a function of U = u. IER is an error
return flag which should be set to 0 if successful, a positive value if a recoverable error occurred
(in which case kinsol will attempt to correct), or a negative value if it failed unrecoverably (in
which case the solution process is halted).
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2. nvector module initialization

If using one of the nvector modules supplied with sundials, the user must make a call of the
form

CALL FNVINIT***(...)

in which the name and call sequence are as described in the appropriate section of Chapter 7.

3. sunmatrix module initialization

If using a Newton or Picard iteration with a matrix-based sunlinsol linear solver module and
one of the sunmatrix modules supplied with sundials, the user must make a call of the form

CALL FSUN***MATINIT(...)

in which the name and call sequence are as described in the appropriate section of Chapter 8.
Note that the dense, band, or sparse matrix options are usable only in a serial or multi-threaded
environment.

4. sunlinsol module initialization

If using a Newton or Picard iteration with one of the sunlinsol linear solver modules supplied
with sundials, the user must make a call of the form

CALL FSUNBANDLINSOLINIT(...)

CALL FSUNDENSELINSOLINIT(...)

CALL FSUNKLUINIT(...)

CALL FSUNLAPACKBANDINIT(...)

CALL FSUNLAPACKDENSEINIT(...)

CALL FSUNPCGINIT(...)

CALL FSUNSPBCGSINIT(...)

CALL FSUNSPFGMRINIT(...)

CALL FSUNSPGMRINIT(...)

CALL FSUNSPTFQMRINIT(...)

CALL FSUNSUPERLUMTINIT(...)

in which the call sequence is as described in the appropriate section of Chapter 9. Note that the
dense, band, or sparse solvers are usable only in a serial or multi-threaded environment.

Once one of these solvers has been initialized, its solver parameters may be modified using a call
to the functions

CALL FSUNKLUSETORDERING(...)

CALL FSUNSUPERLUMTSETORDERING(...)

CALL FSUNPCGSETPRECTYPE(...)

CALL FSUNPCGSETMAXL(...)

CALL FSUNSPBCGSSETPRECTYPE(...)

CALL FSUNSPBCGSSETMAXL(...)

CALL FSUNSPFGMRSETGSTYPE(...)

CALL FSUNSPFGMRSETPRECTYPE(...)

CALL FSUNSPGMRSETGSTYPE(...)

CALL FSUNSPGMRSETPRECTYPE(...)

CALL FSUNSPTFQMRSETPRECTYPE(...)

CALL FSUNSPTFQMRSETMAXL(...)

where again the call sequences are described in the appropriate sections of Chapter 9.
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5. Problem specification

To create the main solver memory block, make the following call:

FKINCREATE

Call CALL FKINCREATE (IER)

Description This function creates the kinsol memory structure.

Arguments None.

Return value IER is the return completion flag. Values are 0 for successful return and −1 other-
wise. See printed message for details in case of failure.

Notes

6. Set optional inputs

Call FKINSETIIN, FKINSETRIN, and/or FKINSETVIN, to set desired optional inputs, if any. See
§5.3.3 for details.

7. Solver Initialization

To set various problem and solution parameters and allocate internal memory, make the following
call:

FKININIT

Call CALL FKININIT (IOUT, ROUT, IER)

Description This function specifies the optional output arrays, allocates internal memory, and
initializes kinsol.

Arguments IOUT is an integer array for integer optional outputs.
ROUT is a real array for real optional outputs.

Return value IER is the return completion flag. Values are 0 for successful return and −1 other-
wise. See printed message for details in case of failure.

Notes The user integer data array IOUT must be declared as INTEGER*4 or INTEGER*8

according to the C type long int.

The optional outputs associated with the main kinsol integrator are listed in Ta-
ble 5.4.

8. Linear solver interface specification

The Newton and Picard solution methods in kinsol involve the solution of linear systems related
to the Jacobian of the nonlinear system. To attach the linear solver (and optionally the matrix)
objects initialized in steps 3 and 4 above, the user of fkinsol must initialize the kinls linear
solver interface.

To attach any sunlinsol object (and optional sunmatrix object) to the kinls interface, then
following calls to initialize the sunlinsol (and sunmatrix) object(s) in steps 3 and 4 above, the
user must make the call:

CALL FKINLSINIT (IER)

where IER is an error return flag which is 0 for success or −1 if a memory allocation failure
occurred.

The previous routines FKINDLSINIT and FKINSPILSINIT are now wrappers for this routine, and
may still be used for backward-compatibility. However, these will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.
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kinls with dense Jacobian matrix

As an option when using the kinls interface with the sunlinsol dense or sunlinsol lapackdense
linear solvers, the user may supply a routine that computes a dense approximation of the system
Jacobian J = ∂F/∂u. If supplied, it must have the following form:

SUBROUTINE FKDJAC (NEQ, U, FVAL, DJAC, WK1, WK2, IER)

DIMENSION U(*), FVAL(*), DJAC(NEQ,*), WK1(*), WK2(*)

Typically this routine will use only NEQ, U, and DJAC. It must compute the Jacobian and store it
columnwise in DJAC. The input arguments U and FVAL contain the current values of u and F (u),
respectively. The vectors WK1 and WK2, of length NEQ, are provided as work space for use in FKDJAC.
IER is an error return flag which should be set to 0 if successful, a positive value if a recoverable
error occurred (in which case kinsol will attempt to correct), or a negative value if FKDJAC failed
unrecoverably (in which case the solution process is halted). NOTE: The argument NEQ has a
type consistent with C type long int even in the case when the LAPACK dense solver is to be
used.

If the FKDJAC routine is provided, then, following the call to FKINLSINIT, the user must make the
call:

CALL FKINDENSESETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is
an error return flag which is 0 for success or non-zero if an error occurred.

kinls with band Jacobian matrix

As an option when using the kinls interface with the sunlinsol band or sunlinsol lapackband
linear solvers, the user may supply a routine that computes a band approximation of the system
Jacobian J = ∂F/∂u. If supplied, it must have the following form:

SUBROUTINE FKBJAC (NEQ, MU, ML, MDIM, U, FVAL, BJAC, WK1, WK2, IER)

DIMENSION U(*), FVAL(*), BJAC(MDIM,*), WK1(*), WK2(*)

Typically this routine will use only NEQ, MU, ML, U, and BJAC. It must load the MDIM by N array BJAC

with the Jacobian matrix at the current u in band form. Store in BJAC(k, j) the Jacobian element
Ji,j with k = i− j+ MU +1 (k = 1 · · · ML + MU + 1) and j = 1 · · ·N . The input arguments U and
FVAL contain the current values of u, and F (u), respectively. The vectors WK1 and WK2 of length
NEQ are provided as work space for use in FKBJAC. IER is an error return flag, which should be
set to 0 if successful, a positive value if a recoverable error occurred (in which case kinsol will
attempt to correct), or a negative value if FKBJAC failed unrecoverably (in which case the solution
process is halted). NOTE: The arguments NEQ, MU, ML, and MDIM have a type consistent with C
type long int even in the case when the LAPACK band solver is to be used.

If the FKBJAC routine is provided, then, following the call to FKINLSINIT, the user must make the
call:

CALL FKINBANDSETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is
an error return flag which is 0 for success or non-zero if an error occurred.

kinls with sparse Jacobian matrix

When using the kinls interface with either of the sunlinsol klu or sunlinsol superlumt
linear solvers, the user must supply the FKINSPJAC routine that computes a compressed-sparse-
column or compressed-sparse-row approximation of the system Jacobian J = ∂F/∂u. If supplied,
it must have the following form:
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SUBROUTINE FKINSPJAC(Y, FY, N, NNZ, JDATA, JINDEXVALS,

& JINDEXPTRS, WK1, WK2, IER)

Typically this routine will use only N, NNZ, JDATA, JINDEXVALS and JINDEXPTRS. It must load
the N by N compressed sparse column [or compressed sparse row] matrix with storage for NNZ

nonzeros, stored in the arrays JDATA (nonzero values), JINDEXVALS (row [or column] indices for
each nonzero), JINDEXPTRS (indices for start of each column [or row]), with the Jacobian matrix
at the current (y) in CSC [or CSR] form (see sunmatrix sparse.h for more information). The
arguments are Y, an array containing state variables; FY, an array containing residual values; N,
the number of matrix rows/columns in the Jacobian; NNZ, allocated length of nonzero storage;
JDATA, nonzero values in the Jacobian (of length NNZ); JINDEXVALS, row [or column] indices for
each nonzero in Jacobian (of length NNZ); JINDEXPTRS, pointers to each Jacobian column [or row]
in the two preceding arrays (of length N+1); WK*, work arrays containing temporary workspace of
same size as Y; and IER, error return code (0 if successful, > 0 if a recoverable error occurred, or
< 0 if an unrecoverable error occurred.)

To indicate that the FKINSPJAC routine has been provided, then following the call to FKINLSINIT,
the following call must be made

CALL FKINSPARSESETJAC (IER)

The int return flag IER is an error return flag which is 0 for success or nonzero for an error.

kinls with Jacobian-vector product

As an option when using the kinls linear solver interface, the user may supply a routine that
computes the product of the system Jacobian and a given vector. If supplied, it must have the
following form:

SUBROUTINE FKINJTIMES (V, FJV, NEWU, U, IER)

DIMENSION V(*), FJV(*), U(*)

Typically this routine will use only U, V, and FJV. It must compute the product vector Jv, where
the vector v is stored in V, and store the product in FJV. The input argument U contains the
current value of u. On return, set IER = 0 if FKINJTIMES was successful, and nonzero otherwise.
NEWU is a flag to indicate if U has been changed since the last call; if it has, then NEWU = 1, and
FKINJTIMES should recompute any saved Jacobian data it uses and reset NEWU to 0. (See §4.6.5.)

To indicate that the FKINJTIMES routine has been provided, then following the call to FKINLSINIT,
the following call must be made

CALL FKINLSSETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian-times-vector approximation. The
argument IER is an error return flag which is 0 for success or non-zero if an error occurred.

The previous routine FKINSPILSETJAC is now a wrapper for this routine, and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we recommend
that users transition to the new routine name soon.

kinls with preconditioning

If user-supplied preconditioning is to be included, the following routine must be supplied, for
solution of the preconditioner linear system:

SUBROUTINE FKPSOL (U, USCALE, FVAL, FSCALE, VTEM, IER)

DIMENSION U(*), USCALE(*), FVAL(*), FSCALE(*), VTEM(*)
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Typically this routine will use only U, FVAL, and VTEM It must solve the preconditioned linear
system Pz = r, where r = VTEM is input, and store the solution z in VTEM as well. Here P is the
right preconditioner. If scaling is being used, the routine supplied must also account for scaling
on either coordinate or function value, as given in the arrays USCALE and FSCALE, respectively.

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed,
then the following routine can be used for the evaluation and preprocessing of the preconditioner:

SUBROUTINE FKPSET (U, USCALE, FVAL, FSCALE, IER)

DIMENSION U(*), USCALE(*), FVAL(*), FSCALE(*)

It must perform any evaluation of Jacobian-related data and preprocessing needed for the solution
of the preconditioned linear systems by FKPSOL. The variables U through FSCALE are for use in the
preconditioning setup process. Typically, the system function FKFUN is called before any calls to
FKPSET, so that FVAL will have been updated. U is the current solution iterate. If scaling is being
used, USCALE and FSCALE are available for those operations requiring scaling.

On return, set IER = 0 if FKPSET was successful, or set IER = 1 if an error occurred.

To indicate that the FKINPSET and FKINPSOL routines are supplied, then the user must call

CALL FKINLSSETPREC (FLAG, IER)

with FLAG 6= 0. The return flag IER is 0 if successful, or negative if a memory error occurred. In
addition, the user program must include preconditioner routines FKPSOL and FKPSET (see below).

The previous routine FKINSPILSETPREC is now a wrapper for this routine, and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we recommend
that users transition to the new routine name soon.

If the user calls FKINLSSETPREC, the routine FKPSET must be provided, even if it is not needed,!

and then it should return IER = 0.

9. Problem solution

Solving the nonlinear system is accomplished by making the following call:

CALL FKINSOL (U, GLOBALSTRAT, USCALE, FSCALE, IER)

The arguments are as follows. U is an array containing the initial guess on input, and the solution
on return. GLOBALSTRAT is an integer (type INTEGER) defining the global strategy choice (0 specifies
Inexact Newton, 1 indicates Newton with line search, 2 indicates Picard iteration, and 3 indicates
Fixed Point iteration). USCALE is an array of scaling factors for the U vector. FSCALE is an array
of scaling factors for the FVAL vector. IER is an integer completion flag and will have one of the
following values: 0 to indicate success, 1 to indicate that the initial guess satisfies F (u) = 0 within
tolerances, 2 to indicate apparent stalling (small step), or a negative value to indicate an error or
failure. These values correspond to the KINSol returns (see §4.5.3 and §B.2). The values of the
optional outputs are available in IOPT and ROPT (see Table 5.4).

10. Memory deallocation

To free the internal memory created by calls to FKINCREATE, FKININIT, FNVINIT*, FKINLSINIT,
and FSUN***MATINIT, make the call

CALL FKINFREE
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Table 5.3: Keys for setting fkinsol optional inputs

Integer optional inputs FKINSETIIN

Key Optional input Default value
PRNT LEVEL Verbosity level of output 0

MAA Number of prior residuals for Anderson Acceleration 0
MAX NITERS Maximum no. of nonlinear iterations 200
ETA FORM Form of η coefficient 1 (KIN ETACHOICE1)

MAX SETUPS Maximum no. of iterations without prec. setup 10
MAX SP SETUPS Maximum no. of iterations without residual check 5
NO INIT SETUP No initial preconditioner setup SUNFALSE

NO MIN EPS Lower bound on ε SUNFALSE

NO RES MON No residual monitoring SUNFALSE

Real optional inputs (FKINSETRIN)
Key Optional input Default value

FNORM TOL Function-norm stopping tolerance uround1/3

SSTEP TOL Scaled-step stopping tolerance uround2/3

MAX STEP Max. scaled length of Newton step 1000‖Duu0‖2
RERR FUNC Relative error for F.D. Jv

√
uround

ETA CONST Constant value of η 0.1
ETA PARAMS Values of γ and α 0.9 and 2.0
RMON CONST Constant value of ω 0.9
RMON PARAMS Values of ωmin and ωmax 0.00001 and 0.9

5.3.3 FKINSOL optional input and output

In order to keep the number of user-callable fkinsol interface routines to a minimum, optional inputs
to the kinsol solver are passed through only three routines: FKINSETIIN for integer optional inputs,
FKINSETRIN for real optional inputs, and FKINSETVIN for real vector (array) optional inputs. These
functions should be called as follows:

CALL FKINSETIIN (KEY, IVAL, IER)

CALL FKINSETRIN (KEY, RVAL, IER)

CALL FKINSETVIN (KEY, VVAL, IER)

where KEY is a quoted string indicating which optional input is set, IVAL is the integer input value to
be used, RVAL is the real input value to be used, and VVAL is the input real array to be used. IER is
an integer return flag which is set to 0 on success and a negative value if a failure occurred. For the
legal values of KEY in calls to FKINSETIIN and FKINSETRIN, see Table 5.3. The one legal value of KEY
for FKINSETVIN is CONSTR VEC, for providing the array of inequality constraints to be imposed on the
solution, if any. The integer IVAL should be declared in a manner consistent with C type long int.

The optional outputs from the kinsol solver are accessed not through individual functions, but
rather through a pair of arrays, IOUT (integer type) of dimension at least 15, and ROUT (real type) of
dimension at least 2. These arrays are owned (and allocated) by the user and are passed as arguments
to FKININIT. Table 5.4 lists the entries in these two arrays and specifies the optional variable as well
as the kinsol function which is actually called to extract the optional output.

For more details on the optional inputs and outputs, see §4.5.4 and §4.5.5.

5.3.4 Usage of the FKINBBD interface to KINBBDPRE

The fkinbbd interface sub-module is a package of C functions which, as part of the fkinsol interface
module, support the use of the kinsol solver with the parallel nvector parallel module and
the kinbbdpre preconditioner module (see §4.7), for the solution of nonlinear problems in a mixed
Fortran/C setting.
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Table 5.4: Description of the fkinsol optional output arrays IOUT and ROUT

Integer output array IOUT

Index Optional output kinsol function
kinsol main solver

1 LENRW KINGetWorkSpace

2 LENIW KINGetWorkSpace

3 NNI KINGetNumNonlinSolvIters

4 NFE KINGetNumFuncEvals

5 NBCF KINGetNumBetaCondFails

6 NBKTRK KINGetNumBacktrackOps

kinls linear solver interface
7 LENRWLS KINGetLinWorkSpace

8 LENIWLS KINGetLinWorkSpace

9 LS FLAG KINGetLastLinFlag

10 NFELS KINGetNumLinFuncEvals

11 NJE KINGetNumJacEvals

12 NJTV KINGetNumJtimesEvals

13 NPE KINGetNumPrecEvals

14 NPS KINGetNumPrecSolves

15 NLI KINGetNumLinIters

16 NCFL KINGetNumLinConvFails

Real output array ROUT

Index Optional output kinsol function
1 FNORM KINGetFuncNorm

2 SSTEP KINGetStepLength



5.3 Fortran Data Types 87

The user-callable functions in this package, with the corresponding kinsol and kinbbdpre func-
tions, are as follows:

• FKINBBDINIT interfaces to KINBBDPrecInit.

• FKINBBDOPT interfaces to kinbbdpre optional output functions.

In addition to the Fortran right-hand side function FKFUN, the user-supplied functions used by
this package, are listed below, each with the corresponding interface function which calls it (and its
type within kinbbdpre or kinsol):

fkinbbd routine kinsol function kinsol type of
(Fortran, user-supplied) (C, interface) interface function

FKLOCFN FKINgloc KINBBDLocalFn

FKCOMMF FKINgcomm KINBBDCommFn

FKJTIMES FKINJtimes KINLsJacTimesVecFn

As with the rest of the fkinsol routines, the names of all user-supplied routines here are fixed, in
order to maximize portability for the resulting mixed-language program. Additionally, based on flags
discussed above in §5.3.1, the names of the user-supplied routines are mapped to actual values through
a series of definitions in the header file fkinbbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main
program described in §5.3.2 are grayed-out.

1. Nonlinear system function specification

2. nvector module initialization

3. sunlinsol module initialization

Initialize one of the iterative sunlinsol modules, by calling one of FSUNPCGINIT, FSUNSPBCGSINIT,
FSUNSPFGMRINIT, FSUNSPGMRINIT or FSUNSPTFQMRINIT.

4. Problem specification

5. Set optional inputs

6. Solver Initialization

7. Linear solver interface specification

Initialize the kinls iterative linear solver interface by calling FKINLSINIT.

To initialize the kinbbdpre preconditioner, make the following call:

CALL FKINBBDINIT (NLOCAL, MUDQ, MLDQ, MU, ML, IER)

The arguments are as follows. NLOCAL is the local size of vectors for this process. MUDQ and MLDQ

are the upper and lower half-bandwidths to be used in the computation of the local Jacobian blocks
by difference quotients; these may be smaller than the true half-bandwidths of the Jacobian of
the local block of G, when smaller values may provide greater efficiency. MU and ML are the upper
and lower half-bandwidths of the band matrix that is retained as an approximation of the local
Jacobian block; these may be smaller than MUDQ and MLDQ. IER is a return completion flag. A
value of 0 indicates success, while a value of −1 indicates that a memory failure occurred or that
an input had an illegal value.

Optionally, to specify that the spgmr, spfgmr, spbcgs, or sptfqmr solver should use the
supplied FKJTIMES, make the call

CALL FKINLSSETJAC (FLAG, IER)
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with FLAG 6= 0. (See step 8 in §5.3.2).

8. Problem solution

9. kinbbdpre Optional outputs

Optional outputs specific to the spgmr, spfgmr, spbcgs, or sptfqmr solver are listed in Table
5.4. To obtain the optional outputs associated with the kinbbdpre module, make the following
call:

CALL FKINBBDOPT (LENRBBD, LENIBBD, NGEBBD)

The arguments should be consistent with C type long int. Their returned values are as follows:
LENRBBD is the length of real preconditioner work space, in realtype words. LENIBBD is the length
of integer preconditioner work space, in integer words. These sizes are local to the current process.
NGEBBD is the cumulative number of G(u) evaluations (calls to FKLOCFN) so far.

10. Memory deallocation

(The memory allocated for the fkinbbd module is deallocated automatically by FKINFREE.)

11. User-supplied routines

The following two routines must be supplied for use with the kinbbdpre module:

SUBROUTINE FKLOCFN (NLOC, ULOC, GLOC, IER)

DIMENSION ULOC(*), GLOC(*)

This routine is to evaluate the function G(u) approximating F (possibly identical to F ), in terms
of the array ULOC (of length NLOC), which is the sub-vector of u local to this processor. The
resulting (local) sub-vector is to be stored in the array GLOC. IER is an error return flag which
should be set to 0 if successful, a positive value if a recoverable error occurred (in which case
kinsol will attempt to correct), or a negative value if FKLOCFN failed unrecoverably (in which
case the solution process is halted).

SUBROUTINE FKCOMMFN (NLOC, ULOC, IER)

DIMENSION ULOC(*)

This routine is to perform the inter-processor communication necessary for the FKLOCFN routine.
Each call to FKCOMMFN is preceded by a call to the system function routine FKFUN with the same
argument ULOC. IER is an error return flag which should be set to 0 if successful, a positive value
if a recoverable error occurred (in which case kinsol will attempt to correct), or a negative value
if FKCOMMFN failed recoverably (in which case the solution process is halted).

The subroutine FKCOMMFN must be supplied even if it is not needed and must return IER = 0.!

Optionally, the user can supply a routine FKINJTIMES for the evaluation of Jacobian-vector prod-
ucts, as described above in step 8 in §5.3.2. Note that this routine is required if using Picard
iteration.



Chapter 6

KINSOL Features for GPU
Accelerated Computing

This chapter is concerned with using GPU-acceleration and kinsol for the solution of systems of
nonlinear algebraic equations.

6.1 SUNDIALS GPU Programming Model

In this section, we introduce the sundials GPU programming model and highlight sundials GPU
features. The model leverages the fact that all of the sundials packages interact with simulation
data either through the shared vector, matrix, and solver APIs (see §7, §8, §9, and §??) or through
user-supplied callback functions. Thus, under the model, the overall structure of the user’s calling
program, and the way users interact with the sundials packages is similar to using sundials in
CPU-only environments.

Within the sundials GPU programming model, all control logic executes on the CPU, and all
simulation data resides wherever the vector or matrix object dictates as long as sundials is in control
of the program. That is, sundials will not migrate data (explicitly) from one memory space to
another. Except in the most advanced use cases, it is safe to assume that data is kept resident in
the GPU-device memory space. The consequence of this is that, when control is passed from the
user’s calling program to sundials, simulation data in vector or matrix objects must be up-to-date
in the device memory space. Similarly, when control is passed from sundials to the user’s calling
program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program
to manage data coherency between the CPU and GPU-device memory spaces unless unified virtual
memory (UVM), also known as managed memory, is being utilized. Typically, the GPU-enabled
sundials modules provide functions to copy data from the host to the device and vice-versa as well
as support for unmanaged memory or UVM. In practical terms, the way sundials handles distinct
host and device memory spaces means that users need to ensure that the user-supplied functions, e.g.
the right-hand side function, only operate on simulation data in the device memory space otherwise
extra memory transfers will be required and performance will be poor. The exception to this rule is if
some form of hybrid data partitioning (achievable with the nvector manyvector §7.15) is utilized.

sundials provides many native shared features and modules that are GPU-enabled. Currently,
these are primarily limited to the NVIDIA CUDA platform [5], although support for more GPU
computing platforms such as AMD ROCm/HIP [1] and Intel oneAPI [2], is an area of active de-
velopment. Table 6.1 summarizes the shared sundials modules that are GPU-enabled, what GPU
programming environments they support, and what class of memory they support (unmanaged or
UVM). Users may also supply their own GPU-enabled N Vector, SUNMatrix, SUNLinearSolver, or
SUNNonlinearSolver implementation, and the capabilties will be leveraged since sundials operates
on data through these APIs.
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In addition, sundials provides the SUNMemoryHelper API §10.1 to support applications which
implement their own memory management or memory pooling.

Table 6.1: List of sundials GPU Enabled Modules. Note that support for ROCm/HIP and oneAPI
are currently untested, and implicit UVM (i.e. malloc returning UVM) is not accounted for. A The
† symbol indicates that the module inherits support from the nvector module used.
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nvector cuda (§7.9) X X X
nvector raja (§7.11) X X X

nvector openmpdev (§7.13) X X X X
sunmatrix cusparse (§8.7) X X X

sunlinsol cusolversp batchqr (§9.12) X X X
sunlinsol spgmr (§9.14) † † † † †

sunlinsol spfgmr (§9.15) † † † † †
sunlinsol sptfqmr (§9.17) † † † † †
sunlinsol spbcgs (§9.16) † † † † †

sunlinsol pcg (§9.18) † † † † †
sunnonlinsol newton (§??) † † † † †

sunnonlinsol fixedpoint (§??) † † † † †

6.2 Steps for Using GPU Accelerated SUNDIALS

For any sundials package, the generalized steps a user needs to take to use GPU accelerated sundials
are:

1. Utilize a GPU-enabled nvector implementation. Initial data can be loaded on the host, but
must be in the device memory space prior to handing control to sundials.

2. Utilize a GPU-enabled sunlinsol linear solver (if necessary).

3. Utilize a GPU-enabled sunmatrix implementation (if using a matrix-based linear solver).

4. Utilize a GPU-enabled sunnonlinsol nonlinear solver (if necessary).

5. Write user-supplied functions so that they use data only in the device memory space (again,
unless an atypical data partitioning is used). A few examples of these functions are the right-
hand side evaluation function, the Jacobian evalution function, or the preconditioner evaluation
function. In the context of CUDA and the right-hand side function, one way a user might
ensure data is accessed on the device is, for example, calling a CUDA kernel, which does all of
the computation, from a CPU function which simply extracts the underlying device data array
from the nvector object that is passed from sundials to the user-supplied function.

Users should refer to Table 6.1 for a list of GPU-enabled native sundials modules.



Chapter 7

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vectors
(of type N Vector) through a set of operations defined by the particular nvector implementation.
Users can provide their own specific implementation of the nvector module, or use one of the
implementations provided with sundials. The generic nvector is described below and the imple-
mentations provided with sundials are described in the following sections.

7.1 The NVECTOR API

The generic nvector API can be broken down into groups of functions: the core vector operations,
the fused vector operations, the vector array operations, the local reduction operations, the exchange
operations, and finally some utility functions. All but the last group are defined by a particular
nvector implementation. The utility functions are defined by the generic nvector itself.

7.1.1 NVECTOR core functions

N VGetVectorID

Call id = N VGetVectorID(w);

Description Returns the vector type identifier for the vector w. It is used to determine the vector
implementation type (e.g. serial, parallel,. . . ) from the abstract N Vector interface.

Arguments w (N Vector) a nvector object

Return value This function returns an N Vector ID. Possible values are given in Table 7.1.

F2003 Name FN VGetVectorID

N VClone

Call v = N VClone(w);

Description Creates a new N Vector of the same type as an existing vector w and sets the ops field.
It does not copy the vector, but rather allocates storage for the new vector.

Arguments w (N Vector) a nvector object

Return value This function returns an N Vector object. If an error occurs, then this routine will
return NULL.

F2003 Name FN VClone
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N VCloneEmpty

Call v = N VCloneEmpty(w);

Description Creates a new N Vector of the same type as an existing vector w and sets the ops field.
It does not allocate storage for data.

Arguments w (N Vector) a nvector object

Return value This function returns an N Vector object. If an error occurs, then this routine will
return NULL.

F2003 Name FN VCloneEmpty

N VDestroy

Call N VDestroy(v);

Description Destroys the N Vector v and frees memory allocated for its internal data.

Arguments v (N Vector) a nvector object to destroy

Return value None

F2003 Name FN VDestroy

N VSpace

Call N VSpace(v, &lrw, &liw);

Description Returns storage requirements for one N Vector. lrw contains the number of realtype
words and liw contains the number of integer words, This function is advisory only, for
use in determining a user’s total space requirements; it could be a dummy function in
a user-supplied nvector module if that information is not of interest.

Arguments v (N Vector) a nvector object

lrw (sunindextype*) out parameter containing the number of realtype words

liw (sunindextype*) out parameter containing the number of integer words

Return value None

F2003 Name FN VSpace

F2003 Call integer(c long) :: lrw(1), liw(1)

call FN VSpace Serial(v, lrw, liw)

N VGetArrayPointer

Call vdata = N VGetArrayPointer(v);

Description Returns a pointer to a realtype array from the N Vector v. Note that this assumes
that the internal data in N Vector is a contiguous array of realtype and is accessible
from the CPU.

This routine is only used in the solver-specific interfaces to the dense and banded (serial)
linear solvers, the sparse linear solvers (serial and threaded), and in the interfaces to
the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided
with sundials.

Arguments v (N Vector) a nvector object

Return value realtype*

F2003 Name FN VGetArrayPointer
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N VGetDeviceArrayPointer

Call vdata = N VGetDeviceArrayPointer(v);

Description Returns a device pointer to a realtype array from the N Vector v. Note that this
assumes that the internal data in N Vector is a contiguous array of realtype and is
accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.

Arguments v (N Vector) a nvector object

Return value realtype*

Notes Currently, only the GPU-enabled sundials vectors provide this operation. All other
SUNDIALS vectors will return NULL.

F2003 Name FN VGetDeviceArrayPointer

N VSetArrayPointer

Call N VSetArrayPointer(vdata, v);

Description Overwrites the pointer to the data in an N Vector with a given realtype*. Note that
this assumes that the internal data in N Vector is a contiguous array of realtype. This
routine is only used in the interfaces to the dense (serial) linear solver, hence need not
exist in a user-supplied nvector module for a parallel environment.

Arguments v (N Vector) a nvector object

Return value None

F2003 Name FN VSetArrayPointer

N VGetCommunicator

Call N VGetCommunicator(v);

Description Returns a pointer to the MPI Comm object associated with the vector (if applicable). For
MPI-unaware vector implementations, this should return NULL.

Arguments v (N Vector) a nvector object

Return value A void * pointer to the MPI Comm object if the vector is MPI-aware, otherwise NULL.

F2003 Name FN VGetCommunicator

N VGetLength

Call N VGetLength(v);

Description Returns the global length (number of ‘active’ entries) in the nvector v. This value
should be cumulative across all processes if the vector is used in a parallel environment.
If v contains additional storage, e.g., for parallel communication, those entries should
not be included.

Arguments v (N Vector) a nvector object

Return value sunindextype

F2003 Name FN VGetLength
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N VLinearSum

Call N VLinearSum(a, x, b, y, z);

Description Performs the operation z = ax + by, where a and b are realtype scalars and x and y
are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

Arguments a (realtype) constant that scales x

x (N Vector) a nvector object

b (realtype) constant that scales y

y (N Vector) a nvector object

z (N Vector) a nvector object containing the result

Return value The output vector z can be the same as either of the input vectors (x or y).

F2003 Name FN VLinearSum

N VConst

Call N VConst(c, z);

Description Sets all components of the N Vector z to realtype c: zi = c, i = 0, . . . , n− 1.

Arguments c (realtype) constant to set all components of z to

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VConst

N VProd

Call N VProd(x, y, z);

Description Sets the N Vector z to be the component-wise product of the N Vector inputs x and y:
zi = xiyi, i = 0, . . . , n− 1.

Arguments x (N Vector) a nvector object

y (N Vector) a nvector object

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VProd

N VDiv

Call N VDiv(x, y, z);

Description Sets the N Vector z to be the component-wise ratio of the N Vector inputs x and y:
zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested for 0 values. It should only be
called with a y that is guaranteed to have all nonzero components.

Arguments x (N Vector) a nvector object

y (N Vector) a nvector object

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VDiv
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N VScale

Call N VScale(c, x, z);

Description Scales the N Vector x by the realtype scalar c and returns the result in z: zi = cxi, i =
0, . . . , n− 1.

Arguments c (realtype) constant that scales the vector x

x (N Vector) a nvector object

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VScale

N VAbs

Call N VAbs(x, z);

Description Sets the components of the N Vector z to be the absolute values of the components of
the N Vector x: zi = |xi|, i = 0, . . . , n− 1.

Arguments x (N Vector) a nvector object

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VAbs

N VInv

Call N VInv(x, z);

Description Sets the components of the N Vector z to be the inverses of the components of the
N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may not check for division by 0.
It should be called only with an x which is guaranteed to have all nonzero components.

Arguments x (N Vector) a nvector object to

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VInv

N VAddConst

Call N VAddConst(x, b, z);

Description Adds the realtype scalar b to all components of x and returns the result in the N Vector

z: zi = xi + b, i = 0, . . . , n− 1.

Arguments x (N Vector) a nvector object

b (realtype) constant added to all components of x

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VAddConst

N VDotProd

Call d = N VDotProd(x, y);

Description Returns the value of the ordinary dot product of x and y: d =
∑n−1
i=0 xiyi.

Arguments x (N Vector) a nvector object with y

y (N Vector) a nvector object with x
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Return value realtype

F2003 Name FN VDotProd

N VMaxNorm

Call m = N VMaxNorm(x);

Description Returns the maximum norm of the N Vector x: m = maxi |xi|.

Arguments x (N Vector) a nvector object

Return value realtype

F2003 Name FN VMaxNorm

N VWrmsNorm

Call m = N VWrmsNorm(x, w)

Description Returns the weighted root-mean-square norm of the N Vector x with realtype weight

vector w: m =

√(∑n−1
i=0 (xiwi)2

)
/n.

Arguments x (N Vector) a nvector object

w (N Vector) a nvector object containing weights

Return value realtype

F2003 Name FN VWrmsNorm

N VWrmsNormMask

Call m = N VWrmsNormMask(x, w, id);

Description Returns the weighted root mean square norm of the N Vector x with realtype weight
vector w built using only the elements of x corresponding to positive elements of the

N Vector id: m =

√(∑n−1
i=0 (xiwiH(idi))2

)
/n, where H(α) =

{
1 α > 0

0 α ≤ 0

Arguments x (N Vector) a nvector object

w (N Vector) a nvector object containing weights

id (N Vector) mask vector

Return value realtype

F2003 Name FN VWrmsNormMask

N VMin

Call m = N VMin(x);

Description Returns the smallest element of the N Vector x: m = mini xi.

Arguments x (N Vector) a nvector object

Return value realtype

F2003 Name FN VMin
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N VWL2Norm

Call m = N VWL2Norm(x, w);

Description Returns the weighted Euclidean `2 norm of the N Vector x with realtype weight vector

w: m =
√∑n−1

i=0 (xiwi)2.

Arguments x (N Vector) a nvector object

w (N Vector) a nvector object containing weights

Return value realtype

F2003 Name FN VWL2Norm

N VL1Norm

Call m = N VL1Norm(x);

Description Returns the `1 norm of the N Vector x: m =
∑n−1
i=0 |xi|.

Arguments x (N Vector) a nvector object to obtain the norm of

Return value realtype

F2003 Name FN VL1Norm

N VCompare

Call N VCompare(c, x, z);

Description Compares the components of the N Vector x to the realtype scalar c and returns an
N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0 otherwise.

Arguments c (realtype) constant that each component of x is compared to

x (N Vector) a nvector object

z (N Vector) a nvector object containing the result

Return value None

F2003 Name FN VCompare

N VInvTest

Call t = N VInvTest(x, z);

Description Sets the components of the N Vector z to be the inverses of the components of the
N Vector x, with prior testing for zero values: zi = 1.0/xi, i = 0, . . . , n− 1.

Arguments x (N Vector) a nvector object

z (N Vector) an output nvector object

Return value Returns a booleantype with value SUNTRUE if all components of x are nonzero (success-
ful inversion) and returns SUNFALSE otherwise.

F2003 Name FN VInvTest

N VConstrMask

Call t = N VConstrMask(c, x, m);

Description Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if ci = 1, xi ≤ 0 if
ci = −1, xi < 0 if ci = −2. There is no constraint on xi if ci = 0. This routine returns
a boolean assigned to SUNFALSE if any element failed the constraint test and assigned
to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0 where
the constraint test failed, and 0.0 where the test passed. This routine is used only for
constraint checking.



98 Description of the NVECTOR module

Arguments c (realtype) scalar constraint value

x (N Vector) a nvector object

m (N Vector) output mask vector

Return value Returns a booleantype with value SUNFALSE if any element failed the constraint test,
and SUNTRUE if all passed.

F2003 Name FN VConstrMask

N VMinQuotient

Call minq = N VMinQuotient(num, denom);

Description This routine returns the minimum of the quotients obtained by term-wise dividing numi
by denomi. A zero element in denom will be skipped. If no such quotients are found, then
the large value BIG REAL (defined in the header file sundials types.h) is returned.

Arguments num (N Vector) a nvector object used as the numerator

denom (N Vector) a nvector object used as the denominator

Return value realtype

F2003 Name FN VMinQuotient

7.1.2 NVECTOR fused functions

Fused and vector array operations are intended to increase data reuse, reduce parallel communication
on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
If a particular nvector implementation defines a fused or vector array operation as NULL, the generic
nvector module will automatically call standard vector operations as necessary to complete the
desired operation. In all sundials-provided nvector implementations, all fused and vector array
operations are disabled by default. However, these implementations provide additional user-callable
functions to enable/disable any or all of the fused and vector array operations. See the following
sections for the implementation specific functions to enable/disable operations.

N VLinearCombination

Call ier = N VLinearCombination(nv, c, X, z);

Description This routine computes the linear combination of nv vectors with n elements:

zi =

nv−1∑
j=0

cjxj,i, i = 0, . . . , n− 1,

where c is an array of nv scalars, X is an array of nv vectors, and z is the output vector.

Arguments nv (int) the number of vectors in the linear combination

c (realtype*) an array of nv scalars used to scale the corresponding vector in X

X (N Vector*) an array of nv nvector objects to be scaled and combined

z (N Vector) a nvector object containing the result

Return value Returns an int with value 0 for success and a non-zero value otherwise.

Notes If the output vector z is one of the vectors in X, then it must be the first vector in the
vector array.

F2003 Name FN VLinearCombination

F2003 Call real(c double) :: c(nv)

type(c ptr), target :: X(nv)

type(N Vector), pointer :: z

ierr = FN VLinearCombination(nv, c, X, z)
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N VScaleAddMulti

Call ier = N VScaleAddMulti(nv, c, x, Y, Z);

Description This routine scales and adds one vector to nv vectors with n elements:

zj,i = cjxi + yj,i, j = 0, . . . , nv − 1 i = 0, . . . , n− 1,

where c is an array of nv scalars, x is the vector to be scaled and added to each vector
in the vector array of nv vectors Y , and Z is a vector array of nv output vectors.

Arguments nv (int) the number of scalars and vectors in c, Y, and Z

c (realtype*) an array of nv scalars

x (N Vector) a nvector object to be scaled and added to each vector in Y

Y (N Vector*) an array of nv nvector objects where each vector j will have the
vector x scaled by c j added to it

Z (N Vector) an output array of nv nvector objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VScaleAddMulti

F2003 Call real(c double) :: c(nv)

type(c ptr), target :: Y(nv), Z(nv)

type(N Vector), pointer :: x

ierr = FN VScaleAddMulti(nv, c, x, Y, Z)

N VDotProdMulti

Call ier = N VDotProdMulti(nv, x, Y, d);

Description This routine computes the dot product of a vector with nv other vectors:

dj =

n−1∑
i=0

xiyj,i, j = 0, . . . , nv − 1,

where d is an array of nv scalars containing the dot products of the vector x with each
of the nv vectors in the vector array Y .

Arguments nv (int) the number of vectors in Y

x (N Vector) a nvector object to be used in a dot product with each of the vectors
in Y

Y (N Vector*) an array of nv nvector objects to use in a dot product with x

d (realtype*) an output array of nv dot products

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VDotProdMulti

F2003 Call real(c double) :: d(nv)

type(c ptr), target :: Y(nv)

type(N Vector), pointer :: x

ierr = FN VDotProdMulti(nv, x, Y, d)

7.1.3 NVECTOR vector array functions
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N VLinearSumVectorArray

Call ier = N VLinearSumVectorArray(nv, a, X, b, Y, Z);

Description This routine computes the linear sum of two vector arrays containing nv vectors of n
elements:

zj,i = axj,i + byj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where a and b are scalars and X, Y , and Z are arrays of nv vectors.

Arguments nv (int) the number of vectors in the vector arrays

a (realtype) constant to scale each vector in X by

X (N Vector*) an array of nv nvector objects

Y (N Vector*) an array of nv nvector objects

Z (N Vector*) an output array of nv nvector objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VLinearSumVectorArray

N VScaleVectorArray

Call ier = N VScaleVectorArray(nv, c, X, Z);

Description This routine scales each vector of n elements in a vector array of nv vectors by a
potentially different constant:

zj,i = cjxj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of nv scalars and X and Z are arrays of nv vectors.

Arguments nv (int) the number of vectors in the vector arrays

c (realtype) constant to scale each vector in X by

X (N Vector*) an array of nv nvector objects

Z (N Vector*) an output array of nv nvector objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VScaleVectorArray

N VConstVectorArray

Call ier = N VConstVectorArray(nv, c, X);

Description This routine sets each element in a vector of n elements in a vector array of nv vectors
to the same value:

zj,i = c, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is a scalar and X is an array of nv vectors.

Arguments nv (int) the number of vectors in X

c (realtype) constant to set every element in every vector of X to

X (N Vector*) an array of nv nvector objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VConstVectorArray
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N VWrmsNormVectorArray

Call ier = N VWrmsNormVectorArray(nv, X, W, m);

Description This routine computes the weighted root mean square norm of nv vectors with n ele-
ments:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,i)
2

)1/2

, j = 0, . . . , nv − 1,

where m contains the nv norms of the vectors in the vector array X with corresponding
weight vectors W .

Arguments nv (int) the number of vectors in the vector arrays

X (N Vector*) an array of nv nvector objects

W (N Vector*) an array of nv nvector objects

m (realtype*) an output array of nv norms

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VWrmsNormVectorArray

N VWrmsNormMaskVectorArray

Call ier = N VWrmsNormMaskVectorArray(nv, X, W, id, m);

Description This routine computes the masked weighted root mean square norm of nv vectors with
n elements:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,iH(idi))
2

)1/2

, j = 0, . . . , nv − 1,

H(idi) = 1 for idi > 0 and is zero otherwise, m contains the nv norms of the vectors in
the vector array X with corresponding weight vectors W and mask vector id.

Arguments nv (int) the number of vectors in the vector arrays

X (N Vector*) an array of nv nvector objects

W (N Vector*) an array of nv nvector objects

id (N Vector) the mask vector

m (realtype*) an output array of nv norms

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VWrmsNormMaskVectorArray

N VScaleAddMultiVectorArray

Call ier = N VScaleAddMultiVectorArray(nv, ns, c, X, YY, ZZ);

Description This routine scales and adds a vector in a vector array of nv vectors to the corresponding
vector in ns vector arrays:

zk,j,i = ckxj,i + yk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1, k = 0, . . . , ns− 1

where c is an array of ns scalars, X is a vector array of nv vectors to be scaled and
added to the corresponding vector in each of the ns vector arrays in the array of vector
arrays Y Y and stored in the output array of vector arrays ZZ.

Arguments nv (int) the number of vectors in the vector arrays

ns (int) the number of scalars in c and vector arrays in YY and ZZ

c (realtype*) an array of ns scalars
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X (N Vector*) an array of nv nvector objects

YY (N Vector**) an array of ns nvector arrays

ZZ (N Vector**) an output array of ns nvector arrays

Return value Returns an int with value 0 for success and a non-zero value otherwise.

N VLinearCombinationVectorArray

Call ier = N VLinearCombinationVectorArray(nv, ns, c, XX, Z);

Description This routine computes the linear combination of ns vector arrays containing nv vectors
with n elements:

zj,i =

ns−1∑
k=0

ckxk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of ns scalars (type realtype*), XX (type N Vector**) is an array
of ns vector arrays each containing nv vectors to be summed into the output vector
array of nv vectors Z (type N Vector*). If the output vector array Z is one of the
vector arrays in XX, then it must be the first vector array in XX.

Arguments nv (int) the number of vectors in the vector arrays

ns (int) the number of scalars in c and vector arrays in YY and ZZ

c (realtype*) an array of ns scalars

XX (N Vector**) an array of ns nvector arrays

Z (N Vector*) an output array nvector objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

7.1.4 NVECTOR local reduction functions

Local reduction operations are intended to reduce parallel communication on distributed memory
systems, particularly when nvector objects are combined together within a
nvector mpimanyvector object (see Section 7.16). If a particular nvector implementation de-
fines a local reduction operation as NULL, the nvector mpimanyvector module will automati-
cally call standard vector reduction operations as necessary to complete the desired operation. All
sundials-provided nvector implementations include these local reduction operations, which may
be used as templates for user-defined nvector implementations.

N VDotProdLocal

Call d = N VDotProdLocal(x, y);

Description This routine computes the MPI task-local portion of the ordinary dot product of x and
y:

d =

nlocal−1∑
i=0

xiyi,

where nlocal corresponds to the number of components in the vector on this MPI task
(or nlocal = n for MPI-unaware applications).

Arguments x (N Vector) a nvector object

y (N Vector) a nvector object

Return value realtype

F2003 Name FN VDotProdLocal
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N VMaxNormLocal

Call m = N VMaxNormLocal(x);

Description This routine computes the MPI task-local portion of the maximum norm of the N Vector

x:
m = max

0≤i<nlocal

|xi|,

where nlocal corresponds to the number of components in the vector on this MPI task
(or nlocal = n for MPI-unaware applications).

Arguments x (N Vector) a nvector object

Return value realtype

F2003 Name FN VMaxNormLocal

N VMinLocal

Call m = N VMinLocal(x);

Description This routine computes the smallest element of the MPI task-local portion of the N Vector

x:
m = min

0≤i<nlocal

xi,

where nlocal corresponds to the number of components in the vector on this MPI task
(or nlocal = n for MPI-unaware applications).

Arguments x (N Vector) a nvector object

Return value realtype

F2003 Name FN VMinLocal

N VL1NormLocal

Call n = N VL1NormLocal(x);

Description This routine computes the MPI task-local portion of the `1 norm of the N Vector x:

n =

nlocal−1∑
i=0

|xi|,

where nlocal corresponds to the number of components in the vector on this MPI task
(or nlocal = n for MPI-unaware applications).

Arguments x (N Vector) a nvector object

Return value realtype

F2003 Name FN VL1NormLocal

N VWSqrSumLocal

Call s = N VWSqrSumLocal(x,w);

Description This routine computes the MPI task-local portion of the weighted squared sum of the
N Vector x with weight vector w:

s =

nlocal−1∑
i=0

(xiwi)
2,

where nlocal corresponds to the number of components in the vector on this MPI task
(or nlocal = n for MPI-unaware applications).
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Arguments x (N Vector) a nvector object

w (N Vector) a nvector object containing weights

Return value realtype

F2003 Name FN VWSqrSumLocal

N VWSqrSumMaskLocal

Call s = N VWSqrSumMaskLocal(x,w,id);

Description This routine computes the MPI task-local portion of the weighted squared sum of the
N Vector x with weight vector w built using only the elements of x corresponding to
positive elements of the N Vector id:

m =

nlocal−1∑
i=0

(xiwiH(idi))
2, where H(α) =

{
1 α > 0

0 α ≤ 0

and nlocal corresponds to the number of components in the vector on this MPI task (or
nlocal = n for MPI-unaware applications).

Arguments x (N Vector) a nvector object

w (N Vector) a nvector object containing weights

id (N Vector) a nvector object used as a mask

Return value realtype

F2003 Name FN VWSqrSumMaskLocal

N VInvTestLocal

Call t = N VInvTestLocal(x, z);

Description Sets the MPI task-local components of the N Vector z to be the inverses of the compo-
nents of the N Vector x, with prior testing for zero values:

zi = 1.0/xi, i = 0, . . . , nlocal − 1,

where nlocal corresponds to the number of components in the vector on this MPI task
(or nlocal = n for MPI-unaware applications).

Arguments x (N Vector) a nvector object

z (N Vector) an output nvector object

Return value Returns a booleantype with the value SUNTRUE if all task-local components of x are
nonzero (successful inversion) and with the value SUNFALSE otherwise.

F2003 Name FN VInvTestLocal

N VConstrMaskLocal

Call t = N VConstrMaskLocal(c,x,m);

Description Performs the following constraint tests:

xi > 0 if ci = 2,

xi ≥ 0 if ci = 1,

xi ≤ 0 if ci = −1,

xi < 0 if ci = −2, and

no test if ci = 0,

for all MPI task-local components of the vectors. It sets a mask vector m, with elements
equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine
is used only for constraint checking.
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Arguments c (realtype) scalar constraint value

x (N Vector) a nvector object

m (N Vector) output mask vector

Return value Returns a booleantype with the value SUNFALSE if any task-local element failed the
constraint test and the value SUNTRUE if all passed.

F2003 Name FN VConstrMaskLocal

N VMinQuotientLocal

Call minq = N VMinQuotientLocal(num,denom);

Description This routine returns the minimum of the quotients obtained by term-wise dividing numi
by denomi, for all MPI task-local components of the vectors. A zero element in denom

will be skipped. If no such quotients are found, then the large value BIG REAL (defined
in the header file sundials types.h) is returned.

Arguments num (N Vector) a nvector object used as the numerator

denom (N Vector) a nvector object used as the denominator

Return value realtype

F2003 Name FN VMinQuotientLocal

7.1.5 NVECTOR exchange operations

The following vector exchange operations are also optional and are intended only for use when in-
terfacing with the XBraid library for parallel-in-time integration. In that setting these operations
are required but are otherwise unused by SUNDIALS packages and may be set to NULL. For each
operation, we give the function signature, a description of the expected behavior, and an example of
the function usage.

N VBufSize

Call flag = N VBufSize(N Vector x, sunindextype *size);

Description This routine returns the buffer size need to exchange in the data in the vector x between
computational nodes.

Arguments x (N Vector) a nvector object

size (sunindextype*) the size of the message buffer

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VBufSize

N VBufPack

Call flag = N VBufPack(N Vector x, void *buf);

Description This routine fills the exchange buffer buf with the vector data in x.

Arguments x (N Vector) a nvector object

buf (sunindextype*) the exchange buffer to pack

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VBufPack
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N VBufUnpack

Call flag = N VBufUnpack(N Vector x, void *buf);

Description This routine unpacks the data in the exchange buffer buf into the vector x.

Arguments x (N Vector) a nvector object

buf (sunindextype*) the exchange buffer to unpack

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN VBufUnpack

7.1.6 NVECTOR utility functions

To aid in the creation of custom nvector modules the generic nvector module provides three utility
functions N VNewEmpty, N VCopyOps and N VFreeEmpty. When used in custom nvector constructors
and clone routines these functions will ease the introduction of any new optional vector operations to
the nvector API by ensuring only required operations need to be set and all operations are copied
when cloning a vector.

To aid the use of arrays of nvector objects, the generic nvector module also provides the utility
functions N VCloneVectorArray, N VCloneVectorArrayEmpty, and N VDestroyVectorArray.

N VNewEmpty

Call v = N VNewEmpty();

Description The function N VNewEmpty allocates a new generic nvector object and initializes its
content pointer and the function pointers in the operations structure to NULL.

Arguments None

Return value This function returns an N Vector object. If an error occurs when allocating the object,
then this routine will return NULL.

F2003 Name FN VNewEmpty

N VCopyOps

Call retval = N VCopyOps(w, v);

Description The function N VCopyOps copies the function pointers in the ops structure of w into the
ops structure of v.

Arguments w (N Vector) the vector to copy operations from

v (N Vector) the vector to copy operations to

Return value This returns 0 if successful and a non-zero value if either of the inputs are NULL or the
ops structure of either input is NULL.

F2003 Name FN VCopyOps

N VFreeEmpty

Call N VFreeEmpty(v);

Description This routine frees the generic N Vector object, under the assumption that any implementation-
specific data that was allocated within the underlying content structure has already been
freed. It will additionally test whether the ops pointer is NULL, and, if it is not, it will
free it as well.

Arguments v (N Vector)

Return value None

F2003 Name FN VFreeEmpty
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N VCloneEmptyVectorArray

Call vecarray = N VCloneEmptyVectorArray(count, w);

Description Creates an array of count variables of type N Vector, each of the same type as the exist-
ing N Vector w. It achieves this by calling the implementation-specific N VCloneEmpty

operation.

Arguments count (int) the size of the vector array

w (N Vector) the vector to clone

Return value Returns an array of count N Vector objects if successful, or NULL if an error occurred
while cloning.

N VCloneVectorArray

Call vecarray = N VCloneVectorArray(count, w);

Description Creates an array of count variables of type N Vector, each of the same type as the
existing N Vector w. It achieves this by calling the implementation-specific N VClone

operation.

Arguments count (int) the size of the vector array

w (N Vector) the vector to clone

Return value Returns an array of count N Vector objects if successful, or NULL if an error occurred
while cloning.

N VDestroyVectorArray

Call N VDestroyVectorArray(count, w);

Description Destroys (frees) an array of variables of type N Vector. It depends on the implementation-
specific N VDestroy operation.

Arguments vs (N Vector*) the array of vectors to destroy

count (int) the size of the vector array

Return value None

N VNewVectorArray

Call vecarray = N VNewVectorArray(count);

Description Returns an empty N Vector array large enough to hold count N Vector objects. This
function is primarily meant for users of the Fortran 2003 interface.

Arguments count (int) the size of the vector array

Return value Returns a N Vector* if successful, Returns NULL if an error occurred.

Notes Users of the Fortran 2003 interface to the N VManyVector or N VMPIManyVector will need
this to create an array to hold the subvectors. Note that this function does restrict the
the max number of subvectors usable with the N VManyVector and N VMPIManyVector

to the max size of an int despite the ManyVector implementations accepting a subvector
count larger than this value.

F2003 Name FN VNewVectorArray
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Table 7.1: Vector Identifications associated with vector kernels supplied with sundials.

Vector ID Vector type ID Value
SUNDIALS NVEC SERIAL Serial 0
SUNDIALS NVEC PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS NVEC OPENMP OpenMP shared memory parallel 2
SUNDIALS NVEC PTHREADS PThreads shared memory parallel 3
SUNDIALS NVEC PARHYP hypre ParHyp parallel vector 4
SUNDIALS NVEC PETSC petsc parallel vector 5
SUNDIALS NVEC CUDA cuda vector 6
SUNDIALS NVEC HIP hip vector 7
SUNDIALS NVEC SYCL sycl vector 8
SUNDIALS NVEC RAJA raja vector 9
SUNDIALS NVEC OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS NVEC TRILINOS Trilinos Tpetra vector 11
SUNDIALS NVEC MANYVECTOR “ManyVector” vector 12
SUNDIALS NVEC MPIMANYVECTOR MPI-enabled “ManyVector” vector 13
SUNDIALS NVEC MPIPLUSX MPI+X vector 14
SUNDIALS NVEC CUSTOM User-provided custom vector 15

N VGetVecAtIndexVectorArray

Call v = N VGetVecAtIndexVectorArray(vecs, index);

Description Returns the N Vector object stored in the vector array at the provided index. This
function is primarily meant for users of the Fortran 2003 interface.

Arguments vecs (N Vector*) the array of vectors to index

index (int) the index of the vector to return

Return value Returns the N Vector object stored in the vector array at the provided index. Returns
NULL if an error occurred.

F2003 Name FN VGetVecAtIndexVectorArray

N VSetVecAtIndexVectorArray

Call N VSetVecAtIndexVectorArray(vecs, index, v);

Description Sets the N Vector object stored in the vector array at the provided index. This function
is primarily meant for users of the Fortran 2003 interface.

Arguments vecs (N Vector*) the array of vectors to index

index (int) the index of the vector to return

v (N Vector) the vector to store at the index

Return value None

F2003 Name FN VSetVecAtIndexVectorArray

7.1.7 NVECTOR identifiers

Each nvector implementation included in sundials has a unique identifier specified in enumeration
and shown in Table 7.1.

7.1.8 The generic NVECTOR module implementation

The generic N Vector type is a pointer to a structure that has an implementation-dependent content
field containing the description and actual data of the vector, and an ops field pointing to a structure
with generic vector operations. The type N Vector is defined as
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typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector_ID (*nvgetvectorid)(N_Vector);

N_Vector (*nvclone)(N_Vector);

N_Vector (*nvcloneempty)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, sunindextype *, sunindextype *);

realtype* (*nvgetarraypointer)(N_Vector);

realtype* (*nvgetdevicearraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void* (*nvgetcommunicator)(N_Vector);

sunindextype (*nvgetlength)(N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);

realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);

realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

int (*nvlinearcombination)(int, realtype*, N_Vector*, N_Vector);

int (*nvscaleaddmulti)(int, realtype*, N_Vector, N_Vector*, N_Vector*);

int (*nvdotprodmulti)(int, N_Vector, N_Vector*, realtype*);

int (*nvlinearsumvectorarray)(int, realtype, N_Vector*, realtype,

N_Vector*, N_Vector*);

int (*nvscalevectorarray)(int, realtype*, N_Vector*, N_Vector*);

int (*nvconstvectorarray)(int, realtype, N_Vector*);

int (*nvwrmsnomrvectorarray)(int, N_Vector*, N_Vector*, realtype*);

int (*nvwrmsnomrmaskvectorarray)(int, N_Vector*, N_Vector*, N_Vector,

realtype*);

int (*nvscaleaddmultivectorarray)(int, int, realtype*, N_Vector*,

N_Vector**, N_Vector**);

int (*nvlinearcombinationvectorarray)(int, int, realtype*, N_Vector**,

N_Vector*);

realtype (*nvdotprodlocal)(N_Vector, N_Vector);
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realtype (*nvmaxnormlocal)(N_Vector);

realtype (*nvminlocal)(N_Vector);

realtype (*nvl1normlocal)(N_Vector);

booleantype (*nvinvtestlocal)(N_Vector, N_Vector);

booleantype (*nvconstrmasklocal)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotientlocal)(N_Vector, N_Vector);

realtype (*nvwsqrsumlocal)(N_Vector, N_Vector);

realtype (*nvwsqrsummasklocal(N_Vector, N_Vector, N_Vector);

int (*nvbufsize)(N_Vector, sunindextype *);

int (*nvbufpack)(N_Vector, void*);

int (*nvbufunpack)(N_Vector, void*);

};

The generic nvector module defines and implements the vector operations acting on an N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector
implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector
module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Section 7.1.1 defines a complete list of all standard vector operations defined by the generic nvector
module. Sections 7.1.2, 7.1.3 and 7.1.4 list optional fused, vector array and local reduction operations,
respectively.

The Fortran 2003 interface provides a bind(C) derived-type for the generic N Vector and the
generic N Vector Ops structures. Their definition is given below.

type, bind(C), public :: N_Vector

type(C_PTR), public :: content

type(C_PTR), public :: ops

end type N_Vector

type, bind(C), public :: N_Vector_Ops

type(C_FUNPTR), public :: nvgetvectorid

type(C_FUNPTR), public :: nvclone

type(C_FUNPTR), public :: nvcloneempty

type(C_FUNPTR), public :: nvdestroy

type(C_FUNPTR), public :: nvspace

type(C_FUNPTR), public :: nvgetarraypointer

type(C_FUNPTR), public :: nvsetarraypointer

type(C_FUNPTR), public :: nvgetcommunicator

type(C_FUNPTR), public :: nvgetlength

type(C_FUNPTR), public :: nvlinearsum

type(C_FUNPTR), public :: nvconst

type(C_FUNPTR), public :: nvprod

type(C_FUNPTR), public :: nvdiv

type(C_FUNPTR), public :: nvscale

type(C_FUNPTR), public :: nvabs

type(C_FUNPTR), public :: nvinv

type(C_FUNPTR), public :: nvaddconst

type(C_FUNPTR), public :: nvdotprod

type(C_FUNPTR), public :: nvmaxnorm

type(C_FUNPTR), public :: nvwrmsnorm
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type(C_FUNPTR), public :: nvwrmsnormmask

type(C_FUNPTR), public :: nvmin

type(C_FUNPTR), public :: nvwl2norm

type(C_FUNPTR), public :: nvl1norm

type(C_FUNPTR), public :: nvcompare

type(C_FUNPTR), public :: nvinvtest

type(C_FUNPTR), public :: nvconstrmask

type(C_FUNPTR), public :: nvminquotient

type(C_FUNPTR), public :: nvlinearcombination

type(C_FUNPTR), public :: nvscaleaddmulti

type(C_FUNPTR), public :: nvdotprodmulti

type(C_FUNPTR), public :: nvlinearsumvectorarray

type(C_FUNPTR), public :: nvscalevectorarray

type(C_FUNPTR), public :: nvconstvectorarray

type(C_FUNPTR), public :: nvwrmsnormvectorarray

type(C_FUNPTR), public :: nvwrmsnormmaskvectorarray

type(C_FUNPTR), public :: nvscaleaddmultivectorarray

type(C_FUNPTR), public :: nvlinearcombinationvectorarray

type(C_FUNPTR), public :: nvdotprodlocal

type(C_FUNPTR), public :: nvmaxnormlocal

type(C_FUNPTR), public :: nvminlocal

type(C_FUNPTR), public :: nvl1normlocal

type(C_FUNPTR), public :: nvinvtestlocal

type(C_FUNPTR), public :: nvconstrmasklocal

type(C_FUNPTR), public :: nvminquotientlocal

type(C_FUNPTR), public :: nvwsqrsumlocal

type(C_FUNPTR), public :: nvwsqrsummasklocal

type(C_FUNPTR), public :: nvbufsize

type(C_FUNPTR), public :: nvbufpack

type(C_FUNPTR), public :: nvbufunpack

end type N_Vector_Ops

7.1.9 Implementing a custom NVECTOR

A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.

It is recommended that a user-supplied nvector implementation returns the SUNDIALS NVEC CUSTOM

identifier from the N VGetVectorID function.
To aid in the creation of custom nvector modules the generic nvector module provides two

utility functions N VNewEmpty and N VCopyOps. When used in custom nvector constructors and
clone routines these functions will ease the introduction of any new optional vector operations to the
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nvector API by ensuring only required operations need to be set and all operations are copied when
cloning a vector.

7.1.9.1 Support for complex-valued vectors

While sundials itself is written under an assumption of real-valued data, it does provide limited
support for complex-valued problems. However, since none of the built-in nvector modules supports
complex-valued data, users must provide a custom nvector implementation for this task. Many of
the nvector routines described in Sections 7.1.1-7.1.4 above naturally extend to complex-valued
vectors; however, some do not. To this end, we provide the following guidance:

• N VMin and N VMinLocal should return the minimum of all real components of the vector, i.e.,
m = mini real(xi).

• N VConst (and similarly N VConstVectorArray) should set the real components of the vector to
the input constant, and set all imaginary components to zero, i.e., zi = c+ 0j, i = 0, . . . , n− 1.

• N VAddConst should only update the real components of the vector with the input constant,
leaving all imaginary components unchanged.

• N VWrmsNorm, N VWrmsNormMask, N VWSqrSumLocal and N VWSqrSumMaskLocal should assume
that all entries of the weight vector w and the mask vector id are real-valued.

• N VDotProd should mathematically return a complex number for complex-valued vectors; as
this is not possible with sundials’ current realtype, this routine should be set to NULL in the
custom nvector implementation.

• N VCompare, N VConstrMask, N VMinQuotient, N VConstrMaskLocal and N VMinQuotientLocal

are ill-defined due to the lack of a clear ordering in the complex plane. These routines should
be set to NULL in the custom nvector implementation.

While many sundials solver modules may be utilized on complex-valued data, others cannot.
Specifically, although both sunnonlinsol newton and sunnonlinsol fixedpoint may be used
with any of the IVP solvers (cvode, cvodes, ida, idas and arkode) for complex-valued problems,
the Anderson-acceleration feature sunnonlinsol fixedpoint cannot be used due to its reliance on
N VDotProd. By this same logic, the Anderson acceleration feature within kinsol also will not work
with complex-valued vectors.

Similarly, although each package’s linear solver interface (e.g., cvls) may be used on complex-
valued problems, none of the built-in sunmatrix or sunlinsol modules work. Hence a complex-
valued user should provide a custom sunlinsol (and optionally a custom sunmatrix) implementation
for solving linear systems, and then attach this module as normal to the package’s linear solver
interface.

Finally, constraint-handling features of each package cannot be used for complex-valued data,
due to the issue of ordering in the complex plane discussed above with N VCompare, N VConstrMask,
N VMinQuotient, N VConstrMaskLocal and N VMinQuotientLocal.

We provide a simple example of a complex-valued example problem, including a custom complex-
valued Fortran 2003 nvector module, in the files
examples/arkode/F2003 custom/ark analytic complex f2003.f90,
examples/arkode/F2003 custom/fnvector complex mod.f90, and
examples/arkode/F2003 custom/test fnvector complex mod.f90.

7.2 NVECTOR functions used by KINSOL

In Table 7.2 below, we list the vector functions in the nvector module used within the kinsol
package. The table also shows, for each function, which of the code modules uses the function. The
kinsol column shows function usage within the main solver module, while the remaining five columns
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show function usage within each of the kinsol linear solver interfaces, the kinbbdpre preconditioner
module, and the fkinsol module. Here kinls stands for the generic linear solver interface in kinsol.

At this point, we should emphasize that the kinsol user does not need to know anything about
the usage of vector functions by the kinsol code modules in order to use kinsol. The information is
presented as an implementation detail for the interested reader.

Table 7.2: List of vector functions usage by kinsol code modules

k
in
so

l

k
in
l
s

k
in
b
b
d
p
r
e

f
k
in
so

l

N VGetVectorID

N VGetLength 4
N VClone X X

N VCloneEmpty X
N VDestroy X X X
N VSpace X 2

N VGetArrayPointer 1 X X
N VSetArrayPointer 1 X

N VLinearSum X X
N VConst X
N VProd X X
N VDiv X

N VScale X X X
N VAbs X
N VInv X

N VDotProd X X
N VMaxNorm X

N VMin X
N VWL2Norm X X
N VL1Norm 3

N VConstrMask X
N VMinQuotient X

N VLinearCombination X X
N VDotProdMulti X

Special cases (numbers match markings in table):

1. These routines are only required if an internal difference-quotient routine for constructing dense
or band Jacobian matrices is used.

2. This routine is optional, and is only used in estimating space requirements for ida modules for
user feedback.

3. These routines are only required if the internal difference-quotient routine for approximating the
Jacobian-vector product is used.

4. This routine is only used when an iterative sunlinsol module that does not support the
SUNLinSolSetScalingVectors routine is supplied to kinsol.

Each sunlinsol object may require additional nvector routines not listed in the table above.
Please see the the relevant descriptions of these modules in Sections 9.5-9.18 for additional detail on
their nvector requirements.
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The vector functions listed in Table 7.1.1 that are not used by kinsol are N VAddConst, N VWrmsNorm,
N VWrmsNormMask, N VCompare, N VInvTest, and N VGetCommunicator. Therefore a user-supplied
nvector module for kinsol could omit these functions.

The optional function N VLinearCombination is only used when Anderson acceleration is enabled
or the spbcgs, sptfqmr, spgmr, or spfgmr linear solvers are used. N VDotProd is only used when
Anderson acceleration is enabled or Classical Gram-Schmidt is used with spgmr or spfgmr. The
remaining operations from Tables 7.1.2 and 7.1.3 are unused and a user-supplied nvector module
for kinsol could omit these operations.

7.3 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {

sunindextype length;

booleantype own_data;

realtype *data;

};

The header file to include when using this module is nvector serial.h. The installed module
library to link to is libsundials nvecserial.lib where .lib is typically .so for shared libraries
and .a for static libraries.

7.3.1 NVECTOR SERIAL accessor macros

The following macros are provided to access the content of an nvector serial vector. The suffix S

in the names denotes the serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )
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• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

7.3.2 NVECTOR SERIAL functions

The nvector serial module defines serial implementations of all vector operations listed in Tables
7.1.1, 7.1.2, 7.1.3 and 7.1.4. Their names are obtained from those in these tables by appending the
suffix Serial (e.g. N VDestroy Serial). All the standard vector operations listed in 7.1.1 with
the suffix Serial appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g.
FN VDestroy Serial).

The module nvector serial provides the following additional user-callable routines:

N VNew Serial

Prototype N Vector N VNew Serial(sunindextype vec length);

Description This function creates and allocates memory for a serial N Vector. Its only argument is
the vector length.

F2003 Name This function is callable as FN VNew Serial when using the Fortran 2003 interface mod-
ule.

N VNewEmpty Serial

Prototype N Vector N VNewEmpty Serial(sunindextype vec length);

Description This function creates a new serial N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty Serial when using the Fortran 2003 interface
module.

N VMake Serial

Prototype N Vector N VMake Serial(sunindextype vec length, realtype *v data);

Description This function creates and allocates memory for a serial vector with user-provided data
array.

(This function does not allocate memory for v data itself.)

F2003 Name This function is callable as FN VMake Serial when using the Fortran 2003 interface
module.

N VCloneVectorArray Serial

Prototype N Vector *N VCloneVectorArray Serial(int count, N Vector w);

Description This function creates (by cloning) an array of count serial vectors.

F2003 Name This function is callable as FN VCloneVectorArray Serial when using the Fortran 2003
interface module.
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N VCloneVectorArrayEmpty Serial

Prototype N Vector *N VCloneVectorArrayEmpty Serial(int count, N Vector w);

Description This function creates (by cloning) an array of count serial vectors, each with an empty
(NULL) data array.

F2003 Name This function is callable as FN VCloneVectorArrayEmpty Serial when using the For-
tran 2003 interface module.

N VDestroyVectorArray Serial

Prototype void N VDestroyVectorArray Serial(N Vector *vs, int count);

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Serial or with
N VCloneVectorArrayEmpty Serial.

F2003 Name This function is callable as FN VDestroyVectorArray Serial when using the Fortran
2003 interface module.

N VPrint Serial

Prototype void N VPrint Serial(N Vector v);

Description This function prints the content of a serial vector to stdout.

F2003 Name This function is callable as FN VPrint Serial when using the Fortran 2003 interface
module.

N VPrintFile Serial

Prototype void N VPrintFile Serial(N Vector v, FILE *outfile);

Description This function prints the content of a serial vector to outfile.

F2003 Name This function is callable as FN VPrintFile Serial when using the Fortran 2003 interface
module.

By default all fused and vector array operations are disabled in the nvector serial module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Serial, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Serial

will have the default settings for the nvector serial module.

N VEnableFusedOps Serial

Prototype int N VEnableFusedOps Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableFusedOps Serial when using the Fortran 2003
interface module.
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N VEnableLinearCombination Serial

Prototype int N VEnableLinearCombination Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearCombination Serial when using the For-
tran 2003 interface module.

N VEnableScaleAddMulti Serial

Prototype int N VEnableScaleAddMulti Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the serial vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleAddMulti Serial when using the Fortran
2003 interface module.

N VEnableDotProdMulti Serial

Prototype int N VEnableDotProdMulti Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableDotProdMulti Serial when using the Fortran
2003 interface module.

N VEnableLinearSumVectorArray Serial

Prototype int N VEnableLinearSumVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearSumVectorArray Serial when using the
Fortran 2003 interface module.

N VEnableScaleVectorArray Serial

Prototype int N VEnableScaleVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleVectorArray Serial when using the For-
tran 2003 interface module.

N VEnableConstVectorArray Serial

Prototype int N VEnableConstVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.
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F2003 Name This function is callable as FN VEnableConstVectorArray Serial when using the For-
tran 2003 interface module.

N VEnableWrmsNormVectorArray Serial

Prototype int N VEnableWrmsNormVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormVectorArray Serial when using the
Fortran 2003 interface module.

N VEnableWrmsNormMaskVectorArray Serial

Prototype int N VEnableWrmsNormMaskVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the serial vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormMaskVectorArray Serial when using
the Fortran 2003 interface module.

N VEnableScaleAddMultiVectorArray Serial

Prototype int N VEnableScaleAddMultiVectorArray Serial(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the serial vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Serial

Prototype int N VEnableLinearCombinationVectorArray Serial(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the serial vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• N VNewEmpty Serial, N VMake Serial, and N VCloneVectorArrayEmpty Serial set the field!

own data = SUNFALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not at-
tempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector serial implementation that have!

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.
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7.3.3 NVECTOR SERIAL Fortran interfaces

The nvector serial module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fnvector serial mod Fortran module defines interfaces to all nvector serial C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N VNew Serial is
interfaced as FN VNew Serial.

The Fortran 2003 nvector serial interface module can be accessed with the use statement,
i.e. use fnvector serial mod, and linking to the library libsundials fnvectorserial mod.lib in
addition to the C library. For details on where the library and module file fnvector serial mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fnvectorserial mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the nvector serial module also includes a
Fortran-callable function FNVINITS(code, NEQ, IER), to initialize this nvector serial module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); and IER is an error return flag equal 0 for
success and -1 for failure.

7.4 The NVECTOR PARALLEL implementation

The nvector parallel implementation of the nvector module provided with sundials is based on
MPI. It defines the content field of N Vector to be a structure containing the global and local lengths
of the vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, and
a boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

sunindextype local_length;

sunindextype global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The header file to include when using this module is nvector parallel.h. The installed module
library to link to is libsundials nvecparallel.lib where .lib is typically .so for shared libraries
and .a for static libraries.

7.4.1 NVECTOR PARALLEL accessor macros

The following macros are provided to access the content of a nvector parallel vector. The suffix
P in the names denotes the distributed memory parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorContent Parallel.

Implementation:
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#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

7.4.2 NVECTOR PARALLEL functions

The nvector parallel module defines parallel implementations of all vector operations listed in
Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4. Their names are obtained from those in these tables by appending
the suffix Parallel (e.g. N VDestroy Parallel). The module nvector parallel provides the
following additional user-callable routines:

N VNew Parallel

Prototype N Vector N VNew Parallel(MPI Comm comm, sunindextype local length,

sunindextype global length);

Description This function creates and allocates memory for a parallel vector.

F2003 Name This function is callable as FN VNew Parallel when using the Fortran 2003 interface
module.
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N VNewEmpty Parallel

Prototype N Vector N VNewEmpty Parallel(MPI Comm comm, sunindextype local length,

sunindextype global length);

Description This function creates a new parallel N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty Parallel when using the Fortran 2003 inter-
face module.

N VMake Parallel

Prototype N Vector N VMake Parallel(MPI Comm comm, sunindextype local length,

sunindextype global length, realtype *v data);

Description This function creates and allocates memory for a parallel vector with user-provided data
array. This function does not allocate memory for v data itself.

F2003 Name This function is callable as FN VMake Parallel when using the Fortran 2003 interface
module.

N VCloneVectorArray Parallel

Prototype N Vector *N VCloneVectorArray Parallel(int count, N Vector w);

Description This function creates (by cloning) an array of count parallel vectors.

F2003 Name This function is callable as FN VCloneVectorArray Parallel when using the Fortran
2003 interface module.

N VCloneVectorArrayEmpty Parallel

Prototype N Vector *N VCloneVectorArrayEmpty Parallel(int count, N Vector w);

Description This function creates (by cloning) an array of count parallel vectors, each with an empty
(NULL) data array.

F2003 Name This function is callable as FN VCloneVectorArrayEmpty Parallel when using the For-
tran 2003 interface module.

N VDestroyVectorArray Parallel

Prototype void N VDestroyVectorArray Parallel(N Vector *vs, int count);

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Parallel or with
N VCloneVectorArrayEmpty Parallel.

F2003 Name This function is callable as FN VDestroyVectorArray Parallel when using the Fortran
2003 interface module.

N VGetLocalLength Parallel

Prototype sunindextype N VGetLocalLength Parallel(N Vector v);

Description This function returns the local vector length.

F2003 Name This function is callable as FN VGetLocalLength Parallel when using the Fortran 2003
interface module.
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N VPrint Parallel

Prototype void N VPrint Parallel(N Vector v);

Description This function prints the local content of a parallel vector to stdout.

F2003 Name This function is callable as FN VPrint Parallel when using the Fortran 2003 interface
module.

N VPrintFile Parallel

Prototype void N VPrintFile Parallel(N Vector v, FILE *outfile);

Description This function prints the local content of a parallel vector to outfile.

F2003 Name This function is callable as FN VPrintFile Parallel when using the Fortran 2003 in-
terface module.

By default all fused and vector array operations are disabled in the nvector parallel module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Parallel, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone with that vector.
This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors
inherit the same enable/disable options as the vector they are cloned from while vectors created with
N VNew Parallel will have the default settings for the nvector parallel module.

N VEnableFusedOps Parallel

Prototype int N VEnableFusedOps Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableFusedOps Parallel when using the Fortran 2003
interface module.

N VEnableLinearCombination Parallel

Prototype int N VEnableLinearCombination Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearCombination Parallel when using the
Fortran 2003 interface module.

N VEnableScaleAddMulti Parallel

Prototype int N VEnableScaleAddMulti Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the parallel vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleAddMulti Parallel when using the For-
tran 2003 interface module.
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N VEnableDotProdMulti Parallel

Prototype int N VEnableDotProdMulti Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableDotProdMulti Parallel when using the Fortran
2003 interface module.

N VEnableLinearSumVectorArray Parallel

Prototype int N VEnableLinearSumVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearSumVectorArray Parallel when using
the Fortran 2003 interface module.

N VEnableScaleVectorArray Parallel

Prototype int N VEnableScaleVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleVectorArray Parallel when using the
Fortran 2003 interface module.

N VEnableConstVectorArray Parallel

Prototype int N VEnableConstVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableConstVectorArray Parallel when using the
Fortran 2003 interface module.

N VEnableWrmsNormVectorArray Parallel

Prototype int N VEnableWrmsNormVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormVectorArray Parallel when using the
Fortran 2003 interface module.

N VEnableWrmsNormMaskVectorArray Parallel

Prototype int N VEnableWrmsNormMaskVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the parallel vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.
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F2003 Name This function is callable as FN VEnableWrmsNormMaskVectorArray Parallel when us-
ing the Fortran 2003 interface module.

N VEnableScaleAddMultiVectorArray Parallel

Prototype int N VEnableScaleAddMultiVectorArray Parallel(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector
array to multiple vector arrays operation in the parallel vector. The return value is 0

for success and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Parallel

Prototype int N VEnableLinearCombinationVectorArray Parallel(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the parallel vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneVectorArrayEmpty Parallel set the!

field own data = SUNFALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will
not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have!

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.4.3 NVECTOR PARALLEL Fortran interfaces

For solvers that include a Fortran 77 interface module, the nvector parallel module also in-
cludes a Fortran-callable function FNVINITP(COMM, code, NLOCAL, NGLOBAL, IER), to initialize
this nvector parallel module. Here COMM is the MPI communicator, code is an input solver
id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NLOCAL and NGLOBAL are the local and
global vector sizes, respectively (declared so as to match C type long int); and IER is an error
return flag equal 0 for success and -1 for failure. NOTE: If the header file sundials config.h de-!

fines SUNDIALS MPI COMM F2C to be 1 (meaning the MPI implementation used to build sundials
includes the MPI Comm f2c function), then COMM can be any valid MPI communicator. Otherwise,
MPI COMM WORLD will be used, so just pass an integer value as a placeholder.

7.5 The NVECTOR OPENMP implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-
tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.
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The OpenMP nvector implementation provided with sundials, nvector openmp, defines the
content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using OpenMP.

struct _N_VectorContent_OpenMP {

sunindextype length;

booleantype own_data;

realtype *data;

int num_threads;

};

The header file to include when using this module is nvector openmp.h. The installed module
library to link to is libsundials nvecopenmp.lib where .lib is typically .so for shared libraries
and .a for static libraries. The Fortran module file to use when using the Fortran 2003 interface
to this module is fnvector openmp mod.mod.

7.5.1 NVECTOR OPENMP accessor macros

The following macros are provided to access the content of an nvector openmp vector. The suffix
OMP in the names denotes the OpenMP version.

• NV CONTENT OMP

This routine gives access to the contents of the OpenMP vector N Vector.

The assignment v cont = NV CONTENT OMP(v) sets v cont to be a pointer to the OpenMP
N Vector content structure.

Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP)(v->content) )

• NV OWN DATA OMP, NV DATA OMP, NV LENGTH OMP, NV NUM THREADS OMP

These macros give individual access to the parts of the content of a OpenMP N Vector.

The assignment v data = NV DATA OMP(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA OMP(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH OMP(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMP(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS OMP(v) sets v num threads to be the num-
ber of threads from v. On the other hand, the call NV NUM THREADS OMP(v) = num threads v

sets the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )

#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

#define NV_LENGTH_OMP(v) ( NV_CONTENT_OMP(v)->length )

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )

• NV Ith OMP

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith OMP(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v)[i] )
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7.5.2 NVECTOR OPENMP functions

The nvector openmp module defines OpenMP implementations of all vector operations listed in
Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4. Their names are obtained from those in these tables by appending
the suffix OpenMP (e.g. N VDestroy OpenMP). All the standard vector operations listed in 7.1.1 with
the suffix OpenMP appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g.
FN VDestroy OpenMP).

The module nvector openmp provides the following additional user-callable routines:

N VNew OpenMP

Prototype N Vector N VNew OpenMP(sunindextype vec length, int num threads)

Description This function creates and allocates memory for a OpenMP N Vector. Arguments are
the vector length and number of threads.

F2003 Name This function is callable as FN VNew OpenMP when using the Fortran 2003 interface mod-
ule.

N VNewEmpty OpenMP

Prototype N Vector N VNewEmpty OpenMP(sunindextype vec length, int num threads)

Description This function creates a new OpenMP N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty OpenMP when using the Fortran 2003 interface
module.

N VMake OpenMP

Prototype N Vector N VMake OpenMP(sunindextype vec length, realtype *v data,

int num threads);

Description This function creates and allocates memory for a OpenMP vector with user-provided
data array. This function does not allocate memory for v data itself.

F2003 Name This function is callable as FN VMake OpenMP when using the Fortran 2003 interface
module.

N VCloneVectorArray OpenMP

Prototype N Vector *N VCloneVectorArray OpenMP(int count, N Vector w)

Description This function creates (by cloning) an array of count OpenMP vectors.

F2003 Name This function is callable as FN VCloneVectorArray OpenMP when using the Fortran 2003
interface module.

N VCloneVectorArrayEmpty OpenMP

Prototype N Vector *N VCloneVectorArrayEmpty OpenMP(int count, N Vector w)

Description This function creates (by cloning) an array of count OpenMP vectors, each with an
empty (NULL) data array.

F2003 Name This function is callable as FN VCloneVectorArrayEmpty OpenMP when using the For-
tran 2003 interface module.
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N VDestroyVectorArray OpenMP

Prototype void N VDestroyVectorArray OpenMP(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray OpenMP or with N VCloneVectorArrayEmpty OpenMP.

F2003 Name This function is callable as FN VDestroyVectorArray OpenMP when using the Fortran
2003 interface module.

N VPrint OpenMP

Prototype void N VPrint OpenMP(N Vector v)

Description This function prints the content of an OpenMP vector to stdout.

F2003 Name This function is callable as FN VPrint OpenMP when using the Fortran 2003 interface
module.

N VPrintFile OpenMP

Prototype void N VPrintFile OpenMP(N Vector v, FILE *outfile)

Description This function prints the content of an OpenMP vector to outfile.

F2003 Name This function is callable as FN VPrintFile OpenMP when using the Fortran 2003 interface
module.

By default all fused and vector array operations are disabled in the nvector openmp module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew OpenMP, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew OpenMP

will have the default settings for the nvector openmp module.

N VEnableFusedOps OpenMP

Prototype int N VEnableFusedOps OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableFusedOps OpenMP when using the Fortran 2003
interface module.

N VEnableLinearCombination OpenMP

Prototype int N VEnableLinearCombination OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearCombination OpenMP when using the For-
tran 2003 interface module.
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N VEnableScaleAddMulti OpenMP

Prototype int N VEnableScaleAddMulti OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the OpenMP vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleAddMulti OpenMP when using the Fortran
2003 interface module.

N VEnableDotProdMulti OpenMP

Prototype int N VEnableDotProdMulti OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableDotProdMulti OpenMP when using the Fortran
2003 interface module.

N VEnableLinearSumVectorArray OpenMP

Prototype int N VEnableLinearSumVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearSumVectorArray OpenMP when using the
Fortran 2003 interface module.

N VEnableScaleVectorArray OpenMP

Prototype int N VEnableScaleVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleVectorArray OpenMP when using the For-
tran 2003 interface module.

N VEnableConstVectorArray OpenMP

Prototype int N VEnableConstVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableConstVectorArray OpenMP when using the For-
tran 2003 interface module.

N VEnableWrmsNormVectorArray OpenMP

Prototype int N VEnableWrmsNormVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.
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F2003 Name This function is callable as FN VEnableWrmsNormVectorArray OpenMP when using the
Fortran 2003 interface module.

N VEnableWrmsNormMaskVectorArray OpenMP

Prototype int N VEnableWrmsNormMaskVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the OpenMP vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormMaskVectorArray OpenMP when using
the Fortran 2003 interface module.

N VEnableScaleAddMultiVectorArray OpenMP

Prototype int N VEnableScaleAddMultiVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the OpenMP vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray OpenMP

Prototype int N VEnableLinearCombinationVectorArray OpenMP(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA OMP(v) and then access v data[i] within the loop
than it is to use NV Ith OMP(v,i) within the loop.

• N VNewEmpty OpenMP, N VMake OpenMP, and N VCloneVectorArrayEmpty OpenMP set the field !

own data = SUNFALSE. N VDestroy OpenMP and N VDestroyVectorArray OpenMP will not at-
tempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmp implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.5.3 NVECTOR OPENMP Fortran interfaces

The nvector openmp module provides a Fortran 2003 module as well as Fortran 77 style inter-
face functions for use from Fortran applications.

FORTRAN 2003 interface module

The nvector openmp mod Fortran module defines interfaces to most nvector openmp C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N VNew OpenMP is
interfaced as FN VNew OpenMP.
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The Fortran 2003 nvector openmp interface module can be accessed with the use statement,
i.e. use fnvector openmp mod, and linking to the library libsundials fnvectoropenmp mod.lib in
addition to the C library. For details on where the library and module file fnvector openmp mod.mod

are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the nvector openmp module also includes
a Fortran-callable function FNVINITOMP(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

7.6 The NVECTOR PTHREADS implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-
tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The Pthreads nvector implementation provided with sundials, denoted nvector pthreads,
defines the content field of N Vector to be a structure containing the length of the vector, a pointer
to the beginning of a contiguous data array, a boolean flag own data which specifies the ownership
of data, and the number of threads. Operations on the vector are threaded using POSIX threads
(Pthreads).

struct _N_VectorContent_Pthreads {

sunindextype length;

booleantype own_data;

realtype *data;

int num_threads;

};

The header file to include when using this module is nvector pthreads.h. The installed module
library to link to is libsundials nvecpthreads.lib where .lib is typically .so for shared libraries
and .a for static libraries.

7.6.1 NVECTOR PTHREADS accessor macros

The following macros are provided to access the content of an nvector pthreads vector. The suffix
PT in the names denotes the Pthreads version.

• NV CONTENT PT

This routine gives access to the contents of the Pthreads vector N Vector.

The assignment v cont = NV CONTENT PT(v) sets v cont to be a pointer to the Pthreads
N Vector content structure.

Implementation:

#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads)(v->content) )

• NV OWN DATA PT, NV DATA PT, NV LENGTH PT, NV NUM THREADS PT

These macros give individual access to the parts of the content of a Pthreads N Vector.

The assignment v data = NV DATA PT(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA PT(v) = v data sets the component
array of v to be v data by storing the pointer v data.
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The assignment v len = NV LENGTH PT(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH PT(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS PT(v) sets v num threads to be the number
of threads from v. On the other hand, the call NV NUM THREADS PT(v) = num threads v sets
the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )

#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

• NV Ith PT

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith PT(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )

7.6.2 NVECTOR PTHREADS functions

The nvector pthreads module defines Pthreads implementations of all vector operations listed in
Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4. Their names are obtained from those in these tables by appending
the suffix Pthreads (e.g. N VDestroy Pthreads). All the standard vector operations listed in 7.1.1
are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g. FN VDestroy Pthreads). The
module nvector pthreads provides the following additional user-callable routines:

N VNew Pthreads

Prototype N Vector N VNew Pthreads(sunindextype vec length, int num threads)

Description This function creates and allocates memory for a Pthreads N Vector. Arguments are
the vector length and number of threads.

F2003 Name This function is callable as FN VNew Pthreads when using the Fortran 2003 interface
module.

N VNewEmpty Pthreads

Prototype N Vector N VNewEmpty Pthreads(sunindextype vec length, int num threads)

Description This function creates a new Pthreads N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty Pthreads when using the Fortran 2003 inter-
face module.

N VMake Pthreads

Prototype N Vector N VMake Pthreads(sunindextype vec length, realtype *v data,

int num threads);

Description This function creates and allocates memory for a Pthreads vector with user-provided
data array. This function does not allocate memory for v data itself.

F2003 Name This function is callable as FN VMake Pthreads when using the Fortran 2003 interface
module.
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N VCloneVectorArray Pthreads

Prototype N Vector *N VCloneVectorArray Pthreads(int count, N Vector w)

Description This function creates (by cloning) an array of count Pthreads vectors.

F2003 Name This function is callable as FN VCloneVectorArray Pthreads when using the Fortran
2003 interface module.

N VCloneVectorArrayEmpty Pthreads

Prototype N Vector *N VCloneVectorArrayEmpty Pthreads(int count, N Vector w)

Description This function creates (by cloning) an array of count Pthreads vectors, each with an
empty (NULL) data array.

F2003 Name This function is callable as FN VCloneVectorArrayEmpty Pthreads when using the For-
tran 2003 interface module.

N VDestroyVectorArray Pthreads

Prototype void N VDestroyVectorArray Pthreads(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Pthreads or with
N VCloneVectorArrayEmpty Pthreads.

F2003 Name This function is callable as FN VDestroyVectorArray Pthreads when using the Fortran
2003 interface module.

N VPrint Pthreads

Prototype void N VPrint Pthreads(N Vector v)

Description This function prints the content of a Pthreads vector to stdout.

F2003 Name This function is callable as FN VPrint Pthreads when using the Fortran 2003 interface
module.

N VPrintFile Pthreads

Prototype void N VPrintFile Pthreads(N Vector v, FILE *outfile)

Description This function prints the content of a Pthreads vector to outfile.

F2003 Name This function is callable as FN VPrintFile Pthreads when using the Fortran 2003 in-
terface module.

By default all fused and vector array operations are disabled in the nvector pthreads module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Pthreads, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Pthreads

will have the default settings for the nvector pthreads module.

N VEnableFusedOps Pthreads

Prototype int N VEnableFusedOps Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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F2003 Name This function is callable as FN VEnableFusedOps Pthreads when using the Fortran 2003
interface module.

N VEnableLinearCombination Pthreads

Prototype int N VEnableLinearCombination Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearCombination Pthreads when using the
Fortran 2003 interface module.

N VEnableScaleAddMulti Pthreads

Prototype int N VEnableScaleAddMulti Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the Pthreads vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleAddMulti Pthreads when using the For-
tran 2003 interface module.

N VEnableDotProdMulti Pthreads

Prototype int N VEnableDotProdMulti Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableDotProdMulti Pthreads when using the Fortran
2003 interface module.

N VEnableLinearSumVectorArray Pthreads

Prototype int N VEnableLinearSumVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearSumVectorArray Pthreads when using
the Fortran 2003 interface module.

N VEnableScaleVectorArray Pthreads

Prototype int N VEnableScaleVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleVectorArray Pthreads when using the
Fortran 2003 interface module.
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N VEnableConstVectorArray Pthreads

Prototype int N VEnableConstVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableConstVectorArray Pthreads when using the
Fortran 2003 interface module.

N VEnableWrmsNormVectorArray Pthreads

Prototype int N VEnableWrmsNormVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormVectorArray Pthreads when using the
Fortran 2003 interface module.

N VEnableWrmsNormMaskVectorArray Pthreads

Prototype int N VEnableWrmsNormMaskVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the Pthreads vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormMaskVectorArray Pthreads when us-
ing the Fortran 2003 interface module.

N VEnableScaleAddMultiVectorArray Pthreads

Prototype int N VEnableScaleAddMultiVectorArray Pthreads(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the Pthreads vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Pthreads

Prototype int N VEnableLinearCombinationVectorArray Pthreads(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA PT(v) and then access v data[i] within the loop than
it is to use NV Ith PT(v,i) within the loop.

• N VNewEmpty Pthreads, N VMake Pthreads, and N VCloneVectorArrayEmpty Pthreads set the!

field own data = SUNFALSE. N VDestroy Pthreads and N VDestroyVectorArray Pthreads will
not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.
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• To maximize efficiency, vector operations in the nvector pthreads implementation that have!

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.6.3 NVECTOR PTHREADS Fortran interfaces

The nvector pthreads module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The nvector pthreads mod Fortran module defines interfaces to most nvector pthreads C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N VNew Pthreads is
interfaced as FN VNew Pthreads.

The Fortran 2003 nvector pthreads interface module can be accessed with the use statement,
i.e. use fnvector pthreads mod, and linking to the library libsundials fnvectorpthreads mod.lib
in addition to the C library. For details on where the library and module file fnvector pthreads mod.mod

are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the nvector pthreads module also includes
a Fortran-callable function FNVINITPTS(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

7.7 The NVECTOR PARHYP implementation

The nvector parhyp implementation of the nvector module provided with sundials is a wrapper
around hypre’s ParVector class. Most of the vector kernels simply call hypre vector operations. The
implementation defines the content field of N Vector to be a structure containing the global and local
lengths of the vector, a pointer to an object of type HYPRE ParVector, an MPI communicator, and a
boolean flag own parvector indicating ownership of the hypre parallel vector object x.

struct _N_VectorContent_ParHyp {

sunindextype local_length;

sunindextype global_length;

booleantype own_parvector;

MPI_Comm comm;

HYPRE_ParVector x;

};

The header file to include when using this module is nvector parhyp.h. The installed module library
to link to is libsundials nvecparhyp.lib where .lib is typically .so for shared libraries and .a

for static libraries.

Unlike native sundials vector types, nvector parhyp does not provide macros to access its
member variables. Note that nvector parhyp requires sundials to be built with MPI support.
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7.7.1 NVECTOR PARHYP functions

The nvector parhyp module defines implementations of all vector operations listed in Tables 7.1.1,
7.1.2, 7.1.3, and 7.1.4, except for N VSetArrayPointer and N VGetArrayPointer, because access-
ing raw vector data is handled by low-level hypre functions. As such, this vector is not available
for use with sundials Fortran interfaces. When access to raw vector data is needed, one should
extract the hypre vector first, and then use hypre methods to access the data. Usage examples of
nvector parhyp are provided in the cvAdvDiff non ph.c example program for cvode [28] and the
ark diurnal kry ph.c example program for arkode [36].

The names of parhyp methods are obtained from those in Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4 by
appending the suffix ParHyp (e.g. N VDestroy ParHyp). The module nvector parhyp provides the
following additional user-callable routines:

N VNewEmpty ParHyp

Prototype N Vector N VNewEmpty ParHyp(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates a new parhyp N Vector with the pointer to the hypre vector set
to NULL.

N VMake ParHyp

Prototype N Vector N VMake ParHyp(HYPRE ParVector x)

Description This function creates an N Vector wrapper around an existing hypre parallel vector. It
does not allocate memory for x itself.

N VGetVector ParHyp

Prototype HYPRE ParVector N VGetVector ParHyp(N Vector v)

Description This function returns the underlying hypre vector.

N VCloneVectorArray ParHyp

Prototype N Vector *N VCloneVectorArray ParHyp(int count, N Vector w)

Description This function creates (by cloning) an array of count parallel vectors.

N VCloneVectorArrayEmpty ParHyp

Prototype N Vector *N VCloneVectorArrayEmpty ParHyp(int count, N Vector w)

Description This function creates (by cloning) an array of count parallel vectors, each with an empty
(NULL) data array.

N VDestroyVectorArray ParHyp

Prototype void N VDestroyVectorArray ParHyp(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray ParHyp or with N VCloneVectorArrayEmpty ParHyp.

N VPrint ParHyp

Prototype void N VPrint ParHyp(N Vector v)

Description This function prints the local content of a parhyp vector to stdout.
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N VPrintFile ParHyp

Prototype void N VPrintFile ParHyp(N Vector v, FILE *outfile)

Description This function prints the local content of a parhyp vector to outfile.

By default all fused and vector array operations are disabled in the nvector parhyp module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VMake ParHyp, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VMake ParHyp

will have the default settings for the nvector parhyp module.

N VEnableFusedOps ParHyp

Prototype int N VEnableFusedOps ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination ParHyp

Prototype int N VEnableLinearCombination ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti ParHyp

Prototype int N VEnableScaleAddMulti ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the parhyp vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti ParHyp

Prototype int N VEnableDotProdMulti ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray ParHyp

Prototype int N VEnableLinearSumVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray ParHyp

Prototype int N VEnableScaleVectorArray ParHyp(N Vector v, booleantype tf)
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Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray ParHyp

Prototype int N VEnableConstVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableWrmsNormVectorArray ParHyp

Prototype int N VEnableWrmsNormVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray ParHyp

Prototype int N VEnableWrmsNormMaskVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the parhyp vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray ParHyp

Prototype int N VEnableScaleAddMultiVectorArray ParHyp(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the parhyp vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray ParHyp

Prototype int N VEnableLinearCombinationVectorArray ParHyp(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the parhyp vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector ParHyp, v, it is recommended to
extract the hypre vector via x vec = N VGetVector ParHyp(v) and then access components
using appropriate hypre functions.

• N VNewEmpty ParHyp, N VMake ParHyp, and N VCloneVectorArrayEmpty ParHyp set the field!

own parvector to SUNFALSE. N VDestroy ParHyp and N VDestroyVectorArray ParHyp will not
attempt to delete an underlying hypre vector for any N Vector with own parvector set to
SUNFALSE. In such a case, it is the user’s responsibility to delete the underlying vector.
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• To maximize efficiency, vector operations in the nvector parhyp implementation that have!

more than one N Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.8 The NVECTOR PETSC implementation

The nvector petsc module is an nvector wrapper around the petsc vector. It defines the content
field of a N Vector to be a structure containing the global and local lengths of the vector, a pointer
to the petsc vector, an MPI communicator, and a boolean flag own data indicating ownership of the
wrapped petsc vector.

struct _N_VectorContent_Petsc {

sunindextype local_length;

sunindextype global_length;

booleantype own_data;

Vec *pvec;

MPI_Comm comm;

};

The header file to include when using this module is nvector petsc.h. The installed module library
to link to is libsundials nvecpetsc.lib where .lib is typically .so for shared libraries and .a for
static libraries.

Unlike native sundials vector types, nvector petsc does not provide macros to access its mem-
ber variables. Note that nvector petsc requires sundials to be built with MPI support.

7.8.1 NVECTOR PETSC functions

The nvector petsc module defines implementations of all vector operations listed in Tables 7.1.1,
7.1.2, 7.1.3, and 7.1.4, except for N VGetArrayPointer and N VSetArrayPointer. As such, this vector
cannot be used with sundials Fortran interfaces. When access to raw vector data is needed, it is
recommended to extract the petsc vector first, and then use petsc methods to access the data. Usage
examples of nvector petsc are provided in example programs for ida [27].

The names of vector operations are obtained from those in Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4
by appending the suffix Petsc (e.g. N VDestroy Petsc). The module nvector petsc provides the
following additional user-callable routines:

N VNewEmpty Petsc

Prototype N Vector N VNewEmpty Petsc(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates a new nvector wrapper with the pointer to the wrapped petsc
vector set to (NULL). It is used by the N VMake Petsc and N VClone Petsc implementa-
tions.

N VMake Petsc

Prototype N Vector N VMake Petsc(Vec *pvec)

Description This function creates and allocates memory for an nvector petsc wrapper around a
user-provided petsc vector. It does not allocate memory for the vector pvec itself.

N VGetVector Petsc

Prototype Vec *N VGetVector Petsc(N Vector v)

Description This function returns a pointer to the underlying petsc vector.
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N VCloneVectorArray Petsc

Prototype N Vector *N VCloneVectorArray Petsc(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector petsc vectors.

N VCloneVectorArrayEmpty Petsc

Prototype N Vector *N VCloneVectorArrayEmpty Petsc(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector petsc vectors, each with
pointers to petsc vectors set to (NULL).

N VDestroyVectorArray Petsc

Prototype void N VDestroyVectorArray Petsc(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Petsc or with N VCloneVectorArrayEmpty Petsc.

N VPrint Petsc

Prototype void N VPrint Petsc(N Vector v)

Description This function prints the global content of a wrapped petsc vector to stdout.

N VPrintFile Petsc

Prototype void N VPrintFile Petsc(N Vector v, const char fname[])

Description This function prints the global content of a wrapped petsc vector to fname.

By default all fused and vector array operations are disabled in the nvector petsc module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VMake Petsc, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VMake Petsc

will have the default settings for the nvector petsc module.

N VEnableFusedOps Petsc

Prototype int N VEnableFusedOps Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the petsc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Petsc

Prototype int N VEnableLinearCombination Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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N VEnableScaleAddMulti Petsc

Prototype int N VEnableScaleAddMulti Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the petsc vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Petsc

Prototype int N VEnableDotProdMulti Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Petsc

Prototype int N VEnableLinearSumVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Petsc

Prototype int N VEnableScaleVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the petsc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Petsc

Prototype int N VEnableConstVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the petsc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableWrmsNormVectorArray Petsc

Prototype int N VEnableWrmsNormVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Petsc

Prototype int N VEnableWrmsNormMaskVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the petsc vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.
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N VEnableScaleAddMultiVectorArray Petsc

Prototype int N VEnableScaleAddMultiVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the petsc vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Petsc

Prototype int N VEnableLinearCombinationVectorArray Petsc(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the petsc vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Petsc, v, it is recommeded to
extract the petsc vector via x vec = N VGetVector Petsc(v) and then access components
using appropriate petsc functions.

• The functions N VNewEmpty Petsc, N VMake Petsc, and N VCloneVectorArrayEmpty Petsc set!

the field own data to SUNFALSE. N VDestroy Petsc and N VDestroyVectorArray Petsc will not
attempt to free the pointer pvec for any N Vector with own data set to SUNFALSE. In such a
case, it is the user’s responsibility to deallocate the pvec pointer.

• To maximize efficiency, vector operations in the nvector petsc implementation that have!

more than one N Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.9 The NVECTOR CUDA implementation

The nvector cuda module is an nvector implementation in the cuda language. The module
allows for sundials vector kernels to run on NVIDIA GPU devices. It is intended for users who are
already familiar with cuda and GPU programming. Building this vector module requires a CUDA
compiler and, by extension, a C++ compiler. The vector content layout is as follows:

struct _N_VectorContent_Cuda

{

sunindextype length;

booleantype own_exec;

booleantype own_helper;

SUNMemory host_data;

SUNMemory device_data;

SUNCudaExecPolicy* stream_exec_policy;

SUNCudaExecPolicy* reduce_exec_policy;

SUNMemoryHelper mem_helper;

void* priv; /* ’private’ data */

};

typedef struct _N_VectorContent_Cuda *N_VectorContent_Cuda;

The content members are the vector length (size), ownership flags for the * exec policy fields and
the mem helper field, SUNMemory objects for the vector data on the host and the device, pointers to
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SUNCudaExecPolicy implementations that control how the CUDA kernels are launched for streaming
and reduction vector kernels, a SUNMemoryHelper object, and a private data structure which holds
additonal members that should not be accessed directly.

When instantiated with N VNew Cuda, the underlying data will be allocated memory on both the
host and the device. Alternatively, a user can provide host and device data arrays by using the
N VMake Cuda constructor. To use cuda managed memory, the constructors N VNewManaged Cuda

and
N VMakeManaged Cuda are provided. Details on each of these constructors are provided below.

To use the nvector cuda module, the header file to include is nvector cuda.h, and the library
to link to is libsundials nveccuda.lib . The extension .lib is typically .so for shared libraries
and .a for static libraries.

7.9.1 NVECTOR CUDA functions

Unlike other native sundials vector types, nvector cuda does not provide macros to access its
member variables. Instead, user should use the accessor functions:

N VGetHostArrayPointer Cuda

Prototype realtype *N VGetHostArrayPointer Cuda(N Vector v)

Description This function returns a pointer to the vector data on the host.

N VGetDeviceArrayPointer Cuda

Prototype realtype *N VGetDeviceArrayPointer Cuda(N Vector v)

Description This function returns a pointer to the vector data on the device.

N VSetHostArrayPointer Cuda

Prototype realtype *N VSetHostArrayPointer Cuda(N Vector v)

Description This function sets the pointer to the vector data on the host. The existing pointer will
not be freed first.

N VSetDeviceArrayPointer Cuda

Prototype realtype *N VSetDeviceArrayPointer Cuda(N Vector v)

Description This function sets pointer to the vector data on the device. The existing pointer will
not be freed first.

N VIsManagedMemory Cuda

Prototype booleantype *N VIsManagedMemory Cuda(N Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The nvector cuda module defines implementations of all vector operations listed in Tables 7.1.1,
7.1.2, 7.1.3 and 7.1.4, except for N VSetArrayPointer and N VGetArrayPointer unless managed
memory is used. As such, this vector can only be used with the sundials Fortran interfaces, and
the sundials direct solvers and preconditioners when using managed memory. The nvector cuda
module provides separate functions to access data on the host and on the device for the unmanaged
memory use case. It also provides methods for copying from the host to the device and vice versa.
Usage examples of nvector cuda are provided in some example programs for cvode [28].

The names of vector operations are obtained from those in Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4
by appending the suffix Cuda (e.g. N VDestroy Cuda). The module nvector cuda provides the
following functions:
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N VNew Cuda

Prototype N Vector N VNew Cuda(sunindextype length)

Description This function creates and allocates memory for a cuda N Vector. The vector data array
is allocated on both the host and device.

N VNewManaged Cuda

Prototype N Vector N VNewManaged Cuda(sunindextype length)

Description This function creates and allocates memory for a cuda N Vector. The vector data array
is allocated in managed memory.

N VNewWithMemHelp Cuda

Prototype N Vector N VNewWithMemHelp Cuda(sunindextype length, booleantype use managed mem,

SUNMemoryHelper helper);

Description This function creates an nvector cuda which will use the SUNMemoryHelper object
to allocate memory. If use managed memory is 0, then unmanaged memory is used,
otherwise managed memory is used.

N VNewEmpty Cuda

Prototype N Vector N VNewEmpty Cuda()

Description This function creates a new nvector wrapper with the pointer to the wrapped cuda
vector set to NULL. It is used by the N VNew Cuda, N VMake Cuda, and N VClone Cuda

implementations.

N VMake Cuda

Prototype N Vector N VMake Cuda(sunindextype length, realtype *h data, realtype *dev data)

Description This function creates an nvector cuda with user-supplied vector data arrays h vdata

and d vdata. This function does not allocate memory for data itself.

N VMakeManaged Cuda

Prototype N Vector N VMakeManaged Cuda(sunindextype length, realtype *vdata)

Description This function creates an nvector cuda with a user-supplied managed memory data
array. This function does not allocate memory for data itself.

N VMakeWithManagedAllocator Cuda

Prototype N Vector N VMakeWithManagedAllocator Cuda(sunindextype length, void* (*allocfn)(size t

size), void (*freefn)(void* ptr));

Description This function creates an nvector cuda with a user-supplied memory allocator. It
requires the user to provide a corresponding free function as well. The memory allocated
by the allocator function must behave like CUDA managed memory.

This function is deprecated and will be removed in the next major release. Use N VNewWithMemHelp Cuda!

instead.

The module nvector cuda also provides the following user-callable routines:
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N VSetKernelExecPolicy Cuda

Prototype void N VSetKernelExecPolicy Cuda(N Vector v, SUNCudaExecPolicy* stream exec policy,

SUNCudaExecPolicy* reduce exec policy);

Description This function sets the execution policies which control the kernel parameters utilized
when launching the streaming and reduction CUDA kernels. By default the vector is
setup to use the SUNCudaThreadDirectExecPolicy and SUNCudaBlockReduceExecPolicy.
Any custom execution policy for reductions must ensure that the grid dimensions (num-
ber of thread blocks) is a multiple of the CUDA warp size (32). See section 7.9.2 below
for more information about the SUNCudaExecPolicy class.

Note: All vectors used in a single instance of a sundials solver must use the same
execution policy. It is strongly recommended that this function is called immediately
after constructing the vector, and any subsequent vector be created by cloning to ensure
consistent execution policies across vectors.

N VSetCudaStream Cuda

Prototype void N VSetCudaStream Cuda(N Vector v, cudaStream t *stream)

Description This function sets the cuda stream that all vector kernels will be launched on. By
default an nvector cuda uses the default cuda stream.

Note: All vectors used in a single instance of a sundials solver must use the same
cuda stream. It is strongly recommended that this function is called immediately
after constructing the vector, and any subsequent vector be created by cloning to ensure
consistent execution policies across vectors.

This function will be removed in the next major release, user should utilize the N VSetKernelExecPolicy Cuda!

function instead.

N VCopyToDevice Cuda

Prototype void N VCopyToDevice Cuda(N Vector v)

Description This function copies host vector data to the device.

N VCopyFromDevice Cuda

Prototype void N VCopyFromDevice Cuda(N Vector v)

Description This function copies vector data from the device to the host.

N VPrint Cuda

Prototype void N VPrint Cuda(N Vector v)

Description This function prints the content of a cuda vector to stdout.

N VPrintFile Cuda

Prototype void N VPrintFile Cuda(N Vector v, FILE *outfile)

Description This function prints the content of a cuda vector to outfile.

By default all fused and vector array operations are disabled in the nvector cuda module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to
first create a vector with N VNew Cuda, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
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the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Cuda will
have the default settings for the nvector cuda module.

N VEnableFusedOps Cuda

Prototype int N VEnableFusedOps Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the cuda vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Cuda

Prototype int N VEnableLinearCombination Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Cuda

Prototype int N VEnableScaleAddMulti Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the cuda vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Cuda

Prototype int N VEnableDotProdMulti Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Cuda

Prototype int N VEnableLinearSumVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Cuda

Prototype int N VEnableScaleVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the cuda vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Cuda

Prototype int N VEnableConstVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the cuda vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.
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N VEnableWrmsNormVectorArray Cuda

Prototype int N VEnableWrmsNormVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Cuda

Prototype int N VEnableWrmsNormMaskVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the cuda vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Cuda

Prototype int N VEnableScaleAddMultiVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the cuda vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Cuda

Prototype int N VEnableLinearCombinationVectorArray Cuda(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the cuda vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Cuda, v, it is recommeded to use
functions N VGetDeviceArrayPointer Cuda or N VGetHostArrayPointer Cuda. However, when
using managed memory, the function N VGetArrayPointer may also be used.

• Performance is better if the SUNMemoryHelper provided supports SUNMEMTYPE PINNED; the de-
fault SUNMemoryHelper does provide this support. In the case that it does, then the buffers used
for reductions will be allocated as pinned memory.

• To maximize efficiency, vector operations in the nvector cuda implementation that have more !

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

7.9.2 The SUNCudaExecPolicy Class

In order to provide maximum flexibility to users, the CUDA kernel execution parameters used by ker-
nels within SUNDIALS are defined by objects of the sundials::CudaExecPolicy abstract class type
(this class can be accessed in the global namespace as SUNCudaExecPolicy). Thus, users may provide
custom execution policies that fit the needs of their problem. The sundials::CudaExecPolicy is
defined in the header file sundials cuda policies.hpp, and is as follows:

class CudaExecPolicy

{

public:
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virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;

virtual cudaStream_t stream() const = 0;

virtual CudaExecPolicy* clone() const = 0;

virtual ~CudaExecPolicy() {}

};

To define a custom execution policy, a user simply needs to create a class that inherits from the ab-
stract class and implements the methods. The sundials provided sundials::CudaThreadDirectExecPolicy

(aka in the global namespace as SUNCudaThreadDirectExecPolicy) class is a good example of a what
a custom execution policy may look like:

class CudaThreadDirectExecPolicy : public CudaExecPolicy

{

public:

CudaThreadDirectExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)

: blockDim_(blockDim), stream_(stream)

{}

CudaThreadDirectExecPolicy(const CudaThreadDirectExecPolicy& ex)

: blockDim_(ex.blockDim_), stream_(ex.stream_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const

{

return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const

{

return blockDim_;

}

virtual cudaStream_t stream() const

{

return stream_;

}

virtual CudaExecPolicy* clone() const

{

return static_cast<CudaExecPolicy*>(new CudaThreadDirectExecPolicy(*this));

}

private:

const cudaStream_t stream_;

const size_t blockDim_;

};

In total, sundials provides 3 execution policies:

1. SUNCudaThreadDirectExecPolicy(const size t blockDim, const cudaStream t stream =

0) maps each CUDA thread to a work unit. The number of threads per block (blockDim) can
be set to anything. The grid size will be calculated so that there are enough threads for one
thread per element. If a CUDA stream is provided, it will be used to execute the kernel.
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2. SUNCudaGridStrideExecPolicy(const size t blockDim, const size t gridDim, const cudaStream t

stream = 0) is for kernels that use grid stride loops. The number of threads per block (block-
Dim) can be set to anything. The number of blocks (gridDim) can be set to anything. If a
CUDA stream is provided, it will be used to execute the kernel.

3. SUNCudaBlockReduceExecPolicy(const size t blockDim, const size t gridDim, const cudaStream t

stream = 0) is for kernels performing a reduction across individual thread blocks. The number
of threads per block (blockDim) can be set to any valid multiple of the CUDA warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size
will be chosen so that there is enough threads for one thread per work unit. If a CUDA stream
is provided, it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created
like so:

cudaStream_t stream;

cudaStreamCreate(&stream);

SUNCudaThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple sundials data structures since they do
not hold any modifiable state information.

7.10 The NVECTOR HIP implementation

The nvector hip module is an nvector implementation using the AMD ROCm hip library. The
module allows for sundials vector kernels to run on AMD or NVIDIA GPU devices. It is intended for
users who are already familiar with hip and GPU programming. Building this vector module requires
the HIP-clang compiler. The vector content layout is as follows:

struct _N_VectorContent_Hip

{

sunindextype length;

booleantype own_exec;

booleantype own_helper;

SUNMemory host_data;

SUNMemory device_data;

SUNHipExecPolicy* stream_exec_policy;

SUNHipExecPolicy* reduce_exec_policy;

SUNMemoryHelper mem_helper;

void* priv; /* ’private’ data */

};

typedef struct _N_VectorContent_Hip *N_VectorContent_Hip;

The content members are the vector length (size), a boolean flag that signals if the vector owns
the data (i.e. it is in charge of freeing the data), pointers to vector data on the host and the device,
pointers to SUNHipExecPolicy implementations that control how the HIP kernels are launched for
streaming and reduction vector kernels, and a private data structure which holds additional members
that should not be accessed directly.

When instantiated with N VNew Hip, the underlying data will be allocated memory on both the
host and the device. Alternatively, a user can provide host and device data arrays by using the
N VMake Hip constructor. To use hip managed memory, the constructors N VNewManaged Hip and
N VMakeManaged Hip are provided. Details on each of these constructors are provided below.

To use the nvector hip module, the header file to include is nvector hip.h, and the library to
link to is libsundials nvechip.lib . The extension .lib is typically .so for shared libraries and
.a for static libraries.



150 Description of the NVECTOR module

7.10.1 NVECTOR HIP functions

Unlike other native sundials vector types, nvector hip does not provide macros to access its mem-
ber variables. Instead, user should use the accessor functions:

N VGetHostArrayPointer Hip

Prototype realtype *N VGetHostArrayPointer Hip(N Vector v)

Description This function returns a pointer to the vector data on the host.

N VGetDeviceArrayPointer Hip

Prototype realtype *N VGetDeviceArrayPointer Hip(N Vector v)

Description This function returns a pointer to the vector data on the device.

N VIsManagedMemory Hip

Prototype booleantype *N VIsManagedMemory Hip(N Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The nvector hip module defines implementations of all vector operations listed in Tables 7.1.1,
7.1.2, 7.1.3 and 7.1.4, except for N VSetArrayPointer. The names of vector operations are obtained
from those in Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4 by appending the suffix Hip (e.g. N VDestroy Hip).
The module nvector hip provides the following functions:

N VNew Hip

Prototype N Vector N VNew Hip(sunindextype length)

Description This function creates an empty hip N Vector with the data pointers set to NULL.

N VNewManaged Hip

Prototype N Vector N VNewManaged Hip(sunindextype length)

Description This function creates and allocates memory for a hip N Vector. The vector data array
is allocated in managed memory.

N VNewEmpty Hip

Prototype N Vector N VNewEmpty Hip()

Description This function creates a new nvector wrapper with the pointer to the wrapped hip
vector set to NULL. It is used by the N VNew Hip, N VMake Hip, and N VClone Hip im-
plementations.

N VMake Hip

Prototype N Vector N VMake Hip(sunindextype length, realtype *h data, realtype *dev data)

Description This function creates an nvector hip with user-supplied vector data arrays h vdata

and d vdata. This function does not allocate memory for data itself.
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N VMakeManaged Hip

Prototype N Vector N VMakeManaged Hip(sunindextype length, realtype *vdata)

Description This function creates an nvector hip with a user-supplied managed memory data
array. This function does not allocate memory for data itself.

The module nvector hip also provides the following user-callable routines:

N VSetKernelExecPolicy Hip

Prototype void N VSetKernelExecPolicy Hip(N Vector v,

SUNHipExecPolicy* stream exec policy,

SUNHipExecPolicy* reduce exec policy);

Description This function sets the execution policies which control the kernel parameters utilized
when launching the streaming and reduction HIP kernels. By default the vector is setup
to use the SUNHipThreadDirectExecPolicy and SUNHipBlockReduceExecPolicy. Any
custom execution policy for reductions must ensure that the grid dimensions (number
of thread blocks) is a multiple of the HIP warp size (64 when targeting AMD GPUs and
32 when targing NVIDIA GPUs). See section 7.10.2 below for more information about
the SUNHipExecPolicy class.

Note: All vectors used in a single instance of a sundials solver must use the same
execution policy. It is strongly recommended that this function is called immediately
after constructing the vector, and any subsequent vector be created by cloning to ensure
consistent execution policies across vectors.

N VCopyToDevice Hip

Prototype void N VCopyToDevice Hip(N Vector v)

Description This function copies host vector data to the device.

N VCopyFromDevice Hip

Prototype void N VCopyFromDevice Hip(N Vector v)

Description This function copies vector data from the device to the host.

N VPrint Hip

Prototype void N VPrint Hip(N Vector v)

Description This function prints the content of a hip vector to stdout.

N VPrintFile Hip

Prototype void N VPrintFile Hip(N Vector v, FILE *outfile)

Description This function prints the content of a hip vector to outfile.

By default all fused and vector array operations are disabled in the nvector hip module. The
following additional user-callable routines are provided to enable or disable fused and vector array
operations for a specific vector. To ensure consistency across vectors it is recommended to first create a
vector with N VNew Hip, enable/disable the desired operations for that vector with the functions below,
and create any additional vectors from that vector using N VClone. This guarantees the new vectors
will have the same operations enabled/disabled as cloned vectors inherit the same enable/disable
options as the vector they are cloned from while vectors created with N VNew Hip will have the default
settings for the nvector hip module.
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N VEnableFusedOps Hip

Prototype int N VEnableFusedOps Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the hip vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Hip

Prototype int N VEnableLinearCombination Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the hip vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableScaleAddMulti Hip

Prototype int N VEnableScaleAddMulti Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the hip vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Hip

Prototype int N VEnableDotProdMulti Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the hip vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearSumVectorArray Hip

Prototype int N VEnableLinearSumVectorArray Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the hip vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Hip

Prototype int N VEnableScaleVectorArray Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the hip vector. The return value is 0 for success and -1 if the input vector or
its ops structure are NULL.

N VEnableConstVectorArray Hip

Prototype int N VEnableConstVectorArray Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the hip vector. The return value is 0 for success and -1 if the input vector or
its ops structure are NULL.
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N VEnableWrmsNormVectorArray Hip

Prototype int N VEnableWrmsNormVectorArray Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the hip vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Hip

Prototype int N VEnableWrmsNormMaskVectorArray Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the hip vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Hip

Prototype int N VEnableScaleAddMultiVectorArray Hip(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the hip vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Hip

Prototype int N VEnableLinearCombinationVectorArray Hip(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the hip vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Hip, v, it is recommended to use
functions N VGetDeviceArrayPointer Hip or N VGetHostArrayPointer Hip. However, when
using managed memory, the function N VGetArrayPointer may also be used.

• To maximize efficiency, vector operations in the nvector hip implementation that have more !

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

7.10.2 The SUNHipExecPolicy Class

In order to provide maximum flexibility to users, the HIP kernel execution parameters used by kernels
within SUNDIALS are defined by objects of the sundials::HipExecPolicy abstract class type (this
class can be accessed in the global namespace as SUNHipExecPolicy). Thus, users may provide custom
execution policies that fit the needs of their problem. The sundials::HipExecPolicy is defined in
the header file sundials hip policies.hpp, and is as follows:

class HipExecPolicy

{

public:

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;

virtual hipStream_t stream() const = 0;
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virtual HipExecPolicy* clone() const = 0;

virtual ~HipExecPolicy() {}

};

To define a custom execution policy, a user simply needs to create a class that inherits from the ab-
stract class and implements the methods. The sundials provided sundials::HipThreadDirectExecPolicy

(aka in the global namespace as SUNHipThreadDirectExecPolicy) class is a good example of a what
a custom execution policy may look like:

class HipThreadDirectExecPolicy : public HipExecPolicy

{

public:

HipThreadDirectExecPolicy(const size_t blockDim, const hipStream_t stream = 0)

: blockDim_(blockDim), stream_(stream)

{}

HipThreadDirectExecPolicy(const HipThreadDirectExecPolicy& ex)

: blockDim_(ex.blockDim_), stream_(ex.stream_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const

{

return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const

{

return blockDim_;

}

virtual hipStream_t stream() const

{

return stream_;

}

virtual HipExecPolicy* clone() const

{

return static_cast<HipExecPolicy*>(new HipThreadDirectExecPolicy(*this));

}

private:

const hipStream_t stream_;

const size_t blockDim_;

};

In total, sundials provides 3 execution policies:

1. SUNHipThreadDirectExecPolicy(const size t blockDim, const hipStream t stream = 0)

maps each HIP thread to a work unit. The number of threads per block (blockDim) can be set
to anything. The grid size will be calculated so that there are enough threads for one thread
per element. If a HIP stream is provided, it will be used to execute the kernel.

2. SUNHipGridStrideExecPolicy(const size t blockDim, const size t gridDim, const hipStream t

stream = 0) is for kernels that use grid stride loops. The number of threads per block (block-
Dim) can be set to anything. The number of blocks (gridDim) can be set to anything. If a HIP
stream is provided, it will be used to execute the kernel.
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3. SUNHipBlockReduceExecPolicy(const size t blockDim, const size t gridDim, const hipStream t

stream = 0) is for kernels performing a reduction across individual thread blocks. The number
of threads per block (blockDim) can be set to any valid multiple of the HIP warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size
will be chosen so that there is enough threads for one thread per work unit. If a HIP stream is
provided, it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created
like so:

hipStream_t stream;

hipStreamCreate(&stream);

SUNHipThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple sundials data structures since they do
not hold any modifiable state information.

7.11 The NVECTOR RAJA implementation

The nvector raja module is an experimental nvector implementation using the raja hardware
abstraction layer. In this implementation, raja allows for sundials vector kernels to run on AMD
or NVIDIA GPU devices. The module is intended for users who are already familiar with raja and
GPU programming. Building this vector module requires a C++11 compliant compiler and either
the NVIDIA CUDA programming environment, or the AMD ROCm HIP programming environment.
When using the AMD ROCm HIP environment, the HIP-clang compiler must be utilized. Users can
select which backend (CUDA or HIP) to compile with by setting the SUNDIALS RAJA BACKENDS CMake
variable to either CUDA or HIP. Besides the cuda and HIP backends, raja has other backends such
as serial, OpenMP, and OpenACC. These backends are not used in this sundials release.

The vector content layout is as follows:

struct _N_VectorContent_Raja

{

sunindextype length;

booleantype own_helper;

SUNMemory host_data;

SUNMemory device_data;

SUNMemoryHelper mem_helper;

void* priv; /* ’private’ data */

};

The content members are the vector length (size), a boolean flag that signals if the vector owns the
memory helper, SUNMemory objects for vector data on the host and the device, a SUNMemoryHelper

object and a private data structure which holds the memory management type, which should not be
accessed directly.

When instantiated with N VNew Raja, the underlying data will be allocated on both the host and
the device. Alternatively, a user can provide host and device data arrays by using the N VMake Raja

constructor. To use managed memory, the constructors N VNewManaged Raja and
N VMakeManaged Raja are provided. Details on each of these constructors are provided below.

The header file to include when using this module is nvector raja.h. The installed mod-
ule library to link to are libsundials nveccudaraja.lib when using the CUDA backend and
libsundials nvechipraja.lib when using the HIP backend. The extension .lib is typically .so

for shared libraries and .a for static libraries.

7.11.1 NVECTOR RAJA functions

Unlike other native sundials vector types, nvector raja does not provide macros to access its
member variables. Instead, user should use the accessor functions:

https://software.llnl.gov/RAJA/
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N VGetHostArrayPointer Raja

Prototype realtype *N VGetHostArrayPointer Raja(N Vector v)

Description This function returns a pointer to the vector data on the host.

N VGetDeviceArrayPointer Raja

Prototype realtype *N VGetDeviceArrayPointer Raja(N Vector v)

Description This function returns a pointer to the vector data on the device.

N VSetHostArrayPointer Raja

Prototype realtype *N VSetHostArrayPointer Raja(N Vector v)

Description This function sets the pointer to the vector data on the host. The existing pointer will
not be freed first.

N VSetDeviceArrayPointer Raja

Prototype realtype *N VSetDeviceArrayPointer Raja(N Vector v)

Description This function sets pointer to the vector data on the device. The existing pointer will
not be freed first.

N VIsManagedMemory Raja

Prototype booleantype *N VIsManagedMemory Raja(N Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The nvector raja module defines the implementations of all vector operations listed in Tables
7.1.1, 7.1.2, 7.1.3, and 7.1.4, except for N VDotProdMulti, N VWrmsNormVectorArray, and
N VWrmsNormMaskVectorArray as support for arrays of reduction vectors is not yet supported in raja.
These function will be added to the nvector raja implementation in the future. Additionally the
vector operations N VGetArrayPointer and N VSetArrayPointer are not provided by the raja vector
unless managed memory is used. As such, this vector cannot be used with the sundials Fortran
interfaces, nor with the sundials direct solvers and preconditioners. The nvector raja module
provides separate functions to access data on the host and on the device. It also provides methods
for copying data from the host to the device and vice versa. Usage examples of nvector raja are
provided in some example programs for cvode [28].

The names of vector operations are obtained from those in Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4
by appending the suffix Raja (e.g. N VDestroy Raja). The module nvector raja provides the
following additional user-callable routines:

N VNew Raja

Prototype N Vector N VNew Raja(sunindextype length)

Description This function creates and allocates memory for a raja N Vector. The vector data array
is allocated on both the host and device.

N VNewWithMemHelp Raja

Prototype N Vector N VNewWithMemHelp Raja(sunindextype length, booleantype use managed mem,

SUNMemoryHelper helper);
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Description This function creates an nvector raja which will use the SUNMemoryHelper object
to allocate memory. If use managed memory is 0, then unmanaged memory is used,
otherwise managed memory is used.

N VNewManaged Raja

Prototype N Vector N VNewManaged Raja(sunindextype length)

Description This function creates and allocates memory for a raja N Vector. The vector data array
is allocated in managed memory.

N VNewEmpty Raja

Prototype N Vector N VNewEmpty Raja()

Description This function creates a new nvector wrapper with the pointer to the wrapped raja
vector set to NULL. It is used by the N VNew Raja, N VMake Raja, and N VClone Raja

implementations.

N VMake Raja

Prototype N Vector N VMake Raja(sunindextype length, realtype *h data, realtype *dev data)

Description This function creates an nvector raja with user-supplied vector data arrays h vdata

and d vdata. This function does not allocate memory for data itself.

N VMakeManaged Raja

Prototype N Vector N VMakeManaged Raja(sunindextype length, realtype *vdata)

Description This function creates an nvector raja with a user-supplied managed memory data
array. This function does not allocate memory for data itself.

N VCopyToDevice Raja

Prototype realtype *N VCopyToDevice Raja(N Vector v)

Description This function copies host vector data to the device.

N VCopyFromDevice Raja

Prototype realtype *N VCopyFromDevice Raja(N Vector v)

Description This function copies vector data from the device to the host.

N VPrint Raja

Prototype void N VPrint Raja(N Vector v)

Description This function prints the content of a raja vector to stdout.

N VPrintFile Raja

Prototype void N VPrintFile Raja(N Vector v, FILE *outfile)

Description This function prints the content of a raja vector to outfile.
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By default all fused and vector array operations are disabled in the nvector raja module. The
following additional user-callable routines are provided to enable or disable fused and vector array
operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Raja, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Raja will
have the default settings for the nvector raja module.

N VEnableFusedOps Raja

Prototype int N VEnableFusedOps Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the raja vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Raja

Prototype int N VEnableLinearCombination Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the raja vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Raja

Prototype int N VEnableScaleAddMulti Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the raja vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Raja

Prototype int N VEnableLinearSumVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the raja vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Raja

Prototype int N VEnableScaleVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the raja vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Raja

Prototype int N VEnableConstVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the raja vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.
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N VEnableScaleAddMultiVectorArray Raja

Prototype int N VEnableScaleAddMultiVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the raja vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Raja

Prototype int N VEnableLinearCombinationVectorArray Raja(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the raja vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Raja, v, it is recommended to
use functions N VGetDeviceArrayPointer Raja or N VGetHostArrayPointer Raja. However,
when using managed memory, the function N VGetArrayPointer may also be used.

• To maximize efficiency, vector operations in the nvector raja implementation that have more !

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

7.12 The NVECTOR SYCL implementation

The nvector sycl module is an experimental nvector implementation using the sycl abstraction
layer. At present the only supported sycl compiler is the DPC++ (Intel oneAPI) compiler. This
module allows for sundials vector kernels to run on Intel GPU devices. The module is intended for
users who are already familiar with sycl and GPU programming.

The vector content layout is as follows:

struct _N_VectorContent_Sycl

{

sunindextype length;

booleantype own_exec;

booleantype own_helper;

SUNMemory host_data;

SUNMemory device_data;

SUNSyclExecPolicy* stream_exec_policy;

SUNSyclExecPolicy* reduce_exec_policy;

SUNMemoryHelper mem_helper;

sycl::queue* queue;

void* priv; /* ’private’ data */

};

typedef struct _N_VectorContent_Sycl *N_VectorContent_Sycl;

The content members are the vector length (size), boolean flags that indicate if the vector owns the
execution policies and memory helper objects (i.e., it is in charge of freeing the objects), SUNMemory
objects for the vector data on the host and device, pointers to execution policies that control how
streaming and reduction kernels are launched, a SUNMemoryHelper for performing memory operations,

https://www.khronos.org/sycl/


160 Description of the NVECTOR module

the sycl queue, and a private data structure which holds additional members that should not be
accessed directly.

When instantiated with N VNew Sycl(), the underlying data will be allocated on both the host and
the device. Alternatively, a user can provide host and device data arrays by using the N VMake Sycl()

constructor. To use managed (shared) memory, the constructors N VNewManaged Sycl() and
N VMakeManaged Sycl() are provided. Additionally, a user-defined SUNMemoryHelper for allocat-
ing/freeing data can be provided with the constructor N VNewWithMemHelp Sycl(). Details on each
of these constructors are provided below.

The header file to include when using this is nvector sycl.h. The installed module library to
link to is libsundials nvecsycl.lib. The extension .lib is typically .so for shared libraries .a for
static libraries.

7.12.1 NVECTOR SYCL functions

The nvector sycl module implementations of all vector operations listed in the sections in Tables
7.1.1, 7.1.2, 7.1.3, and 7.1.4, except for N VDotProdMulti, N VWrmsNormVectorArray, and
N VWrmsNormMaskVectorArray as support for arrays of reduction vectors is not yet supported. These
function will be added to the nvector sycl implementation in the future. The names of vector
operations are obtained from those in the aforementioned sections by appending the suffix Sycl (e.g.,
N VDestroy Sycl).

Additionally, the nvector sycl module provides the following user-callable constructors for cre-
ating a new nvector sycl:

N VNew Sycl

Prototype N Vector N VNew Sycl(sunindextype length, sycl::queue* Q)

Description This function creates and allocates memory for a sycl N Vector. The vector data array
is allocated on both the host and device.

N VNewManaged Sycl

Prototype N Vector N VNewManaged Sycl(sunindextype length, sycl::queue* Q)

Description This function creates and allocates memory for a sycl N Vector. The vector data array
is allocated in managed memory.

N VMake Sycl

Prototype N Vector N VMake Sycl(sunindextype length, realtype *h data,

realtype *dev data, sycl::queue* Q)

Description This function creates an nvector sycl with user-supplied vector data arrays h vdata

and d vdata. This function does not allocate memory for data itself.

N VMakeManaged Sycl

Prototype N Vector N VMakeManaged Sycl(sunindextype length, realtype *vdata,

sycl::queue* Q)

Description This function creates an nvector sycl with a user-supplied managed memory data
array. This function does not allocate memory for data itself.



7.12 The NVECTOR SYCL implementation 161

N VNewWithMemHelp Sycl

Prototype N Vector N VNewWithMemHelp Sycl(sunindextype length,

booleantype use managed mem,

SUNMemoryHelper helper, sycl::queue* Q);

Description This function creates an nvector sycl which will use the SUNMemoryHelper object
to allocate memory. If use managed memory is 0, then unmanaged memory is used,
otherwise managed memory is used.

N VNewEmpty Sycl

Prototype N Vector N VNewEmpty Sycl()

Description This function creates a new nvector sycl where the members of the content structure
have not been allocated. This utility function is used by the other constructors to create
a new vector.

The following user-callable functions are provided for accessing the vector data arrays on the host
and device and copying data between the two memory spaces. Note the generic nvector operations
N VGetArrayPointer() and N VSetArrayPointer() are mapped to the corresponding HostArray

functions given below. To ensure memory coherency, a user will need to call the CopyTo or CopyFrom
functions as necessary to transfer data between the host and device, unless managed (shared) memory
is used.

N VGetHostArrayPointer Sycl

Prototype realtype *N VGetHostArrayPointer Sycl(N Vector v)

Description This function returns a pointer to the vector data on the host.

N VGetDeviceArrayPointer Sycl

Prototype realtype *N VGetDeviceArrayPointer Sycl(N Vector v)

Description This function returns a pointer to the vector data on the device.

N VSetHostArrayPointer Sycl

Prototype realtype *N VSetHostArrayPointer Sycl(N Vector v)

Description This function sets the pointer to the vector data on the host. The existing pointer will
not be freed first.

N VSetDeviceArrayPointer Sycl

Prototype realtype *N VSetDeviceArrayPointer Sycl(N Vector v)

Description This function sets pointer to the vector data on the device. The existing pointer will
not be freed first.

N VCopyToDevice Sycl

Prototype realtype *N VCopyToDevice Sycl(N Vector v)

Description This function copies host vector data to the device.

N VCopyFromDevice Sycl

Prototype realtype *N VCopyFromDevice Sycl(N Vector v)

Description This function copies vector data from the device to the host.
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N VIsManagedMemory Sycl

Prototype booleantype *N VIsManagedMemory Sycl(N Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The following user-callable function is provided to set the execution policies for how sycl kernels
are launched on a device.

N VSetKernelExecPolicy Sycl

Prototype int N VSetKernelExecPolicy Sycl(N Vector v,

SUNSyclExecPolicy *stream exec policy,

SUNSyclExecPolicy *reduce exec policy)

Description This function sets the execution policies which control the kernel parameters utilized
when launching the streaming and reduction kernels. By default the vector is setup to
use the SUNSyclThreadDirectExecPolicy and SUNSyclBlockReduceExecPolicy. See
Section 7.12.2 below for more information about the SUNSyclExecPolicy class.

Note: All vectors used in a single instance of a sundials package must use the same
execution policy. It is strongly recommended that this function is called immediately
after constructing the vector, and any subsequent vector be created by cloning to ensure
consistent execution policies across vectors.

The following user-callable functions are provided to print the host vector data array. Unless
managed memory is used, a user may need to call N VCopyFromDevice Sycl() to ensure consistency
between the host and device array.

N VPrint Sycl

Prototype void N VPrint Sycl(N Vector v)

Description This function prints the host data of a sycl vector to stdout.

N VPrintFile Sycl

Prototype void N VPrintFile Sycl(N Vector v, FILE *outfile)

Description This function prints the host data of a sycl vector to outfile.

By default all fused and vector array operations are disabled in the nvector sycl module. The
following additional user-callable routines are provided to enable or disable fused and vector array
operations for a specific vector. To ensure consistency across vectors it is recommended to first create
a vector with one of the above constructors, enable/disable the desired operations on that vector
with the functions below, and then use this vector in conjunction N VClone to create any additional
vectors. This guarantees the new vectors will have the same operations enabled/disabled as cloned
vectors inherit the same enable/disable options as the vector they are cloned from while vectors created
by any of the above constructors will have the default settings for the nvector sycl module.

N VEnableFusedOps Sycl

Prototype int N VEnableFusedOps Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the sycl vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.
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N VEnableLinearCombination Sycl

Prototype int N VEnableLinearCombination Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the sycl vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Sycl

Prototype int N VEnableScaleAddMulti Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the sycl vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Sycl

Prototype int N VEnableLinearSumVectorArray Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the sycl vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Sycl

Prototype int N VEnableScaleVectorArray Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the sycl vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Sycl

Prototype int N VEnableConstVectorArray Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the sycl vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Sycl

Prototype int N VEnableScaleAddMultiVectorArray Sycl(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the sycl vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Sycl

Prototype int N VEnableLinearCombinationVectorArray Sycl(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the sycl vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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Notes

• When there is a need to access components of an N Vector Sycl, v, it is recommended to use
N VGetDeviceArrayPointer to access the device array or N VGetArrayPointer for the host
array. When using managed (shared) memory, either function may be used. To ensure memory
coherency, a user may need to call the CopyTo or CopyFrom functions as necessary to transfer
data between the host and device, unless managed (shared) memory is used.

• To maximize efficiency, vector operations in the nvector sycl implementation that have more!

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

7.12.2 The SUNSyclExecPolicy Class

In order to provide maximum flexibility to users, the sycl kernel execution parameters used by kernels
within sundials are defined by objects of the sundials::SyclExecPolicy abstract class type (this
class can be accessed in the global namespace as SUNSyclExecPolicy). Thus, users may provide
custom execution policies that fit the needs of their problem. The sundials::SyclExecPolicy is
defined in the header file sundials sycl policies.hpp, as follows:

class SyclExecPolicy

{

public:

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = 0;

virtual SyclExecPolicy* clone() const = 0;

virtual ~SyclExecPolicy() {}

};

For consistency the function names and behavior mirror the execution policies for the CUDA and
HIP vectors. In the sycl case the blockSize is the local work-group range in a one-dimensional
nd range (threads per group). The gridSize is the number of local work groups so the global work-
group range in a one-dimensional nd range is blockSize * gridSize (total number of threads).
All vector kernels are written with a many-to-one mapping where work units (vector elements) are
mapped in a round-robin manner across the global range. As such, the blockSize and gridSize can
be set to any positive value.

To define a custom execution policy, a user simply needs to create a class that inherits from the
abstract class and implements the methods. The sundials provided
sundials::SyclThreadDirectExecPolicy (aka in the global namespace as
SUNSyclThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class SyclThreadDirectExecPolicy : public SyclExecPolicy

{

public:

SyclThreadDirectExecPolicy(const size_t blockDim)

: blockDim_(blockDim)

{}

SyclThreadDirectExecPolicy(const SyclThreadDirectExecPolicy& ex)

: blockDim_(ex.blockDim_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const

{



7.13 The NVECTOR OPENMPDEV implementation 165

return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const

{

return blockDim_;

}

virtual SyclExecPolicy* clone() const

{

return static_cast<SyclExecPolicy*>(new SyclThreadDirectExecPolicy(*this));

}

private:

const size_t blockDim_;

};

sundials provides the following execution policies:

1. SUNSyclThreadDirectExecPolicy(const size t blockDim) is for kernels performing stream-
ing operations and maps each work unit (vector element) to a work-item (thread). Based on the
local work-group range (number of threads per group, blockSize) the number of local work-
groups (gridSize) is computed so there are enough work-items in the global work-group range
( total number of threads, blockSize * gridSize) for one work unit per work-item (thread).

2. SUNSyclGridStrideExecPolicy(const size t blockDim, const size t gridDim) is for ker-
nels performing streaming operations and maps each work unit (vector element) to a work-item
(thread) in a round-robin manner so the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value.
In this case the global work-group range (total number of threads, blockSize * gridSize) may
be less than the number of work units (vector elements).

3. SUNSyclBlockReduceExecPolicy(const size t blockDim) is for kernels performing a reduc-
tion, the local work-group range (number of threads per group, blockSize) and the number of
local work-groups (gridSize) can be set to any positive value or the gridSize may be set to 0

in which case the global range is chosen so that there are enough threads for at most two work
units per work-item.

By default the nvector sycl module uses the SUNSyclThreadDirectExecPolicy and
SUNSyclBlockReduceExecPolicy where the default blockDim is determined by querying the device for
the max work group size. User may specify different policies by constructing a new SyclExecPolicy

and attaching it with N VSetKernelExecPolicy Sycl(). For example, a policy that uses 128 work-
items (threads) per group can be created and attached like so:

N_Vector v = N_VNew_Sycl(length);

SUNSyclThreadDirectExecPolicy thread_direct(128);

SUNSyclBlockReduceExecPolicy block_reduce(128);

flag = N_VSetKernelExecPolicy_Sycl(v, &thread_direct, &block_reduce);

These default policy objects can be reused for multiple sundials data structures (e.g. a SUNMatrix

and an N Vector) since they do not hold any modifiable state information.

7.13 The NVECTOR OPENMPDEV implementation

In situations where a user has access to a device such as a GPU for offloading computation, sundials
provides an nvector implementation using OpenMP device offloading, called nvector openmpdev.
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The nvector openmpdev implementation defines the content field of the N Vector to be a
structure containing the length of the vector, a pointer to the beginning of a contiguous data array
on the host, a pointer to the beginning of a contiguous data array on the device, and a boolean flag
own data which specifies the ownership of host and device data arrays.

struct _N_VectorContent_OpenMPDEV {

sunindextype length;

booleantype own_data;

realtype *host_data;

realtype *dev_data;

};

The header file to include when using this module is nvector openmpdev.h. The installed module
library to link to is libsundials nvecopenmpdev.lib where .lib is typically .so for shared libraries
and .a for static libraries.

7.13.1 NVECTOR OPENMPDEV accessor macros

The following macros are provided to access the content of an nvector openmpdev vector.

• NV CONTENT OMPDEV

This routine gives access to the contents of the nvector openmpdev vector N Vector.

The assignment v cont = NV CONTENT OMPDEV(v) sets v cont to be a pointer to the nvec-
tor openmpdev N Vector content structure.

Implementation:

#define NV_CONTENT_OMPDEV(v) ( (N_VectorContent_OpenMPDEV)(v->content) )

• NV OWN DATA OMPDEV, NV DATA HOST OMPDEV, NV DATA DEV OMPDEV, NV LENGTH OMPDEV

These macros give individual access to the parts of the content of an nvector openmpdev
N Vector.

The assignment v data = NV DATA HOST OMPDEV(v) sets v data to be a pointer to the first
component of the data on the host for the N Vector v. The assignment NV DATA HOST OMPDEV(v)

= v data sets the host component array of v to be v data by storing the pointer v data.

The assignment v dev data = NV DATA DEV OMPDEV(v) sets v dev data to be a pointer to the
first component of the data on the device for the N Vector v. The assignment NV DATA DEV OMPDEV(v)

= v dev data sets the device component array of v to be v dev data by storing the pointer
v dev data.

The assignment v len = NV LENGTH OMPDEV(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMPDEV(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->own_data )

#define NV_DATA_HOST_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->host_data )

#define NV_DATA_DEV_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->dev_data )

#define NV_LENGTH_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->length )

7.13.2 NVECTOR OPENMPDEV functions

The nvector openmpdev module defines OpenMP device offloading implementations of all vec-
tor operations listed in Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4, except for N VGetArrayPointer and
N VSetArrayPointer. As such, this vector cannot be used with the sundials Fortran interfaces, nor
with the sundials direct solvers and preconditioners. It also provides methods for copying from the
host to the device and vice versa.
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The names of vector operations are obtained from those in Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4 by
appending the suffix OpenMPDEV (e.g. N VDestroy OpenMPDEV). The module nvector openmpdev
provides the following additional user-callable routines:

N VNew OpenMPDEV

Prototype N Vector N VNew OpenMPDEV(sunindextype vec length)

Description This function creates and allocates memory for an nvector openmpdev N Vector.

N VNewEmpty OpenMPDEV

Prototype N Vector N VNewEmpty OpenMPDEV(sunindextype vec length)

Description This function creates a new nvector openmpdev N Vector with an empty (NULL) host
and device data arrays.

N VMake OpenMPDEV

Prototype N Vector N VMake OpenMPDEV(sunindextype vec length, realtype *h vdata,

realtype *d vdata)

Description This function creates an nvector openmpdev vector with user-supplied vector data
arrays h vdata and d vdata. This function does not allocate memory for data itself.

N VCloneVectorArray OpenMPDEV

Prototype N Vector *N VCloneVectorArray OpenMPDEV(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector openmpdev vectors.

N VCloneVectorArrayEmpty OpenMPDEV

Prototype N Vector *N VCloneVectorArrayEmpty OpenMPDEV(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector openmpdev vectors,
each with an empty (NULL) data array.

N VDestroyVectorArray OpenMPDEV

Prototype void N VDestroyVectorArray OpenMPDEV(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray OpenMPDEV or with
N VCloneVectorArrayEmpty OpenMPDEV.

N VGetHostArrayPointer OpenMPDEV

Prototype realtype *N VGetHostArrayPointer OpenMPDEV(N Vector v)

Description This function returns a pointer to the host data array.

N VGetDeviceArrayPointer OpenMPDEV

Prototype realtype *N VGetDeviceArrayPointer OpenMPDEV(N Vector v)

Description This function returns a pointer to the device data array.
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N VPrint OpenMPDEV

Prototype void N VPrint OpenMPDEV(N Vector v)

Description This function prints the content of an nvector openmpdev vector to stdout.

N VPrintFile OpenMPDEV

Prototype void N VPrintFile OpenMPDEV(N Vector v, FILE *outfile)

Description This function prints the content of an nvector openmpdev vector to outfile.

N VCopyToDevice OpenMPDEV

Prototype void N VCopyToDevice OpenMPDEV(N Vector v)

Description This function copies the content of an nvector openmpdev vector’s host data array
to the device data array.

N VCopyFromDevice OpenMPDEV

Prototype void N VCopyFromDevice OpenMPDEV(N Vector v)

Description This function copies the content of an nvector openmpdev vector’s device data array
to the host data array.

By default all fused and vector array operations are disabled in the nvector openmpdev module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew OpenMPDEV, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew OpenMPDEV

will have the default settings for the nvector openmpdev module.

N VEnableFusedOps OpenMPDEV

Prototype int N VEnableFusedOps OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the nvector openmpdev vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

N VEnableLinearCombination OpenMPDEV

Prototype int N VEnableLinearCombination OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the nvector openmpdev vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N VEnableScaleAddMulti OpenMPDEV

Prototype int N VEnableScaleAddMulti OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the nvector openmpdev vector. The return value
is 0 for success and -1 if the input vector or its ops structure are NULL.
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N VEnableDotProdMulti OpenMPDEV

Prototype int N VEnableDotProdMulti OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the nvector openmpdev vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N VEnableLinearSumVectorArray OpenMPDEV

Prototype int N VEnableLinearSumVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the nvector openmpdev vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableScaleVectorArray OpenMPDEV

Prototype int N VEnableScaleVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the nvector openmpdev vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableConstVectorArray OpenMPDEV

Prototype int N VEnableConstVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the nvector openmpdev vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableWrmsNormVectorArray OpenMPDEV

Prototype int N VEnableWrmsNormVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the nvector openmpdev vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray OpenMPDEV

Prototype int N VEnableWrmsNormMaskVectorArray OpenMPDEV(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the nvector openmpdev vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray OpenMPDEV

Prototype int N VEnableScaleAddMultiVectorArray OpenMPDEV(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the nvector openmpdev vector. The return
value is 0 for success and -1 if the input vector or its ops structure are NULL.
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N VEnableLinearCombinationVectorArray OpenMPDEV

Prototype int N VEnableLinearCombinationVectorArray OpenMPDEV(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the nvector openmpdev vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is most efficient to first obtain the
component array via h data = NV DATA HOST OMPDEV(v) for the host array or
d data = NV DATA DEV OMPDEV(v) for the device array and then access h data[i] or d data[i]

within the loop.

• When accessing individual components of an N Vector v on the host remember to first copy the
array back from the device with N VCopyFromDevice OpenMPDEV(v) to ensure the array is up
to date.

• N VNewEmpty OpenMPDEV, N VMake OpenMPDEV, and N VCloneVectorArrayEmpty OpenMPDEV set!

the field own data = SUNFALSE. N VDestroy OpenMPDEV and N VDestroyVectorArray OpenMPDEV

will not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In
such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmpdev implementation that!

have more than one N Vector argument do not check for consistent internal representation of
these vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.14 The NVECTOR TRILINOS implementation

The nvector trilinos module is an nvector wrapper around the Trilinos Tpetra vector. The
interface to Tpetra is implemented in the Sundials::TpetraVectorInterface class. This class
simply stores a reference counting pointer to a Tpetra vector and inherits from an empty structure

struct _N_VectorContent_Trilinos {};

to interface the C++ class with the nvector C code. A pointer to an instance of this class is kept in
the content field of the N Vector object, to ensure that the Tpetra vector is not deleted for as long
as the N Vector object exists.

The Tpetra vector type in the Sundials::TpetraVectorInterface class is defined as:

typedef Tpetra::Vector<realtype, int, sunindextype> vector_type;

The Tpetra vector will use the sundials-specified realtype as its scalar type, int as its local ordinal
type, and sunindextype as the global ordinal type. This type definition will use Tpetra’s default
node type. Available Kokkos node types in Trilinos 12.14 release are serial (single thread), OpenMP,
Pthread, and cuda. The default node type is selected when building the Kokkos package. For
example, the Tpetra vector will use a cuda node if Tpetra was built with cuda support and the
cuda node was selected as the default when Tpetra was built.

The header file to include when using this module is nvector trilinos.h. The installed module
library to link to is libsundials nvectrilinos.lib where .lib is typically .so for shared libraries
and .a for static libraries.

https://github.com/trilinos/Trilinos
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7.14.1 NVECTOR TRILINOS functions

The nvector trilinos module defines implementations of all vector operations listed in Tables
7.1.1, 7.1.4, and 7.1.4, except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this
vector cannot be used with sundials Fortran interfaces, nor with the sundials direct solvers and
preconditioners. When access to raw vector data is needed, it is recommended to extract the Trilinos
Tpetra vector first, and then use Tpetra vector methods to access the data. Usage examples of
nvector trilinos are provided in example programs for ida [27].

The names of vector operations are obtained from those in Tables 7.1.1, 7.1.4, and 7.1.4 by append-
ing the suffix Trilinos (e.g. N VDestroy Trilinos). Vector operations call existing Tpetra::Vector

methods when available. Vector operations specific to sundials are implemented as standalone func-
tions in the namespace Sundials::TpetraVector, located in the file SundialsTpetraVectorKernels.hpp.
The module nvector trilinos provides the following additional user-callable functions:

• N VGetVector Trilinos

This C++ function takes an N Vector as the argument and returns a reference counting pointer
to the underlying Tpetra vector. This is a standalone function defined in the global namespace.

Teuchos::RCP<vector_type> N_VGetVector_Trilinos(N_Vector v);

• N VMake Trilinos

This C++ function creates and allocates memory for an nvector trilinos wrapper around a
user-provided Tpetra vector. This is a standalone function defined in the global namespace.

N_Vector N_VMake_Trilinos(Teuchos::RCP<vector_type> v);

Notes

• The template parameter vector type should be set as:
typedef Sundials::TpetraVectorInterface::vector_type vector_type

This will ensure that data types used in Tpetra vector match those in sundials.

• When there is a need to access components of an N Vector Trilinos, v, it is recommeded
to extract the Trilinos vector object via x vec = N VGetVector Trilinos(v) and then access
components using the appropriate Trilinos functions.

• The functions N VDestroy Trilinos and N VDestroyVectorArray Trilinos only delete the
N Vector wrapper. The underlying Tpetra vector object will exist for as long as there is at least
one reference to it.

7.15 The NVECTOR MANYVECTOR implementation

The nvector manyvector implementation of the nvector module provided with sundials is
designed to facilitate problems with an inherent data partitioning for the solution vector within a
computational node. These data partitions are entirely user-defined, through construction of dis-
tinct nvector modules for each component, that are then combined together to form the nvec-
tor manyvector. We envision two generic use cases for this implementation:

A. Heterogeneous computational architectures: for users who wish to partition data on a node be-
tween different computing resources, they may create architecture-specific subvectors for each
partition. For example, a user could create one serial component based on nvector serial,
another component for GPU accelerators based on nvector cuda, and another threaded com-
ponent based on nvector openmp.
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B. Structure of arrays (SOA) data layouts: for users who wish to create separate subvectors for
each solution component, e.g., in a Navier-Stokes simulation they could have separate sub-
vectors for density, velocities and pressure, which are combined together into a single nvec-
tor manyvector for the overall “solution”.

We note that the above use cases are not mutually exclusive, and the nvector manyvector imple-
mentation should support arbitrary combinations of these cases.

The nvector manyvector implementation is designed to work with any nvector subvectors
that implement the minimum required set of operations. Additionally, nvector manyvector sets
no limit on the number of subvectors that may be attached (aside from the limitations of using
sunindextype for indexing, and standard per-node memory limitations). However, while this os-
tensibly supports subvectors with one entry each (i.e., one subvector for each solution entry), we
anticipate that this extreme situation will hinder performance due to non-stride-one memory accesses
and increased function call overhead. We therefore recommend a relatively coarse partitioning of the
problem, although actual performance will likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time
integration modules that will leverage the problem partitioning enabled by nvector manyvector.
However, even at present we anticipate that users will be able to leverage such data partitioning in
their problem-defining ODE right-hand side, DAE residual, or nonlinear solver residual functions.

7.15.1 NVECTOR MANYVECTOR structure

The nvector manyvector implementation defines the content field of N Vector to be a structure
containing the number of subvectors comprising the ManyVector, the global length of the ManyVector
(including all subvectors), a pointer to the beginning of the array of subvectors, and a boolean flag
own data indicating ownership of the subvectors that populate subvec array.

struct _N_VectorContent_ManyVector {

sunindextype num_subvectors; /* number of vectors attached */

sunindextype global_length; /* overall manyvector length */

N_Vector* subvec_array; /* pointer to N_Vector array */

booleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector manyvector.h. The installed module
library to link against is libsundials nvecmanyvector.lib where .lib is typically .so for shared
libraries and .a for static libraries.

7.15.2 NVECTOR MANYVECTOR functions

The nvector manyvector module implements all vector operations listed in Tables 7.1.1, 7.1.2,
7.1.3, and 7.1.4, except for N VGetArrayPointer, N VSetArrayPointer, N VScaleAddMultiVectorArray,
and N VLinearCombinationVectorArray. As such, this vector cannot be used with the sundials
Fortran-77 interfaces, nor with the sundials direct solvers and preconditioners. Instead, the
nvector manyvector module provides functions to access subvectors, whose data may in turn be
accessed according to their nvector implementations.

The names of vector operations are obtained from those in Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4 by ap-
pending the suffix ManyVector (e.g. N VDestroy ManyVector). The module nvector manyvector
provides the following additional user-callable routines:

N VNew ManyVector

Prototype N Vector N VNew ManyVector(sunindextype num subvectors,

N Vector *vec array);
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Description This function creates a ManyVector from a set of existing nvector objects.

This routine will copy all N Vector pointers from the input vec array, so the user may
modify/free that pointer array after calling this function. However, this routine does
not allocate any new subvectors, so the underlying nvector objects themselves should
not be destroyed before the ManyVector that contains them.

Upon successful completion, the new ManyVector is returned; otherwise this routine
returns NULL (e.g., a memory allocation failure occurred).

Users of the Fortran 2003 interface to this function will first need to use the generic
N Vector utility functions N VNewVectorArray, and N VSetVecAtIndexVectorArray to
create the N Vector* argument. This is further explained in Chapter 5.1.3.5, and the
functions are documented in Chapter 7.1.6.

F2003 Name This function is callable as FN VNew ManyVector when using the Fortran 2003 interface
module.

N VGetSubvector ManyVector

Prototype N Vector N VGetSubvector ManyVector(N Vector v, sunindextype vec num);

Description This function returns the vec num subvector from the nvector array.

F2003 Name This function is callable as FN VGetSubvector ManyVector when using the Fortran 2003
interface module.

N VGetSubvectorArrayPointer ManyVector

Prototype realtype *N VGetSubvectorArrayPointer ManyVector(N Vector v, sunindextype vec num);

Description This function returns the data array pointer for the vec num subvector from the nvec-
tor array.

If the input vec num is invalid, or if the subvector does not support the N VGetArrayPointer

operation, then NULL is returned.

F2003 Name This function is callable as FN VGetSubvectorArrayPointer ManyVector when using
the Fortran 2003 interface module.

N VSetSubvectorArrayPointer ManyVector

Prototype int N VSetSubvectorArrayPointer ManyVector(realtype *v data, N Vector v, sunindextype

vec num);

Description This function sets the data array pointer for the vec num subvector from the nvector
array.

If the input vec num is invalid, or if the subvector does not support the N VSetArrayPointer

operation, then this routine returns -1; otherwise it returns 0.

F2003 Name This function is callable as FN VSetSubvectorArrayPointer ManyVector when using
the Fortran 2003 interface module.

N VGetNumSubvectors ManyVector

Prototype sunindextype N VGetNumSubvectors ManyVector(N Vector v);

Description This function returns the overall number of subvectors in the ManyVector object.

F2003 Name This function is callable as FN VGetNumSubvectors ManyVector when using the Fortran
2003 interface module.
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By default all fused and vector array operations are disabled in the nvector manyvector module,
except for N VWrmsNormVectorArray and N VWrmsNormMaskVectorArray, that are enabled by default.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to
first create a vector with N VNew ManyVector, enable/disable the desired operations for that vector
with the functions below, and create any additional vectors from that vector using N VClone. This
guarantees that the new vectors will have the same operations enabled/disabled, since cloned vectors
inherit those configuration options from the vector they are cloned from, while vectors created with
N VNew ManyVector will have the default settings for the nvector manyvector module. We note
that these routines do not call the corresponding routines on subvectors, so those should be set up as
desired before attaching them to the ManyVector in N VNew ManyVector.

N VEnableFusedOps ManyVector

Prototype int N VEnableFusedOps ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the ManyVector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableFusedOps ManyVector when using the Fortran
2003 interface module.

N VEnableLinearCombination ManyVector

Prototype int N VEnableLinearCombination ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the ManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearCombination ManyVector when using the
Fortran 2003 interface module.

N VEnableScaleAddMulti ManyVector

Prototype int N VEnableScaleAddMulti ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the ManyVector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleAddMulti ManyVector when using the For-
tran 2003 interface module.

N VEnableDotProdMulti ManyVector

Prototype int N VEnableDotProdMulti ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the ManyVector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableDotProdMulti ManyVector when using the For-
tran 2003 interface module.
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N VEnableLinearSumVectorArray ManyVector

Prototype int N VEnableLinearSumVectorArray ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the ManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearSumVectorArray ManyVector when using
the Fortran 2003 interface module.

N VEnableScaleVectorArray ManyVector

Prototype int N VEnableScaleVectorArray ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the ManyVector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleVectorArray ManyVector when using the
Fortran 2003 interface module.

N VEnableConstVectorArray ManyVector

Prototype int N VEnableConstVectorArray ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the ManyVector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableConstVectorArray ManyVector when using the
Fortran 2003 interface module.

N VEnableWrmsNormVectorArray ManyVector

Prototype int N VEnableWrmsNormVectorArray ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the ManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormVectorArray ManyVector when using
the Fortran 2003 interface module.

N VEnableWrmsNormMaskVectorArray ManyVector

Prototype int N VEnableWrmsNormMaskVectorArray ManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the ManyVector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormMaskVectorArray ManyVector when
using the Fortran 2003 interface module.

Notes

• N VNew ManyVector sets the field own data = SUNFALSE. N VDestroy ManyVector will not at- !

tempt to call N VDestroy on any subvectors contained in the subvector array for any N Vector

with own data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the
subvectors.
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• To maximize efficiency, arithmetic vector operations in the nvector manyvector implemen- !

tation that have more than one N Vector argument do not check for consistent internal repre-
sentation of these vectors. It is the user’s responsibility to ensure that such routines are called
with N Vector arguments that were all created with the same subvector representations.

7.16 The NVECTOR MPIMANYVECTOR implementation

The nvector mpimanyvector implementation of the nvector module provided with sundials
is designed to facilitate problems with an inherent data partitioning for the solution vector, and
when using distributed-memory parallel architectures. As such, the MPIManyVector implementation
supports all use cases allowed by the MPI-unaware ManyVector implementation, as well as partitioning
data between nodes in a parallel environment. These data partitions are entirely user-defined, through
construction of distinct nvector modules for each component, that are then combined together to
form the nvector mpimanyvector. We envision three generic use cases for this implementation:

A. Heterogeneous computational architectures (single-node or multi-node): for users who wish to
partition data on a node between different computing resources, they may create architecture-
specific subvectors for each partition. For example, a user could create one MPI-parallel compo-
nent based on nvector parallel, another single-node component for GPU accelerators based
on nvector cuda, and another threaded single-node component based on nvector openmp.

B. Process-based multiphysics decompositions (multi-node): for users who wish to combine separate
simulations together, e.g., where one subvector resides on one subset of MPI processes, while
another subvector resides on a different subset of MPI processes, and where the user has created
a MPI intercommunicator to connect these distinct process sets together.

C. Structure of arrays (SOA) data layouts (single-node or multi-node): for users who wish to create
separate subvectors for each solution component, e.g., in a Navier-Stokes simulation they could
have separate subvectors for density, velocities and pressure, which are combined together into
a single nvector mpimanyvector for the overall “solution”.

We note that the above use cases are not mutually exclusive, and the nvector mpimanyvector
implementation should support arbitrary combinations of these cases.

The nvector mpimanyvector implementation is designed to work with any nvector subvec-
tors that implement the minimum required set of operations, however significant performance benefits
may be obtained when subvectors additionally implement the optional local reduction operations listed
in Table 7.1.4.

Additionally, nvector mpimanyvector sets no limit on the number of subvectors that may
be attached (aside from the limitations of using sunindextype for indexing, and standard per-node
memory limitations). However, while this ostensibly supports subvectors with one entry each (i.e., one
subvector for each solution entry), we anticipate that this extreme situation will hinder performance
due to non-stride-one memory accesses and increased function call overhead. We therefore recommend
a relatively coarse partitioning of the problem, although actual performance will likely be problem-
dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time inte-
gration modules that will leverage the problem partitioning enabled by nvector mpimanyvector.
However, even at present we anticipate that users will be able to leverage such data partitioning in
their problem-defining ODE right-hand side, DAE residual, or nonlinear solver residual functions.

7.16.1 NVECTOR MPIMANYVECTOR structure

The nvector mpimanyvector implementation defines the content field of N Vector to be a struc-
ture containing the MPI communicator (or MPI COMM NULL if running on a single-node), the number
of subvectors comprising the MPIManyVector, the global length of the MPIManyVector (including
all subvectors on all MPI tasks), a pointer to the beginning of the array of subvectors, and a boolean
flag own data indicating ownership of the subvectors that populate subvec array.
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struct _N_VectorContent_MPIManyVector {

MPI_Comm comm; /* overall MPI communicator */

sunindextype num_subvectors; /* number of vectors attached */

sunindextype global_length; /* overall mpimanyvector length */

N_Vector* subvec_array; /* pointer to N_Vector array */

booleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector mpimanyvector.h. The installed
module library to link against is libsundials nvecmpimanyvector.lib where .lib is typically .so

for shared libraries and .a for static libraries.

Note: If sundials is configured with MPI disabled, then the MPIManyVector library will not !

be built. Furthermore, any user codes that include nvector mpimanyvector.h must be compiled
using an MPI-aware compiler (whether the specific user code utilizes MPI or not). We note that the
nvector manyvector implementation is designed for ManyVector use cases in an MPI-unaware
environment.

7.16.2 NVECTOR MPIMANYVECTOR functions

The nvector mpimanyvector module implements all vector operations listed in Tables 7.1.1, 7.1.2,
7.1.3, and 7.1.4, except for N VGetArrayPointer, N VSetArrayPointer, N VScaleAddMultiVectorArray,
and N VLinearCombinationVectorArray. As such, this vector cannot be used with the sundials
Fortran-77 interfaces, nor with the sundials direct solvers and preconditioners. Instead, the
nvector mpimanyvector module provides functions to access subvectors, whose data may in turn
be accessed according to their nvector implementations.

The names of vector operations are obtained from those in Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4
by appending the suffix MPIManyVector (e.g. N VDestroy MPIManyVector). The module nvec-
tor mpimanyvector provides the following additional user-callable routines:

N VNew MPIManyVector

Prototype N Vector N VNew MPIManyVector(sunindextype num subvectors,

N Vector *vec array);

Description This function creates an MPIManyVector from a set of existing nvector objects, under
the requirement that all MPI-aware subvectors use the same MPI communicator (this is
checked internally). If none of the subvectors are MPI-aware, then this may equivalently
be used to describe data partitioning within a single node. We note that this routine is
designed to support use cases A and C above.

This routine will copy all N Vector pointers from the input vec array, so the user may
modify/free that pointer array after calling this function. However, this routine does
not allocate any new subvectors, so the underlying nvector objects themselves should
not be destroyed before the MPIManyVector that contains them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine
returns NULL (e.g., if two MPI-aware subvectors use different MPI communicators).

Users of the Fortran 2003 interface to this function will first need to use the generic
N Vector utility functions N VNewVectorArray, and N VSetVecAtIndexVectorArray to
create the N Vector* argument. This is further explained in Chapter 5.1.3.5, and the
functions are documented in Chapter 7.1.6.

F2003 Name This function is callable as FN VNew MPIManyVector when using the Fortran 2003 inter-
face module.
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N VMake MPIManyVector

Prototype N Vector N VMake MPIManyVector(MPI Comm comm, sunindextype num subvectors,

N Vector *vec array);

Description This function creates an MPIManyVector from a set of existing nvector objects, and
a user-created MPI communicator that “connects” these subvectors. Any MPI-aware
subvectors may use different MPI communicators than the input comm. We note that
this routine is designed to support any combination of the use cases above.

The input comm should be this user-created MPI communicator. This routine will inter-
nally call MPI Comm dup to create a copy of the input comm, so the user-supplied comm

argument need not be retained after the call to N VMake MPIManyVector.

If all subvectors are MPI-unaware, then the input comm argument should be MPI COMM NULL,
although in this case, it would be simpler to call N VNew MPIManyVector instead, or to
just use the nvector manyvector module.

This routine will copy all N Vector pointers from the input vec array, so the user may
modify/free that pointer array after calling this function. However, this routine does
not allocate any new subvectors, so the underlying nvector objects themselves should
not be destroyed before the MPIManyVector that contains them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine
returns NULL (e.g., if the input vec array is NULL).

F2003 Name This function is callable as FN VMake MPIManyVector when using the Fortran 2003 in-
terface module.

N VGetSubvector MPIManyVector

Prototype N Vector N VGetSubvector MPIManyVector(N Vector v, sunindextype vec num);

Description This function returns the vec num subvector from the nvector array.

F2003 Name This function is callable as FN VGetSubvector MPIManyVector when using the Fortran
2003 interface module.

N VGetSubvectorArrayPointer MPIManyVector

Prototype realtype *N VGetSubvectorArrayPointer MPIManyVector(N Vector v, sunindextype

vec num);

Description This function returns the data array pointer for the vec num subvector from the nvec-
tor array.

If the input vec num is invalid, or if the subvector does not support the N VGetArrayPointer

operation, then NULL is returned.

F2003 Name This function is callable as FN VGetSubvectorArrayPointer MPIManyVector when us-
ing the Fortran 2003 interface module.

N VSetSubvectorArrayPointer MPIManyVector

Prototype int N VSetSubvectorArrayPointer MPIManyVector(realtype *v data, N Vector v,

sunindextype vec num);

Description This function sets the data array pointer for the vec num subvector from the nvector
array.

If the input vec num is invalid, or if the subvector does not support the N VSetArrayPointer

operation, then this routine returns -1; otherwise it returns 0.

F2003 Name This function is callable as FN VSetSubvectorArrayPointer MPIManyVector when us-
ing the Fortran 2003 interface module.
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N VGetNumSubvectors MPIManyVector

Prototype sunindextype N VGetNumSubvectors MPIManyVector(N Vector v);

Description This function returns the overall number of subvectors in the MPIManyVector object.

F2003 Name This function is callable as FN VGetNumSubvectors MPIManyVector when using the For-
tran 2003 interface module.

By default all fused and vector array operations are disabled in the nvector mpimanyvector
module, except for N VWrmsNormVectorArray and N VWrmsNormMaskVectorArray, that are enabled
by default. The following additional user-callable routines are provided to enable or disable fused and
vector array operations for a specific vector. To ensure consistency across vectors it is recommended
to first create a vector with N VNew MPIManyVector or N VMake MPIManyVector, enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from
that vector using N VClone. This guarantees that the new vectors will have the same operations
enabled/disabled, since cloned vectors inherit those configuration options from the vector they are
cloned from, while vectors created with N VNew MPIManyVector and N VMake MPIManyVector will
have the default settings for the nvector mpimanyvector module. We note that these routines do
not call the corresponding routines on subvectors, so those should be set up as desired before attaching
them to the MPIManyVector in N VNew MPIManyVector or N VMake MPIManyVector.

N VEnableFusedOps MPIManyVector

Prototype int N VEnableFusedOps MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableFusedOps MPIManyVector when using the For-
tran 2003 interface module.

N VEnableLinearCombination MPIManyVector

Prototype int N VEnableLinearCombination MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearCombination MPIManyVector when using
the Fortran 2003 interface module.

N VEnableScaleAddMulti MPIManyVector

Prototype int N VEnableScaleAddMulti MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the MPIManyVector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleAddMulti MPIManyVector when using the
Fortran 2003 interface module.

N VEnableDotProdMulti MPIManyVector

Prototype int N VEnableDotProdMulti MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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F2003 Name This function is callable as FN VEnableDotProdMulti MPIManyVector when using the
Fortran 2003 interface module.

N VEnableLinearSumVectorArray MPIManyVector

Prototype int N VEnableLinearSumVectorArray MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the MPIManyVector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableLinearSumVectorArray MPIManyVector when
using the Fortran 2003 interface module.

N VEnableScaleVectorArray MPIManyVector

Prototype int N VEnableScaleVectorArray MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableScaleVectorArray MPIManyVector when using
the Fortran 2003 interface module.

N VEnableConstVectorArray MPIManyVector

Prototype int N VEnableConstVectorArray MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableConstVectorArray MPIManyVector when using
the Fortran 2003 interface module.

N VEnableWrmsNormVectorArray MPIManyVector

Prototype int N VEnableWrmsNormVectorArray MPIManyVector(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the MPIManyVector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormVectorArray MPIManyVector when us-
ing the Fortran 2003 interface module.

N VEnableWrmsNormMaskVectorArray MPIManyVector

Prototype int N VEnableWrmsNormMaskVectorArray MPIManyVector(N Vector v, booleantype

tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the MPIManyVector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN VEnableWrmsNormMaskVectorArray MPIManyVector when
using the Fortran 2003 interface module.
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Notes

• N VNew MPIManyVector and N VMake MPIManyVector set the field own data = SUNFALSE.!

N VDestroy MPIManyVector will not attempt to call N VDestroy on any subvectors contained
in the subvector array for any N Vector with own data set to SUNFALSE. In such a case, it is the
user’s responsibility to deallocate the subvectors.

• To maximize efficiency, arithmetic vector operations in the nvector mpimanyvector imple- !

mentation that have more than one N Vector argument do not check for consistent internal
representation of these vectors. It is the user’s responsibility to ensure that such routines are
called with N Vector arguments that were all created with the same subvector representations.

7.17 The NVECTOR MPIPLUSX implementation

The nvector mpiplusx implementation of the nvector module provided with sundials is designed
to facilitate the MPI+X paradigm, where X is some form of on-node (local) parallelism (e.g. OpenMP,
CUDA). This paradigm is becoming increasingly popular with the rise of heterogeneous computing
architectures.

The nvector mpiplusx implementation is designed to work with any nvector that imple-
ments the minimum required set of operations. However, it is not recommended to use the nvec-
tor parallel, nvector parhyp, nvector petsc, or nvector trilinos implementations under-
neath the nvector mpiplusx module since they already provide MPI capabilities.

7.17.1 NVECTOR MPIPLUSX structure

The nvector mpiplusx implementation is a thin wrapper around the nvector mpimanyvector.
Accordingly, it adopts the same content structure as defined in Section 7.16.1.

The header file to include when using this module is nvector mpiplusx.h. The installed module
library to link against is libsundials nvecmpiplusx.lib where .lib is typically .so for shared
libraries and .a for static libraries.

Note: If sundials is configured with MPI disabled, then the mpiplusx library will not be built. !

Furthermore, any user codes that include nvector mpiplusx.h must be compiled using an MPI-aware
compiler.

7.17.2 NVECTOR MPIPLUSX functions

The nvector mpiplusx module adopts all vector operations listed in Tables 7.1.1, 7.1.2, 7.1.3, and
7.1.4, from the nvector mpimanyvector (see section 7.16.2) except for N VGetArrayPointer and
N VSetArrayPointer; the module provides its own implementation of these functions that call the
local vector implementations. Therefore, the nvector mpiplusx module implements all of the opera-
tions listed in the referenced sections except for N VScaleAddMultiVectorArray, and N VLinearCombinationVectorArray.
Accordingly, it’s compatibility with the sundials Fortran-77 interface, and with the sundials direct
solvers and preconditioners depends on the local vector implementation.

The module nvector mpiplusx provides the following additional user-callable routines:

N VMake MPIPlusX

Prototype N Vector N VMake MPIPlusX(MPI Comm comm,

N Vector *local vector);

Description This function creates an MPIPlusX vector from an existing local (i.e. on-node) nvector
object, and a user-created MPI communicator.

The input comm should be this user-created MPI communicator. This routine will inter-
nally call MPI Comm dup to create a copy of the input comm, so the user-supplied comm

argument need not be retained after the call to N VMake MPIPlusX.
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This routine will copy the N Vector pointer to the input local vector, so the underlying
local nvector object should not be destroyed before the mpiplusx that contains it.

Upon successful completion, the new MPIPlusX is returned; otherwise this routine re-
turns NULL (e.g., if the input local vector is NULL).

F2003 Name This function is callable as FN VMake MPIPlusX when using the Fortran 2003 interface
module.

N VGetLocalVector MPIPlusX

Prototype N Vector N VGetLocalVector MPIPlusX(N Vector v);

Description This function returns the local vector underneath the the MPIPlusX nvector.

F2003 Name This function is callable as FN VGetLocalVector MPIPlusX when using the Fortran 2003
interface module.

N VGetArrayPointer MPIPlusX

Prototype realtype* N VGetLocalVector MPIPlusX(N Vector v);

Description This function returns the data array pointer for the local vector if the local vector
implements the N VGetArrayPointer operation; otherwise it returns NULL.

F2003 Name This function is callable as FN VGetArrayPointer MPIPlusX when using the Fortran
2003 interface module.

N VSetArrayPointer MPIPlusX

Prototype void N VSetArrayPointer MPIPlusX(realtype *data, N Vector v);

Description This function sets the data array pointer for the local vector if the local vector imple-
ments the N VSetArrayPointer operation.

F2003 Name This function is callable as FN VSetArrayPointer MPIPlusX when using the Fortran
2003 interface module.

The nvector mpiplusx module does not implement any fused or vector array operations. Instead
users should enable/disable fused operations on the local vector.

Notes

• N VMake MPIPlusX sets the field own data = SUNFALSE.!

and N VDestroy MPIPlusX will not call N VDestroy on the local vector. In this case, it is the
user’s responsibility to deallocate the local vector.

• To maximize efficiency, arithmetic vector operations in the nvector mpiplusx implementation!

that have more than one N Vector argument do not check for consistent internal representation
of these vectors. It is the user’s responsibility to ensure that such routines are called with
N Vector arguments that were all created with the same local vector representations.

7.18 NVECTOR Examples

There are NVector examples that may be installed for the implementations provided with sundials.
Each implementation makes use of the functions in test nvector.c. These example functions show
simple usage of the NVector family of functions. The input to the examples are the vector length,
number of threads (if threaded implementation), and a print timing flag.
The following is a list of the example functions in test nvector.c:

• Test N VClone: Creates clone of vector and checks validity of clone.
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• Test N VCloneEmpty: Creates clone of empty vector and checks validity of clone.

• Test N VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test N VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned
array.

• Test N VGetArrayPointer: Get array pointer.

• Test N VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check
values.

• Test N VGetLength: Compares self-reported length to calculated length.

• Test N VGetCommunicator: Compares self-reported communicator to the one used in construc-
tor; or for MPI-unaware vectors it ensures that NULL is reported.

• Test N VLinearSum Case 1a: Test y = x + y

• Test N VLinearSum Case 1b: Test y = -x + y

• Test N VLinearSum Case 1c: Test y = ax + y

• Test N VLinearSum Case 2a: Test x = x + y

• Test N VLinearSum Case 2b: Test x = x - y

• Test N VLinearSum Case 2c: Test x = x + by

• Test N VLinearSum Case 3: Test z = x + y

• Test N VLinearSum Case 4a: Test z = x - y

• Test N VLinearSum Case 4b: Test z = -x + y

• Test N VLinearSum Case 5a: Test z = x + by

• Test N VLinearSum Case 5b: Test z = ax + y

• Test N VLinearSum Case 6a: Test z = -x + by

• Test N VLinearSum Case 6b: Test z = ax - y

• Test N VLinearSum Case 7: Test z = a(x + y)

• Test N VLinearSum Case 8: Test z = a(x - y)

• Test N VLinearSum Case 9: Test z = ax + by

• Test N VConst: Fill vector with constant and check result.

• Test N VProd: Test vector multiply: z = x * y

• Test N VDiv: Test vector division: z = x / y

• Test N VScale: Case 1: scale: x = cx

• Test N VScale: Case 2: copy: z = x

• Test N VScale: Case 3: negate: z = -x

• Test N VScale: Case 4: combination: z = cx

• Test N VAbs: Create absolute value of vector.
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• Test N VAddConst: add constant vector: z = c + x

• Test N VDotProd: Calculate dot product of two vectors.

• Test N VMaxNorm: Create vector with known values, find and validate the max norm.

• Test N VWrmsNorm: Create vector of known values, find and validate the weighted root mean
square.

• Test N VWrmsNormMask: Create vector of known values, find and validate the weighted root
mean square using all elements except one.

• Test N VMin: Create vector, find and validate the min.

• Test N VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test N VL1Norm: Create vector, find and validate the L1 norm.

• Test N VCompare: Compare vector with constant returning and validating comparison vector.

• Test N VInvTest: Test z[i] = 1 / x[i]

• Test N VConstrMask: Test mask of vector x with vector c.

• Test N VMinQuotient: Fill two vectors with known values. Calculate and validate minimum
quotient.

• Test N VLinearCombination Case 1a: Test x = a x

• Test N VLinearCombination Case 1b: Test z = a x

• Test N VLinearCombination Case 2a: Test x = a x + b y

• Test N VLinearCombination Case 2b: Test z = a x + b y

• Test N VLinearCombination Case 3a: Test x = x + a y + b z

• Test N VLinearCombination Case 3b: Test x = a x + b y + c z

• Test N VLinearCombination Case 3c: Test w = a x + b y + c z

• Test N VScaleAddMulti Case 1a: y = a x + y

• Test N VScaleAddMulti Case 1b: z = a x + y

• Test N VScaleAddMulti Case 2a: Y[i] = c[i] x + Y[i], i = 1,2,3

• Test N VScaleAddMulti Case 2b: Z[i] = c[i] x + Y[i], i = 1,2,3

• Test N VDotProdMulti Case 1: Calculate the dot product of two vectors

• Test N VDotProdMulti Case 2: Calculate the dot product of one vector with three other vectors
in a vector array.

• Test N VLinearSumVectorArray Case 1: z = a x + b y

• Test N VLinearSumVectorArray Case 2a: Z[i] = a X[i] + b Y[i]

• Test N VLinearSumVectorArray Case 2b: X[i] = a X[i] + b Y[i]

• Test N VLinearSumVectorArray Case 2c: Y[i] = a X[i] + b Y[i]

• Test N VScaleVectorArray Case 1a: y = c y

• Test N VScaleVectorArray Case 1b: z = c y
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• Test N VScaleVectorArray Case 2a: Y[i] = c[i] Y[i]

• Test N VScaleVectorArray Case 2b: Z[i] = c[i] Y[i]

• Test N VScaleVectorArray Case 1a: z = c

• Test N VScaleVectorArray Case 1b: Z[i] = c

• Test N VWrmsNormVectorArray Case 1a: Create a vector of know values, find and validate the
weighted root mean square norm.

• Test N VWrmsNormVectorArray Case 1b: Create a vector array of three vectors of know values,
find and validate the weighted root mean square norm of each.

• Test N VWrmsNormMaskVectorArray Case 1a: Create a vector of know values, find and validate
the weighted root mean square norm using all elements except one.

• Test N VWrmsNormMaskVectorArray Case 1b: Create a vector array of three vectors of know
values, find and validate the weighted root mean square norm of each using all elements except
one.

• Test N VScaleAddMultiVectorArray Case 1a: y = a x + y

• Test N VScaleAddMultiVectorArray Case 1b: z = a x + y

• Test N VScaleAddMultiVectorArray Case 2a: Y[j][0] = a[j] X[0] + Y[j][0]

• Test N VScaleAddMultiVectorArray Case 2b: Z[j][0] = a[j] X[0] + Y[j][0]

• Test N VScaleAddMultiVectorArray Case 3a: Y[0][i] = a[0] X[i] + Y[0][i]

• Test N VScaleAddMultiVectorArray Case 3b: Z[0][i] = a[0] X[i] + Y[0][i]

• Test N VScaleAddMultiVectorArray Case 4a: Y[j][i] = a[j] X[i] + Y[j][i]

• Test N VScaleAddMultiVectorArray Case 4b: Z[j][i] = a[j] X[i] + Y[j][i]

• Test N VLinearCombinationVectorArray Case 1a: x = a x

• Test N VLinearCombinationVectorArray Case 1b: z = a x

• Test N VLinearCombinationVectorArray Case 2a: x = a x + b y

• Test N VLinearCombinationVectorArray Case 2b: z = a x + b y

• Test N VLinearCombinationVectorArray Case 3a: x = a x + b y + c z

• Test N VLinearCombinationVectorArray Case 3b: w = a x + b y + c z

• Test N VLinearCombinationVectorArray Case 4a: X[0][i] = c[0] X[0][i]

• Test N VLinearCombinationVectorArray Case 4b: Z[i] = c[0] X[0][i]

• Test N VLinearCombinationVectorArray Case 5a: X[0][i] = c[0] X[0][i] + c[1] X[1][i]

• Test N VLinearCombinationVectorArray Case 5b: Z[i] = c[0] X[0][i] + c[1] X[1][i]

• Test N VLinearCombinationVectorArray Case 6a: X[0][i] = X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test N VLinearCombinationVectorArray Case 6b: X[0][i] = c[0] X[0][i] + c[1] X[1][i] + c[2]
X[2][i]

• Test N VLinearCombinationVectorArray Case 6c: Z[i] = c[0] X[0][i] + c[1] X[1][i] + c[2] X[2][i]
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• Test N VDotProdLocal: Calculate MPI task-local portion of the dot product of two vectors.

• Test N VMaxNormLocal: Create vector with known values, find and validate the MPI task-local
portion of the max norm.

• Test N VMinLocal: Create vector, find and validate the MPI task-local min.

• Test N VL1NormLocal: Create vector, find and validate the MPI task-local portion of the L1
norm.

• Test N VWSqrSumLocal: Create vector of known values, find and validate the MPI task-local
portion of the weighted squared sum of two vectors.

• Test N VWSqrSumMaskLocal: Create vector of known values, find and validate the MPI task-
local portion of the weighted squared sum of two vectors, using all elements except one.

• Test N VInvTestLocal: Test the MPI task-local portion of z[i] = 1 / x[i]

• Test N VConstrMaskLocal: Test the MPI task-local portion of the mask of vector x with vector
c.

• Test N VMinQuotientLocal: Fill two vectors with known values. Calculate and validate the
MPI task-local minimum quotient.



Chapter 8

Description of the SUNMatrix
module

For problems that involve direct methods for solving linear systems, the sundials solvers not only op-
erate on generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations
defined by the particular sunmatrix implementation. Users can provide their own specific imple-
mentation of the sunmatrix module, particularly in cases where they provide their own nvector
and/or linear solver modules, and require matrices that are compatible with those implementations.
Alternately, we provide three sunmatrix implementations: dense, banded, and sparse. The generic
operations are described below, and descriptions of the implementations provided with sundials
follow.

8.1 The SUNMatrix API

The sunmatrix API can be grouped into two sets of functions: the core matrix operations, and utility
functions. Section 8.1.1 lists the core operations, while Section 8.1.2 lists the utility functions.

8.1.1 SUNMatrix core functions

The generic SUNMatrix object defines the following set of core operations:

SUNMatGetID

Call id = SUNMatGetID(A);

Description Returns the type identifier for the matrix A. It is used to determine the matrix imple-
mentation type (e.g. dense, banded, sparse,. . . ) from the abstract SUNMatrix interface.
This is used to assess compatibility with sundials-provided linear solver implementa-
tions.

Arguments A (SUNMatrix) a sunmatrix object

Return value A SUNMATRIX ID, possible values are given in the Table 8.2.

F2003 Name FSUNMatGetID

SUNMatClone

Call B = SUNMatClone(A);

Description Creates a new SUNMatrix of the same type as an existing matrix A and sets the ops
field. It does not copy the matrix, but rather allocates storage for the new matrix.

Arguments A (SUNMatrix) a sunmatrix object
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Return value SUNMatrix

F2003 Name FSUNMatClone

F2003 Call type(SUNMatrix), pointer :: B

B => FSUNMatClone(A)

SUNMatDestroy

Call SUNMatDestroy(A);

Description Destroys A and frees memory allocated for its internal data.

Arguments A (SUNMatrix) a sunmatrix object

Return value None

F2003 Name FSUNMatDestroy

SUNMatSpace

Call ier = SUNMatSpace(A, &lrw, &liw);

Description Returns the storage requirements for the matrix A. lrw is a long int containing the
number of realtype words and liw is a long int containing the number of integer words.

Arguments A (SUNMatrix) a sunmatrix object

lrw (sunindextype*) the number of realtype words

liw (sunindextype*) the number of integer words

Return value None

Notes This function is advisory only, for use in determining a user’s total space requirements;
it could be a dummy function in a user-supplied sunmatrix module if that information
is not of interest.

F2003 Name FSUNMatSpace

F2003 Call integer(c long) :: lrw(1), liw(1)

ier = FSUNMatSpace(A, lrw, liw)

SUNMatZero

Call ier = SUNMatZero(A);

Description Performs the operation Aij = 0 for all entries of the matrix A.

Arguments A (SUNMatrix) a sunmatrix object

Return value A sunmatrix return code of type int denoting success/failure

F2003 Name FSUNMatZero

SUNMatCopy

Call ier = SUNMatCopy(A,B);

Description Performs the operation Bij = Ai,j for all entries of the matrices A and B.

Arguments A (SUNMatrix) a sunmatrix object

B (SUNMatrix) a sunmatrix object

Return value A sunmatrix return code of type int denoting success/failure

F2003 Name FSUNMatCopy
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SUNMatScaleAdd

Call ier = SUNMatScaleAdd(c, A, B);

Description Performs the operation A = cA+B.

Arguments c (realtype) constant that scales A

A (SUNMatrix) a sunmatrix object

B (SUNMatrix) a sunmatrix object

Return value A sunmatrix return code of type int denoting success/failure

F2003 Name FSUNMatScaleAdd

SUNMatScaleAddI

Call ier = SUNMatScaleAddI(c, A);

Description Performs the operation A = cA+ I.

Arguments c (realtype) constant that scales A

A (SUNMatrix) a sunmatrix object

Return value A sunmatrix return code of type int denoting success/failure

F2003 Name FSUNMatScaleAddI

SUNMatMatvecSetup

Call ier = SUNMatMatvecSetup(A);

Description Performs any setup necessary to perform a matrix-vector product. It is useful for
SUNMatrix implementations which need to prepare the matrix itself, or communication
structures before performing the matrix-vector product.

Arguments A (SUNMatrix) a sunmatrix object

Return value A sunmatrix return code of type int denoting success/failure

F2003 Name FSUNMatMatvecSetup

SUNMatMatvec

Call ier = SUNMatMatvec(A, x, y);

Description Performs the matrix-vector product operation, y = Ax. It should only be called with
vectors x and y that are compatible with the matrix A – both in storage type and
dimensions.

Arguments A (SUNMatrix) a sunmatrix object

x (N Vector) a nvector object

y (N Vector) an output nvector object

Return value A sunmatrix return code of type int denoting success/failure

F2003 Name FSUNMatMatvec

8.1.2 SUNMatrix utility functions

To aid in the creation of custom sunmatrix modules the generic sunmatrix module provides two
utility functions SUNMatNewEmpty and SUNMatVCopyOps.
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SUNMatNewEmpty

Call A = SUNMatNewEmpty();

Description The function SUNMatNewEmpty allocates a new generic sunmatrix object and initializes
its content pointer and the function pointers in the operations structure to NULL.

Arguments None

Return value This function returns a SUNMatrix object. If an error occurs when allocating the object,
then this routine will return NULL.

F2003 Name FSUNMatNewEmpty

SUNMatFreeEmpty

Call SUNMatFreeEmpty(A);

Description This routine frees the generic SUNMatrix object, under the assumption that any implementation-
specific data that was allocated within the underlying content structure has already been
freed. It will additionally test whether the ops pointer is NULL, and, if it is not, it will
free it as well.

Arguments A (SUNMatrix) a SUNMatrix object

Return value None

F2003 Name FSUNMatFreeEmpty

SUNMatCopyOps

Call retval = SUNMatCopyOps(A, B);

Description The function SUNMatCopyOps copies the function pointers in the ops structure of A into
the ops structure of B.

Arguments A (SUNMatrix) the matrix to copy operations from

B (SUNMatrix) the matrix to copy operations to

Return value This returns 0 if successful and a non-zero value if either of the inputs are NULL or the
ops structure of either input is NULL.

F2003 Name FSUNMatCopyOps

8.1.3 SUNMatrix return codes

The functions provided to sunmatrix modules within the sundials-provided sunmatrix implemen-
tations utilize a common set of return codes, shown in Table 8.1. These adhere to a common pattern:
0 indicates success, and a negative value indicates a failure. The actual values of each return code are
primarily to provide additional information to the user in case of a failure.

Table 8.1: Description of the SUNMatrix return codes

Name Value Description

SUNMAT SUCCESS 0 successful call or converged solve

continued on next page
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Table 8.2: Identifiers associated with matrix kernels supplied with sundials.

Matrix ID Matrix type ID Value
SUNMATRIX DENSE Dense M× N matrix 0
SUNMATRIX BAND Band M× M matrix 1
SUNMATRIX MAGMADENSE Magma dense M× N matrix 2
SUNMATRIX SPARSE Sparse (CSR or CSC) M× N matrix 3
SUNMATRIX SLUNRLOC Adapter for the SuperLU DIST SuperMatrix 4
SUNMATRIX CUSPARSE CUDA sparse CSR matrix 5
SUNMATRIX CUSTOM User-provided custom matrix 6

Name Value Description

SUNMAT ILL INPUT -701 an illegal input has been provided to the function

SUNMAT MEM FAIL -702 failed memory access or allocation

SUNMAT OPERATION FAIL -703 a SUNMatrix operation returned nonzero
SUNMAT MATVEC SETUP REQUIRED -704 the SUNMatMatvecSetup routine needs to be called be-

fore calling SUNMatMatvec

8.1.4 SUNMatrix identifiers

Each sunmatrix implementation included in sundials has a unique identifier specified in enumera-
tion and shown in Table 8.2. It is recommended that a user-supplied sunmatrix implementation use
the SUNMATRIX CUSTOM identifier.

8.1.5 Compatibility of SUNMatrix modules

We note that not all sunmatrix types are compatible with all nvector types provided with sundi-
als. This is primarily due to the need for compatibility within the SUNMatMatvec routine; however,
compatibility between sunmatrix and nvector implementations is more crucial when considering
their interaction within sunlinsol objects, as will be described in more detail in Chapter 9. More
specifically, in Table 8.3 we show the matrix interfaces available as sunmatrix modules, and the
compatible vector implementations.

Table 8.3: sundials matrix interfaces and vector implementations that can be used for each.

Matrix
Interface

Serial Parallel
(MPI)

OpenMP pThreads hypre
Vec.

petsc
Vec.

cuda raja User
Suppl.

Dense X X X X

Band X X X X

Sparse X X X X

SLUNRloc X X X X X X X

User supplied X X X X X X X X X

8.1.6 The generic SUNMatrix module implementation

The generic SUNMatrix type has been modeled after the object-oriented style of the generic N Vector

type. Specifically, a generic SUNMatrix is a pointer to a structure that has an implementation-
dependent content field containing the description and actual data of the matrix, and an ops field
pointing to a structure with generic matrix operations. The type SUNMatrix is defined as
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typedef struct _generic_SUNMatrix *SUNMatrix;

struct _generic_SUNMatrix {

void *content;

struct _generic_SUNMatrix_Ops *ops;

};

The generic SUNMatrix Ops structure is essentially a list of pointers to the various actual matrix
operations, and is defined as

struct _generic_SUNMatrix_Ops {

SUNMatrix_ID (*getid)(SUNMatrix);

SUNMatrix (*clone)(SUNMatrix);

void (*destroy)(SUNMatrix);

int (*zero)(SUNMatrix);

int (*copy)(SUNMatrix, SUNMatrix);

int (*scaleadd)(realtype, SUNMatrix, SUNMatrix);

int (*scaleaddi)(realtype, SUNMatrix);

int (*matvecsetup)(SUNMatrix)

int (*matvec)(SUNMatrix, N_Vector, N_Vector);

int (*space)(SUNMatrix, long int*, long int*);

};

The generic sunmatrix module defines and implements the matrix operations acting on SUNMatrix

objects. These routines are nothing but wrappers for the matrix operations defined by a particular
sunmatrix implementation, which are accessed through the ops field of the SUNMatrix structure. To
illustrate this point we show below the implementation of a typical matrix operation from the generic
sunmatrix module, namely SUNMatZero, which sets all values of a matrix A to zero, returning a flag
denoting a successful/failed operation:

int SUNMatZero(SUNMatrix A)

{

return((int) A->ops->zero(A));

}

Section 8.1.1 contains a complete list of all matrix operations defined by the generic sunmatrix
module.

The Fortran 2003 interface provides a bind(C) derived-type for the generic SUNMatrix and the
generic SUNMatrix Ops structures. Their definition is given below.

type, bind(C), public :: SUNMatrix

type(C_PTR), public :: content

type(C_PTR), public :: ops

end type SUNMatrix

type, bind(C), public :: SUNMatrix_Ops

type(C_FUNPTR), public :: getid

type(C_FUNPTR), public :: clone

type(C_FUNPTR), public :: destroy

type(C_FUNPTR), public :: zero

type(C_FUNPTR), public :: copy

type(C_FUNPTR), public :: scaleadd

type(C_FUNPTR), public :: scaleaddi

type(C_FUNPTR), public :: matvecsetup

type(C_FUNPTR), public :: matvec

type(C_FUNPTR), public :: space

end type SUNMatrix_Ops
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8.1.7 Implementing a custom SUNMatrix

A particular implementation of the sunmatrix module must:

• Specify the content field of the SUNMatrix object.

• Define and implement a minimal subset of the matrix operations. See the documentation for
each sundials solver to determine which sunmatrix operations they require.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one sunmatrix module (each with different SUNMatrix internal data
representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNMatrix with the new content field and with ops pointing to the new matrix operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
SUNMatrix (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros or functions as needed for that particular implementation
to access different parts of the content field of the newly defined SUNMatrix.

It is recommended that a user-supplied sunmatrix implementation use the SUNMATRIX CUSTOM

identifier.
To aid in the creation of custom sunmatrix modules the generic sunmatrix module provides two

utility functions SUNMatNewEmpty and SUNMatVCopyOps. When used in custom sunmatrix construc-
tors and clone routines these functions will ease the introduction of any new optional matrix operations
to the sunmatrix API by ensuring only required operations need to be set and all operations are
copied when cloning a matrix. These functions are desrcribed in Section 8.1.2.

8.2 SUNMatrix functions used by KINSOL

In Table 8.4 below, we list the matrix functions in the sunmatrix module used within the kinsol
package. The table also shows, for each function, which of the code modules uses the function. The
main kinsol integrator does not call any sunmatrix functions directly, so the table columns are
specific to the kinls interface and the kinbbdpre preconditioner module. We further note that the
kinls interface only utilizes these routines when supplied with a matrix-based linear solver, i.e., the
sunmatrix object passed to KINSetLinearSolver was not NULL.

At this point, we should emphasize that the kinsol user does not need to know anything about
the usage of matrix functions by the kinsol code modules in order to use kinsol. The information
is presented as an implementation detail for the interested reader.

Table 8.4: List of matrix functions usage by kinsol code modules

k
in
l
s

k
in
b
b
d
p
r
e

SUNMatGetID X
SUNMatDestroy X

SUNMatZero X X
SUNMatSpace †

The matrix functions listed in Section 8.1.1 with a † symbol are optionally used, in that these are
only called if they are implemented in the sunmatrix module that is being used (i.e. their function
pointers are non-NULL). The matrix functions listed in Section 8.1.1 that are not used by kinsol
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are: SUNMatCopy, SUNMatClone, SUNMatScaleAdd, SUNMatScaleAddI and SUNMatMatvec. Therefore
a user-supplied sunmatrix module for kinsol could omit these functions.

We note that the kinbbdpre preconditioner module is hard-coded to use the sundials-supplied
band sunmatrix type, so the most useful information above for user-supplied sunmatrix implemen-
tations is the column relating the kinls requirements.

8.3 The SUNMatrix Dense implementation

The dense implementation of the sunmatrix module provided with sundials, sunmatrix dense,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Dense {

sunindextype M;

sunindextype N;

realtype *data;

sunindextype ldata;

realtype **cols;

};

These entries of the content field contain the following information:
M - number of rows

N - number of columns

data - pointer to a contiguous block of realtype variables. The elements of the dense matrix are
stored columnwise, i.e. the (i,j)-th element of a dense sunmatrix A (with 0 ≤ i < M and 0 ≤
j < N) may be accessed via data[j*M+i].

ldata - length of the data array (= M·N).

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense sunmatrix A (with 0 ≤ i < M and 0 ≤ j < N)
may be accessed via cols[j][i].

The header file to include when using this module is sunmatrix/sunmatrix dense.h. The sunma-
trix dense module is accessible from all sundials solvers without linking to the
libsundials sunmatrixdense module library.

8.3.1 SUNMatrix Dense accessor macros

The following macros are provided to access the content of a sunmatrix dense matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix D

denotes that these are specific to the dense version.

• SM CONTENT D

This macro gives access to the contents of the dense SUNMatrix.

The assignment A cont = SM CONTENT D(A) sets A cont to be a pointer to the dense SUNMatrix

content structure.

Implementation:

#define SM_CONTENT_D(A) ( (SUNMatrixContent_Dense)(A->content) )

• SM ROWS D, SM COLUMNS D, and SM LDATA D

These macros give individual access to various lengths relevant to the content of a dense
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows

= SM ROWS D(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS D(A) = A cols sets the number of columns in A to equal A cols.
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Implementation:

#define SM_ROWS_D(A) ( SM_CONTENT_D(A)->M )

#define SM_COLUMNS_D(A) ( SM_CONTENT_D(A)->N )

#define SM_LDATA_D(A) ( SM_CONTENT_D(A)->ldata )

• SM DATA D and SM COLS D

These macros give access to the data and cols pointers for the matrix entries.

The assignment A data = SM DATA D(A) sets A data to be a pointer to the first component of
the data array for the dense SUNMatrix A. The assignment SM DATA D(A) = A data sets the data
array of A to be A data by storing the pointer A data.

Similarly, the assignment A cols = SM COLS D(A) sets A cols to be a pointer to the array of
column pointers for the dense SUNMatrix A. The assignment SM COLS D(A) = A cols sets the
column pointer array of A to be A cols by storing the pointer A cols.

Implementation:

#define SM_DATA_D(A) ( SM_CONTENT_D(A)->data )

#define SM_COLS_D(A) ( SM_CONTENT_D(A)->cols )

• SM COLUMN D and SM ELEMENT D

These macros give access to the individual columns and entries of the data array of a dense
SUNMatrix.

The assignment col j = SM COLUMN D(A,j) sets col j to be a pointer to the first entry of
the j-th column of the M × N dense matrix A (with 0 ≤ j < N). The type of the expression
SM COLUMN D(A,j) is realtype *. The pointer returned by the call SM COLUMN D(A,j) can be
treated as an array which is indexed from 0 to M− 1.

The assignments SM ELEMENT D(A,i,j) = a ij and a ij = SM ELEMENT D(A,i,j) reference the
(i,j)-th element of the M× N dense matrix A (with 0 ≤ i < M and 0 ≤ j < N).

Implementation:

#define SM_COLUMN_D(A,j) ( (SM_CONTENT_D(A)->cols)[j] )

#define SM_ELEMENT_D(A,i,j) ( (SM_CONTENT_D(A)->cols)[j][i] )

8.3.2 SUNMatrix Dense functions

The sunmatrix dense module defines dense implementations of all matrix operations listed in Sec-
tion 8.1.1. Their names are obtained from those in Section 8.1.1 by appending the suffix Dense

(e.g. SUNMatCopy Dense). All the standard matrix operations listed in Section 8.1.1 with the
suffix Dense appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g.
FSUNMatCopy Dense).

The module sunmatrix dense provides the following additional user-callable routines:

SUNDenseMatrix

Prototype SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N)

Description This constructor function creates and allocates memory for a dense SUNMatrix. Its
arguments are the number of rows, M, and columns, N, for the dense matrix.

F2003 Name This function is callable as FSUNDenseMatrix when using the Fortran 2003 interface
module.
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SUNDenseMatrix Print

Prototype void SUNDenseMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a dense SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNDenseMatrix Rows

Prototype sunindextype SUNDenseMatrix Rows(SUNMatrix A)

Description This function returns the number of rows in the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Rows when using the Fortran 2003 inter-
face module.

SUNDenseMatrix Columns

Prototype sunindextype SUNDenseMatrix Columns(SUNMatrix A)

Description This function returns the number of columns in the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Columns when using the Fortran 2003
interface module.

SUNDenseMatrix LData

Prototype sunindextype SUNDenseMatrix LData(SUNMatrix A)

Description This function returns the length of the data array for the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix LData when using the Fortran 2003 inter-
face module.

SUNDenseMatrix Data

Prototype realtype* SUNDenseMatrix Data(SUNMatrix A)

Description This function returns a pointer to the data array for the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Data when using the Fortran 2003 inter-
face module.

SUNDenseMatrix Cols

Prototype realtype** SUNDenseMatrix Cols(SUNMatrix A)

Description This function returns a pointer to the cols array for the dense SUNMatrix.

SUNDenseMatrix Column

Prototype realtype* SUNDenseMatrix Column(SUNMatrix A, sunindextype j)

Description This function returns a pointer to the first entry of the jth column of the dense SUNMatrix.
The resulting pointer should be indexed over the range 0 to M− 1.

F2003 Name This function is callable as FSUNDenseMatrix Column when using the Fortran 2003 in-
terface module.
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Notes

• When looping over the components of a dense SUNMatrix A, the most efficient approaches are
to:

– First obtain the component array via A data = SM DATA D(A) or
A data = SUNDenseMatrix Data(A) and then access A data[i] within the loop.

– First obtain the array of column pointers via A cols = SM COLS D(A) or
A cols = SUNDenseMatrix Cols(A), and then access A cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via
A colj = SUNDenseMatrix Column(A,j) and then to access the entries within that column
using A colj[i] within the loop.

All three of these are more efficient than using SM ELEMENT D(A,i,j) within a double loop.

• Within the SUNMatMatvec Dense routine, internal consistency checks are performed to ensure !

that the matrix is called with consistent nvector implementations. These are currently limited
to: nvector serial, nvector openmp, and nvector pthreads. As additional compatible
vector implementations are added to sundials, these will be included within this compatibility
check.

8.3.3 SUNMatrix Dense Fortran interfaces

The sunmatrix dense module provides a Fortran 2003 module as well as Fortran 77 style inter-
face functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunmatrix dense mod Fortran module defines interfaces to most sunmatrix dense C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNDenseMatrix is
interfaced as FSUNDenseMatrix.

The Fortran 2003 sunmatrix dense interface module can be accessed with the use statement,
i.e. use fsunmatrix dense mod, and linking to the library libsundials fsunmatrixdense mod.lib in
addition to the C library. For details on where the library and module file fsunmatrix dense mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunmatrixdense mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the sunmatrix dense module also includes the
Fortran-callable function FSUNDenseMatInit(code, M, N, ier) to initialize this sunmatrix dense
module for a given sundials solver. Here code is an integer input solver id (1 for cvode, 2 for ida,
3 for kinsol, 4 for arkode); M and N are the corresponding dense matrix construction arguments
(declared to match C type long int); and ier is an error return flag equal to 0 for success and -1
for failure. Both code and ier are declared to match C type int. Additionally, when using arkode
with a non-identity mass matrix, the Fortran-callable function FSUNDenseMassMatInit(M, N, ier)

initializes this sunmatrix dense module for storing the mass matrix.

8.4 The SUNMatrix Band implementation

The banded implementation of the sunmatrix module provided with sundials, sunmatrix band,
defines the content field of SUNMatrix to be the following structure:
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struct _SUNMatrixContent_Band {

sunindextype M;

sunindextype N;

sunindextype mu;

sunindextype ml;

sunindextype s_mu;

sunindextype ldim;

realtype *data;

sunindextype ldata;

realtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Figure 8.1. A more
complete description of the parts of this content field is given below:
M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 ≤ mu < N

ml - lower half-bandwidth, 0 ≤ ml < N

s mu - storage upper bandwidth, mu ≤ s mu < N. The LU decomposition routines in the associated
sunlinsol band and sunlinsol lapackband modules write the LU factors into the storage
for A. The upper triangular factor U, however, may have an upper bandwidth as big as min(N-
1,mu+ml) because of partial pivoting. The s mu field holds the upper half-bandwidth allocated
for A.

ldim - leading dimension (ldim ≥ s mu+ml+1)

data - pointer to a contiguous block of realtype variables. The elements of the banded matrix are
stored columnwise (i.e. columns are stored one on top of the other in memory). Only elements
within the specified half-bandwidths are stored. data is a pointer to ldata contiguous locations
which hold the elements within the band of A.

ldata - length of the data array (= ldim·N)

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the
j-th column. This pointer may be treated as an array indexed from s mu−mu (to access the
uppermost element within the band in the j-th column) to s mu+ml (to access the lowest
element within the band in the j-th column). Indices from 0 to s mu−mu−1 give access to extra
storage elements required by the LU decomposition function. Finally, cols[j][i-j+s mu] is
the (i, j)-th element with j−mu ≤ i ≤ j+ml.

The header file to include when using this module is sunmatrix/sunmatrix band.h. The sunma-
trix band module is accessible from all sundials solvers without linking to the
libsundials sunmatrixband module library.

8.4.1 SUNMatrix Band accessor macros

The following macros are provided to access the content of a sunmatrix band matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix B

denotes that these are specific to the banded version.

• SM CONTENT B

This routine gives access to the contents of the banded SUNMatrix.

The assignment A cont = SM CONTENT B(A) sets A cont to be a pointer to the banded SUNMatrix

content structure.

Implementation:

#define SM_CONTENT_B(A) ( (SUNMatrixContent_Band)(A->content) )
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size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

A

Figure 8.1: Diagram of the storage for the sunmatrix band module. Here A is an N × N band
matrix with upper and lower half-bandwidths mu and ml, respectively. The rows and columns of A are
numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The greyed out areas of
the underlying component storage are used by the associated sunlinsol band linear solver.
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• SM ROWS B, SM COLUMNS B, SM UBAND B, SM LBAND B, SM SUBAND B, SM LDIM B, and SM LDATA B

These macros give individual access to various lengths relevant to the content of a banded
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows

= SM ROWS B(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS B(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_B(A) ( SM_CONTENT_B(A)->M )

#define SM_COLUMNS_B(A) ( SM_CONTENT_B(A)->N )

#define SM_UBAND_B(A) ( SM_CONTENT_B(A)->mu )

#define SM_LBAND_B(A) ( SM_CONTENT_B(A)->ml )

#define SM_SUBAND_B(A) ( SM_CONTENT_B(A)->s_mu )

#define SM_LDIM_B(A) ( SM_CONTENT_B(A)->ldim )

#define SM_LDATA_B(A) ( SM_CONTENT_B(A)->ldata )

• SM DATA B and SM COLS B

These macros give access to the data and cols pointers for the matrix entries.

The assignment A data = SM DATA B(A) sets A data to be a pointer to the first component of
the data array for the banded SUNMatrix A. The assignment SM DATA B(A) = A data sets the
data array of A to be A data by storing the pointer A data.

Similarly, the assignment A cols = SM COLS B(A) sets A cols to be a pointer to the array of
column pointers for the banded SUNMatrix A. The assignment SM COLS B(A) = A cols sets the
column pointer array of A to be A cols by storing the pointer A cols.

Implementation:

#define SM_DATA_B(A) ( SM_CONTENT_B(A)->data )

#define SM_COLS_B(A) ( SM_CONTENT_B(A)->cols )

• SM COLUMN B, SM COLUMN ELEMENT B, and SM ELEMENT B

These macros give access to the individual columns and entries of the data array of a banded
SUNMatrix.

The assignments SM ELEMENT B(A,i,j) = a ij and a ij = SM ELEMENT B(A,i,j) reference the
(i,j)-th element of the N× N band matrix A, where 0 ≤ i, j ≤ N− 1. The location (i,j) should
further satisfy j−mu ≤ i ≤ j+ml.

The assignment col j = SM COLUMN B(A,j) sets col j to be a pointer to the diagonal element
of the j-th column of the N × N band matrix A, 0 ≤ j ≤ N − 1. The type of the expression
SM COLUMN B(A,j) is realtype *. The pointer returned by the call SM COLUMN B(A,j) can be
treated as an array which is indexed from −mu to ml.

The assignments SM COLUMN ELEMENT B(col j,i,j) = a ij and
a ij = SM COLUMN ELEMENT B(col j,i,j) reference the (i,j)-th entry of the band matrix A

when used in conjunction with SM COLUMN B to reference the j-th column through col j. The
index (i,j) should satisfy j−mu ≤ i ≤ j+ml.

Implementation:

#define SM_COLUMN_B(A,j) ( ((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A) )

#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_j[(i)-(j)])

#define SM_ELEMENT_B(A,i,j)

( (SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(A)] )
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8.4.2 SUNMatrix Band functions

The sunmatrix band module defines banded implementations of all matrix operations listed in
Section 8.1.1. Their names are obtained from those in Section 8.1.1 by appending the suffix Band (e.g.
SUNMatCopy Band). All the standard matrix operations listed in Section 8.1.1 with the suffix Band

appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g. FSUNMatCopy Band).

The module sunmatrix band provides the following additional user-callable routines:

SUNBandMatrix

Prototype SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu, sunindextype ml)

Description This constructor function creates and allocates memory for a banded SUNMatrix. Its
arguments are the matrix size, N, and the upper and lower half-bandwidths of the matrix,
mu and ml. The stored upper bandwidth is set to mu+ml to accommodate subsequent
factorization in the sunlinsol band and sunlinsol lapackband modules.

F2003 Name This function is callable as FSUNBandMatrix when using the Fortran 2003 interface
module.

SUNBandMatrixStorage

Prototype SUNMatrix SUNBandMatrixStorage(sunindextype N, sunindextype mu,

sunindextype ml, sunindextype smu)

Description This constructor function creates and allocates memory for a banded SUNMatrix. Its
arguments are the matrix size, N, the upper and lower half-bandwidths of the matrix,
mu and ml, and the stored upper bandwidth, smu. When creating a band SUNMatrix,
this value should be

• at least min(N-1,mu+ml) if the matrix will be used by the sunlinsol band module;

• exactly equal to mu+ml if the matrix will be used by the sunlinsol lapackband
module;

• at least mu if used in some other manner.

Note: it is strongly recommended that users call the default constructor, SUNBandMatrix,
in all standard use cases. This advanced constructor is used internally within sundials
solvers, and is provided to users who require banded matrices for non-default purposes.

SUNBandMatrix Print

Prototype void SUNBandMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a banded SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNBandMatrix Rows

Prototype sunindextype SUNBandMatrix Rows(SUNMatrix A)

Description This function returns the number of rows in the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix Rows when using the Fortran 2003 interface
module.
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SUNBandMatrix Columns

Prototype sunindextype SUNBandMatrix Columns(SUNMatrix A)

Description This function returns the number of columns in the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix Columns when using the Fortran 2003 in-
terface module.

SUNBandMatrix LowerBandwidth

Prototype sunindextype SUNBandMatrix LowerBandwidth(SUNMatrix A)

Description This function returns the lower half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix LowerBandwidth when using the Fortran
2003 interface module.

SUNBandMatrix UpperBandwidth

Prototype sunindextype SUNBandMatrix UpperBandwidth(SUNMatrix A)

Description This function returns the upper half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix UpperBandwidth when using the Fortran
2003 interface module.

SUNBandMatrix StoredUpperBandwidth

Prototype sunindextype SUNBandMatrix StoredUpperBandwidth(SUNMatrix A)

Description This function returns the stored upper half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix StoredUpperBandwidth when using the
Fortran 2003 interface module.

SUNBandMatrix LDim

Prototype sunindextype SUNBandMatrix LDim(SUNMatrix A)

Description This function returns the length of the leading dimension of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix LDim when using the Fortran 2003 interface
module.

SUNBandMatrix Data

Prototype realtype* SUNBandMatrix Data(SUNMatrix A)

Description This function returns a pointer to the data array for the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix Data when using the Fortran 2003 interface
module.

SUNBandMatrix Cols

Prototype realtype** SUNBandMatrix Cols(SUNMatrix A)

Description This function returns a pointer to the cols array for the banded SUNMatrix.
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SUNBandMatrix Column

Prototype realtype* SUNBandMatrix Column(SUNMatrix A, sunindextype j)

Description This function returns a pointer to the diagonal entry of the j-th column of the banded
SUNMatrix. The resulting pointer should be indexed over the range −mu to ml.

F2003 Name This function is callable as FSUNBandMatrix Column when using the Fortran 2003 inter-
face module.

Notes

• When looping over the components of a banded SUNMatrix A, the most efficient approaches are
to:

– First obtain the component array via A data = SM DATA B(A) or
A data = SUNBandMatrix Data(A) and then access A data[i] within the loop.

– First obtain the array of column pointers via A cols = SM COLS B(A) or
A cols = SUNBandMatrix Cols(A), and then access A cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via
A colj = SUNBandMatrix Column(A,j) and then to access the entries within that column
using SM COLUMN ELEMENT B(A colj,i,j).

All three of these are more efficient than using SM ELEMENT B(A,i,j) within a double loop.

• Within the SUNMatMatvec Band routine, internal consistency checks are performed to ensure !

that the matrix is called with consistent nvector implementations. These are currently limited
to: nvector serial, nvector openmp, and nvector pthreads. As additional compatible
vector implementations are added to sundials, these will be included within this compatibility
check.

8.4.3 SUNMatrix Band Fortran interfaces

The sunmatrix band module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunmatrix band mod Fortran module defines interfaces to most sunmatrix band C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNBandMatrix is
interfaced as FSUNBandMatrix.

The Fortran 2003 sunmatrix band interface module can be accessed with the use statement,
i.e. use fsunmatrix band mod, and linking to the library libsundials fsunmatrixband mod.lib in
addition to the C library. For details on where the library and module file fsunmatrix band mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunmatrixband mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the sunmatrix band module also includes
the Fortran-callable function FSUNBandMatInit(code, N, mu, ml, ier) to initialize this sunma-
trix band module for a given sundials solver. Here code is an integer input solver id (1 for cvode,
2 for ida, 3 for kinsol, 4 for arkode); N, mu, and ml are the corresponding band matrix construction
arguments (declared to match C type long int); and ier is an error return flag equal to 0 for success
and -1 for failure. Both code and ier are declared to match C type int. Additionally, when using
arkode with a non-identity mass matrix, the Fortran-callable function FSUNBandMassMatInit(N,

mu, ml, ier) initializes this sunmatrix band module for storing the mass matrix.
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8.5 The SUNMatrix Sparse implementation

The sparse implementation of the sunmatrix module provided with sundials, sunmatrix sparse,
is designed to work with either compressed-sparse-column (CSC) or compressed-sparse-row (CSR)
sparse matrix formats. To this end, it defines the content field of SUNMatrix to be the following
structure:

struct _SUNMatrixContent_Sparse {

sunindextype M;

sunindextype N;

sunindextype NNZ;

sunindextype NP;

realtype *data;

int sparsetype;

sunindextype *indexvals;

sunindextype *indexptrs;

/* CSC indices */

sunindextype **rowvals;

sunindextype **colptrs;

/* CSR indices */

sunindextype **colvals;

sunindextype **rowptrs;

};

A diagram of the underlying data representation for a CSC matrix is shown in Figure 8.2 (the CSR
format is similar). A more complete description of the parts of this content field is given below:
M - number of rows

N - number of columns

NNZ - maximum number of nonzero entries in the matrix (allocated length of data and
indexvals arrays)

NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC
matrices NP = N, and for CSR matrices NP = M. This value is set automatically based
the input for sparsetype.

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the
values of the nonzero entries in the matrix

sparsetype - type of the sparse matrix (CSC MAT or CSR MAT)

indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices
(if CSC) or column indices (if CSR) of each nonzero matrix entry held in data

indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each
entry provides the index of the first column entry into the data and indexvals arrays,
e.g. if indexptr[3]=7, then the first nonzero entry in the fourth column of the matrix
is located in data[7], and is located in row indexvals[7] of the matrix. The last entry
contains the total number of nonzero values in the matrix and hence points one past the
end of the active data in the data and indexvals arrays. For CSR matrices, each entry
provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the SlsMat type for user convenience, to provide a more intuitive
interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating
a sparse sunmatrix, based on the sparse matrix storage type.
rowvals - pointer to indexvals when sparsetype is CSC MAT, otherwise set to NULL.

colptrs - pointer to indexptrs when sparsetype is CSC MAT, otherwise set to NULL.

colvals - pointer to indexvals when sparsetype is CSR MAT, otherwise set to NULL.

rowptrs - pointer to indexptrs when sparsetype is CSR MAT, otherwise set to NULL.
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For example, the 5× 4 CSC matrix 
0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5


could be stored in this structure as either

M = 5;

N = 4;

NNZ = 8;

NP = N;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};

sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4};

indexptrs = {0, 2, 4, 5, 8};

or

M = 5;

N = 4;

NNZ = 10;

NP = N;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};

sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};

indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with
* may contain any values). Note in both cases that the final value in indexptrs is 8, indicating the
total number of nonzero entries in the matrix.

Similarly, in CSR format, the same matrix could be stored as

M = 5;

N = 4;

NNZ = 8;

NP = M;

data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};

sparsetype = CSR_MAT;

indexvals = {1, 2, 0, 3, 1, 0, 3, 3};

indexptrs = {0, 2, 4, 5, 7, 8};

The header file to include when using this module is sunmatrix/sunmatrix sparse.h. The sunma-
trix sparse module is accessible from all sundials solvers without linking to the
libsundials sunmatrixsparse module library.

8.5.1 SUNMatrix Sparse accessor macros

The following macros are provided to access the content of a sunmatrix sparse matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix S

denotes that these are specific to the sparse version.

• SM CONTENT S

This routine gives access to the contents of the sparse SUNMatrix.

The assignment A cont = SM CONTENT S(A) sets A cont to be a pointer to the sparse SUNMatrix
content structure.
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data

k

nz

0

j column 0

unused
storage

rowvals colptrs

indexvals indexptrs

colvals rowptrs

NULL NULL

A(*rowvals[j],1)

A(*rowvals[1],0)

A(*rowvals[0],0)

A(*rowvals[k],NP−1)

A(*rowvals[nz−1],NP−1)

column NP−1

NNZ

M

sparsetype=CSC_MAT

NNP = N
A

Figure 8.2: Diagram of the storage for a compressed-sparse-column matrix. Here A is an M× N sparse
matrix with storage for up to NNZ nonzero entries (the allocated length of both data and indexvals).
The entries in indexvals may assume values from 0 to M− 1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the
row i, column j entry of A (again, zero-based) denoted as A(i,j). The indexptrs array contains N+1
entries; the first N denote the starting index of each column within the indexvals and data arrays,
while the final entry points one past the final nonzero entry. Here, although NNZ values are allocated,
only nz are actually filled in; the greyed-out portions of data and indexvals indicate extra allocated
space.
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Implementation:

#define SM_CONTENT_S(A) ( (SUNMatrixContent_Sparse)(A->content) )

• SM ROWS S, SM COLUMNS S, SM NNZ S, SM NP S, and SM SPARSETYPE S

These macros give individual access to various lengths relevant to the content of a sparse
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows

= SM ROWS S(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS S(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_S(A) ( SM_CONTENT_S(A)->M )

#define SM_COLUMNS_S(A) ( SM_CONTENT_S(A)->N )

#define SM_NNZ_S(A) ( SM_CONTENT_S(A)->NNZ )

#define SM_NP_S(A) ( SM_CONTENT_S(A)->NP )

#define SM_SPARSETYPE_S(A) ( SM_CONTENT_S(A)->sparsetype )

• SM DATA S, SM INDEXVALS S, and SM INDEXPTRS S

These macros give access to the data and index arrays for the matrix entries.

The assignment A data = SM DATA S(A) sets A data to be a pointer to the first component of
the data array for the sparse SUNMatrix A. The assignment SM DATA S(A) = A data sets the
data array of A to be A data by storing the pointer A data.

Similarly, the assignment A indexvals = SM INDEXVALS S(A) sets A indexvals to be a pointer
to the array of index values (i.e. row indices for a CSC matrix, or column indices for a CSR
matrix) for the sparse SUNMatrix A. The assignment A indexptrs = SM INDEXPTRS S(A) sets
A indexptrs to be a pointer to the array of index pointers (i.e. the starting indices in the
data/indexvals arrays for each row or column in CSR or CSC formats, respectively).

Implementation:

#define SM_DATA_S(A) ( SM_CONTENT_S(A)->data )

#define SM_INDEXVALS_S(A) ( SM_CONTENT_S(A)->indexvals )

#define SM_INDEXPTRS_S(A) ( SM_CONTENT_S(A)->indexptrs )

8.5.2 SUNMatrix Sparse functions

The sunmatrix sparse module defines sparse implementations of all matrix operations listed in Sec-
tion 8.1.1. Their names are obtained from those in Section 8.1.1 by appending the suffix Sparse

(e.g. SUNMatCopy Sparse). All the standard matrix operations listed in Section 8.1.1 with the
suffix Sparse appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g.
FSUNMatCopy Sparse).

The module sunmatrix sparse provides the following additional user-callable routines:

SUNSparseMatrix

Prototype SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N,

sunindextype NNZ, int sparsetype)

Description This function creates and allocates memory for a sparse SUNMatrix. Its arguments
are the number of rows and columns of the matrix, M and N, the maximum number of
nonzeros to be stored in the matrix, NNZ, and a flag sparsetype indicating whether to
use CSR or CSC format (valid arguments are CSR MAT or CSC MAT).

F2003 Name This function is callable as FSUNSparseMatrix when using the Fortran 2003 interface
module.



208 Description of the SUNMatrix module

SUNSparseFromDenseMatrix

Prototype SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, realtype droptol,

int sparsetype);

Description This function creates a new sparse matrix from an existing dense matrix by copying all
values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX DENSE;

• droptol must be non-negative;

• sparsetype must be either CSC MAT or CSR MAT.

The function returns NULL if any requirements are violated, or if the matrix storage
request cannot be satisfied.

F2003 Name This function is callable as FSUNSparseFromDenseMatrix when using the Fortran 2003
interface module.

SUNSparseFromBandMatrix

Prototype SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, realtype droptol,

int sparsetype);

Description This function creates a new sparse matrix from an existing band matrix by copying all
values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX BAND;

• droptol must be non-negative;

• sparsetype must be either CSC MAT or CSR MAT.

The function returns NULL if any requirements are violated, or if the matrix storage
request cannot be satisfied.

F2003 Name This function is callable as FSUNSparseFromBandMatrix when using the Fortran 2003
interface module.

SUNSparseMatrix Realloc

Prototype int SUNSparseMatrix Realloc(SUNMatrix A)

Description This function reallocates internal storage arrays in a sparse matrix so that the resulting
sparse matrix has no wasted space (i.e. the space allocated for nonzero entries equals
the actual number of nonzeros, indexptrs[NP]). Returns 0 on success and 1 on failure
(e.g. if the input matrix is not sparse).

F2003 Name This function is callable as FSUNSparseMatrix Realloc when using the Fortran 2003
interface module.

SUNSparseMatrix Reallocate

Prototype int SUNSparseMatrix Reallocate(SUNMatrix A, sunindextype NNZ)

Description This function reallocates internal storage arrays in a sparse matrix so that the resulting
sparse matrix has storage for a specified number of nonzeros. Returns 0 on success and
1 on failure (e.g. if the input matrix is not sparse or if NNZ is negative).

F2003 Name This function is callable as FSUNSparseMatrix Reallocate when using the Fortran 2003
interface module.
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SUNSparseMatrix Print

Prototype void SUNSparseMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a sparse SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNSparseMatrix Rows

Prototype sunindextype SUNSparseMatrix Rows(SUNMatrix A)

Description This function returns the number of rows in the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix Rows when using the Fortran 2003 inter-
face module.

SUNSparseMatrix Columns

Prototype sunindextype SUNSparseMatrix Columns(SUNMatrix A)

Description This function returns the number of columns in the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix Columns when using the Fortran 2003
interface module.

SUNSparseMatrix NNZ

Prototype sunindextype SUNSparseMatrix NNZ(SUNMatrix A)

Description This function returns the number of entries allocated for nonzero storage for the sparse
matrix SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix NNZ when using the Fortran 2003 inter-
face module.

SUNSparseMatrix NP

Prototype sunindextype SUNSparseMatrix NP(SUNMatrix A)

Description This function returns the number of columns/rows for the sparse SUNMatrix, depending
on whether the matrix uses CSC/CSR format, respectively. The indexptrs array has
NP+1 entries.

F2003 Name This function is callable as FSUNSparseMatrix NP when using the Fortran 2003 interface
module.

SUNSparseMatrix SparseType

Prototype int SUNSparseMatrix SparseType(SUNMatrix A)

Description This function returns the storage type (CSR MAT or CSC MAT) for the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix SparseType when using the Fortran 2003
interface module.

SUNSparseMatrix Data

Prototype realtype* SUNSparseMatrix Data(SUNMatrix A)

Description This function returns a pointer to the data array for the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix Data when using the Fortran 2003 inter-
face module.



210 Description of the SUNMatrix module

SUNSparseMatrix IndexValues

Prototype sunindextype* SUNSparseMatrix IndexValues(SUNMatrix A)

Description This function returns a pointer to index value array for the sparse SUNMatrix: for CSR
format this is the column index for each nonzero entry, for CSC format this is the row
index for each nonzero entry.

F2003 Name This function is callable as FSUNSparseMatrix IndexValues when using the Fortran
2003 interface module.

SUNSparseMatrix IndexPointers

Prototype sunindextype* SUNSparseMatrix IndexPointers(SUNMatrix A)

Description This function returns a pointer to the index pointer array for the sparse SUNMatrix:
for CSR format this is the location of the first entry of each row in the data and
indexvalues arrays, for CSC format this is the location of the first entry of each column.

F2003 Name This function is callable as FSUNSparseMatrix IndexPointers when using the Fortran
2003 interface module.

Within the SUNMatMatvec Sparse routine, internal consistency checks are performed to ensure that!

the matrix is called with consistent nvector implementations. These are currently limited to: nvec-
tor serial, nvector openmp, nvector pthreads, and nvector cuda when using managed
memory. As additional compatible vector implementations are added to sundials, these will be
included within this compatibility check.

8.5.3 SUNMatrix Sparse Fortran interfaces

The sunmatrix sparse module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunmatrix sparse mod Fortran module defines interfaces to most sunmatrix sparse C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNSparseMatrix is
interfaced as FSUNSparseMatrix.

The Fortran 2003 sunmatrix sparse interface module can be accessed with the use statement,
i.e. use fsunmatrix sparse mod, and linking to the library libsundials fsunmatrixsparse mod.lib
in addition to the C library. For details on where the library and module file fsunmatrix sparse mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunmatrixsparse mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the sunmatrix sparse module also includes
the Fortran-callable function FSUNSparseMatInit(code, M, N, NNZ, sparsetype, ier) to initial-
ize this sunmatrix sparse module for a given sundials solver. Here code is an integer input for the
solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); M, N and NNZ are the corresponding
sparse matrix construction arguments (declared to match C type long int); sparsetype is an integer
flag indicating the sparse storage type (0 for CSC, 1 for CSR); and ier is an error return flag equal to
0 for success and -1 for failure. Each of code, sparsetype and ier are declared so as to match C type
int. Additionally, when using arkode with a non-identity mass matrix, the Fortran-callable function
FSUNSparseMassMatInit(M, N, NNZ, sparsetype, ier) initializes this sunmatrix sparse mod-
ule for storing the mass matrix.
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8.6 The SUNMatrix SLUNRloc implementation

The sunmatrix slunrloc implementation of the sunmatrix module provided with sundials is an
adapter for the SuperMatrix structure provided by the SuperLU DIST sparse matrix factorization
and solver library written by X. Sherry Li [8, 24, 32, 33]. It is designed to be used with the sunlin-
sol superludist linear solver discussed in Section 9.10. To this end, it defines the content field of
SUNMatrix to be the following structure:

struct _SUNMatrixContent_SLUNRloc {

booleantype own_data;

gridinfo_t *grid;

sunindextype *row_to_proc;

pdgsmv_comm_t *gsmv_comm;

SuperMatrix *A_super;

SuperMatrix *ACS_super;

};

A more complete description of the this content field is given below:

own data - a flag which indicates if the SUNMatrix is responsible for freeing A super

grid - pointer to the SuperLU DIST structure that stores the 2D process grid

row to proc - a mapping between the rows in the matrix and the process it resides on; will be NULL

until the SUNMatMatvecSetup routine is called

gsmv comm - pointer to the SuperLU DIST structure that stores the communication information
needed for matrix-vector multiplication; will be NULL until the SUNMatMatvecSetup routine is
called

A super - pointer to the underlying SuperLU DIST SuperMatrix with Stype = SLU NR loc, Dtype

= SLU D, Mtype = SLU GE; must have the full diagonal present to be used with SUNMatScaleAddI

routine

ACS super - a column-sorted version of the matrix needed to perform matrix-vector multiplication;
will be NULL until the routine SUNMatMatvecSetup routine is called

The header file to include when using this module is sunmatrix/sunmatrix slunrloc.h. The installed
module library to link to is libsundials sunmatrixslunrloc.lib where .lib is typically .so for
shared libraries and .a for static libraries.

8.6.1 SUNMatrix SLUNRloc functions

The module sunmatrix slunrloc provides the following user-callable routines:

SUNMatrix SLUNRloc

Call A = SUNMatrix SLUNRloc(Asuper, grid);

Description The function SUNMatrix SLUNRloc creates and allocates memory for a sunmatrix slunrloc
object.

Arguments Asuper (SuperMatrix*) a fully-allocated SuperLU DIST SuperMatrix that the SUN-
Matrix will wrap; must have Stype = SLU NR loc, Dtype = SLU D, Mtype = SLU GE

to be compatible

grid (gridinfo t*) the initialized SuperLU DIST 2D process grid structure

Return value a SUNMatrix object if Asuper is compatible else NULL

Notes
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SUNMatrix SLUNRloc Print

Call SUNMatrix SLUNRloc Print(A, fp);

Description The function SUNMatrix SLUNRloc Print prints the underlying SuperMatrix content.

Arguments A (SUNMatrix) the matrix to print

fp (FILE) the file pointer used for printing

Return value void

Notes

SUNMatrix SLUNRloc SuperMatrix

Call Asuper = SUNMatrix SLUNRloc SuperMatrix(A);

Description The function SUNMatrix SLUNRloc SuperMatrix provides access to the underlying Su-
perLU DIST SuperMatrix of A.

Arguments A (SUNMatrix) the matrix to access

Return value SuperMatrix*

Notes

SUNMatrix SLUNRloc ProcessGrid

Call grid = SUNMatrix SLUNRloc ProcessGrid(A);

Description The function SUNMatrix SLUNRloc ProcessGrid provides access to the SuperLU DIST
gridinfo t structure associated with A.

Arguments A (SUNMatrix) the matrix to access

Return value gridinfo t*

Notes

SUNMatrix SLUNRloc OwnData

Call does own data = SUNMatrix SLUNRloc OwnData(A);

Description The function SUNMatrix SLUNRloc OwnData returns true if the SUNMatrix object is
responsible for freeing A super, otherwise it returns false.

Arguments A (SUNMatrix) the matrix to access

Return value booleantype

Notes

The sunmatrix slunrloc module defines implementations of all generic SUNMatrix operations
listed in Section 8.1.1:

• SUNMatGetID SLUNRloc - returns SUNMATRIX SLUNRLOC

• SUNMatClone SLUNRloc

• SUNMatDestroy SLUNRloc

• SUNMatSpace SLUNRloc - this only returns information for the storage within the matrix inter-
face, i.e. storage for row to proc

• SUNMatZero SLUNRloc

• SUNMatCopy SLUNRloc
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• SUNMatScaleAdd SLUNRloc - performs A = cA+ B, but A and B must have the same sparsity
pattern

• SUNMatScaleAddI SLUNRloc - performs A = cA+ I, but the diagonal of A must be present

• SUNMatMatvecSetup SLUNRloc - initializes the SuperLU DIST parallel communication struc-
tures needed to perform a matrix-vector product; only needs to be called before the first call to
SUNMatMatvec or if the matrix changed since the last setup

• SUNMatMatvec SLUNRloc

The sunmatrix slunrloc module requires that the complete diagonal, i.e. nonzeros and zeros, !

is present in order to use the SUNMatScaleAddI operation.

8.7 The SUNMatrix cuSparse implementation

The SUNMATRIX CUSPARSE implementation of the SUNMatrix module provided with sundials, is an
interface to the NVIDIA cuSPARSE matrix for use on NVIDIA GPUs [7]. All data stored by this
matrix implementation resides on the GPU at all times. The implementation currently supports
the cuSPARSE CSR matrix format described in the cuSPARSE documentation as well as a unique
low-storage format for block-diagonal matrices of the form

A =


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · An−1


where all the block matrices Aj share the same sparsity pattern. We will refer to this format as BCSR
(not to be confused with the canonical BSR format where each block is stored as dense). In this format,
the CSR column indices and row pointers are only stored for the first block and are computed only
as necessary for other blocks. This can drastically reduce the amount of storage required compared
to the regular CSR format when there is a large number of blocks. This format is well-suited for, and
intended to be used with the SUNLinearSolver cuSolverSp batchQR linear solver (see Section 9.12).

The header file to include when using this module is sunmatrix/sunmatrix cusparse.h. The
installed library to link to is libsundials sunmatrixcusparse.lib where .lib is typically .so for
shared libraries and .a for static libraries.

The SUNMatrix cuSparse module is experimental and subject to change. !

8.7.1 SUNMatrix cuSparse functions

The SUNMATRIX CUSPARSE module defines GPU-enabled sparse implementations of all matrix opera-
tions listed in Section 8.1.1 except for the SUNMatSpace and SUNMatMatvecSetup operations:

1. SUNMatGetID cuSparse – returns SUNMATRIX CUSPARSE

2. SUNMatClone cuSparse

3. SUNMatDestroy cuSparse

4. SUNMatZero cuSparse

5. SUNMatCopy cuSparse

6. SUNMatScaleAdd cuSparse – performs A = cA+B, where A and B must have the same sparsity
pattern
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7. SUNMatScaleAddI cuSparse – performs A = cA+ I, where the diagonal of A must be present

8. SUNMatMatvec cuSparse

In addition, the SUNMATRIX CUSPARSE module defines the following implementation specific
functions:

SUNMatrix cuSparse NewCSR

Call A = SUNMatrix cuSparse NewCSR(M, N, NNZ, cusp)

Description This constructor function creates and allocates memory for a SUNMATRIX CUSPARSE

SUNMatrix that uses the CSR storage format.

Arguments M (int) the number of matrix rows

N (int) the number of matrix columns

NNZ (int) the number of matrix nonzeros

cusp (cusparseHandle t) a valid cusparseHandle t

Return value a SUNMatrix object if successful else NULL

SUNMatrix cuSparse NewBlockCSR

Call A = SUNMatrix cuSparse NewBlockCSR(nblocks, blockrows, blockcols, blocknnz,

cusp)

Description This constructor function creates and allocates memory for a SUNMATRIX CUSPARSE

SUNMatrix that leverages the SUNMAT CUSPARSE BCSR storage format to store a block
diagonal matrix where each block shares the same sparsity pattern. The blocks must
be square.

Arguments nblocks (int) the number of matrix blocks

blockrows (int) the number of rows for a block

blockcols (int) the number of columns for a block

blocknnz (int) the number of nonzeros in a block

cusp a valid cusparseHandle t

Return value a SUNMatrix object if successful else NULL

Notes The SUNMAT CUSPARSE BCSR format currently only supports square matrices.

SUNMatrix cuSparse MakeCSR

Call A = SUNMatrix cuSparse MakeCSR(mat descr, M, N, NNZ, rowptrs, colind, data,

cusp)

Description This constructor function creates and allocates memory for a SUNMATRIX CUSPARSE

SUNMatrix that uses the CSR storage format from the user provided pointers.

Arguments mat decsr a valid cusparseMatDescr t object; must use CUSPARSE INDEX BASE ZERO

indexing

M (int) the number of matrix rows

N (int) the number of matrix columns

NNZ (int) the number of matrix nonzeros

rowptrs (int*)a contiguous array of the CSR row pointers

colind (int*) a contiguous array of the CSR column indices

data (realtype*) a contiguous array of the nonzero data

cusp (cusparseHandle t) a valid cusparseHandle t

Return value a SUNMatrix object if successful else NULL
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SUNMatrix cuSparse Rows

Call M = SUNMatrix cuSparse Rows(A)

Description This function returns the number of rows in the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of rows in the sparse SUNMatrix

SUNMatrix cuSparse Columns

Call N = SUNMatrix cuSparse Columns(A)

Description This function returns the number of columns in the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of columns in the sparse SUNMatrix

SUNMatrix cuSparse NNZ

Call nnz = SUNMatrix cuSparse NNZ(A)

Description This function returns the number of nonzeros in the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of nonzeros in the sparse SUNMatrix

SUNMatrix cuSparse SparseType

Call type = SUNMatrix cuSparse SparseType(A)

Description This function returns the sparsity format for the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the SUNMAT CUSPARSE CSR or SUNMAT CUSPARSE BCSR sparsity formats

SUNMatrix cuSparse IndexValues

Call colind = SUNMatrix cuSparse IndexValues(A)

Description This function returns a pointer to the index value array for the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value for the CSR format this is an array of the column indices for each nonzero entry. For
the BCSR format this is an array of the column indices for each nonzero entry in the
first block only.

SUNMatrix cuSparse IndexPointers

Call rowptrs = SUNMatrix cuSparse IndexPointers(A)

Description This function returns a pointer to the index pointers array for the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value for the CSR format this is an array of the locations of the first entry of each row in the
data and indexvalues arrays, for the BCSR format this is an array of the locations of
each row in the data and indexvalues arrays in the first block only.
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SUNMatrix cuSparse NumBlocks

Call nblocks = SUNMatrix cuSparse NumBlocks(A)

Description This function returns the number of blocks in the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of matrix blocks

SUNMatrix cuSparse BlockRows

Call blockrows = SUNMatrix cuSparse BlockRows(A)

Description This function returns the number of rows of a block of the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of rows of a block

SUNMatrix cuSparse BlockColumns

Call blockrows = SUNMatrix cuSparse BlockColumns(A)

Description This function returns the number of columns of a block of the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of columns of a block

SUNMatrix cuSparse BlockNNZ

Call blockdim = SUNMatrix cuSparse BlockNNZ(A)

Description This function returns the nonzeros of a block of the sparse SUNMatrix.

Arguments A (SUNMatrix)

Return value the number of nonzeros of a block

SUNMatrix cuSparse BlockData

Call nzdata = SUNMatrix cuSparse BlockData(A, blockidx)

Description This function returns a pointer to the start of the nonzero values in the data array for
given block index. The first block in the SUNMatrix is index 0, the second block is index
1, and so on.

Arguments A (SUNMatrix)

blockidx (int) the index of the desired block

Return value a pointer to the start of the nonzero values in the data array for given block index

SUNMatrix cuSparse CopyToDevice

Call retval = SUNMatrix cuSparse CopyToDevice(A, h data, h idxptrs, h idxvals)

Description This functions copies the matrix information to the GPU device from the provided host
arrays. A user may provide NULL for any of h data, h idxptrs, or h idxvals to avoid
copying that information.

Arguments A (SUNMatrix)

h data (realtype*) a pointer to an allocated array of at least SUNMatrix cuSparse NNZ(A)

* sizeof(realtype) bytes; the nonzero values will be copied from this array
onto the device
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h idxptrs (int*) a pointer to an allocated array of at least (SUNMatrix cuSparse BlockDim(A)+1)

* sizeof(int) bytes; the index pointers will be copied from this array onto
the device

h idxvals (int*) a pointer to an allocated array of at least SUNMatrix cuSparse BlockNNZ(A)

* sizeof(int) bytes; the index values will be copied from this array onto
the device

Return value SUNMAT SUCCESS if the copy operation(s) were successful, or a nonzero error code oth-
erwise.

SUNMatrix cuSparse CopyFromDevice

Call retval = SUNMatrix cuSparse CopyFromDevice(A, h data, h idxptrs, h idxvals)

Description This functions copies the matrix information from the GPU device to the provided host
arrays. A user may provide NULL for any of h data, h idxptrs, or h idxvals to avoid
copying that information.

Arguments A (SUNMatrix)

h data (realtype*) a pointer to an allocated array of at least SUNMatrix cuSparse NNZ(A)

* sizeof(realtype) bytes; the nonzero values will be copied into this array
from the device

h idxptrs (int*) a pointer to an allocated array of at least (SUNMatrix cuSparse BlockDim(A)+1)

* sizeof(int) bytes; the index pointers will be copied into this array from
the device

h idxvals (int*) a pointer to an allocated array of at least SUNMatrix cuSparse BlockNNZ(A)

* sizeof(int) bytes; the index values will be copied into this array from
the device

Return value SUNMAT SUCCESS if the copy operation(s) were successful, or a nonzero error code oth-
erwise.

SUNMatrix cuSparse SetKernelExecPolicy

Call retval = SUNMatrix cuSparse SetKernelExecPolicy(A, exec policy);

Description This function sets the execution policies which control the kernel parameters utilized
when launching the CUDA kernels. By default the matrix is setup to use a policy which
tries to leverage the structure of the matrix. See section 7.9.2 for more information
about the SUNCudaExecPolicy class.

Arguments A (SUNMatrix)

exec policy (SUNCudaExecPolicy*)

Return value SUNMAT SUCCESS if the operation(s) were successful, or a nonzero error code otherwise.

Notes All matrices and vector used in a single instance of a sundials solver must use the
same cuda stream, and the cuda stream must be set prior to solver initialization.

SUNMatrix cuSparse SetFixedPattern

Call retval = SUNMatrix cuSparse SetFixedPattern(A, yesno)

Description This function changes the behavior of the the SUNMatZero operation on the SUNMatrix

object A. By default the matrix sparsity pattern is not considered to be fixed, thus,
the SUNMatZero operation zeros out all data array as well as the indexvalues and
indexpointers arrays. Providing a value of 1 or SUNTRUE for the yesno argument
changes the behavior of SUNMatZero on A so that only the data is zeroed out, but not
the indexvalues or indexpointers arrays. Providing a value of 0 or SUNFALSE for the
yesno argument is equivalent to the default behavior.
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Arguments A (SUNMatrix)

yesno (booleantype)

Return value SUNMAT SUCCESS if the operation(s) were successful, or a nonzero error code otherwise.

8.7.2 SUNMatrix cuSparse Usage Notes

The SUNMATRIX CUSPARSE module only supports 32-bit indexing, thus sundials must be built for
32-bit indexing to use this module.

The SUNMATRIX CUSPARSE module can be used with CUDA streams by calling the cuSPARSE func-
tion cusparseSetStream on the the cusparseHandle t that is provided to the SUNMATRIX CUSPARSE

constructor.
When using the SUNMATRIX CUSPARSE module with a sundials package (e.g. cvode), the stream!

given to cuSPARSE should be the same stream used for the nvector object that is provided to the
package, and the nvector object given to the SUNMatvec operation. If different streams are utilized,
synchronization issues may occur.

8.8 The SUNMATRIX MAGMADENSE implementation

The SUNMATRIX MAGMADENSE implementation of the sundials SUNMatrix API interfaces to the MAGMA
() linear algebra library, and can target NVIDIA’s CUDA programming model or AMD’s HIP pro-
gramming model [39]. All data stored by this matrix implementation resides on the GPU at all times.
The implementation currently supports a standard LAPACK column-major storage format as well as
a low-storage format for block-diagonal matrices

A =


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · An−1

 .
This matrix implementation is best paired with the SUNLINEARSOLVER MAGMADENSE SUNLinearSolver.

The header file to include when using this module is sunmatrix/sunmatrix magmadense.h. The
installed library to link to is libsundials sunmatrixmagmadense.lib where .lib is typically .so

for shared libraries and .a for static libraries.

The SUNMATRIX MAGMADENSE module is experimental and subject to change.!

8.8.1 SUNMATRIX MAGMADENSE functions

The SUNMATRIX MAGMADENSE module defines GPU-enabled implementations of all matrix operations
listed in Section 8.1.1.

1. SUNMatGetID MagmaDense – returns SUNMATRIX MAGMADENSE

2. SUNMatClone MagmaDense

3. SUNMatDestroy MagmaDense

4. SUNMatZero MagmaDense

5. SUNMatCopy MagmaDense

6. SUNMatScaleAdd MagmaDense

7. SUNMatScaleAddI MagmaDense

8. SUNMatMatvecSetup MagmaDense

https://icl.utk.edu/magma/


8.8 The SUNMATRIX MAGMADENSE implementation 219

9. SUNMatMatvec MagmaDense

10. SUNMatSpace MagmaDense

In addition, the SUNMATRIX MAGMADENSE module defines the following implementation spe-
cific functions:

SUNMatrix MagmaDense

Call A = SUNMatrix MagmaDense(M, N, memtype, memhelper, queue)

Description This constructor function creates and allocates memory for anM×N SUNMATRIX MAGMADENSE

SUNMatrix.

Arguments M (sunindextype) the number of matrix rows

N (sunindextype) the number of matrix columns

memtype (SUNMemoryType) the type of memory to use for the matrix data; can be
SUNMEMTYPE UVM or SUNMEMTYPE DEVICE.

memhelper (SUNMemoryHelper) the memory helper used for allocating data

queue a cudaStream t when using CUDA or a hipStream t when using HIP

Return value A SUNMatrix object if successful else NULL.

SUNMatrix MagmaDenseBlock

Call A = SUNMatrix MagmaDenseBlock(nblocks, M block, N block, memtype, memhelper,

queue)

Description This constructor function creates and allocates memory for a SUNMATRIX MAGMADENSE

SUNMatrix that is block diagonal with nblocks blocks of size M ×N .

Arguments nblocks (sunindextype) the number of matrix blocks

M block (sunindextype) the number of matrix rows in each block

N block (sunindextype) the number of matrix columns in each block

memtype (SUNMemoryType) the type of memory to use for the matrix data; can be
SUNMEMTYPE UVM or SUNMEMTYPE DEVICE.

memhelper (SUNMemoryHelper) the memory helper used for allocating data

queue a cudaStream t when using CUDA or a hipStream t when using HIP

Return value A SUNMatrix object if successful else NULL.

Notes The block diagonal format currently supports square matrices only.

SUNMatrix MagmaDense Rows

Call M = SUNMatrix MagmaDense Rows(A)

Description This function returns the rows dimension for the M×N SUNMatrix. For block diagonal
matrices, this is computed as Mblock × nblocks.

Arguments A (SUNMatrix)

Return value The number of rows in the SUNMatrix.

SUNMatrix MagmaDense Columns

Call N = SUNMatrix MagmaDense Columns(A)

Description This function returns the columns dimension for the M × N SUNMatrix. For block
diagonal matrices, this is computed as Nblock × nblocks.

Arguments A (SUNMatrix)

Return value The number of columns in the SUNMatrix.
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SUNMatrix MagmaDense BlockRows

Call M = SUNMatrix MagmaDense BlockRows(A)

Description This function returns the number of rows in a block of the SUNMatrix.

Arguments A (SUNMatrix)

Return value The number of rows in a block of the SUNMatrix.

SUNMatrix MagmaDense BlockColumns

Call N = SUNMatrix MagmaDense BlockColumns(A)

Description This function returns the number of columns in a block of the SUNMatrix.

Arguments A (SUNMatrix)

Return value The number of columns in a block of the SUNMatrix.

SUNMatrix MagmaDense LData

Call ldata = SUNMatrix MagmaDense LData(A)

Description This function returns the length of the data array for the SUNMatrix.

Arguments A (SUNMatrix)

Return value The length of the data array for the SUNMatrix.

SUNMatrix MagmaDense NumBlocks

Call nblocks = SUNMatrix MagmaDense NumBlocks(A)

Description This function returns the number of blocks in the SUNMatrix.

Arguments A (SUNMatrix)

Return value The number of matrix blocks.

SUNMatrix MagmaDense Data

Call data = SUNMatrix MagmaDense Data(A)

Description This function returns the SUNMatrix data array.

Arguments A (SUNMatrix)

Return value An array of pointers to the data arrays for each block in the SUNMatrix.

SUNMatrix MagmaDense BlockData

Call data = SUNMatrix MagmaDense BlockData(A)

Description This function returns an array of pointers that point to the start of the data array for
each block.

Arguments A (SUNMatrix)

Return value An array of pointers to the data arrays for each block in the SUNMatrix.

SUNMatrix MagmaDense Block

Call data = SUNMatrix MagmaDense Block(A, k)

Description This function returns a pointer to the data for block k.

Arguments A (SUNMatrix)

Return value A pointer to the start of the data array for block k in the SUNMatrix.

Notes No bounds-checking is performed, k should be stricly less than nblocks.
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SUNMatrix MagmaDense Column

Call data = SUNMatrix MagmaDense Column(A, j)

Description This function returns a pointer to the data for column j of the matrix.

Arguments A (SUNMatrix)

Return value A pointer to the start of the data array for column j of the SUNMatrix.

Notes No bounds-checking is performed, j should be stricly less than nblocks ∗Nblock.

SUNMatrix MagmaDense BlockColumn

Call data = SUNMatrix MagmaDense Column(A, k, j)

Description This function returns a pointer to the data for column j of block k.

Arguments A (SUNMatrix)

Return value A pointer to the start of the data array for column j of block k in the SUNMatrix.

Notes No bounds-checking is performed.

SUNMatrix MagmaDense CopyToDevice

Call retval = SUNMatrix MagmaDense CopyToDevice(A, h data)

Description This functions copies the matrix data to the GPU device from the provided host array.

Arguments A (SUNMatrix)

h data (realtype*)

Return value SUNMAT SUCCESS if the copy operation was successful, or a nonzero error code otherwise

SUNMatrix MagmaDense CopyFromDevice

Call retval = SUNMatrix MagmaDense CopyFromDevice(A, h data)

Description This functions copies the matrix data from the GPU device to the provided host array.

Arguments A (SUNMatrix)

h data (realtype*)

Return value SUNMAT SUCCESS if the copy operation was successful, or a nonzero error code otherwise

8.8.2 SUNMATRIX MAGMADENSE Usage Notes

When using the SUNMATRIX MAGMADENSE module with a sundials package (e.g. cvode), the stream !

given to matrix should be the same stream used for the nvector object that is provided to the
package, and the nvector object given to the SUNMatvec operation. If different streams are utilized,
synchronization issues may occur.





Chapter 9

Description of the
SUNLinearSolver module

For problems that involve the solution of linear systems of equations, the sundials packages oper-
ate using generic linear solver modules defined through the sunlinsol API. This allows sundials
packages to utilize any valid sunlinsol implementation that provides a set of required functions.
These functions can be divided into three categories. The first are the core linear solver functions.
The second group consists of “set” routines to supply the linear solver object with functions provided
by the sundials package, or for modification of solver parameters. The last group consists of “get”
routines for retrieving artifacts (statistics, residual vectors, etc.) from the linear solver. All of these
functions are defined in the header file sundials/sundials linearsolver.h.

The implementations provided with sundials work in coordination with the sundials generic
nvector and sunmatrix modules to provide a set of compatible data structures and solvers for the
solution of linear systems using direct or iterative (matrix-based or matrix-free) methods. Moreover,
advanced users can provide a customized SUNLinearSolver implementation to any sundials package,
particularly in cases where they provide their own nvector and/or sunmatrix modules.

Historically, the sundials packages have been designed to specifically leverage the use of either
direct linear solvers or matrix-free, scaled, preconditioned, iterative linear solvers. However, matrix-
based iterative linear solvers are also supported.

The iterative linear solvers packaged with sundials leverage scaling and preconditioning, as ap-
plicable, to balance error between solution components and to accelerate convergence of the linear
solver. To this end, instead of solving the linear system Ax = b directly, these apply the underlying
iterative algorithm to the transformed system

Ãx̃ = b̃ (9.1)

where

Ã = S1P
−1
1 AP−12 S−12 ,

b̃ = S1P
−1
1 b, (9.2)

x̃ = S2P2x,

and where

• P1 is the left preconditioner,

• P2 is the right preconditioner,

• S1 is a diagonal matrix of scale factors for P−11 b,

• S2 is a diagonal matrix of scale factors for P2x.
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The scaling matrices are chosen so that S1P
−1
1 b and S2P2x have dimensionless components. If pre-

conditioning is done on the left only (P2 = I), by a matrix P , then S2 must be a scaling for x, while
S1 is a scaling for P−1b, and so may also be taken as a scaling for x. Similarly, if preconditioning is
done on the right only (P1 = I and P2 = P ), then S1 must be a scaling for b, while S2 is a scaling for
Px, and may also be taken as a scaling for b.

sundials packages request that iterative linear solvers stop based on the 2-norm of the scaled
preconditioned residual meeting a prescribed tolerance∥∥∥b̃− Ãx̃∥∥∥

2
< tol.

When provided an iterative sunlinsol implementation that does not support the scaling matrices
S1 and S2, sundials’ packages will adjust the value of tol accordingly (see §9.4.2 for more details).
In this case, they instead request that iterative linear solvers stop based on the criteria∥∥P−11 b− P−11 Ax

∥∥
2
< tol.

We note that the corresponding adjustments to tol in this case are non-optimal, in that they cannot
balance error between specific entries of the solution x, only the aggregate error in the overall solution
vector.

We further note that not all of the sundials-provided iterative linear solvers support the full
range of the above options (e.g., separate left/right preconditioning), and that some of the sundials
packages only utilize a subset of these options. Further details on these exceptions are described in
the documentation for each sunlinsol implementation, or for each sundials package.

For users interested in providing their own sunlinsol module, the following section presents
the sunlinsol API and its implementation beginning with the definition of sunlinsol functions
in sections 9.1.1 – 9.1.3. This is followed by the definition of functions supplied to a linear solver
implementation in section 9.1.4. A table of linear solver return codes is given in section 9.1.5. The
SUNLinearSolver type and the generic sunlinsol module are defined in section 9.1.6. The section 9.2
discusses compatibility between the sundials-provided sunlinsol modules and sunmatrix modules.
Section 9.3 lists the requirements for supplying a custom sunlinsol module and discusses some
intended use cases. Users wishing to supply their own sunlinsol module are encouraged to use
the sunlinsol implementations provided with sundials as a template for supplying custom linear
solver modules. The sunlinsol functions required by this sundials package as well as other package
specific details are given in section 9.4. The remaining sections of this chapter present the sunlinsol
modules provided with sundials.

9.1 The SUNLinearSolver API

The sunlinsol API defines several linear solver operations that enable sundials packages to utilize
any sunlinsol implementation that provides the required functions. These functions can be divided
into three categories. The first are the core linear solver functions. The second group of functions con-
sists of set routines to supply the linear solver with functions provided by the sundials time integrators
and to modify solver parameters. The final group consists of get routines for retrieving linear solver
statistics. All of these functions are defined in the header file sundials/sundials linearsolver.h.

9.1.1 SUNLinearSolver core functions

The core linear solver functions consist of two required functions to get the linear solver type
(SUNLinSolGetType) and solve the linear system Ax = b (SUNLinSolSolve). The remaining functions
are for getting the solver ID (SUNLinSolGetID), initializing the linear solver object once all solver-
specific options have been set (SUNLinSolInitialize), setting up the linear solver object to utilize
an updated matrix A (SUNLinSolSetup), and for destroying the linear solver object (SUNLinSolFree)
are optional.
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SUNLinSolGetType

Call type = SUNLinSolGetType(LS);

Description The required function SUNLinSolGetType returns the type identifier for the linear solver
LS. It is used to determine the solver type (direct, iterative, or matrix-iterative) from
the abstract SUNLinearSolver interface.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value The return value type (of type int) will be one of the following:

• SUNLINEARSOLVER DIRECT – 0, the sunlinsol module requires a matrix, and com-
putes an ‘exact’ solution to the linear system defined by that matrix.

• SUNLINEARSOLVER ITERATIVE – 1, the sunlinsol module does not require a matrix
(though one may be provided), and computes an inexact solution to the linear
system using a matrix-free iterative algorithm. That is it solves the linear system
defined by the package-supplied ATimes routine (see SUNLinSolSetATimes below),
even if that linear system differs from the one encoded in the matrix object (if one
is provided). As the solver computes the solution only inexactly (or may diverge),
the linear solver should check for solution convergence/accuracy as appropriate.

• SUNLINEARSOLVER MATRIX ITERATIVE – 2, the sunlinsol module requires a ma-
trix, and computes an inexact solution to the linear system defined by that matrix
using an iterative algorithm. That is it solves the linear system defined by the
matrix object even if that linear system differs from that encoded by the package-
supplied ATimes routine. As the solver computes the solution only inexactly (or
may diverge), the linear solver should check for solution convergence/accuracy as
appropriate.

Notes See section 9.3.1 for more information on intended use cases corresponding to the linear
solver type.

F2003 Name FSUNLinSolGetType

SUNLinSolGetID

Call id = SUNLinSolGetID(LS);

Description The optional function SUNLinSolGetID returns the identifier for the linear solver LS.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value The return value id (of type int) will be a non-negative value defined by the enumer-
ation SUNLinearSolver ID.

Notes It is recommended that a user-supplied SUNLinearSolver return the
SUNLINEARSOLVER CUSTOM identifier.

F2003 Name FSUNLinSolGetID

SUNLinSolInitialize

Call retval = SUNLinSolInitialize(LS);

Description The optional function SUNLinSolInitialize performs linear solver initialization (as-
suming that all solver-specific options have been set).

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value This should return zero for a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 9.1.

F2003 Name FSUNLinSolInitialize
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SUNLinSolSetup

Call retval = SUNLinSolSetup(LS, A);

Description The optional function SUNLinSolSetup performs any linear solver setup needed, based
on an updated system sunmatrix A. This may be called frequently (e.g., with a full
Newton method) or infrequently (for a modified Newton method), based on the type of
integrator and/or nonlinear solver requesting the solves.

Arguments LS (SUNLinearSolver) a sunlinsol object.

A (SUNMatrix) a sunmatrix object.

Return value This should return zero for a successful call, a positive value for a recoverable failure
and a negative value for an unrecoverable failure, ideally returning one of the generic
error codes listed in Table 9.1.

F2003 Name FSUNLinSolSetup

SUNLinSolSolve

Call retval = SUNLinSolSolve(LS, A, x, b, tol);

Description The required function SUNLinSolSolve solves a linear system Ax = b.

Arguments LS (SUNLinearSolver) a sunlinsol object.

A (SUNMatrix) a sunmatrix object.

x (N Vector) a nvector object containing the initial guess for the solution of the
linear system, and the solution to the linear system upon return.

b (N Vector) a nvector object containing the linear system right-hand side.

tol (realtype) the desired linear solver tolerance.

Return value This should return zero for a successful call, a positive value for a recoverable failure
and a negative value for an unrecoverable failure, ideally returning one of the generic
error codes listed in Table 9.1.

Notes Direct solvers: can ignore the tol argument.

Matrix-free solvers: (those that identify as SUNLINEARSOLVER ITERATIVE) can ignore
the sunmatrix input A, and should instead rely on the matrix-vector product function
supplied through the routine SUNLinSolSetATimes.

Iterative solvers: (those that identify as SUNLINEARSOLVER ITERATIVE or
SUNLINEARSOLVER MATRIX ITERATIVE) should attempt to solve to the specified toler-
ance tol in a weighted 2-norm. If the solver does not support scaling then it should
just use a 2-norm.

F2003 Name FSUNLinSolSolve

SUNLinSolFree

Call retval = SUNLinSolFree(LS);

Description The optional function SUNLinSolFree frees memory allocated by the linear solver.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value This should return zero for a successful call and a negative value for a failure.

F2003 Name FSUNLinSolFree
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9.1.2 SUNLinearSolver set functions

The following set functions are used to supply linear solver modules with functions defined by the
sundials packages and to modify solver parameters. Only the routine for setting the matrix-vector
product routine is required, and that is only for matrix-free linear solver modules. Otherwise, all other
set functions are optional. sunlinsol implementations that do not provide the functionality for any
optional routine should leave the corresponding function pointer NULL instead of supplying a dummy
routine.

SUNLinSolSetATimes

Call retval = SUNLinSolSetATimes(LS, A data, ATimes);

Description The function SUNLinSolSetATimes is required for matrix-free linear solvers; otherwise
it is optional.

This routine provides an ATimesFn function pointer, as well as a void* pointer to a
data structure used by this routine, to a linear solver object. sundials packages will
call this function to set the matrix-vector product function to either a solver-provided
difference-quotient via vector operations or a user-supplied solver-specific routine.

Arguments LS (SUNLinearSolver) a sunlinsol object.

A data (void*) data structure passed to ATimes.

ATimes (ATimesFn) function pointer implementing the matrix-vector product routine.

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 9.1.

F2003 Name FSUNLinSolSetATimes

SUNLinSolSetPreconditioner

Call retval = SUNLinSolSetPreconditioner(LS, Pdata, Pset, Psol);

Description The optional function SUNLinSolSetPreconditioner provides PSetupFn and PSolveFn

function pointers that implement the preconditioner solves P−11 and P−12 from equations
(9.1)-(9.2). This routine will be called by a sundials package, which will provide
translation between the generic Pset and Psol calls and the package- or user-supplied
routines.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Pdata (void*) data structure passed to both Pset and Psol.

Pset (PSetupFn) function pointer implementing the preconditioner setup.

Psol (PSolveFn) function pointer implementing the preconditioner solve.

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 9.1.

F2003 Name FSUNLinSolSetPreconditioner

SUNLinSolSetScalingVectors

Call retval = SUNLinSolSetScalingVectors(LS, s1, s2);

Description The optional function SUNLinSolSetScalingVectors provides left/right scaling vectors
for the linear system solve. Here, s1 and s2 are nvector of positive scale factors con-
taining the diagonal of the matrices S1 and S2 from equations (9.1)-(9.2), respectively.
Neither of these vectors need to be tested for positivity, and a NULL argument for either
indicates that the corresponding scaling matrix is the identity.

Arguments LS (SUNLinearSolver) a sunlinsol object.

s1 (N Vector) diagonal of the matrix S1
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s2 (N Vector) diagonal of the matrix S2

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 9.1.

F2003 Name FSUNLinSolSetScalingVectors

9.1.3 SUNLinearSolver get functions

The following get functions allow sundials packages to retrieve results from a linear solve. All routines
are optional.

SUNLinSolNumIters

Call its = SUNLinSolNumIters(LS);

Description The optional function SUNLinSolNumIters should return the number of linear iterations
performed in the last ‘solve’ call.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value int containing the number of iterations

F2003 Name FSUNLinSolNumIters

SUNLinSolResNorm

Call rnorm = SUNLinSolResNorm(LS);

Description The optional function SUNLinSolResNorm should return the final residual norm from
the last ‘solve’ call.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value realtype containing the final residual norm

F2003 Name FSUNLinSolResNorm

SUNLinSolResid

Call rvec = SUNLinSolResid(LS);

Description If an iterative method computes the preconditioned initial residual and returns with
a successful solve without performing any iterations (i.e., either the initial guess or
the preconditioner is sufficiently accurate), then this optional routine may be called
by the sundials package. This routine should return the nvector containing the
preconditioned initial residual vector.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value N Vector containing the final residual vector

Notes Since N Vector is actually a pointer, and the results are not modified, this routine
should not require additional memory allocation. If the sunlinsol object does not
retain a vector for this purpose, then this function pointer should be set to NULL in the
implementation.

F2003 Name FSUNLinSolResid

SUNLinSolLastFlag

Call lflag = SUNLinSolLastFlag(LS);

Description The optional function SUNLinSolLastFlag should return the last error flag encountered
within the linear solver. This is not called by the sundials packages directly; it allows
the user to investigate linear solver issues after a failed solve.
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Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value sunindextype containing the most recent error flag

F2003 Name FSUNLinSolLastFlag

SUNLinSolSpace

Call retval = SUNLinSolSpace(LS, &lrw, &liw);

Description The optional function SUNLinSolSpace should return the storage requirements for the
linear solver LS.

Arguments LS (SUNLinearSolver) a sunlinsol object.

lrw (long int*) the number of realtype words stored by the linear solver.

liw (long int*) the number of integer words stored by the linear solver.

Return value This should return zero for a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 9.1.

Notes This function is advisory only, for use in determining a user’s total space requirements.

F2003 Name FSUNLinSolSpace

9.1.4 Functions provided by sundials packages

To interface with the sunlinsol modules, the sundials packages supply a variety of routines for
evaluating the matrix-vector product, and setting up and applying the preconditioner. These package-
provided routines translate between the user-supplied ODE, DAE, or nonlinear systems and the generic
interfaces to the linear systems of equations that result in their solution. The types for functions
provided to a sunlinsol module are defined in the header file sundials/sundials iterative.h,
and are described below.

ATimesFn

Definition typedef int (*ATimesFn)(void *A data, N Vector v, N Vector z);

Purpose These functions compute the action of a matrix on a vector, performing the operation
z = Av. Memory for z should already be allocted prior to calling this function. The
vector v should be left unchanged.

Arguments A data is a pointer to client data, the same as that supplied to SUNLinSolSetATimes.

v is the input vector to multiply.

z is the output vector computed.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.

PSetupFn

Definition typedef int (*PSetupFn)(void *P data)

Purpose These functions set up any requisite problem data in preparation for calls to the corre-
sponding PSolveFn.

Arguments P data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.
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PSolveFn

Definition typedef int (*PSolveFn)(void *P data, N Vector r, N Vector z,

realtype tol, int lr)

Purpose These functions solve the preconditioner equation Pz = r for the vector z. Memory for
z should already be allocted prior to calling this function. The parameter P data is a
pointer to any information about P which the function needs in order to do its job (set
up by the corresponding PSetupFn). The parameter lr is input, and indicates whether
P is to be taken as the left preconditioner or the right preconditioner: lr = 1 for left
and lr = 2 for right. If preconditioning is on one side only, lr can be ignored. If the
preconditioner is iterative, then it should strive to solve the preconditioner equation so
that

‖Pz − r‖wrms < tol

where the weight vector for the WRMS norm may be accessed from the main package
memory structure. The vector r should not be modified by the PSolveFn.

Arguments P data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

r is the right-hand side vector for the preconditioner system.

z is the solution vector for the preconditioner system.

tol is the desired tolerance for an iterative preconditioner.

lr is flag indicating whether the routine should perform left (1) or right (2) pre-
conditioning.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful. On a
failure, a negative return value indicates an unrecoverable condition, while a positive
value indicates a recoverable one, in which the calling routine may reattempt the solution
after updating preconditioner data.

9.1.5 SUNLinearSolver return codes

The functions provided to sunlinsol modules by each sundials package, and functions within the
sundials-provided sunlinsol implementations utilize a common set of return codes, shown in Table
9.1. These adhere to a common pattern: 0 indicates success, a postitive value corresponds to a
recoverable failure, and a negative value indicates a non-recoverable failure. Aside from this pattern,
the actual values of each error code are primarily to provide additional information to the user in case
of a linear solver failure.

Table 9.1: Description of the SUNLinearSolver error codes

Name Value Description

SUNLS SUCCESS 0 successful call or converged solve

SUNLS MEM NULL -801 the memory argument to the function is NULL

SUNLS ILL INPUT -802 an illegal input has been provided to the function

SUNLS MEM FAIL -803 failed memory access or allocation

SUNLS ATIMES NULL -804 the Atimes function is NULL

continued on next page
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Name Value Description

SUNLS ATIMES FAIL UNREC -805 an unrecoverable failure occurred in the ATimes routine

SUNLS PSET FAIL UNREC -806 an unrecoverable failure occurred in the Pset routine

SUNLS PSOLVE NULL -807 the preconditioner solve function is NULL

SUNLS PSOLVE FAIL UNREC -808 an unrecoverable failure occurred in the Psolve routine

SUNLS PACKAGE FAIL UNREC -809 an unrecoverable failure occurred in an external linear
solver package

SUNLS GS FAIL -810 a failure occurred during Gram-Schmidt orthogonalization
(sunlinsol spgmr/sunlinsol spfgmr)

SUNLS QRSOL FAIL -811 a singular R matrix was encountered in a QR factorization
(sunlinsol spgmr/sunlinsol spfgmr)

SUNLS VECTOROP ERR -812 a vector operation error occurred

SUNLS RES REDUCED 801 an iterative solver reduced the residual, but did not con-
verge to the desired tolerance

SUNLS CONV FAIL 802 an iterative solver did not converge (and the residual was
not reduced)

SUNLS ATIMES FAIL REC 803 a recoverable failure occurred in the ATimes routine

SUNLS PSET FAIL REC 804 a recoverable failure occurred in the Pset routine

SUNLS PSOLVE FAIL REC 805 a recoverable failure occurred in the Psolve routine

SUNLS PACKAGE FAIL REC 806 a recoverable failure occurred in an external linear solver
package

SUNLS QRFACT FAIL 807 a singular matrix was encountered during a QR factoriza-
tion (sunlinsol spgmr/sunlinsol spfgmr)

SUNLS LUFACT FAIL 808 a singular matrix was encountered during a LU factorization
(sunlinsol dense/sunlinsol band)

9.1.6 The generic SUNLinearSolver module

sundials packages interact with specific sunlinsol implementations through the generic sunlinsol
module on which all other sunlinsol iplementations are built. The SUNLinearSolver type is a
pointer to a structure containing an implementation-dependent content field, and an ops field. The
type SUNLinearSolver is defined as

typedef struct _generic_SUNLinearSolver *SUNLinearSolver;

struct _generic_SUNLinearSolver {

void *content;

struct _generic_SUNLinearSolver_Ops *ops;

};

where the generic SUNLinearSolver Ops structure is a list of pointers to the various actual lin-
ear solver operations provided by a specific implementation. The generic SUNLinearSolver Ops

structure is defined as

struct _generic_SUNLinearSolver_Ops {

SUNLinearSolver_Type (*gettype)(SUNLinearSolver);

SUNLinearSolver_ID (*getid)(SUNLinearSolver);

int (*setatimes)(SUNLinearSolver, void*, ATimesFn);

int (*setpreconditioner)(SUNLinearSolver, void*,

PSetupFn, PSolveFn);
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int (*setscalingvectors)(SUNLinearSolver,

N_Vector, N_Vector);

int (*initialize)(SUNLinearSolver);

int (*setup)(SUNLinearSolver, SUNMatrix);

int (*solve)(SUNLinearSolver, SUNMatrix, N_Vector,

N_Vector, realtype);

int (*numiters)(SUNLinearSolver);

realtype (*resnorm)(SUNLinearSolver);

sunindxetype (*lastflag)(SUNLinearSolver);

int (*space)(SUNLinearSolver, long int*, long int*);

N_Vector (*resid)(SUNLinearSolver);

int (*free)(SUNLinearSolver);

};

The generic sunlinsol module defines and implements the linear solver operations defined in
Sections 9.1.1-9.1.3. These routines are in fact only wrappers to the linear solver operations de-
fined by a particular sunlinsol implementation, which are accessed through the ops field of the
SUNLinearSolver structure. To illustrate this point we show below the implementation of a typical
linear solver operation from the generic sunlinsol module, namely SUNLinSolInitialize, which
initializes a sunlinsol object for use after it has been created and configured, and returns a flag
denoting a successful/failed operation:

int SUNLinSolInitialize(SUNLinearSolver S)

{

return ((int) S->ops->initialize(S));

}

The Fortran 2003 interface provides a bind(C) derived-type for the generic SUNLinearSolver

and the generic SUNLinearSolver Ops structures. Their definition is given below.

type, bind(C), public :: SUNLinearSolver

type(C_PTR), public :: content

type(C_PTR), public :: ops

end type SUNLinearSolver

type, bind(C), public :: SUNLinearSolver_Ops

type(C_FUNPTR), public :: gettype

type(C_FUNPTR), public :: setatimes

type(C_FUNPTR), public :: setpreconditioner

type(C_FUNPTR), public :: setscalingvectors

type(C_FUNPTR), public :: initialize

type(C_FUNPTR), public :: setup

type(C_FUNPTR), public :: solve

type(C_FUNPTR), public :: numiters

type(C_FUNPTR), public :: resnorm

type(C_FUNPTR), public :: lastflag

type(C_FUNPTR), public :: space

type(C_FUNPTR), public :: resid

type(C_FUNPTR), public :: free

end type SUNLinearSolver_Ops

9.2 Compatibility of SUNLinearSolver modules

We note that not all sunlinsol types are compatible with all sunmatrix and nvector types provided
with sundials. In Table 9.2 we show the matrix-based linear solvers available as sunlinsol modules,
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and the compatible matrix implementations. Recall that Table 4.1 shows the compatibility between
all sunlinsol modules and vector implementations.

Table 9.2: sundials matrix-based linear solvers and matrix implementations that can be used for
each.

Linear Solver
Interface

Dense
Matrix

Banded
Matrix

Sparse
Matrix

SLUNRloc
Matrix

User
Supplied

Dense X X
Band X X
LapackDense X X
LapackBand X X
klu X X
SuperLU DIST X X
superlumt X X
User supplied X X X X X

9.3 Implementing a custom SUNLinearSolver module

A particular implementation of the sunlinsol module must:

• Specify the content field of the SUNLinearSolver object.

• Define and implement a minimal subset of the linear solver operations. See the section 9.4 to
determine which sunlinsol operations are required for this sundials package.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one sunlinsol module (each with different SUNLinearSolver internal
data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNLinearSolver with the new content field and with ops pointing to the new linear solver
operations.

We note that the function pointers for all unsupported optional routines should be set to NULL in
the ops structure. This allows the sundials package that is using the sunlinsol object to know that
the associated functionality is not supported.

To aid in the creation of custom sunlinsol modules the generic sunlinsol module provides the
utility functions SUNLinSolNewEmpty and SUNLinSolFreeEmpty. When used in custom sunlinsol
constructors the function SUNLinSolNewEmpty will ease the introduction of any new optional linear
solver operations to the sunlinsol API by ensuring only required operations need to be set.

SUNLinSolNewEmpty

Call LS = SUNLinSolNewEmpty();

Description The function SUNLinSolNewEmpty allocates a new generic sunlinsol object and initial-
izes its content pointer and the function pointers in the operations structure to NULL.

Arguments None

Return value This function returns a SUNLinearSolver object. If an error occurs when allocating
the object, then this routine will return NULL.

F2003 Name FSUNLinSolNewEmpty
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SUNLinSolFreeEmpty

Call SUNLinSolFreeEmpty(LS);

Description This routine frees the generic SUNLinSolFreeEmpty object, under the assumption that
any implementation-specific data that was allocated within the underlying content struc-
ture has already been freed. It will additionally test whether the ops pointer is NULL,
and, if it is not, it will free it as well.

Arguments LS (SUNLinearSolver)

Return value None

F2003 Name FSUNLinSolFreeEmpty

Additionally, a sunlinsol implementation may do the following:

• Define and implement additional user-callable “set” routines acting on the SUNLinearSolver,
e.g., for setting various configuration options to tune the linear solver to a particular problem.

• Provide additional user-callable “get” routines acting on the SUNLinearSolver object, e.g., for
returning various solve statistics.

9.3.1 Intended use cases

The sunlinsol (and sunmatrix) APIs are designed to require a minimal set of routines to ease
interfacing with custom or third-party linear solver libraries. External solvers provide similar routines
with the necessary functionality and thus will require minimal effort to wrap within custom sunmatrix
and sunlinsol implementations. Sections 8.2 and 9.4 include a list of the required set of routines that
compatible sunmatrix and sunlinsol implementations must provide. As sundials packages utilize
generic sunlinsol modules allowing for user-supplied SUNLinearSolver implementations, there exists
a wide range of possible linear solver combinations. Some intended use cases for both the sundials-
provided and user-supplied sunlinsol modules are discussd in the following sections.

Direct linear solvers

Direct linear solver modules require a matrix and compute an ‘exact’ solution to the linear system
defined by the matrix. Multiple matrix formats and associated direct linear solvers are supplied with
sundials through different sunmatrix and sunlinsol implementations. sundials packages strive
to amortize the high cost of matrix construction by reusing matrix information for multiple nonlinear
iterations. As a result, each package’s linear solver interface recomputes Jacobian information as
infrequently as possible.

Alternative matrix storage formats and compatible linear solvers that are not currently provided
by, or interfaced with, sundials can leverage this infrastructure with minimal effort. To do so, a user
must implement custom sunmatrix and sunlinsol wrappers for the desired matrix format and/or
linear solver following the APIs described in Chapters 8 and 9. This user-supplied sunlinsol module
must then self-identify as having SUNLINEARSOLVER DIRECT type.

Matrix-free iterative linear solvers

Matrix-free iterative linear solver modules do not require a matrix and compute an inexact solution to
the linear system defined by the package-supplied ATimes routine. sundials supplies multiple scaled,
preconditioned iterative linear solver (spils) sunlinsol modules that support scaling to allow users to
handle non-dimensionalization (as best as possible) within each sundials package and retain variables
and define equations as desired in their applications. For linear solvers that do not support left/right
scaling, the tolerance supplied to the linear solver is adjusted to compensate (see section 9.4.2 for
more details); however, this use case may be non-optimal and cannot handle situations where the
magnitudes of different solution components or equations vary dramatically within a single problem.

To utilize alternative linear solvers that are not currently provided by, or interfaced with, sundi-
als a user must implement a custom sunlinsol wrapper for the linear solver following the API
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described in Chapter 9. This user-supplied sunlinsol module must then self-identify as having
SUNLINEARSOLVER ITERATIVE type.

Matrix-based iterative linear solvers (reusing A)

Matrix-based iterative linear solver modules require a matrix and compute an inexact solution to
the linear system defined by the matrix. This matrix will be updated infrequently and resued across
multiple solves to amortize cost of matrix construction. As in the direct linear solver case, only
wrappers for the matrix and linear solver in sunmatrix and sunlinsol implementations need to be
created to utilize a new linear solver. This user-supplied sunlinsol module must then self-identify as
having SUNLINEARSOLVER MATRIX ITERATIVE type.

At present, sundials has one example problem that uses this approach for wrapping a structured-
grid matrix, linear solver, and preconditioner from the hypre library that may be used as a template
for other customized implementations (see examples/arkode/CXX parhyp/ark heat2D hypre.cpp).

Matrix-based iterative linear solvers (current A)

For users who wish to utilize a matrix-based iterative linear solver module where the matrix is purely
for preconditioning and the linear system is defined by the package-supplied ATimes routine, we envision
two current possibilities.

The preferred approach is for users to employ one of the sundials spils sunlinsol implementa-
tions (sunlinsol spgmr, sunlinsol spfgmr, sunlinsol spbcgs, sunlinsol sptfqmr, or sunlin-
sol pcg) as the outer solver. The creation and storage of the preconditioner matrix, and interfacing
with the corresponding linear solver, can be handled through a package’s preconditioner ‘setup’ and
‘solve’ functionality (see §4.5.4.2) without creating sunmatrix and sunlinsol implementations. This
usage mode is recommended primarily because the sundials-provided spils modules support the scal-
ing as described above.

A second approach supported by the linear solver APIs is as follows. If the sunlinsol implemen-
tation is matrix-based, self-identifies as having SUNLINEARSOLVER ITERATIVE type, and also provides
a non-NULL SUNLinSolSetATimes routine, then each sundials package will call that routine to attach
its package-specific matrix-vector product routine to the sunlinsol object. The sundials package
will then call the sunlinsol-provided SUNLinSolSetup routine (infrequently) to update matrix infor-
mation, but will provide current matrix-vector products to the sunlinsol implementation through
the package-supplied ATimesFn routine.

9.4 KINSOL SUNLinearSolver interface

Table 9.3 below lists the sunlinsol module linear solver functions used within the kinls interface.
As with the sunmatrix module, we emphasize that the kinsol user does not need to know detailed
usage of linear solver functions by the kinsol code modules in order to use kinsol. The information
is presented as an implementation detail for the interested reader.

The linear solver functions listed below are marked with Xto indicate that they are required, or
with † to indicate that they are only called if they are non-NULL in the sunlinsol implementation
that is being used. Note:

1. SUNLinSolNumIters is only used to accumulate overall iterative linear solver statistics. If it is
not implemented by the sunlinsol module, then kinls will consider all solves as requiring zero
iterations.

2. Although SUNLinSolResNorm is optional, if it is not implemented by the sunlinsol then kinls
will consider all solves a being exact.

3. Although kinls does not call SUNLinSolLastFlag directly, this routine is available for users to
query linear solver issues directly.
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4. Although kinls does not call SUNLinSolFree directly, this routine should be available for users
to call when cleaning up from a simulation.

Table 9.3: List of linear solver function usage in the kinls interface
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SUNLinSolGetType X X X
SUNLinSolSetATimes † X †

SUNLinSolSetPreconditioner † † †
SUNLinSolSetScalingVectors † † †

SUNLinSolInitialize X X X
SUNLinSolSetup X X X
SUNLinSolSolve X X X

1SUNLinSolNumIters † †
2SUNLinSolResNorm † †

3SUNLinSolLastFlag
4SUNLinSolFree

SUNLinSolSpace † † †

Since there are a wide range of potential sunlinsol use cases, the following subsections describe
some details of the kinls interface, in the case that interested users wish to develop custom sunlinsol
modules.

9.4.1 Lagged matrix information

If the sunlinsol object self-identifies as having type SUNLINEARSOLVER DIRECT or
SUNLINEARSOLVER MATRIX ITERATIVE, then the sunlinsol object solves a linear system defined by a
sunmatrix object. As a result, kinsol can perform its optional residual monitoring scheme, described
in §2.

9.4.2 Iterative linear solver tolerance

If the sunlinsol object self-identifies as having type SUNLINEARSOLVER ITERATIVE or
SUNLINEARSOLVER MATRIX ITERATIVE then kinls will adjust the linear solver tolerance delta as de-
scribed in §2 during the course of the nonlinear solve process. However, if the iterative linear solver
does not support scaling matrices (i.e., the SUNLinSolSetScalingVectors routine is NULL), then
kinls will be unable to fully handle ill-conditioning in the nonlinear solve process through the so-
lution and residual scaling operators described in §2. In this case, kinls will attempt to adjust the
linear solver tolerance to account for this lack of functionality. To this end, the following assumptions
are made:

1. All residual components have similar magnitude; hence the scaling matrix DF used in computing
the linear residual norm (see §2) should satisfy the assumption

(DF )i,i ≈ DF,mean, for i = 0, . . . , n− 1.
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2. The sunlinsol object uses a standard 2-norm to measure convergence.

Since kinsol uses DF as the left-scaling matrix, S1 = DF , then the linear solver convergence
requirement is converted as follows (using the notation from equations (9.1)-(9.2)):∥∥∥b̃− Ãx̃∥∥∥
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is computed and the scaled tolerance delta= tol/DF,mean is supplied to the sunlinsol object.

9.5 The SUNLinearSolver Dense implementation

This section describes the sunlinsol implementation for solving dense linear systems. The sunlin-
sol dense module is designed to be used with the corresponding sunmatrix dense matrix type, and
one of the serial or shared-memory nvector implementations (nvector serial, nvector openmp,
or nvector pthreads).

To access the sunlinsol dense module, include the header file sunlinsol/sunlinsol dense.h.
We note that the sunlinsol dense module is accessible from sundials packages without separately
linking to the libsundials sunlinsoldense module library.

9.5.1 SUNLinearSolver Dense description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU , where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
sunmatrix dense object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix dense object (O(N2) cost).

9.5.2 SUNLinearSolver Dense functions

The sunlinsol dense module provides the following user-callable constructor for creating a
SUNLinearSolver object.
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SUNLinSol Dense

Call LS = SUNLinSol Dense(y, A);

Description The function SUNLinSol Dense creates and allocates memory for a dense
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix dense matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix dense matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Deprecated Name For backward compatibility, the wrapper function SUNDenseLinearSolver with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol Dense

The sunlinsol dense module defines implementations of all “direct” linear solver operations listed
in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType Dense

• SUNLinSolInitialize Dense – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup Dense – this performs the LU factorization.

• SUNLinSolSolve Dense – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag Dense

• SUNLinSolSpace Dense – this only returns information for the storage within the solver object,
i.e. storage for N, last flag, and pivots.

• SUNLinSolFree Dense

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

9.5.3 SUNLinearSolver Dense Fortran interfaces

The sunlinsol dense module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol dense mod Fortran module defines interfaces to all sunlinsol dense C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperating
with C. As noted in the C function descriptions above, the interface functions are named after the
corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol Dense is
interfaced as FSUNLinSol Dense.

The Fortran 2003 sunlinsol dense interface module can be accessed with the use statement,
i.e. use fsunlinsol dense mod, and linking to the library libsundials fsunlinsoldense mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol dense mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsoldense mod library.
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FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol dense module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNDENSELINSOLINIT

Call FSUNDENSELINSOLINIT(code, ier)

Description The function FSUNDENSELINSOLINIT can be called for Fortran programs to create a
dense SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol dense module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSDENSELINSOLINIT

Call FSUNMASSDENSELINSOLINIT(ier)

Description The function FSUNMASSDENSELINSOLINIT can be called for Fortran programs to create
a dense SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

9.5.4 SUNLinearSolver Dense content

The sunlinsol dense module defines the content field of a SUNLinearSolver as the following struc-
ture:

struct _SUNLinearSolverContent_Dense {

sunindextype N;

sunindextype *pivots;

sunindextype last_flag;

};

These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

9.6 The SUNLinearSolver Band implementation

This section describes the sunlinsol implementation for solving banded linear systems. The sunlin-
sol band module is designed to be used with the corresponding sunmatrix band matrix type, and
one of the serial or shared-memory nvector implementations (nvector serial, nvector openmp,
or nvector pthreads).
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To access the sunlinsol band module, include the header file sunlinsol/sunlinsol band.h.
We note that the sunlinsol band module is accessible from sundials packages without separately
linking to the libsundials sunlinsolband module library.

9.6.1 SUNLinearSolver Band description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU , where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input sunmatrix band
object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix band object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-
ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml.!

9.6.2 SUNLinearSolver Band functions

The sunlinsol band module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol Band

Call LS = SUNLinSol Band(y, A);

Description The function SUNLinSol Band creates and allocates memory for a band
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix band matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix band matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with
appropriate upper bandwidth storage for the LU factorization.

Deprecated Name For backward compatibility, the wrapper function SUNBandLinearSolver with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol Band

The sunlinsol band module defines band implementations of all “direct” linear solver operations
listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType Band

• SUNLinSolInitialize Band – this does nothing, since all consistency checks are performed at
solver creation.
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• SUNLinSolSetup Band – this performs the LU factorization.

• SUNLinSolSolve Band – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag Band

• SUNLinSolSpace Band – this only returns information for the storage within the solver object,
i.e. storage for N, last flag, and pivots.

• SUNLinSolFree Band

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

9.6.3 SUNLinearSolver Band Fortran interfaces

The sunlinsol band module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol band mod Fortran module defines interfaces to all sunlinsol band C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol Band is
interfaced as FSUNLinSol Band.

The Fortran 2003 sunlinsol band interface module can be accessed with the use statement,
i.e. use fsunlinsol band mod, and linking to the library libsundials fsunlinsolband mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol band mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsolband mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol band module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNBANDLINSOLINIT

Call FSUNBANDLINSOLINIT(code, ier)

Description The function FSUNBANDLINSOLINIT can be called for Fortran programs to create a band
SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol band module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.
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FSUNMASSBANDLINSOLINIT

Call FSUNMASSBANDLINSOLINIT(ier)

Description The function FSUNMASSBANDLINSOLINIT can be called for Fortran programs to create a
band SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

9.6.4 SUNLinearSolver Band content

The sunlinsol band module defines the content field of a SUNLinearSolver as the following struc-
ture:

struct _SUNLinearSolverContent_Band {

sunindextype N;

sunindextype *pivots;

sunindextype last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

9.7 The SUNLinearSolver LapackDense implementation

This section describes the sunlinsol implementation for solving dense linear systems with LA-
PACK. The sunlinsol lapackdense module is designed to be used with the corresponding sunma-
trix dense matrix type, and one of the serial or shared-memory nvector implementations (nvec-
tor serial, nvector openmp, or nvector pthreads).

To access the sunlinsol lapackdense module, include the header file
sunlinsol/sunlinsol lapackdense.h. The installed module library to link to is
libsundials sunlinsollapackdense.lib where .lib is typically .so for shared libraries and .a for
static libraries.

The sunlinsol lapackdense module is a sunlinsol wrapper for the LAPACK dense matrix
factorization and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether
sundials was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the sunlinsol lapackdense module it is assumed that LAPACK has been installed
on the system prior to installation of sundials, and that sundials has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the sunlinsol lapackdense module also cannot be compiled when using 64-bit integers
for the sunindextype.!

9.7.1 SUNLinearSolver LapackDense description

This solver is constructed to perform the following operations:
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• The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU , where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
sunmatrix dense object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix dense object (O(N2) cost).

9.7.2 SUNLinearSolver LapackDense functions

The sunlinsol lapackdense module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol LapackDense

Call LS = SUNLinSol LapackDense(y, A);

Description The function SUNLinSol LapackDense creates and allocates memory for a LAPACK-
based, dense SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix dense matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix dense matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Deprecated Name For backward compatibility, the wrapper function SUNLapackDense with idential
input and output arguments is also provided.

The sunlinsol lapackdense module defines dense implementations of all “direct” linear solver
operations listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType LapackDense

• SUNLinSolInitialize LapackDense – this does nothing, since all consistency checks are per-
formed at solver creation.

• SUNLinSolSetup LapackDense – this calls either DGETRF or SGETRF to perform the LU factor-
ization.

• SUNLinSolSolve LapackDense – this calls either DGETRS or SGETRS to use the LU factors and
pivots array to perform the solve.

• SUNLinSolLastFlag LapackDense

• SUNLinSolSpace LapackDense – this only returns information for the storage within the solver
object, i.e. storage for N, last flag, and pivots.

• SUNLinSolFree LapackDense

9.7.3 SUNLinearSolver LapackDense Fortran interfaces

For solvers that include a Fortran 77 interface module, the sunlinsol lapackdense module also
includes a Fortran-callable function for creating a SUNLinearSolver object.



244 Description of the SUNLinearSolver module

FSUNLAPACKDENSEINIT

Call FSUNLAPACKDENSEINIT(code, ier)

Description The function FSUNLAPACKDENSEINIT can be called for Fortran programs to create a
LAPACK-based dense SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol lapackdense
module includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver ob-
ject.

FSUNMASSLAPACKDENSEINIT

Call FSUNMASSLAPACKDENSEINIT(ier)

Description The function FSUNMASSLAPACKDENSEINIT can be called for Fortran programs to create
a LAPACK-based, dense SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

9.7.4 SUNLinearSolver LapackDense content

The sunlinsol lapackdense module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_Dense {

sunindextype N;

sunindextype *pivots;

sunindextype last_flag;

};

These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

9.8 The SUNLinearSolver LapackBand implementation

This section describes the sunlinsol implementation for solving banded linear systems with LA-
PACK. The sunlinsol lapackband module is designed to be used with the corresponding sunma-
trix band matrix type, and one of the serial or shared-memory nvector implementations (nvec-
tor serial, nvector openmp, or nvector pthreads).

To access the sunlinsol lapackband module, include the header file
sunlinsol/sunlinsol lapackband.h. The installed module library to link to is
libsundials sunlinsollapackband.lib where .lib is typically .so for shared libraries and .a for
static libraries.
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The sunlinsol lapackband module is a sunlinsol wrapper for the LAPACK band matrix
factorization and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether
sundials was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the sunlinsol lapackband module it is assumed that LAPACK has been installed
on the system prior to installation of sundials, and that sundials has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the sunlinsol lapackband module also cannot be compiled when using 64-bit integers for
the sunindextype. !

9.8.1 SUNLinearSolver LapackBand description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU , where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input sunmatrix band
object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix band object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-
ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml. !

9.8.2 SUNLinearSolver LapackBand functions

The sunlinsol lapackband module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol LapackBand

Call LS = SUNLinSol LapackBand(y, A);

Description The function SUNLinSol LapackBand creates and allocates memory for a LAPACK-
based, band SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix band matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix band matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with
appropriate upper bandwidth storage for the LU factorization.

Deprecated Name For backward compatibility, the wrapper function SUNLapackBand with idential
input and output arguments is also provided.
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The sunlinsol lapackband module defines band implementations of all “direct” linear solver op-
erations listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType LapackBand

• SUNLinSolInitialize LapackBand – this does nothing, since all consistency checks are per-
formed at solver creation.

• SUNLinSolSetup LapackBand – this calls either DGBTRF or SGBTRF to perform the LU factoriza-
tion.

• SUNLinSolSolve LapackBand – this calls either DGBTRS or SGBTRS to use the LU factors and
pivots array to perform the solve.

• SUNLinSolLastFlag LapackBand

• SUNLinSolSpace LapackBand – this only returns information for the storage within the solver
object, i.e. storage for N, last flag, and pivots.

• SUNLinSolFree LapackBand

9.8.3 SUNLinearSolver LapackBand Fortran interfaces

For solvers that include a Fortran 77 interface module, the sunlinsol lapackband module also
includes a Fortran-callable function for creating a SUNLinearSolver object.

FSUNLAPACKDENSEINIT

Call FSUNLAPACKBANDINIT(code, ier)

Description The function FSUNLAPACKBANDINIT can be called for Fortran programs to create a
LAPACK-based band SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol lapackband
module includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver ob-
ject.

FSUNMASSLAPACKBANDINIT

Call FSUNMASSLAPACKBANDINIT(ier)

Description The function FSUNMASSLAPACKBANDINIT can be called for Fortran programs to create a
LAPACK-based, band SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.
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9.8.4 SUNLinearSolver LapackBand content

The sunlinsol lapackband module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_Band {

sunindextype N;

sunindextype *pivots;

sunindextype last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

9.9 The SUNLinearSolver KLU implementation

This section describes the sunlinsol implementation for solving sparse linear systems with KLU.
The sunlinsol klu module is designed to be used with the corresponding sunmatrix sparse ma-
trix type, and one of the serial or shared-memory nvector implementations (nvector serial,
nvector openmp, or nvector pthreads).

The header file to include when using this module is sunlinsol/sunlinsol klu.h. The installed
module library to link to is libsundials sunlinsolklu.lib where .lib is typically .so for shared
libraries and .a for static libraries.

The sunlinsol klu module is a sunlinsol wrapper for the klu sparse matrix factorization and
solver library written by Tim Davis [3, 16]. In order to use the sunlinsol klu interface to klu,
it is assumed that klu has been installed on the system prior to installation of sundials, and that
sundials has been configured appropriately to link with klu (see Appendix A for details). Addi-
tionally, this wrapper only supports double-precision calculations, and therefore cannot be compiled
if sundials is configured to have realtype set to either extended or single (see Section 4.2). Since
the klu library supports both 32-bit and 64-bit integers, this interface will be compiled for either of
the available sunindextype options. !

9.9.1 SUNLinearSolver KLU description

The klu library has a symbolic factorization routine that computes the permutation of the linear
system matrix to block triangular form and the permutations that will pre-order the diagonal blocks
(the only ones that need to be factored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural,
or an ordering given by the user). Of these ordering choices, the default value in the sunlinsol klu
module is the COLAMD ordering.

klu breaks the factorization into two separate parts. The first is a symbolic factorization and the
second is a numeric factorization that returns the factored matrix along with final pivot information.
klu also has a refactor routine that can be called instead of the numeric factorization. This routine
will reuse the pivot information. This routine also returns diagnostic information that a user can
examine to determine if numerical stability is being lost and a full numerical factorization should be
done instead of the refactor.

Since the linear systems that arise within the context of sundials calculations will typically
have identical sparsity patterns, the sunlinsol klu module is constructed to perform the following
operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.
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• On subsequent calls to the “setup” routine, it calls the appropriate klu “refactor” routine,
followed by estimates of the numerical conditioning using the relevant “rcond”, and if necessary
“condest”, routine(s). If these estimates of the condition number are larger than ε−2/3 (where
ε is the double-precision unit roundoff), then a new factorization is performed.

• The module includes the routine SUNKLUReInit, that can be called by the user to force a full or
partial refactorization at the next “setup” call.

• The “solve” call performs pivoting and forward and backward substitution using the stored klu
data structures. We note that in this solve klu operates on the native data arrays for the
right-hand side and solution vectors, without requiring costly data copies.

9.9.2 SUNLinearSolver KLU functions

The sunlinsol klu module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol KLU

Call LS = SUNLinSol KLU(y, A);

Description The function SUNLinSol KLU creates and allocates memory for a KLU-based
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix sparse matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix sparse matrix type (using either CSR or CSC storage formats)
and the nvector serial, nvector openmp, and nvector pthreads vector
types. As additional compatible matrix and vector implementations are added to
sundials, these will be included within this compatibility check.

Deprecated Name For backward compatibility, the wrapper function SUNKLU with idential input and
output arguments is also provided.

F2003 Name FSUNLinSol KLU

The sunlinsol klu module defines implementations of all “direct” linear solver operations listed in
Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType KLU

• SUNLinSolInitialize KLU – this sets the first factorize flag to 1, forcing both symbolic
and numerical factorizations on the subsequent “setup” call.

• SUNLinSolSetup KLU – this performs either a LU factorization or refactorization of the input
matrix.

• SUNLinSolSolve KLU – this calls the appropriate klu solve routine to utilize the LU factors to
solve the linear system.

• SUNLinSolLastFlag KLU

• SUNLinSolSpace KLU – this only returns information for the storage within the solver interface,
i.e. storage for the integers last flag and first factorize. For additional space requirements,
see the klu documentation.
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• SUNLinSolFree KLU

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol klu module also defines the following additional user-callable functions.

SUNLinSol KLUReInit

Call retval = SUNLinSol KLUReInit(LS, A, nnz, reinit type);

Description The function SUNLinSol KLUReInit reinitializes memory and flags for a new fac-
torization (symbolic and numeric) to be conducted at the next solver setup call.
This routine is useful in the cases where the number of nonzeroes has changed or if
the structure of the linear system has changed which would require a new symbolic
(and numeric factorization).

Arguments LS (SUNLinearSolver) a template for cloning vectors needed within the
solver

A (SUNMatrix) a sunmatrix sparse matrix template for cloning ma-
trices needed within the solver

nnz (sunindextype) the new number of nonzeros in the matrix

reinit type (int) flag governing the level of reinitialization. The allowed values
are:

• SUNKLU REINIT FULL – The Jacobian matrix will be destroyed
and a new one will be allocated based on the nnz value passed
to this call. New symbolic and numeric factorizations will be
completed at the next solver setup.

• SUNKLU REINIT PARTIAL – Only symbolic and numeric factor-
izations will be completed. It is assumed that the Jacobian
size has not exceeded the size of nnz given in the sparse ma-
trix provided to the original constructor routine (or the previous
SUNLinSol KLUReInit call).

Return value The return values from this function are SUNLS MEM NULL (either S or A are NULL),
SUNLS ILL INPUT (A does not have type SUNMATRIX SPARSE or reinit type is in-
valid), SUNLS MEM FAIL (reallocation of the sparse matrix failed) or SUNLS SUCCESS.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix sparse matrix type (using either CSR or CSC storage formats)
and the nvector serial, nvector openmp, and nvector pthreads vector
types. As additional compatible matrix and vector implementations are added to
sundials, these will be included within this compatibility check.

This routine assumes no other changes to solver use are necessary.

Deprecated Name For backward compatibility, the wrapper function SUNKLUReInit with idential in-
put and output arguments is also provided.

F2003 Name FSUNLinSol KLUReInit

SUNLinSol KLUSetOrdering

Call retval = SUNLinSol KLUSetOrdering(LS, ordering);

Description This function sets the ordering used by klu for reducing fill in the linear solve.

Arguments LS (SUNLinearSolver) the sunlinsol klu object

ordering (int) flag indicating the reordering algorithm to use, the options are:

0 AMD,
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1 COLAMD, and

2 the natural ordering.

The default is 1 for COLAMD.

Return value The return values from this function are SUNLS MEM NULL (S is NULL),
SUNLS ILL INPUT (invalid ordering choice), or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNKLUSetOrdering with iden-
tial input and output arguments is also provided.

F2003 Name FSUNLinSol KLUSetOrdering

SUNLinSol KLUGetSymbolic

Call symbolic = SUNLinSol KLUGetSymbolic(LS);

Description This function returns a pointer to the klu symbolic factorization stored in the sunlin-
sol klu content structure.

Arguments LS (SUNLinearSolver) the sunlinsol klu object

Return value The return type from this function is sun klu symbolic.

Notes When sundials is compiled with 32-bit indices (SUNDIALS INDEX SIZE=32),
sun klu symbolic is mapped to the klu type klu symbolic; when sundials is com-
piled with 64-bit indices (SUNDIALS INDEX SIZE=64) this is mapped to the klu type
klu l symbolic.

SUNLinSol KLUGetNumeric

Call numeric = SUNLinSol KLUGetNumeric(LS);

Description This function returns a pointer to the klu numeric factorization stored in the sunlin-
sol klu content structure.

Arguments LS (SUNLinearSolver) the sunlinsol klu object

Return value The return type from this function is sun klu numeric.

Notes When sundials is compiled with 32-bit indices (SUNDIALS INDEX SIZE=32),
sun klu numeric is mapped to the klu type klu numeric; when sundials is com-
piled with 64-bit indices (SUNDIALS INDEX SIZE=64), this is mapped to the klu type
klu l numeric.

SUNLinSol KLUGetCommon

Call common = SUNLinSol KLUGetCommon(LS);

Description This function returns a pointer to the klu common structure stored within in the
sunlinsol klu content structure.

Arguments LS (SUNLinearSolver) the sunlinsol klu object

Return value The return type from this function is sun klu common.

Notes When sundials is compiled with 32-bit indices (SUNDIALS INDEX SIZE=32),
sun klu common is mapped to the klu type klu common; when sundials is compiled
with 64-bit indices (SUNDIALS INDEX SIZE=64), this is mapped to the klu type
klu l common.

9.9.3 SUNLinearSolver KLU Fortran interfaces

The sunlinsol klu module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.
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FORTRAN 2003 interface module

The fsunlinsol klu mod Fortran module defines interfaces to all sunlinsol klu C functions using
the intrinsic iso c binding module which provides a standardized mechanism for interoperating with
C. As noted in the C function descriptions above, the interface functions are named after the corre-
sponding C function, but with a leading ‘F’. For example, the function SUNLinSol klu is interfaced
as FSUNLinSol klu.

The Fortran 2003 sunlinsol klu interface module can be accessed with the use statement,
i.e. use fsunlinsol klu mod, and linking to the library libsundials fsunlinsolklu mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol klu mod.mod

are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol klu module also includes a
Fortran-callable function for creating a SUNLinearSolver object.

FSUNKLUINIT

Call FSUNKLUINIT(code, ier)

Description The function FSUNKLUINIT can be called for Fortran programs to create a sunlin-
sol klu object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol klu module in-
cludes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSKLUINIT

Call FSUNMASSKLUINIT(ier)

Description The function FSUNMASSKLUINIT can be called for Fortran programs to create a KLU-
based SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

The SUNLinSol KLUReInit and SUNLinSol KLUSetOrdering routines also support Fortran inter-
faces for the system and mass matrix solvers:

FSUNKLUREINIT

Call FSUNKLUREINIT(code, nnz, reinit type, ier)

Description The function FSUNKLUREINIT can be called for Fortran programs to re-initialize a sun-
linsol klu object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida,
3 for kinsol, and 4 for arkode).

nnz (sunindextype*) the new number of nonzeros in the matrix
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reinit type (int*) flag governing the level of reinitialization. The allowed values are:

1 – The Jacobian matrix will be destroyed and a new one will be allo-
cated based on the nnz value passed to this call. New symbolic and
numeric factorizations will be completed at the next solver setup.

2 – Only symbolic and numeric factorizations will be completed. It is
assumed that the Jacobian size has not exceeded the size of nnz given
in the sparse matrix provided to the original constructor routine (or
the previous SUNLinSol KLUReInit call).

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUReInit for complete further documentation of this routine.

FSUNMASSKLUREINIT

Call FSUNMASSKLUREINIT(nnz, reinit type, ier)

Description The function FSUNMASSKLUREINIT can be called for Fortran programs to re-initialize a
sunlinsol klu object for mass matrix linear systems.

Arguments The arguments are identical to FSUNKLUREINIT above, except that code is not needed
since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUReInit for complete further documentation of this routine.

FSUNKLUSETORDERING

Call FSUNKLUSETORDERING(code, ordering, ier)

Description The function FSUNKLUSETORDERING can be called for Fortran programs to change the
reordering algorithm used by klu.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

ordering (int*) flag indication the reordering algorithm to use. Options include:

0 AMD,

1 COLAMD, and

2 the natural ordering.

The default is 1 for COLAMD.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUSetOrdering for complete further documentation of this routine.

FSUNMASSKLUSETORDERING

Call FSUNMASSKLUSETORDERING(ier)

Description The function FSUNMASSKLUSETORDERING can be called for Fortran programs to change
the reordering algorithm used by klu for mass matrix linear systems.

Arguments The arguments are identical to FSUNKLUSETORDERING above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUSetOrdering for complete further documentation of this routine.
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9.9.4 SUNLinearSolver KLU content

The sunlinsol klu module defines the content field of a SUNLinearSolver as the following structure:

struct _SUNLinearSolverContent_KLU {

int last_flag;

int first_factorize;

sun_klu_symbolic *symbolic;

sun_klu_numeric *numeric;

sun_klu_common common;

sunindextype (*klu_solver)(sun_klu_symbolic*, sun_klu_numeric*,

sunindextype, sunindextype,

double*, sun_klu_common*);

};

These entries of the content field contain the following information:
last flag - last error return flag from internal function evaluations,

first factorize - flag indicating whether the factorization has ever been performed,

symbolic - klu storage structure for symbolic factorization components, with underlying type
klu symbolic or klu l symbolic, depending on whether sundials was installed
with 32-bit versus 64-bit indices, respectively,

numeric - klu storage structure for numeric factorization components, with underlying type
klu numeric or klu l numeric, depending on whether sundials was installed with
32-bit versus 64-bit indices, respectively.

common - storage structure for common klu solver components, with underlying type
klu common or klu l common, depending on whether sundials was installed with
32-bit versus 64-bit indices, respectively,

klu solver – pointer to the appropriate klu solver function (depending on whether it is using
a CSR or CSC sparse matrix, and on whether sundials was installed with 32-bit
or 64-bit indices).

9.10 The SUNLinearSolver SuperLUDIST implementation

The SuperLU DIST implementation of the sunlinsol module provided with sundials,
sunlinsol superludist, is designed to be used with the corresponding sunmatrix slunrloc ma-
trix type, and one of the serial, threaded or parallel nvector implementations (nvector serial,
nvector openmp, nvector pthreads, nvector parallel, or nvector parhyp).

The header file to include when using this module is sunlinsol/sunlinsol superludist.h. The
installed module library to link to is libsundials sunlinsolsuperludist.lib where .lib is typi-
cally .so for shared libraries and .a for static libraries.

9.10.1 SUNLinearSolver SuperLUDIST description

The sunlinsol superludist module is a sunlinsol adapter for the SuperLU DIST sparse matrix
factorization and solver library written by X. Sherry Li [8, 24, 32, 33]. The package uses a SPMD
parallel programming model and multithreading to enhance efficiency in distributed-memory parallel
environments with multicore nodes and possibly GPU accelerators. It uses MPI for communication,
OpenMP for threading, and cuda for GPU support. In order to use the sunlinsol superludist
interface to SuperLU DIST, it is assumed that SuperLU DIST has been installed on the system
prior to installation of sundials, and that sundials has been configured appropriately to link with
SuperLU DIST (see Appendix A for details). Additionally, the adapter only supports double-precision
calculations, and therefore cannot be compiled if sundials is configured to use single or extended
precision. Moreover, since the SuperLU DIST library may be installed to support either 32-bit or
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64-bit integers, it is assumed that the SuperLU DIST library is installed using the same integer size
as sundials.

The SuperLU DIST library provides many options to control how a linear system will be solved.
These options may be set by a user on an instance of the superlu dist options t struct, and
then it may be provided as an argument to the sunlinsol superludist constructor. The sun-
linsol superludist module will respect all options set except for Fact – this option is necessarily
modified by the sunlinsol superludist module in the setup and solve routines.

Since the linear systems that arise within the context of sundials calculations will typically
have identical sparsity patterns, the sunlinsol superludist module is constructed to perform the
following operations:

• The first time that the “setup” routine is called, it sets the SuperLU DIST option Fact to
DOFACT so that a subsequent call to the “solve” routine will perform a symbolic factorization,
followed by an initial numerical factorization before continuing to solve the system.

• On subsequent calls to the “setup” routine, it sets the SuperLU DIST option Fact to SamePattern
so that a subsequent call to “solve” will perform factorization assuming the same sparsity pattern
as prior, i.e. it will reuse the column permutation vector.

• If “setup” is called prior to the “solve” routine, then the “solve” routine will perform a sym-
bolic factorization, followed by an initial numerical factorization before continuing to the sparse
triangular solves, and, potentially, iterative refinement. If “setup” is not called prior, “solve”
will skip to the triangular solve step. We note that in this solve SuperLU DIST operates on the
native data arrays for the right-hand side and solution vectors, without requiring costly data
copies.

Starting with SuperLU DIST version 6.3.0, some structures were renamed to have a prefix for the!

floating point type. The double precision API functions have the prefix ’d’. To maintain backwards
compatibility with the unprefixed types, SUNDIALS provides macros to these SuperLU DIST types
with an ’x’ prefix that expand to the correct prefix. E.g., the SUNDIALS macro xLUstruct t expands
to dLUstruct t or LUstruct t based on the SuperLU DIST version.

9.10.2 SUNLinearSolver SuperLUDIST functions

The sunlinsol superludist module defines implementations of all “direct” linear solver operations
listed in Sections 9.1.1-9.1.3:

• SUNLinSolGetType SuperLUDIST

• SUNLinSolInitialize SuperLUDIST – this sets the first factorize flag to 1 and resets the
internal SuperLU DIST statistics variables.

• SUNLinSolSetup SuperLUDIST – this sets the appropriate SuperLU DIST options so that a
subsequent solve will perform a symbolic and numerical factorization before proceeding with
the triangular solves

• SUNLinSolSolve SuperLUDIST – this calls the SuperLU DIST solve routine to perform factor-
ization (if the setup routine was called prior) and then use the LU factors to solve the linear
system.

• SUNLinSolLastFlag SuperLUDIST

• SUNLinSolSpace SuperLUDIST – this only returns information for the storage within the solver
interface, i.e. storage for the integers last flag and first factorize. For additional space
requirements, see the SuperLU DIST documentation.

• SUNLinSolFree SuperLUDIST

In addition, the module sunlinsol superludist provides the following user-callable routines:
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SUNLinSol SuperLUDIST

Call LS = SUNLinSol SuperLUDIST(y, A, grid, lu, scaleperm, solve, stat, options);

Description The function SUNLinSol SuperLUDIST creates and allocates memory for a sunlin-
sol superludist object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix slunrloc matrix template for cloning matrices
needed within the solver

grid (gridinfo t*)

lu (LUstruct t*)

scaleperm (ScalePermstruct t*)

solve (SOLVEstruct t*)

stat (SuperLUStat t*)

options (superlu dist options t*)

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine analyzes the input matrix and vector to determine the linear system size
and to assess compatibility with the SuperLU DIST library.

This routine will perform consistency checks to ensure that it is called with consis-
tent nvector and sunmatrix implementations. These are currently limited to the
sunmatrix slunrloc matrix type and the nvector serial, nvector parallel,
nvector parhyp, nvector openmp, and nvector pthreads vector types. As ad-
ditional compatible matrix and vector implementations are added to sundials, these
will be included within this compatibility check.

The grid, lu, scaleperm, solve, and options arguments are not checked and are
passed directly to SuperLU DIST routines.

Some struct members of the options argument are modified internally by the sunlin-
sol superludist solver. Specifically the member Fact, is modified in the setup and
solve routines.

SUNLinSol SuperLUDIST GetBerr

Call realtype berr = SUNLinSol SuperLUDIST GetBerr(LS);

Description The function SUNLinSol SuperLUDIST GetBerr returns the componentwise relative back-
ward error of the computed solution.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value realtype

Notes

SUNLinSol SuperLUDIST GetGridinfo

Call gridinfo t *grid = SUNLinSol SuperLUDIST GetGridinfo(LS);

Description The function SUNLinSol SuperLUDIST GetGridinfo returns the SuperLU DIST struc-
ture that contains the 2D process grid.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value gridinfo t*

Notes
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SUNLinSol SuperLUDIST GetLUstruct

Call LUstruct t *lu = SUNLinSol SuperLUDIST GetLUstruct(LS);

Description The function SUNLinSol SuperLUDIST GetLUstruct returns the SuperLU DIST struc-
ture that contains the distributed L and U factors.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value LUstruct t*

Notes

SUNLinSol SuperLUDIST GetSuperLUOptions

Call superlu dist options t *opts = SUNLinSol SuperLUDIST GetSuperLUOptions(LS);

Description The function SUNLinSol SuperLUDIST GetSuperLUOptions returns the SuperLU DIST
structure that contains the options which control how the linear system is factorized
and solved.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value superlu dist options t*

Notes

SUNLinSol SuperLUDIST GetScalePermstruct

Call ScalePermstruct t *sp = SUNLinSol SuperLUDIST GetScalePermstruct(LS);

Description The function SUNLinSol SuperLUDIST GetScalePermstruct returns the SuperLU DIST
structure that contains the vectors that describe the transformations done to the matrix,
A.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value ScalePermstruct t*

Notes

SUNLinSol SuperLUDIST GetSOLVEstruct

Call SOLVEstruct t *solve = SUNLinSol SuperLUDIST GetSOLVEstruct(LS);

Description The function SUNLinSol SuperLUDIST GetSOLVEstruct returns the SuperLU DIST struc-
ture that contains information for communication during the solution phase.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value SOLVEstruct t*

Notes

SUNLinSol SuperLUDIST GetSuperLUStat

Call SuperLUStat t *stat = SUNLinSol SuperLUDIST GetSuperLUStat(LS);

Description The function SUNLinSol SuperLUDIST GetSuperLUStat returns the SuperLU DIST struc-
ture that stores information about runtime and flop count.

Arguments LS (SUNLinearSolver) the sunlinsol superludist object

Return value SuperLUStat t*

Notes
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9.10.3 SUNLinearSolver SuperLUDIST content

The sunlinsol superludist module defines the content field of a SUNLinearSolver to be the fol-
lowing structure:

struct _SUNLinearSolverContent_SuperLUDIST {

booleantype first_factorize;

int last_flag;

realtype berr;

gridinfo_t *grid;

xLUstruct_t *lu;

superlu_dist_options_t *options;

xScalePermstruct_t *scaleperm;

xSOLVEstruct_t *solve;

SuperLUStat_t *stat;

sunindextype N;

};

These entries of the content field contain the following information:

first factorize - flag indicating whether the factorization has ever been performed,

last flag - last error return flag from calls to internal routines,

berr - the componentwise relative backward error of the computed solution,

grid - pointer to the SuperLU DIST structure that stores the 2D process grid,

lu - pointer to the SuperLU DIST structure that stores the distributed L and U factors,

options - pointer to SuperLU DIST options structure,

scaleperm - pointer to the SuperLU DIST structure that stores vectors describing the transforma-
tions done to the matrix, A,

solve - pointer to the SuperLU DIST solve structure,

stat - pointer to the SuperLU DIST structure that stores information about runtime and flop count,

N - the number of equations in the system

9.11 The SUNLinearSolver SuperLUMT implementation

This section describes the sunlinsol implementation for solving sparse linear systems with Su-
perLU MT. The superlumt module is designed to be used with the corresponding sunmatrix sparse
matrix type, and one of the serial or shared-memory nvector implementations (nvector serial,
nvector openmp, or nvector pthreads). While these are compatible, it is not recommended to
use a threaded vector module with sunlinsol superlumt unless it is the nvector openmp module
and the superlumt library has also been compiled with OpenMP.

The header file to include when using this module is sunlinsol/sunlinsol superlumt.h. The
installed module library to link to is libsundials sunlinsolsuperlumt.lib where .lib is typically
.so for shared libraries and .a for static libraries.

The sunlinsol superlumt module is a sunlinsol wrapper for the superlumt sparse matrix
factorization and solver library written by X. Sherry Li [9, 31, 18]. The package performs matrix fac-
torization using threads to enhance efficiency in shared memory parallel environments. It should be
noted that threads are only used in the factorization step. In order to use the sunlinsol superlumt
interface to superlumt, it is assumed that superlumt has been installed on the system prior to in-
stallation of sundials, and that sundials has been configured appropriately to link with superlumt
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(see Appendix A for details). Additionally, this wrapper only supports single- and double-precision
calculations, and therefore cannot be compiled if sundials is configured to have realtype set to
extended (see Section 4.2). Moreover, since the superlumt library may be installed to support
either 32-bit or 64-bit integers, it is assumed that the superlumt library is installed using the same
integer precision as the sundials sunindextype option.!

9.11.1 SUNLinearSolver SuperLUMT description

The superlumt library has a symbolic factorization routine that computes the permutation of the
linear system matrix to reduce fill-in on subsequent LU factorizations (using COLAMD, minimal
degree ordering on AT ∗ A, minimal degree ordering on AT + A, or natural ordering). Of these
ordering choices, the default value in the sunlinsol superlumt module is the COLAMD ordering.

Since the linear systems that arise within the context of sundials calculations will typically have
identical sparsity patterns, the sunlinsol superlumt module is constructed to perform the following
operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

• On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors
the input matrix.

• The “solve” call performs pivoting and forward and backward substitution using the stored
superlumt data structures. We note that in this solve superlumt operates on the native data
arrays for the right-hand side and solution vectors, without requiring costly data copies.

9.11.2 SUNLinearSolver SuperLUMT functions

The module sunlinsol superlumt provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SuperLUMT

Call LS = SUNLinSol SuperLUMT(y, A, num threads);

Description The function SUNLinSol SuperLUMT creates and allocates memory for a
SuperLU MT-based SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix sparse matrix template for cloning ma-
trices needed within the solver

num threads (int) desired number of threads (OpenMP or Pthreads, depending
on how superlumt was installed) to use during the factorization
steps

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine analyzes the input matrix and vector to determine the linear system
size and to assess compatibility with the superlumt library.

This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix sparse matrix type (using either CSR or CSC storage formats)
and the nvector serial, nvector openmp, and nvector pthreads vector
types. As additional compatible matrix and vector implementations are added to
sundials, these will be included within this compatibility check.

The num threads argument is not checked and is passed directly to superlumt
routines.
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Deprecated Name For backward compatibility, the wrapper function SUNSuperLUMT with idential in-
put and output arguments is also provided.

The sunlinsol superlumt module defines implementations of all “direct” linear solver operations
listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType SuperLUMT

• SUNLinSolInitialize SuperLUMT – this sets the first factorize flag to 1 and resets the
internal superlumt statistics variables.

• SUNLinSolSetup SuperLUMT – this performs either a LU factorization or refactorization of the
input matrix.

• SUNLinSolSolve SuperLUMT – this calls the appropriate superlumt solve routine to utilize the
LU factors to solve the linear system.

• SUNLinSolLastFlag SuperLUMT

• SUNLinSolSpace SuperLUMT – this only returns information for the storage within the solver
interface, i.e. storage for the integers last flag and first factorize. For additional space
requirements, see the superlumt documentation.

• SUNLinSolFree SuperLUMT

The sunlinsol superlumt module also defines the following additional user-callable function.

SUNLinSol SuperLUMTSetOrdering

Call retval = SUNLinSol SuperLUMTSetOrdering(LS, ordering);

Description This function sets the ordering used by superlumt for reducing fill in the linear
solve.

Arguments LS (SUNLinearSolver) the sunlinsol superlumt object

ordering (int) a flag indicating the ordering algorithm to use, the options are:

0 natural ordering

1 minimal degree ordering on ATA

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value The return values from this function are SUNLS MEM NULL (S is NULL),
SUNLS ILL INPUT (invalid ordering choice), or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSuperLUMTSetOrdering with
idential input and output arguments is also provided.

9.11.3 SUNLinearSolver SuperLUMT Fortran interfaces

For solvers that include a Fortran interface module, the sunlinsol superlumt module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSUPERLUMTINIT

Call FSUNSUPERLUMTINIT(code, num threads, ier)

Description The function FSUNSUPERLUMTINIT can be called for Fortran programs to create a sun-
linsol klu object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida,
3 for kinsol, and 4 for arkode).
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num threads (int*) desired number of threads (OpenMP or Pthreads, depending on
how superlumt was installed) to use during the factorization steps

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol superlumt mod-
ule includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSUPERLUMTINIT

Call FSUNMASSSUPERLUMTINIT(num threads, ier)

Description The function FSUNMASSSUPERLUMTINIT can be called for Fortran programs to create a
SuperLU MT-based SUNLinearSolver object for mass matrix linear systems.

Arguments num threads (int*) desired number of threads (OpenMP or Pthreads, depending on
how superlumt was installed) to use during the factorization steps.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

The SUNLinSol SuperLUMTSetOrdering routine also supports Fortran interfaces for the system and
mass matrix solvers:

FSUNSUPERLUMTSETORDERING

Call FSUNSUPERLUMTSETORDERING(code, ordering, ier)

Description The function FSUNSUPERLUMTSETORDERING can be called for Fortran programs to update
the ordering algorithm in a sunlinsol superlumt object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

ordering (int*) a flag indicating the ordering algorithm, options are:

0 natural ordering

1 minimal degree ordering on ATA

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SuperLUMTSetOrdering for complete further documentation of this rou-
tine.

FSUNMASSUPERLUMTSETORDERING

Call FSUNMASSUPERLUMTSETORDERING(ordering, ier)

Description The function FSUNMASSUPERLUMTSETORDERING can be called for Fortran programs to
update the ordering algorithm in a sunlinsol superlumt object for mass matrix linear
systems.

Arguments ordering (int*) a flag indicating the ordering algorithm, options are:

0 natural ordering
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1 minimal degree ordering on ATA

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SuperLUMTSetOrdering for complete further documentation of this rou-
tine.

9.11.4 SUNLinearSolver SuperLUMT content

The sunlinsol superlumt module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SuperLUMT {

int last_flag;

int first_factorize;

SuperMatrix *A, *AC, *L, *U, *B;

Gstat_t *Gstat;

sunindextype *perm_r, *perm_c;

sunindextype N;

int num_threads;

realtype diag_pivot_thresh;

int ordering;

superlumt_options_t *options;

};

These entries of the content field contain the following information:
last flag - last error return flag from internal function evaluations,

first factorize - flag indicating whether the factorization has ever been performed,

A, AC, L, U, B - SuperMatrix pointers used in solve,

Gstat - GStat t object used in solve,

perm r, perm c - permutation arrays used in solve,

N - size of the linear system,

num threads - number of OpenMP/Pthreads threads to use,

diag pivot thresh - threshold on diagonal pivoting,

ordering - flag for which reordering algorithm to use,

options - pointer to superlumt options structure.

9.12 The SUNLinearSolver cuSolverSp batchQR implementa-
tion

The SUNLinearSolver cuSolverSp batchQR implementation of the sunlinsol API is designed to be
used with the SUNMATRIX CUSPARSE matrix, and the nvector cuda vector. The header file to include
when using this module is sunlinsol/sunlinsol cusolversp batchqr.h. The installed library to
link to is libsundials sunlinsolcusolversp.lib where .lib is typically .so for shared libraries
and .a for static libraries.

The SUNLinearSolver cuSolverSp batchQR module is experimental and subject to change. !
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9.12.1 SUNLinearSolver cuSolverSp batchQR description

The SUNLinearSolver cuSolverSp batchQR implementation provides an interface to the batched
sparse QR factorization method provided by the NVIDIA cuSOLVER library [6]. The module is
designed for solving block diagonal linear systems of the form

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

xj = bj

where all block matrices Aj share the same sparsisty pattern. The matrix must be the SUNMATRIX CUSPARSE

module.

9.12.2 SUNLinearSolver cuSolverSp batchQR functions

The SUNLinearSolver cuSolverSp batchQR module defines implementations of all “direct” linear
solver operations listed in Sections 9.1.1-9.1.3:

• SUNLinSolGetType cuSolverSp batchQR

• SUNLinSolInitialize cuSolverSp batchQR – this sets the first factorize flag to 1

• SUNLinSolSetup cuSolverSp batchQR – this always copies the relevant sunmatrix sparse
data to the GPU; if this is the first setup it will perform symbolic analysis on the system

• SUNLinSolSolve cuSolverSp batchQR – this calls the cusolverSpXcsrqrsvBatched routine to
perform factorization

• SUNLinSolLastFlag cuSolverSp batchQR

• SUNLinSolFree cuSolverSp batchQR

In addition, the module provides the following user-callable routines:

SUNLinSol cuSolverSp batchQR

Call LS = SUNLinSol cuSolverSp batchQR(y, A, cusol);

Description The function SUNLinSol cuSolverSp batchQR creates and allocates memory for a sun-
linsol object.

Arguments y (N Vector) a nvector cuda vector for checking compatibility with the
solver

A (SUNMatrix) a sunmatrix sparse matrix for checking compatibility with
the solver

cusol (cusolverHandle t) a valid cuSOLVER handle

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine analyzes the input matrix and vector to determine the linear system size
and to assess compatibility with the solver.

This routine will perform consistency checks to ensure that it is called with consis-
tent nvector and sunmatrix implementations. These are currently limited to the
SUNMAT CUSPARSE matrix type and the nvector cuda vector type. As additional
compatible matrix and vector implementations are added to sundials, these will be
included within this compatibility check.
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SUNLinSol cuSolverSp batchQR GetDescription

Call SUNLinSol cuSolverSp batchQR GetDescription(LS, &desc);

Description The function SUNLinSol cuSolverSp batchQR GetDescription accesses the string de-
scription of the object (empty by default).

Arguments LS (SUNLinearSolver) a SUNLinSol cuSolverSp batchQR object

desc (char **) the string description of the linear solver

Return value None

SUNLinSol cuSolverSp batchQR SetDescription

Call SUNLinSol cuSolverSp batchQR SetDescription(LS, desc);

Description The function SUNLinSol cuSolverSp batchQR SetDescription sets the string descrip-
tion of the object (empty by default).

Arguments LS (SUNLinearSolver) a SUNLinSol cuSolverSp batchQR object

desc (const char *) the string description of the linear solver

Return value None

SUNLinSol cuSolverSp batchQR GetDeviceSpace

Call SUNLinSol cuSolverSp batchQR GetDeviceSpace(LS, cuSolverInternal, cuSolverWorkspace);

Description The function SUNLinSol cuSolverSp batchQR GetDeviceSpace returns the cuSOLVER
batch QR method internal buffer size, in bytes, in the argument cuSolverInternal and
the cuSOLVER batch QR workspace buffer size, in bytes, in the agrument cuSolverWorkspace.
The size of the internal buffer is proportional to the number of matrix blocks while the
size of the workspace is almost independent of the number of blocks.

Arguments LS (SUNLinearSolver) a SUNLinSol cuSolverSp batchQR object

cuSolverInternal (size t *) output – the size of the cuSOLVER internal buffer in
bytes

cuSolverWorkspace (size t *) output – the size of the cuSOLVER workspace buffer
in bytes

Return value None

9.12.3 SUNLinearSolver cuSolverSp batchQR content

The SUNLinearSolver cuSolverSp batchQR module defines the content field of a SUNLinearSolver

to be the following structure:

struct _SUNLinearSolverContent_cuSolverSp_batchQR {

int last_flag; /* last return flag */

booleantype first_factorize; /* is this the first factorization? */

size_t internal_size; /* size of cusolver internal buffer for Q and R */

size_t workspace_size; /* size of cusolver memory block for num. factorization */

cusolverSpHandle_t cusolver_handle; /* cuSolverSp context */

csrqrInfo_t info; /* opaque cusolver data structure */

void* workspace; /* memory block used by cusolver */

const char* desc; /* description of this linear solver */

};
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9.13 The SUNLinearSolver MagmaDense implementation

The SUNLinearSolver MagmaDense implementation of the sunlinsol API is designed to be used with
the SUNMATRIX MAGMADENSE matrix, and a GPU-enabled vector. This implementation interfaces to
the MAGMA () linear algebra library and can target NVIDIA’s CUDA programming model or AMD’s
HIP programming model [39].

The header file to include when using this module is sunlinsol/sunlinsol magmadense.h. The
installed library to link to is libsundials sunlinsolmagmadense.lib where .lib is typically .so

for shared libraries and .a for static libraries.

The SUNLinearSolver MagmaDense module is experimental and subject to change.!

9.13.1 SUNLinearSolver MagmaDense description

The SUNLinearSolver MagmaDense implementation provides an interface to the dense LU and dense
batched LU methods in the MAGMA linear algebra library [4]. The batched LU methods are leveraged
when solving block diagonal linear systems of the form

A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · An−1

xj = bj .

9.13.2 SUNLinearSolver MagmaDense functions

The SUNLinearSolver MagmaDense module defines implementations of all “direct” linear solver op-
erations listed in Sections 9.1.1-9.1.3:

• SUNLinSolGetType MagmaDense

• SUNLinSolInitialize MagmaDense

• SUNLinSolSetup MagmaDense

• SUNLinSolSolve MagmaDense

• SUNLinSolLastFlag MagmaDense

• SUNLinSolFree MagmaDense

In addition, the module provides the following user-callable routines:

SUNLinSol MagmaDense

Call LS = SUNLinSol MagmaDense(y, A);

Description The function SUNLinSol MagmaDense creates and allocates memory for a sunlinsol
object.

Arguments y (N Vector) a vector for checking compatibility with the solver

A (SUNMatrix) a SUNMATRIX MAGMADENSE matrix for checking compatibility with the
solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine analyzes the input matrix and vector to determine the linear system size
and to assess compatibility with the solver.

https://icl.utk.edu/magma/
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SUNLinSol MagmaDense SetAsync

Call SUNLinSol MagmaDense SetAsync(SUNLinearSolver LS, booleantype onoff);

Description The function SUNLinSol MagmaDense SetAsync can be used to toggle the linear solver
between asynchronous and synchronous modes. In asynchronous mode, SUNLinearSolver
operations are asynchronous with respect to the host. In synchronous mode, the host
and GPU device are synchronized prior to the operation returning.

Arguments LS (SUNLinearSolver) a SUNLinSol MagmaDense object

onoff (booleantype) set to 0 for synchronous mode, or 1 for asynchronous mode

Return value None

Notes The default is asynchronous mode.

9.13.3 SUNLinearSolver MagmaDense content

The SUNLinearSolver MagmaDense module defines the content field of a SUNLinearSolver to be the
following structure:

struct _SUNLinearSolverContent_MagmaDense {

int last_flag;

booleantype async;

sunindextype N;

SUNMemory pivots;

SUNMemory pivotsarr;

SUNMemory dpivotsarr;

SUNMemory infoarr;

SUNMemory rhsarr;

SUNMemoryHelper memhelp;

magma_queue_t q;

};

9.14 The SUNLinearSolver SPGMR implementation

This section describes the sunlinsol implementation of the spgmr (Scaled, Preconditioned, Gen-
eralized Minimum Residual [38]) iterative linear solver. The sunlinsol spgmr module is designed
to be compatible with any nvector implementation that supports a minimal subset of operations
(N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VConst, N VDiv, and N VDestroy).
When using Classical Gram-Schmidt, the optional function N VDotProdMulti may be supplied for
increased efficiency.

To access the sunlinsol spgmr module, include the header file sunlinsol/sunlinsol spgmr.h.
We note that the sunlinsol spgmr module is accessible from sundials packages without separately
linking to the libsundials sunlinsolspgmr module library.

9.14.1 SUNLinearSolver SPGMR description

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template nvector that is
input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spgmr
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )
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• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning,
and restarts if those options have been supplied.

9.14.2 SUNLinearSolver SPGMR functions

The sunlinsol spgmr module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPGMR

Call LS = SUNLinSol SPGMR(y, pretype, maxl);

Description The function SUNLinSol SPGMR creates and allocates memory for a spgmr
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values
are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of Krylov basis vectors to use. Values ≤ 0 will result
in the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol). While
it is possible to configure a sunlinsol spgmr object to use any of the precondi-
tioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMR with idential input
and output arguments is also provided.

F2003 Name FSUNLinSol SPGMR

The sunlinsol spgmr module defines implementations of all “iterative” linear solver operations listed
in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType SPGMR

• SUNLinSolInitialize SPGMR

• SUNLinSolSetATimes SPGMR

• SUNLinSolSetPreconditioner SPGMR

• SUNLinSolSetScalingVectors SPGMR
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• SUNLinSolSetup SPGMR

• SUNLinSolSolve SPGMR

• SUNLinSolNumIters SPGMR

• SUNLinSolResNorm SPGMR

• SUNLinSolResid SPGMR

• SUNLinSolLastFlag SPGMR

• SUNLinSolSpace SPGMR

• SUNLinSolFree SPGMR

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol spgmr module also defines the following additional user-callable functions.

SUNLinSol SPGMRSetPrecType

Call retval = SUNLinSol SPGMRSetPrecType(LS, pretype);

Description The function SUNLinSol SPGMRSetPrecType updates the type of preconditioning
to use in the sunlinsol spgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spgmr object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPGMR.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMRSetPrecType with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol SPGMRSetPrecType

SUNLinSol SPGMRSetGSType

Call retval = SUNLinSol SPGMRSetGSType(LS, gstype);

Description The function SUNLinSol SPGMRSetPrecType sets the type of Gram-Schmidt or-
thogonalization to use in the sunlinsol spgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spgmr object to update

gstype (int) flag indicating the desired orthogonalization algorithm; allowed val-
ues are:

• MODIFIED GS (1)

• CLASSICAL GS (2)

Any other integer input will result in a failure, returning error code
SUNLS ILL INPUT.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMRSetGSType with iden-
tial input and output arguments is also provided.

F2003 Name FSUNLinSol SPGMRSetGSType
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SUNLinSol SPGMRSetMaxRestarts

Call retval = SUNLinSol SPGMRSetMaxRestarts(LS, maxrs);

Description The function SUNLinSol SPGMRSetMaxRestarts sets the number of GMRES restarts
to allow in the sunlinsol spgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spgmr object to update

maxrs (int) integer indicating number of restarts to allow. A negative input will
result in the default of 0.

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMRSetMaxRestarts with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol SPGMRSetMaxRestarts

SUNLinSolSetInfoFile SPGMR

Call retval = SUNLinSolSetInfoFile SPGMR(LS, info file);

Description The function SUNLinSolSetInfoFile SPGMR sets the output file where all informative
(non-error) messages should be directed.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

info file (FILE*) pointer to output file (stdout by default); a NULL input will disable
output

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the file pointer is set to stdout.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetInfoFile SPGMR

SUNLinSolSetPrintLevel SPGMR

Call retval = SUNLinSolSetPrintLevel SPGMR(NLS, print level);

Description The function SUNLinSolSetPrintLevel SPGMR specifies the level of verbosity of the
output.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

print level (int) flag indicating level of verbosity; must be one of:

• 0, no information is printed (default)

• 1, for each linear iteration the residual norm is printed

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled, or the print
level value was invalid
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Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the print level is 0.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetPrintLevel SPGMR

9.14.3 SUNLinearSolver SPGMR Fortran interfaces

The sunlinsol spgmr module provides a Fortran 2003 module as well as Fortran 77 style inter-
face functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol spgmr mod Fortran module defines interfaces to all sunlinsol spgmr C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperating
with C. As noted in the C function descriptions above, the interface functions are named after the
corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPGMR is
interfaced as FSUNLinSol SPGMR.

The Fortran 2003 sunlinsol spgmr interface module can be accessed with the use statement,
i.e. use fsunlinsol spgmr mod, and linking to the library libsundials fsunlinsolspgmr mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol spgmr mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsolspgmr mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol spgmr module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPGMRINIT

Call FSUNSPGMRINIT(code, pretype, maxl, ier)

Description The function FSUNSPGMRINIT can be called for Fortran programs to create a sunlin-
sol spgmr object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPGMR.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol spgmr module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPGMRINIT

Call FSUNMASSSPGMRINIT(pretype, maxl, ier)

Description The function FSUNMASSSPGMRINIT can be called for Fortran programs to create a sun-
linsol spgmr object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type
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maxl (int*) flag indicating Krylov subspace size

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPGMR.

The SUNLinSol SPGMRSetPrecType, SUNLinSol SPGMRSetGSType and
SUNLinSol SPGMRSetMaxRestarts routines also support Fortran interfaces for the system and mass
matrix solvers.

FSUNSPGMRSETGSTYPE

Call FSUNSPGMRSETGSTYPE(code, gstype, ier)

Description The function FSUNSPGMRSETGSTYPE can be called for Fortran programs to change the
Gram-Schmidt orthogonaliation algorithm.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

gstype (int*) flag indicating the desired orthogonalization algorithm.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetGSType for complete further documentation of this routine.

FSUNMASSSPGMRSETGSTYPE

Call FSUNMASSSPGMRSETGSTYPE(gstype, ier)

Description The function FSUNMASSSPGMRSETGSTYPE can be called for Fortran programs to change
the Gram-Schmidt orthogonaliation algorithm for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPGMRSETGSTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetGSType for complete further documentation of this routine.

FSUNSPGMRSETPRECTYPE

Call FSUNSPGMRSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPGMRSETPRECTYPE can be called for Fortran programs to change the
type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetPrecType for complete further documentation of this routine.
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FSUNMASSSPGMRSETPRECTYPE

Call FSUNMASSSPGMRSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPGMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPGMRSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetPrecType for complete further documentation of this routine.

FSUNSPGMRSETMAXRS

Call FSUNSPGMRSETMAXRS(code, maxrs, ier)

Description The function FSUNSPGMRSETMAXRS can be called for Fortran programs to change the
maximum number of restarts allowed for spgmr.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxrs (int*) maximum allowed number of restarts.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetMaxRestarts for complete further documentation of this rou-
tine.

FSUNMASSSPGMRSETMAXRS

Call FSUNMASSSPGMRSETMAXRS(maxrs, ier)

Description The function FSUNMASSSPGMRSETMAXRS can be called for Fortran programs to change
the maximum number of restarts allowed for spgmr for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPGMRSETMAXRS above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetMaxRestarts for complete further documentation of this rou-
tine.

9.14.4 SUNLinearSolver SPGMR content

The sunlinsol spgmr module defines the content field of a SUNLinearSolver as the following struc-
ture:

struct _SUNLinearSolverContent_SPGMR {

int maxl;

int pretype;

int gstype;

int max_restarts;

int numiters;

realtype resnorm;

int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;
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PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector *V;

realtype **Hes;

realtype *givens;

N_Vector xcor;

realtype *yg;

N_Vector vtemp;

int print_level;

FILE* info_file;

};

These entries of the content field contain the following information:
maxl - number of GMRES basis vectors to use (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

max restarts - number of GMRES restarts to allow (default is 0),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], . . . , V[maxl]. Each
vi is a vector of type nvector.,

Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th
element is given by Hes[i][j].,

givens - a length 2*maxl array which represents the Givens rotation matrices that arise in the
GMRES algorithm. These matrices are F0, F1, . . . , Fj , where

Fi =



1
. . .

1
ci −si
si ci

1
. . .

1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2]
= c1, givens[3] = s1, . . . givens[2j] = cj , givens[2j+1] = sj .,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (maxl+1) array of realtype values used to hold “short” vectors (e.g. y and
g),
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vtemp - temporary vector storage.

print level - controls the amount of information to be printed to the info file

info file - the file where all informative (non-error) messages will be directed

9.15 The SUNLinearSolver SPFGMR implementation

This section describes the sunlinsol implementation of the spfgmr (Scaled, Preconditioned, Flex-
ible, Generalized Minimum Residual [37]) iterative linear solver. The sunlinsol spfgmr module is
designed to be compatible with any nvector implementation that supports a minimal subset of opera-
tions (N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VConst, N VDiv, and N VDestroy).
When using Classical Gram-Schmidt, the optional function N VDotProdMulti may be supplied for in-
creased efficiency. Unlike the other Krylov iterative linear solvers supplied with sundials, spfgmr is
specifically designed to work with a changing preconditioner (e.g. from an iterative method).

To access the sunlinsol spfgmr module, include the header file sunlinsol/sunlinsol spfgmr.h.
We note that the sunlinsol spfgmr module is accessible from sundials packages without separately
linking to the libsundials sunlinsolspfgmr module library.

9.15.1 SUNLinearSolver SPFGMR description

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template nvector that is
input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with
sunlinsol spfgmr to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2

scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call, the FGMRES iteration is performed. This will include scaling, precondition-
ing, and restarts if those options have been supplied.

9.15.2 SUNLinearSolver SPFGMR functions

The sunlinsol spfgmr module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPFGMR

Call LS = SUNLinSol SPFGMR(y, pretype, maxl);

Description The function SUNLinSol SPFGMR creates and allocates memory for a spfgmr
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)
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• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of Krylov basis vectors to use. Values ≤ 0 will result in the
default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this routine
will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consistent
nvector implementation (i.e. that it supplies the requisite vector operations). If y is
incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left preconditioning
(ida and idas) and others with only right preconditioning (kinsol). While it is possible
to configure a sunlinsol spfgmr object to use any of the preconditioning options with
these solvers, this use mode is not supported and may result in inferior performance.

F2003 Name FSUNLinSol SPFGMR

SUNSPFGMR The sunlinsol spfgmr module defines implementations of all “iterative” linear solver
operations listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType SPFGMR

• SUNLinSolInitialize SPFGMR

• SUNLinSolSetATimes SPFGMR

• SUNLinSolSetPreconditioner SPFGMR

• SUNLinSolSetScalingVectors SPFGMR

• SUNLinSolSetup SPFGMR

• SUNLinSolSolve SPFGMR

• SUNLinSolNumIters SPFGMR

• SUNLinSolResNorm SPFGMR

• SUNLinSolResid SPFGMR

• SUNLinSolLastFlag SPFGMR

• SUNLinSolSpace SPFGMR

• SUNLinSolFree SPFGMR

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol spfgmr module also defines the following additional user-callable functions.

SUNLinSol SPFGMRSetPrecType

Call retval = SUNLinSol SPFGMRSetPrecType(LS, pretype);

Description The function SUNLinSol SPFGMRSetPrecType updates the type of preconditioning
to use in the sunlinsol spfgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spfgmr object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPFGMR.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.
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Deprecated Name For backward compatibility, the wrapper function SUNSPFGMRSetPrecType with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol SPFGMRSetPrecType

SUNLinSol SPFGMRSetGSType

Call retval = SUNLinSol SPFGMRSetGSType(LS, gstype);

Description The function SUNLinSol SPFGMRSetPrecType sets the type of Gram-Schmidt or-
thogonalization to use in the sunlinsol spfgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spfgmr object to update

gstype (int) flag indicating the desired orthogonalization algorithm; allowed val-
ues are:

• MODIFIED GS (1)

• CLASSICAL GS (2)

Any other integer input will result in a failure, returning error code
SUNLS ILL INPUT.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPFGMRSetGSType with iden-
tial input and output arguments is also provided.

F2003 Name FSUNLinSol SPFGMRSetGSType

SUNLinSol SPFGMRSetMaxRestarts

Call retval = SUNLinSol SPFGMRSetMaxRestarts(LS, maxrs);

Description The function SUNLinSol SPFGMRSetMaxRestarts sets the number of GMRES
restarts to allow in the sunlinsol spfgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spfgmr object to update

maxrs (int) integer indicating number of restarts to allow. A negative input will
result in the default of 0.

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPFGMRSetMaxRestarts with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol SPFGMRSetMaxRestarts

SUNLinSolSetInfoFile SPFGMR

Call retval = SUNLinSolSetInfoFile SPFGMR(LS, info file);

Description The function SUNLinSolSetInfoFile SPFGMR sets the output file where all informative
(non-error) messages should be directed.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

info file (FILE*) pointer to output file (stdout by default); a NULL input will disable
output

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled
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Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the file pointer is set to stdout.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetInfoFile SPFGMR

SUNLinSolSetPrintLevel SPFGMR

Call retval = SUNLinSolSetPrintLevel SPFGMR(NLS, print level);

Description The function SUNLinSolSetPrintLevel SPFGMR specifies the level of verbosity of the
output.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

print level (int) flag indicating level of verbosity; must be one of:

• 0, no information is printed (default)

• 1, for each linear iteration the residual norm is printed

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled, or the print
level value was invalid

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the print level is 0.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetPrintLevel SPFGMR

9.15.3 SUNLinearSolver SPFGMR Fortran interfaces

The sunlinsol spfgmr module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol spfgmr mod Fortran module defines interfaces to all sunlinsol spfgmr C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPFGMR

is interfaced as FSUNLinSol SPFGMR.
The Fortran 2003 sunlinsol spfgmr interface module can be accessed with the use statement,

i.e. use fsunlinsol spfgmr mod, and linking to the library libsundials fsunlinsolspfgmr mod.lib
in addition to the C library. For details on where the library and module file
fsunlinsol spfgmr mod.mod are installed see Appendix A. We note that the module is accessible
from the Fortran 2003 sundials integrators without separately linking to the
libsundials fsunlinsolspfgmr mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol spfgmr module also includes
a Fortran-callable function for creating a SUNLinearSolver object.
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FSUNSPFGMRINIT

Call FSUNSPFGMRINIT(code, pretype, maxl, ier)

Description The function FSUNSPFGMRINIT can be called for Fortran programs to create a sunlin-
sol spfgmr object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPFGMR.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol spfgmr module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPFGMRINIT

Call FSUNMASSSPFGMRINIT(pretype, maxl, ier)

Description The function FSUNMASSSPFGMRINIT can be called for Fortran programs to create a sun-
linsol spfgmr object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPFGMR.

The SUNLinSol SPFGMRSetPrecType, SUNLinSol SPFGMRSetGSType and
SUNLinSol SPFGMRSetMaxRestarts routines also support Fortran interfaces for the system and mass
matrix solvers.

FSUNSPFGMRSETGSTYPE

Call FSUNSPFGMRSETGSTYPE(code, gstype, ier)

Description The function FSUNSPFGMRSETGSTYPE can be called for Fortran programs to change the
Gram-Schmidt orthogonaliation algorithm.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

gstype (int*) flag indicating the desired orthogonalization algorithm.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetGSType for complete further documentation of this routine.

FSUNMASSSPFGMRSETGSTYPE

Call FSUNMASSSPFGMRSETGSTYPE(gstype, ier)

Description The function FSUNMASSSPFGMRSETGSTYPE can be called for Fortran programs to change
the Gram-Schmidt orthogonaliation algorithm for mass matrix linear systems.
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Arguments The arguments are identical to FSUNSPFGMRSETGSTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetGSType for complete further documentation of this routine.

FSUNSPFGMRSETPRECTYPE

Call FSUNSPFGMRSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPFGMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetPrecType for complete further documentation of this routine.

FSUNMASSSPFGMRSETPRECTYPE

Call FSUNMASSSPFGMRSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPFGMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPFGMRSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetPrecType for complete further documentation of this routine.

FSUNSPFGMRSETMAXRS

Call FSUNSPFGMRSETMAXRS(code, maxrs, ier)

Description The function FSUNSPFGMRSETMAXRS can be called for Fortran programs to change the
maximum number of restarts allowed for spfgmr.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxrs (int*) maximum allowed number of restarts.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetMaxRestarts for complete further documentation of this rou-
tine.

FSUNMASSSPFGMRSETMAXRS

Call FSUNMASSSPFGMRSETMAXRS(maxrs, ier)

Description The function FSUNMASSSPFGMRSETMAXRS can be called for Fortran programs to change
the maximum number of restarts allowed for spfgmr for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPFGMRSETMAXRS above, except that code is not
needed since mass matrix linear systems only arise in arkode.
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Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetMaxRestarts for complete further documentation of this rou-
tine.

9.15.4 SUNLinearSolver SPFGMR content

The sunlinsol spfgmr module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SPFGMR {

int maxl;

int pretype;

int gstype;

int max_restarts;

int numiters;

realtype resnorm;

int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector *V;

N_Vector *Z;

realtype **Hes;

realtype *givens;

N_Vector xcor;

realtype *yg;

N_Vector vtemp;

int print_level;

FILE* info_file;

};

These entries of the content field contain the following information:
maxl - number of FGMRES basis vectors to use (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

max restarts - number of FGMRES restarts to allow (default is 0),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),
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V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], . . . , V[maxl]. Each
vi is a vector of type nvector.,

Z - the array of preconditioned Krylov basis vectors z1, . . . , zmaxl+1, stored in Z[0], . . . ,
Z[maxl]. Each zi is a vector of type nvector.,

Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th
element is given by Hes[i][j].,

givens - a length 2*maxl array which represents the Givens rotation matrices that arise in the
FGMRES algorithm. These matrices are F0, F1, . . . , Fj , where

Fi =



1
. . .

1
ci −si
si ci

1
. . .

1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2]
= c1, givens[3] = s1, . . . givens[2j] = cj , givens[2j+1] = sj .,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (maxl+1) array of realtype values used to hold “short” vectors (e.g. y and
g),

vtemp - temporary vector storage.

print level - controls the amount of information to be printed to the info file

info file - the file where all informative (non-error) messages will be directed

9.16 The SUNLinearSolver SPBCGS implementation

This section describes the sunlinsol implementation of the spbcgs (Scaled, Preconditioned, Bi-
Conjugate Gradient, Stabilized [40]) iterative linear solver. The sunlinsol spbcgs module is designed
to be compatible with any nvector implementation that supports a minimal subset of operations
(N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VDiv, and N VDestroy). Unlike the
spgmr and spfgmr algorithms, spbcgs requires a fixed amount of memory that does not increase
with the number of allowed iterations.

To access the sunlinsol spbcgs module, include the header file sunlinsol/sunlinsol spbcgs.h.
We note that the sunlinsol spbcgs module is accessible from sundials packages without separately
linking to the libsundials sunlinsolspbcgs module library.

9.16.1 SUNLinearSolver SPBCGS description

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spbcgs
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.
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• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the spbcgs iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

9.16.2 SUNLinearSolver SPBCGS functions

The sunlinsol spbcgs module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPBCGS

Call LS = SUNLinSol SPBCGS(y, pretype, maxl);

Description The function SUNLinSol SPBCGS creates and allocates memory for a spbcgs
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values
are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of linear iterations to allow. Values ≤ 0 will result in
the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol). While
it is possible to configure a sunlinsol spbcgs object to use any of the precondi-
tioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Deprecated Name For backward compatibility, the wrapper function SUNSPBCGS with idential input
and output arguments is also provided.

F2003 Name FSUNLinSol SPBCGS

The sunlinsol spbcgs module defines implementations of all “iterative” linear solver operations
listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType SPBCGS

• SUNLinSolInitialize SPBCGS

• SUNLinSolSetATimes SPBCGS

• SUNLinSolSetPreconditioner SPBCGS

• SUNLinSolSetScalingVectors SPBCGS
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• SUNLinSolSetup SPBCGS

• SUNLinSolSolve SPBCGS

• SUNLinSolNumIters SPBCGS

• SUNLinSolResNorm SPBCGS

• SUNLinSolResid SPBCGS

• SUNLinSolLastFlag SPBCGS

• SUNLinSolSpace SPBCGS

• SUNLinSolFree SPBCGS

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol spbcgs module also defines the following additional user-callable functions.

SUNLinSol SPBCGSSetPrecType

Call retval = SUNLinSol SPBCGSSetPrecType(LS, pretype);

Description The function SUNLinSol SPBCGSSetPrecType updates the type of preconditioning
to use in the sunlinsol spbcgs object.

Arguments LS (SUNLinearSolver) the sunlinsol spbcgs object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPBCGS.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPBCGSSetPrecType with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol SPBCGSSetPrecType

SUNLinSol SPBCGSSetMaxl

Call retval = SUNLinSol SPBCGSSetMaxl(LS, maxl);

Description The function SUNLinSol SPBCGSSetMaxl updates the number of linear solver iter-
ations to allow.

Arguments LS (SUNLinearSolver) the sunlinsol spbcgs object to update

maxl (int) flag indicating the number of iterations to allow. Values ≤ 0 will result
in the default value (5).

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPBCGSSetMaxl with idential
input and output arguments is also provided.

F2003 Name FSUNLinSol SPBCGSSetMaxl
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SUNLinSolSetInfoFile SPBCGS

Call retval = SUNLinSolSetInfoFile SPBCGS(LS, info file);

Description The function SUNLinSolSetInfoFile SPBCGS sets the output file where all informative
(non-error) messages should be directed.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

info file (FILE*) pointer to output file (stdout by default); a NULL input will disable
output

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the file pointer is set to stdout.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetInfoFile SPBCGS

SUNLinSolSetPrintLevel SPBCGS

Call retval = SUNLinSolSetPrintLevel SPBCGS(NLS, print level);

Description The function SUNLinSolSetPrintLevel SPBCGS specifies the level of verbosity of the
output.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

print level (int) flag indicating level of verbosity; must be one of:

• 0, no information is printed (default)

• 1, for each linear iteration the residual norm is printed

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled, or the print
level value was invalid

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the print level is 0.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetPrintLevel SPBCGS

9.16.3 SUNLinearSolver SPBCGS Fortran interfaces

The sunlinsol spbcgs module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.
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FORTRAN 2003 interface module

The fsunlinsol spbcgs mod Fortran module defines interfaces to all sunlinsol spbcgs C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPBCGS

is interfaced as FSUNLinSol SPBCGS.
The Fortran 2003 sunlinsol spbcgs interface module can be accessed with the use statement,

i.e. use fsunlinsol spbcgs mod, and linking to the library libsundials fsunlinsolspbcgs mod.lib
in addition to the C library. For details on where the library and module file
fsunlinsol spbcgs mod.mod are installed see Appendix A. We note that the module is accessible
from the Fortran 2003 sundials integrators without separately linking to the
libsundials fsunlinsolspbcgs mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol spbcgs module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPBCGSINIT

Call FSUNSPBCGSINIT(code, pretype, maxl, ier)

Description The function FSUNSPBCGSINIT can be called for Fortran programs to create a sunlin-
sol spbcgs object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPBCGS.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol spbcgs module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPBCGSINIT

Call FSUNMASSSPBCGSINIT(pretype, maxl, ier)

Description The function FSUNMASSSPBCGSINIT can be called for Fortran programs to create a sun-
linsol spbcgs object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPBCGS.

The SUNLinSol SPBCGSSetPrecType and SUNLinSol SPBCGSSetMaxl routines also support Fortran
interfaces for the system and mass matrix solvers.
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FSUNSPBCGSSETPRECTYPE

Call FSUNSPBCGSSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPBCGSSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetPrecType for complete further documentation of this routine.

FSUNMASSSPBCGSSETPRECTYPE

Call FSUNMASSSPBCGSSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPBCGSSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPBCGSSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetPrecType for complete further documentation of this routine.

FSUNSPBCGSSETMAXL

Call FSUNSPBCGSSETMAXL(code, maxl, ier)

Description The function FSUNSPBCGSSETMAXL can be called for Fortran programs to change the
maximum number of iterations to allow.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxl (int*) the number of iterations to allow.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetMaxl for complete further documentation of this routine.

FSUNMASSSPBCGSSETMAXL

Call FSUNMASSSPBCGSSETMAXL(maxl, ier)

Description The function FSUNMASSSPBCGSSETMAXL can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPBCGSSETMAXL above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetMaxl for complete further documentation of this routine.
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9.16.4 SUNLinearSolver SPBCGS content

The sunlinsol spbcgs module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SPBCGS {

int maxl;

int pretype;

int numiters;

realtype resnorm;

int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector r;

N_Vector r_star;

N_Vector p;

N_Vector q;

N_Vector u;

N_Vector Ap;

N_Vector vtemp;

int print_level;

FILE* info_file;

};

These entries of the content field contain the following information:

maxl - number of spbcgs iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r - a nvector which holds the current scaled, preconditioned linear system residual,

r star - a nvector which holds the initial scaled, preconditioned linear system residual,

p, q, u, Ap, vtemp - nvectors used for workspace by the spbcgs algorithm.

print level - controls the amount of information to be printed to the info file

info file - the file where all informative (non-error) messages will be directed
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9.17 The SUNLinearSolver SPTFQMR implementation

This section describes the sunlinsol implementation of the sptfqmr (Scaled, Preconditioned,
Transpose-Free Quasi-Minimum Residual [23]) iterative linear solver. The sunlinsol sptfqmr mod-
ule is designed to be compatible with any nvector implementation that supports a minimal sub-
set of operations (N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VConst, N VDiv, and
N VDestroy). Unlike the spgmr and spfgmr algorithms, sptfqmr requires a fixed amount of memory
that does not increase with the number of allowed iterations.

To access the sunlinsol sptfqmr module, include the header file
sunlinsol/sunlinsol sptfqmr.h. We note that the sunlinsol sptfqmr module is accessible from
sundials packages without separately linking to the libsundials sunlinsolsptfqmr module library.

9.17.1 SUNLinearSolver SPTFQMR description

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with
sunlinsol sptfqmr to supply the ATimes, PSetup, and Psolve function pointers and s1 and
s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the TFQMR iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

9.17.2 SUNLinearSolver SPTFQMR functions

The sunlinsol sptfqmr module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPTFQMR

Call LS = SUNLinSol SPTFQMR(y, pretype, maxl);

Description The function SUNLinSol SPTFQMR creates and allocates memory for a sptfqmr
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values
are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of linear iterations to allow. Values ≤ 0 will result in
the default value (5).
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Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol). While
it is possible to configure a sunlinsol sptfqmr object to use any of the precondi-
tioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Deprecated Name For backward compatibility, the wrapper function SUNSPTFQMR with idential input
and output arguments is also provided.

F2003 Name FSUNLinSol SPTFQMR

The sunlinsol sptfqmr module defines implementations of all “iterative” linear solver operations
listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType SPTFQMR

• SUNLinSolInitialize SPTFQMR

• SUNLinSolSetATimes SPTFQMR

• SUNLinSolSetPreconditioner SPTFQMR

• SUNLinSolSetScalingVectors SPTFQMR

• SUNLinSolSetup SPTFQMR

• SUNLinSolSolve SPTFQMR

• SUNLinSolNumIters SPTFQMR

• SUNLinSolResNorm SPTFQMR

• SUNLinSolResid SPTFQMR

• SUNLinSolLastFlag SPTFQMR

• SUNLinSolSpace SPTFQMR

• SUNLinSolFree SPTFQMR

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol sptfqmr module also defines the following additional user-callable functions.

SUNLinSol SPTFQMRSetPrecType

Call retval = SUNLinSol SPTFQMRSetPrecType(LS, pretype);

Description The function SUNLinSol SPTFQMRSetPrecType updates the type of preconditioning
to use in the sunlinsol sptfqmr object.

Arguments LS (SUNLinearSolver) the sunlinsol sptfqmr object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPTFQMR.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPTFQMRSetPrecType with
idential input and output arguments is also provided.

F2003 Name FSUNLinSol SPTFQMRSetPrecType
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SUNLinSol SPTFQMRSetMaxl

Call retval = SUNLinSol SPTFQMRSetMaxl(LS, maxl);

Description The function SUNLinSol SPTFQMRSetMaxl updates the number of linear solver iterations
to allow.

Arguments LS (SUNLinearSolver) the sunlinsol sptfqmr object to update

maxl (int) flag indicating the number of iterations to allow; values ≤ 0 will result in
the default value (5)

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

F2003 Name FSUNLinSol SPTFQMRSetMaxl

SUNSPTFQMRSetMaxl

SUNLinSolSetInfoFile SPTFQMR

Call retval = SUNLinSolSetInfoFile SPTFQMR(LS, info file);

Description The function SUNLinSolSetInfoFile SPTFQMR sets the output file where all informative
(non-error) messages should be directed.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

info file (FILE*) pointer to output file (stdout by default); a NULL input will disable
output

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the file pointer is set to stdout.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetInfoFile SPTFQMR

SUNLinSolSetPrintLevel SPTFQMR

Call retval = SUNLinSolSetPrintLevel SPTFQMR(NLS, print level);

Description The function SUNLinSolSetPrintLevel SPTFQMR specifies the level of verbosity of the
output.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

print level (int) flag indicating level of verbosity; must be one of:

• 0, no information is printed (default)

• 1, for each linear iteration the residual norm is printed

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled, or the print
level value was invalid
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Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the print level is 0.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetPrintLevel SPTFQMR

9.17.3 SUNLinearSolver SPTFQMR Fortran interfaces

The sunlinsol spfgmr module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol sptfqmr mod Fortran module defines interfaces to all sunlinsol spfgmr C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPTFQMR

is interfaced as FSUNLinSol SPTFQMR.
The Fortran 2003 sunlinsol spfgmr interface module can be accessed with the use statement,

i.e. use fsunlinsol sptfqmr mod, and linking to the library libsundials fsunlinsolsptfqmr mod.lib
in addition to the C library. For details on where the library and module file
fsunlinsol sptfqmr mod.mod are installed see Appendix A. We note that the module is accessible
from the Fortran 2003 sundials integrators without separately linking to the
libsundials fsunlinsolsptfqmr mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol sptfqmr module also in-
cludes a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPTFQMRINIT

Call FSUNSPTFQMRINIT(code, pretype, maxl, ier)

Description The function FSUNSPTFQMRINIT can be called for Fortran programs to create a sunlin-
sol sptfqmr object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPTFQMR.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol sptfqmr module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPTFQMRINIT

Call FSUNMASSSPTFQMRINIT(pretype, maxl, ier)

Description The function FSUNMASSSPTFQMRINIT can be called for Fortran programs to create a
sunlinsol sptfqmr object for mass matrix linear systems.
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Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPTFQMR.

The SUNLinSol SPTFQMRSetPrecType and SUNLinSol SPTFQMRSetMaxl routines also support Fortran
interfaces for the system and mass matrix solvers.

FSUNSPTFQMRSETPRECTYPE

Call FSUNSPTFQMRSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPTFQMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetPrecType for complete further documentation of this rou-
tine.

FSUNMASSSPTFQMRSETPRECTYPE

Call FSUNMASSSPTFQMRSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPTFQMRSETPRECTYPE can be called for Fortran programs to
change the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPTFQMRSETPRECTYPE above, except that code is
not needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetPrecType for complete further documentation of this rou-
tine.

FSUNSPTFQMRSETMAXL

Call FSUNSPTFQMRSETMAXL(code, maxl, ier)

Description The function FSUNSPTFQMRSETMAXL can be called for Fortran programs to change the
maximum number of iterations to allow.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxl (int*) the number of iterations to allow.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetMaxl for complete further documentation of this routine.
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FSUNMASSSPTFQMRSETMAXL

Call FSUNMASSSPTFQMRSETMAXL(maxl, ier)

Description The function FSUNMASSSPTFQMRSETMAXL can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPTFQMRSETMAXL above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetMaxl for complete further documentation of this routine.

9.17.4 SUNLinearSolver SPTFQMR content

The sunlinsol sptfqmr module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SPTFQMR {

int maxl;

int pretype;

int numiters;

realtype resnorm;

int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector r_star;

N_Vector q;

N_Vector d;

N_Vector v;

N_Vector p;

N_Vector *r;

N_Vector u;

N_Vector vtemp1;

N_Vector vtemp2;

N_Vector vtemp3;

int print_level;

FILE* info_file;

};

These entries of the content field contain the following information:
maxl - number of TFQMR iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,
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Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r star - a nvector which holds the initial scaled, preconditioned linear system residual,

q, d, v, p, u - nvectors used for workspace by the SPTFQMR algorithm,

r - array of two nvectors used for workspace within the SPTFQMR algorithm,

vtemp1, vtemp2, vtemp3 - temporary vector storage.

print level - controls the amount of information to be printed to the info file

info file - the file where all informative (non-error) messages will be directed

9.18 The SUNLinearSolver PCG implementation

This section describes the sunlinsol implementaiton of the pcg (Preconditioned Conjugate Gradient
[25]) iterative linear solver. The sunlinsol pcg module is designed to be compatible with any nvec-
tor implementation that supports a minimal subset of operations (N VClone, N VDotProd, N VScale,
N VLinearSum, N VProd, and N VDestroy). Unlike the spgmr and spfgmr algorithms, pcg requires
a fixed amount of memory that does not increase with the number of allowed iterations.

To access the sunlinsol pcg module, include the header file
sunlinsol/sunlinsol pcg.h. We note that the sunlinsol pcg module is accessible from sundials
packages without separately linking to the libsundials sunlinsolpcg module library.

9.18.1 SUNLinearSolver PCG description

Unlike all of the other iterative linear solvers supplied with sundials, pcg should only be used on
symmetric linear systems (e.g. mass matrix linear systems encountered in arkode). As a result, the
explanation of the role of scaling and preconditioning matrices given in general must be modified in
this scenario. The pcg algorithm solves a linear system Ax = b where A is a symmetric (AT = A),
real-valued matrix. Preconditioning is allowed, and is applied in a symmetric fashion on both the
right and left. Scaling is also allowed and is applied symmetrically. We denote the preconditioner and
scaling matrices as follows:

• P is the preconditioner (assumed symmetric),

• S is a diagonal matrix of scale factors.

The matrices A and P are not required explicitly; only routines that provide A and P−1 as operators
are required. The diagonal of the matrix S is held in a single nvector, supplied by the user.

In this notation, pcg applies the underlying CG algorithm to the equivalent transformed system

Ãx̃ = b̃ (9.3)

where

Ã = SP−1AP−1S,

b̃ = SP−1b, (9.4)

x̃ = S−1Px.

The scaling matrix must be chosen so that the vectors SP−1b and S−1Px have dimensionless com-
ponents.
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The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

‖b̃− Ãx̃‖2 < δ

⇔
‖SP−1b− SP−1Ax‖2 < δ

⇔
‖P−1b− P−1Ax‖S < δ

where ‖v‖S =
√
vTSTSv, with an input tolerance δ.

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol pcg
to supply the ATimes, PSetup, and Psolve function pointers and s scaling vector.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the pcg iteration is performed. This will include scaling and preconditioning
if those options have been supplied.

9.18.2 SUNLinearSolver PCG functions

The sunlinsol pcg module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol PCG

Call LS = SUNLinSol PCG(y, pretype, maxl);

Description The function SUNLinSol PCG creates and allocates memory for a pcg SUNLinearSolver

object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating whether to use preconditioning. Since the pcg al-
gorithm is designed to only support symmetric preconditioning, then any
of the pretype inputs PREC LEFT (1), PREC RIGHT (2), or PREC BOTH (3)
will result in use of the symmetric preconditioner; any other integer input
will result in the default (no preconditioning).

maxl (int) the number of linear iterations to allow; values ≤ 0 will result in
the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

Although some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol), pcg
should only be used with these packages when the linear systems are known to be
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symmetric. Since the scaling of matrix rows and columns must be identical in a
symmetric matrix, symmetric preconditioning should work appropriately even for
packages designed with one-sided preconditioning in mind.

Deprecated Name For backward compatibility, the wrapper function SUNPCG with idential input and
output arguments is also provided.

F2003 Name FSUNLinSol PCG

The sunlinsol pcg module defines implementations of all “iterative” linear solver operations listed
in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType PCG

• SUNLinSolInitialize PCG

• SUNLinSolSetATimes PCG

• SUNLinSolSetPreconditioner PCG

• SUNLinSolSetScalingVectors PCG – since pcg only supports symmetric scaling, the second
nvector argument to this function is ignored

• SUNLinSolSetup PCG

• SUNLinSolSolve PCG

• SUNLinSolNumIters PCG

• SUNLinSolResNorm PCG

• SUNLinSolResid PCG

• SUNLinSolLastFlag PCG

• SUNLinSolSpace PCG

• SUNLinSolFree PCG

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol pcg module also defines the following additional user-callable functions.

SUNLinSol PCGSetPrecType

Call retval = SUNLinSol PCGSetPrecType(LS, pretype);

Description The function SUNLinSol PCGSetPrecType updates the flag indicating use of pre-
conditioning in the sunlinsol pcg object.

Arguments LS (SUNLinearSolver) the sunlinsol pcg object to update

pretype (int) flag indicating use of preconditioning, allowed values match those
discussed in SUNLinSol PCG.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNPCGSetPrecType with iden-
tial input and output arguments is also provided.

F2003 Name FSUNLinSol PCGSetPrecType
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SUNLinSol PCGSetMaxl

Call retval = SUNLinSol PCGSetMaxl(LS, maxl);

Description The function SUNLinSol PCGSetMaxl updates the number of linear solver iterations
to allow.

Arguments LS (SUNLinearSolver) the sunlinsol pcg object to update

maxl (int) flag indicating the number of iterations to allow; values ≤ 0 will result
in the default value (5)

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNPCGSetMaxl with idential
input and output arguments is also provided.

F2003 Name FSUNLinSol PCGSetMaxl

SUNLinSolSetInfoFile PCG

Call retval = SUNLinSolSetInfoFile PCG(LS, info file);

Description The function SUNLinSolSetInfoFile PCG sets the output file where all informative
(non-error) messages should be directed.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

info file (FILE*) pointer to output file (stdout by default); a NULL input will disable
output

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled

Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the file pointer is set to stdout.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetInfoFile PCG

SUNLinSolSetPrintLevel PCG

Call retval = SUNLinSolSetPrintLevel PCG(NLS, print level);

Description The function SUNLinSolSetPrintLevel PCG specifies the level of verbosity of the out-
put.

Arguments LS (SUNLinearSolver) a sunnonlinsol object

print level (int) flag indicating level of verbosity; must be one of:

• 0, no information is printed (default)

• 1, for each linear iteration the residual norm is printed

Return value The return value is

• SUNLS SUCCESS if successful

• SUNLS MEM NULL if the SUNLinearSolver memory was NULL

• SUNLS ILL INPUT if sundials was not built with monitoring enabled, or the print
level value was invalid
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Notes This function is intended for users that wish to monitor the linear solver progress. By
default, the print level is 0.

sundials must be built with the CMake option SUNDIALS BUILD WITH MONITORING,
to utilize this function. See section A.1.2 for more information.

F2003 Name FSUNLinSolSetPrintLevel PCG

9.18.3 SUNLinearSolver PCG Fortran interfaces

The sunlinsol pcg module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol pcg mod Fortran module defines interfaces to all sunlinsol pcg C functions using
the intrinsic iso c binding module which provides a standardized mechanism for interoperating with
C. As noted in the C function descriptions above, the interface functions are named after the corre-
sponding C function, but with a leading ‘F’. For example, the function SUNLinSol PCG is interfaced
as FSUNLinSol PCG.

The Fortran 2003 sunlinsol pcg interface module can be accessed with the use statement,
i.e. use fsunlinsol pcg mod, and linking to the library libsundials fsunlinsolpcg mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol pcg mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsolpcg mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol pcg module also includes a
Fortran-callable function for creating a SUNLinearSolver object.

FSUNPCGINIT

Call FSUNPCGINIT(code, pretype, maxl, ier)

Description The function FSUNPCGINIT can be called for Fortran programs to create a sunlin-
sol pcg object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function SUNLinSol PCG.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol pcg module in-
cludes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSPCGINIT

Call FSUNMASSPCGINIT(pretype, maxl, ier)

Description The function FSUNMASSPCGINIT can be called for Fortran programs to create a sunlin-
sol pcg object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow
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Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function SUNLinSol PCG.

The SUNLinSol PCGSetPrecType and SUNLinSol PCGSetMaxl routines also support Fortran interfaces
for the system and mass matrix solvers.

FSUNPCGSETPRECTYPE

Call FSUNPCGSETPRECTYPE(code, pretype, ier)

Description The function FSUNPCGSETPRECTYPE can be called for Fortran programs to change the
type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetPrecType for complete further documentation of this routine.

FSUNMASSPCGSETPRECTYPE

Call FSUNMASSPCGSETPRECTYPE(pretype, ier)

Description The function FSUNMASSPCGSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNPCGSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetPrecType for complete further documentation of this routine.

FSUNPCGSETMAXL

Call FSUNPCGSETMAXL(code, maxl, ier)

Description The function FSUNPCGSETMAXL can be called for Fortran programs to change the maxi-
mum number of iterations to allow.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxl (int*) the number of iterations to allow.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetMaxl for complete further documentation of this routine.

FSUNMASSPCGSETMAXL

Call FSUNMASSPCGSETMAXL(maxl, ier)

Description The function FSUNMASSPCGSETMAXL can be called for Fortran programs to change the
type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNPCGSETMAXL above, except that code is not needed
since mass matrix linear systems only arise in arkode.
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Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetMaxl for complete further documentation of this routine.

9.18.4 SUNLinearSolver PCG content

The sunlinsol pcg module defines the content field of a SUNLinearSolver as the following structure:

struct _SUNLinearSolverContent_PCG {

int maxl;

int pretype;

int numiters;

realtype resnorm;

int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s;

N_Vector r;

N_Vector p;

N_Vector z;

N_Vector Ap;

int print_level;

FILE* info_file;

};

These entries of the content field contain the following information:
maxl - number of pcg iterations to allow (default is 5),

pretype - flag for use of preconditioning (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s - vector pointer for supplied scaling matrix (default is NULL),

r - a nvector which holds the preconditioned linear system residual,

p, z, Ap - nvectors used for workspace by the pcg algorithm.

print level - controls the amount of information to be printed to the info file

info file - the file where all informative (non-error) messages will be directed

9.19 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make
use of the functions in test sunlinsol.c. These example functions show simple usage of the
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SUNLinearSolver family of functions. The inputs to the examples depend on the linear solver type,
and are output to stdout if the example is run without the appropriate number of command-line
arguments.
The following is a list of the example functions in test sunlinsol.c:

• Test SUNLinSolGetType: Verifies the returned solver type against the value that should be
returned.

• Test SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns
successfully.

• Test SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

• Test SUNLinSolSolve: Given a sunmatrix object A, nvector objects x and b (where Ax = b)
and a desired solution tolerance tol, this routine clones x into a new vector y, calls
SUNLinSolSolve to fill y as the solution to Ay = b (to the input tolerance), verifies that each
entry in x and y match to within 10*tol, and overwrites x with y prior to returning (in case
the calling routine would like to investigate further).

• Test SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be
called and returns successfully.

• Test SUNLinSolSetPreconditioner (iterative solvers only): Verifies that
SUNLinSolSetPreconditioner can be called and returns successfully.

• Test SUNLinSolSetScalingVectors (iterative solvers only): Verifies that
SUNLinSolSetScalingVectors can be called and returns successfully.

• Test SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the
result to stdout.

• Test SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be
called, and outputs the result to stdout.

• Test SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called,
and that the result is non-negative.

• Test SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.

• Test SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to
stdout.

We’ll note that these tests should be performed in a particular order. For either direct or iterative
linear solvers, Test SUNLinSolInitialize must be called before Test SUNLinSolSetup, which must
be called before Test SUNLinSolSolve. Additionally, for iterative linear solvers
Test SUNLinSolSetATimes, Test SUNLinSolSetPreconditioner and
Test SUNLinSolSetScalingVectors should be called before Test SUNLinSolInitialize; similarly
Test SUNLinSolNumIters, Test SUNLinSolResNorm and Test SUNLinSolResid should be called after
Test SUNLinSolSolve. These are called in the appropriate order in all of the example problems.



Chapter 10

Description of the SUNMemory
module

To support applications which leverage memory pools, or utilize a memory abstraction layer, sundials
provides a set of utilities we will collectively refer to as the SUNMemoryHelper API. The goal of this
API is to allow users to leverage operations defined by native sundials data structures while allowing
the user to have finer-grained control of the memory management.

10.1 The SUNMemoryHelper API

This API consists of three new sundials types: SUNMemoryType, SUNMemory, and SUNMemoryHelper,
which we now define.

The SUNMemory structure wraps a pointer to actual data. This structure is defined as

typedef struct _SUNMemory

{

void* ptr;

SUNMemoryType type;

booleantype own;

} *SUNMemory;

The SUNMemoryType type is an enumeration that defines the four supported memory types:

typedef enum

{

SUNMEMTYPE_HOST, /* pageable memory accessible on the host */

SUNMEMTYPE_PINNED, /* page-locked memory accesible on the host */

SUNMEMTYPE_DEVICE, /* memory accessible from the device */

SUNMEMTYPE_UVM /* memory accessible from the host or device */

} SUNMemoryType;

Finally, the SUNMemoryHelper structure is defined as

struct _SUNMemoryHelper

{

void* content;

SUNMemoryHelper_Ops ops;

} *SUNMemoryHelper;

where SUNMemoryHelper Ops is defined as
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typedef struct _SUNMemoryHelper_Ops

{

/* operations that implementations are required to provide */

int (*alloc)(SUNMemoryHelper, SUNMemory* memptr, size_t mem_size, SUNMemoryType mem_type);

int (*dealloc)(SUNMemoryHelper, SUNMemory mem);

int (*copy)(SUNMemoryHelper, SUNMemory dst, SUNMemory src, size_t mem_size);

/* operations that provide default implementations */

int (*copyasync)(SUNMemoryHelper, SUNMemory dst, SUNMemory src,

size_t mem_size, void* ctx);

SUNMemoryHelper (*clone)(SUNMemoryHelper);

int (*destroy)(SUNMemoryHelper);

} *SUNMemoryHelper_Ops;

10.1.1 Implementation defined operations

The SUNMemory API also defines the following operations which do require a SUNMemoryHelper in-
stance and require the implementation to define them:

SUNMemoryHelper Alloc

Call retval = SUNMemoryHelper Alloc(helper, *memptr, mem size, mem type);

Description Allocates a SUNMemory object whose ptr field is allocated for mem size bytes and is
of type mem type. The new object will have ownership of ptr and will be deallocated
when SUNMemoryHelper Dealloc is called.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

memptr (SUNMemory*) pointer to the allocated SUNMemory

mem size (size t) the size in bytes of the ptr

mem type (SUNMemoryType) the SUNMemoryType of the ptr

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Dealloc

Call retval = SUNMemoryHelper Dealloc(helper, mem);

Description Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

mem (SUNMemory) the SUNMemory object

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Copy

Call retval = SUNMemoryHelper Copy(helper, dst, src, mem size);

Description Synchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object should use the memory types of
dst and src to determine the appropriate transfer type necessary.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

Return value An int flag indicating success (zero) or failure (non-zero).
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10.1.2 Utility Functions

The SUNMemoryHelper API defines the following functions which do not require a SUNMemoryHelper

instance:

SUNMemoryHelper Alias

Call mem2 = SUNMemoryHelper Alias(mem1);

Description Returns a SUNMemory object whose ptr field points to the same address as mem1.
The new object will not have ownership of ptr, therefore, it will not free ptr when
SUNMemoryHelper Dealloc is called.

Arguments mem1 (SUNMemory) a SUNMemory object

Return value A SUNMemory object.

SUNMemoryHelper Wrap

Call mem = SUNMemoryHelper Wrap(ptr, mem type);

Description Returns a SUNMemory object whose ptr field points to the ptr argument passed to the
function. The new object will not have ownership of ptr, therefore, it will not free ptr

when SUNMemoryHelper Dealloc is called.

Arguments ptr (SUNMemoryType) the data pointer to wrap in a SUNMemory object

mem type (SUNMemoryType) the SUNMemoryType of the ptr

Return value A SUNMemory object.

SUNMemoryHelper NewEmpty

Call helper = SUNMemoryHelper NewEmpty();

Description Returns an empty SUNMemoryHelper. This is useful for building custom SUNMemoryHelper

implementations.

Arguments

Return value A SUNMemoryHelper object.

SUNMemoryHelper CopyOps

Call retval = SUNMemoryHelper CopyOps(src, dst);

Description Copies the ops field of src to the ops field of dst. This is useful for building custom
SUNMemoryHelper implementations.

Arguments src (SUNMemoryHelper) the object to copy from

dst (SUNMemoryHelper) the object to copy to

Return value An int flag indicating success (zero) or failure (non-zero).

10.1.3 Implementation overridable operations with defaults

In addition, the SUNMemoryHelper API defines the following optionally overridable operations which
do require a SUNMemoryHelper instance:
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SUNMemoryHelper CopyAsync

Call retval = SUNMemoryHelper CopyAsync(helper, dst, src, mem size, ctx);

Description Asynchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object should use the memory types of
dst and src to determine the appropriate transfer type necessary. The ctx argument
is used when a different execution “stream” needs to be provided to perform the copy
in, e.g. with CUDA this would be a cudaStream t.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

ctx (void *) typically a handle for an object representing an alternate execution
stream, but it can be any implementation specific data

Return value An int flag indicating success (zero) or failure (non-zero).

Notes If this operation is not defined by the implementation, then SUNMemoryHelper Copy will!

be used.

SUNMemoryHelper Clone

Call helper2 = SUNMemoryHelper Clone(helper);

Description Clones the SUNMemoryHelper object itself.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object to clone

Return value A SUNMemoryHelper object.

Notes If this operation is not defined by the implementation, then the default clone will!

only copy the SUNMemoryHelper Ops structure stored in helper->ops, and not the
helper->content field.

SUNMemoryHelper Destroy

Call retval = SUNMemoryHelper Destroy(helper);

Description Destroys (frees) the SUNMemoryHelper object itself.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object to destroy

Return value An int flag indicating success (zero) or failure (non-zero).

Notes If this operation is not defined by the implementation, then the default destroy will only!

free the helper->ops field and the helper itself. The helper->content field will not
be freed.

10.1.4 Implementing a custom SUNMemoryHelper

A particular implementation of the SUNMemoryHelper API must:

• Define and implement the required operations. Note that the names of these routines should
be unique to that implementation in order to permit using more than one SUNMemoryHelper

module in the same code.

• Optionally, specify the content field of SUNMemoryHelper.

• Optionally, define and implement additional user-callable routines acting on the newly defined
SUNMemoryHelper.

An example of a custom SUNMemoryHelper is given in examples/utilities/custom memory helper.h.
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10.2 The SUNMemoryHelper Cuda implementation

The SUNMemoryHelper Cuda module is an implementation of the SUNMemoryHelper API that interfaces
to the NVIDIA CUDA [5] library. The implementation defines the constructor

SUNMemoryHelper Cuda

Call helper = SUNMemoryHelper Cuda();

Description Allocates and returns a SUNMemoryHelper object for handling CUDA memory.

Arguments None

Return value A SUNMemoryHelper object if successful, or NULL if not.

10.2.1 SUNMemoryHelper API functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemoryHelper Alloc Cuda

Call retval = SUNMemoryHelper Alloc Cuda(helper, *memptr, mem size, mem type);

Description Allocates a SUNMemory object whose ptr field is allocated for mem size bytes and is
of type mem type. The new object will have ownership of ptr and will be deallocated
when SUNMemoryHelper Dealloc is called.

The SUNMemoryType supported are

• SUNMEMTYPE HOST – memory is allocated with a call to malloc

• SUNMEMTYPE PINNED – memory is allocated with a call to cudaMallocHost

• SUNMEMTYPE DEVICE – memory is allocated with a call to cudaMalloc

• SUNMEMTYPE UVM – memory is allocated with a call to cudaMallocManaged

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

memptr (SUNMemory*) pointer to the allocated SUNMemory

mem size (size t) the size in bytes of the ptr

mem type (SUNMemoryType) the SUNMemoryType of the ptr

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Dealloc Cuda

Call retval = SUNMemoryHelper Dealloc Cuda(helper, mem);

Description Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

mem (SUNMemory) the SUNMemory object

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Copy Cuda

Call retval = SUNMemoryHelper Copy Cuda(helper, dst, src, mem size);

Description Synchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object will use the memory types of dst
and src to determine the appropriate transfer type necessary.

Arguments This operation uses cudaMemcpy underneath.
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Return value helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

Notes An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper CopyAsync Cuda

Call retval = SUNMemoryHelper CopyAsync Cuda(helper, dst, src, mem size, ctx);

Description Asynchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object will use the memory types of dst
and src to determine the appropriate transfer type necessary.

Arguments This operation uses cudaMemcpyAsync underneath.

Return value helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

ctx (void *) the cudaStream t handle for the stream that the copy will be per-
formed on

Notes An int flag indicating success (zero) or failure (non-zero).

10.3 The SUNMemoryHelper Hip implementation

The SUNMemoryHelper Hip module is an implementation of the SUNMemoryHelper API that interfaces
to the AMD ROCm HIP library. The implementation defines the constructor

SUNMemoryHelper Hip

Call helper = SUNMemoryHelper Hip();

Description Allocates and returns a SUNMemoryHelper object for handling HIP memory.

Arguments None

Return value A SUNMemoryHelper object if successful, or NULL if not.

10.3.1 SUNMemoryHelper API functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemoryHelper Alloc Hip

Call retval = SUNMemoryHelper Alloc Hip(helper, *memptr, mem size, mem type);

Description Allocates a SUNMemory object whose ptr field is allocated for mem size bytes and is
of type mem type. The new object will have ownership of ptr and will be deallocated
when SUNMemoryHelper Dealloc is called.

The SUNMemoryType supported are

• SUNMEMTYPE HOST – memory is allocated with a call to malloc

• SUNMEMTYPE PINNED – memory is allocated with a call to hipMallocHost

• SUNMEMTYPE DEVICE – memory is allocated with a call to hipMalloc
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• SUNMEMTYPE UVM – memory is allocated with a call to hipMallocManaged

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

memptr (SUNMemory*) pointer to the allocated SUNMemory

mem size (size t) the size in bytes of the ptr

mem type (SUNMemoryType) the SUNMemoryType of the ptr

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Dealloc Hip

Call retval = SUNMemoryHelper Dealloc Hip(helper, mem);

Description Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

mem (SUNMemory) the SUNMemory object

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Copy Hip

Call retval = SUNMemoryHelper Copy Hip(helper, dst, src, mem size);

Description Synchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object will use the memory types of dst
and src to determine the appropriate transfer type necessary.

Arguments This operation uses hipMemcpy underneath.

Return value helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

Notes An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper CopyAsync Hip

Call retval = SUNMemoryHelper CopyAsync Hip(helper, dst, src, mem size, ctx);

Description Asynchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object will use the memory types of dst
and src to determine the appropriate transfer type necessary.

Arguments This operation uses hipMemcpyAsync underneath.

Return value helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

ctx (void *) the hipStream t handle for the stream that the copy will be per-
formed on

Notes An int flag indicating success (zero) or failure (non-zero).

10.4 The SUNMemoryHelper Sycl implementation

The SUNMemoryHelper Sycl module is an implementation of the SUNMemoryHelper API that interfaces
to the SYCL abstraction layer. The implementation defines the constructor
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SUNMemoryHelper Sycl

Call helper = SUNMemoryHelper Sycl(Q);

Description Allocates and returns a SUNMemoryHelper object for handling SYCL memory.

Arguments Q (sycl::queue) the queue to use for memory operations

Return value A SUNMemoryHelper object if successful, or NULL if not.

10.4.1 SUNMemoryHelper API functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemoryHelper Alloc Sycl

Call retval = SUNMemoryHelper Alloc Sycl(helper, *memptr, mem size, mem type);

Description Allocates a SUNMemory object whose ptr field is allocated for mem size bytes and is
of type mem type. The new object will have ownership of ptr and will be deallocated
when SUNMemoryHelper Dealloc is called.

The SUNMemoryType supported are

• SUNMEMTYPE HOST – memory is allocated with a call to malloc

• SUNMEMTYPE PINNED – memory is allocated with a call to sycl::malloc host

• SUNMEMTYPE DEVICE – memory is allocated with a call to sycl::malloc device

• SUNMEMTYPE UVM – memory is allocated with a call to sycl::malloc shared

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

memptr (SUNMemory*) pointer to the allocated SUNMemory

mem size (size t) the size in bytes of the ptr

mem type (SUNMemoryType) the SUNMemoryType of the ptr

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Dealloc Sycl

Call retval = SUNMemoryHelper Dealloc Sycl(helper, mem);

Description Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Arguments helper (SUNMemoryHelper) the SUNMemoryHelper object

mem (SUNMemory) the SUNMemory object

Return value An int flag indicating success (zero) or failure (non-zero).

SUNMemoryHelper Copy Sycl

Call retval = SUNMemoryHelper Copy Sycl(helper, dst, src, mem size);

Description Synchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object will use the memory types of dst
and src to determine the appropriate transfer type necessary.

Arguments This operation uses syclMemcpy underneath.

Return value helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

Notes An int flag indicating success (zero) or failure (non-zero).
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SUNMemoryHelper CopyAsync Sycl

Call retval = SUNMemoryHelper CopyAsync Sycl(helper, dst, src, mem size, ctx);

Description Asynchronously copies mem size bytes from the the source memory to the destination
memory. The copy can be across memory spaces, e.g. host to device, or within a
memory space, e.g. host to host. The helper object will use the memory types of dst
and src to determine the appropriate transfer type necessary.

Arguments This operation uses syclMemcpyAsync underneath.

Return value helper (SUNMemoryHelper) the SUNMemoryHelper object

dst (SUNMemory) the destination memory to copy to

src (SUNMemory) the source memory to copy from

mem size (size t) the number of bytes to copy

ctx (void *) is unsued in this function

Notes An int flag indicating success (zero) or failure (non-zero).





Appendix A

SUNDIALS Package Installation
Procedure

The installation of any sundials package is accomplished by installing the sundials suite as a whole,
according to the instructions that follow. The same procedure applies whether or not the downloaded
file contains one or all solvers in sundials.

The sundials suite (or individual solvers) are distributed as compressed archives (.tar.gz).
The name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of:
sundials, cvode, cvodes, arkode, ida, idas, or kinsol, and x.y.z represents the version number
(of the sundials suite or of the individual solver). To begin the installation, first uncompress and
expand the sources, by issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.6.0 of sundials, CMake is the only supported method of installation.

The explanations of the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

solverdir is the directory solver-x.y.z created above; i.e., the directory containing the sundi-
als sources.

builddir is the (temporary) directory under which sundials is built.

instdir is the directory under which the sundials exported header files and libraries will be
installed. Typically, header files are exported under a directory instdir/include while
libraries are installed under instdir/CMAKE INSTALL LIBDIR, with instdir and
CMAKE INSTALL LIBDIR specified at configuration time.

• For sundials CMake-based installation, in-source builds are prohibited; in other words, the
build directory builddir can not be the same as solverdir and such an attempt will lead to
an error. This prevents “polluting” the source tree and allows efficient builds for different
configurations and/or options.

• The installation directory instdir can not be the same as the source directory solverdir. !

• By default, only the libraries and header files are exported to the installation directory instdir.
If enabled by the user (with the appropriate toggle for CMake), the examples distributed with
sundials will be built together with the solver libraries but the installation step will result
in exporting (by default in a subdirectory of the installation directory) the example sources
and sample outputs together with automatically generated configuration files that reference the
installed sundials headers and libraries. As such, these configuration files for the sundials ex-
amples can be used as “templates” for your own problems. CMake installs CMakeLists.txt files
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and also (as an option available only under Unix/Linux) Makefile files. Note this installation
approach also allows the option of building the sundials examples without having to install
them. (This can be used as a sanity check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in “undefined symbol” errors at link time.)

A.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix
and Linux Makefiles, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the
same configuration file. In addition, CMake also provides a GUI front end and which allows an
interactive build and installation process.

The sundials build process requires CMake version 3.1.3 or higher and a working C compiler. On
Unix-like operating systems, it also requires Make (and curses, including its development libraries,
for the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio. CMake is con-
tinually adding new features, and the latest version can be downloaded from http://www.cmake.org.
Build instructions for CMake (only necessary for Unix-like systems) can be found on the CMake web-
site. Once CMake is installed, Linux/Unix users will be able to use ccmake, while Windows users will
be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install sundials, it is always
required to use a separate build directory. While in-source builds are possible, they are explicitly
prohibited by the sundials CMake scripts (one of the reasons being that, unlike autotools, CMake
does not provide a make distclean procedure and it is therefore difficult to clean-up the source tree
after an in-source build). By ensuring a separate build directory, it is an easy task for the user to
clean-up all traces of the build by simply removing the build directory. CMake does generate a make

clean which will remove files generated by the compiler and linker.

A.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The instdir defaults to /usr/local and can be changed by setting the
CMAKE INSTALL PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based
GUI by using the ccmake command. Examples for using both methods will be presented. For the
examples shown it is assumed that there is a top level sundials directory with appropriate source,
build and install directories:

% mkdir (...)sundials/instdir

% mkdir (...)sundials/builddir

% cd (...)sundials/builddir

Building with the GUI

Using CMake with the GUI follows this general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string
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– For file and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

To build the default configuration using the GUI, from the builddir enter the ccmake command
and point to the solverdir:

% ccmake ../solverdir

The default configuration screen is shown in Figure A.1.

Figure A.1: Default configuration screen. Note: Initial screen is empty. To get this default config-
uration, press ’c’ repeatedly (accepting default values denoted with asterisk) until the ’g’ option is
available.

The default instdir for both sundials and corresponding examples can be changed by setting the
CMAKE INSTALL PREFIX and the EXAMPLES INSTALL PATH as shown in figure A.2.

Pressing the (g key) will generate makefiles including all dependencies and all rules to build sun-
dials on this system. Back at the command prompt, you can now run:

% make

To install sundials in the installation directory specified in the configuration, simply run:

% make install
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Figure A.2: Changing the instdir for sundials and corresponding examples

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with
the cmake command. The following will build the default configuration:

% cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> ../solverdir

% make

% make install

A.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based sundials configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only.

BUILD ARKODE - Build the ARKODE library
Default: ON

BUILD CVODE - Build the CVODE library
Default: ON

BUILD CVODES - Build the CVODES library
Default: ON
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BUILD IDA - Build the IDA library
Default: ON

BUILD IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD SHARED LIBS - Build shared libraries
Default: ON

BUILD STATIC LIBS - Build static libraries
Default: ON

CMAKE BUILD TYPE - Choose the type of build, options are: None (CMAKE C FLAGS used), Debug,
Release, RelWithDebInfo, and MinSizeRel

Default:
Note: Specifying a build type will trigger the corresponding build type specific compiler flag
options below which will be appended to the flags set by CMAKE <language> FLAGS.

CMAKE C COMPILER - C compiler
Default: /usr/bin/cc

CMAKE C FLAGS - Flags for C compiler
Default:

CMAKE C FLAGS DEBUG - Flags used by the C compiler during debug builds
Default: -g

CMAKE C FLAGS MINSIZEREL - Flags used by the C compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE C FLAGS RELEASE - Flags used by the C compiler during release builds
Default: -O3 -DNDEBUG

CMAKE CXX COMPILER - C++ compiler
Default: /usr/bin/c++
Note: A C++ compiler (and all related options) are only triggered if C++ examples are enabled
(EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ applications by
default without setting any additional configuration options.

CMAKE CXX FLAGS - Flags for C++ compiler
Default:

CMAKE CXX FLAGS DEBUG - Flags used by the C++ compiler during debug builds
Default: -g

CMAKE CXX FLAGS MINSIZEREL - Flags used by the C++ compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE CXX FLAGS RELEASE - Flags used by the C++ compiler during release builds
Default: -O3 -DNDEBUG

CMAKE CXX STANDARD - The C++ standard to build C++ parts of sundials with.
Default: 11
Note: Options are 98, 11, 14, 17, 20. This option is on used when a C++ compiler is required.
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CMAKE Fortran COMPILER - Fortran compiler
Default: /usr/bin/gfortran
Note: Fortran support (and all related options) are triggered only if either Fortran-C support is
enabled (FCMIX ENABLE is ON) or LAPACK support is enabled (ENABLE LAPACK is ON).

CMAKE Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS DEBUG - Flags used by the Fortran compiler during debug builds
Default: -g

CMAKE Fortran FLAGS MINSIZEREL - Flags used by the Fortran compiler during release minsize builds
Default: -Os

CMAKE Fortran FLAGS RELEASE - Flags used by the Fortran compiler during release builds
Default: -O3

CMAKE INSTALL PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Ex-
ported sundials header files and libraries will be installed under subdirectories include and
CMAKE INSTALL LIBDIR of CMAKE INSTALL PREFIX, respectively.

CMAKE INSTALL LIBDIR - Library installation directory
Default:
Note: This is the directory within CMAKE INSTALL PREFIX that the sundials libraries will be
installed under. The default is automatically set based on the operating system using the
GNUInstallDirs CMake module.

Fortran INSTALL MODDIR - Fortran module installation directory
Default: fortran

ENABLE CUDA - Build the sundials cuda modules.
Default: OFF

CUDA ARCH - Specifies the CUDA architecture to compile for.
Default: sm 30

EXAMPLES ENABLE C - Build the sundials C examples
Default: ON

EXAMPLES ENABLE CUDA - Build the sundials cuda examples
Default: OFF
Note: You need to enable cuda support to build these examples.

EXAMPLES ENABLE CXX - Build the sundials C++ examples
Default: OFF unless ENABLE TRILINOS is ON.

EXAMPLES ENABLE F77 - Build the sundials Fortran77 examples
Default: ON (if F77 INTERFACE ENABLE is ON)

EXAMPLES ENABLE F90 - Build the sundials Fortran90 examples
Default: ON (if F77 INTERFACE ENABLE is ON)

EXAMPLES ENABLE F2003 - Build the sundials Fortran2003 examples
Default: ON (if BUILD FORTRAN MODULE INTERFACE is ON)
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EXAMPLES INSTALL - Install example files
Default: ON
Note: This option is triggered when any of the sundials example programs are enabled
(EXAMPLES ENABLE <language> is ON). If the user requires installation of example programs
then the sources and sample output files for all sundials modules that are currently enabled
will be exported to the directory specified by EXAMPLES INSTALL PATH. A CMake configuration
script will also be automatically generated and exported to the same directory. Additionally, if
the configuration is done under a Unix-like system, makefiles for the compilation of the example
programs (using the installed sundials libraries) will be automatically generated and exported
to the directory specified by EXAMPLES INSTALL PATH.

EXAMPLES INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will be an examples subdirectory created under
CMAKE INSTALL PREFIX.

F77 INTERFACE ENABLE - Enable Fortran-C support via the Fortran 77 interfaces
Default: OFF

BUILD FORTRAN MODULE INTERFACE - Enable Fortran-C support via the Fortran 2003 interfaces
Default: OFF

ENABLE HYPRE - Enable hypre support
Default: OFF
Note: See additional information on building with hypre enabled in A.1.4.

HYPRE INCLUDE DIR - Path to hypre header files

HYPRE LIBRARY DIR - Path to hypre installed library files

ENABLE KLU - Enable KLU support
Default: OFF
Note: See additional information on building with KLU enabled in A.1.4.

KLU INCLUDE DIR - Path to SuiteSparse header files

KLU LIBRARY DIR - Path to SuiteSparse installed library files

ENABLE LAPACK - Enable LAPACK support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with LAPACK enabled in A.1.4.

LAPACK LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

ENABLE MPI - Enable MPI support. This will build the parallel nvector and the MPI-aware version
of the ManyVector library.
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI C COMPILER - mpicc program
Default:

MPI CXX COMPILER - mpicxx program
Default:
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Note: This option is triggered only if MPI is enabled (ENABLE MPI is ON) and C++ examples are
enabled (EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ MPI appli-
cations by default without setting any additional configuration options other than ENABLE MPI.

MPI Fortran COMPILER - mpif77 or mpif90 program
Default:
Note: This option is triggered only if MPI is enabled (ENABLE MPI is ON) and Fortran-C support
is enabled (F77 INTERFACE ENABLE or BUILD FORTRAN MODULE INTERFACE is ON).

MPIEXEC EXECUTABLE - Specify the executable for running MPI programs
Default: mpirun
Note: This option is triggered only if MPI is enabled (ENABLE MPI is ON).

ENABLE OPENMP - Enable OpenMP support (build the OpenMP nvector).
Default: OFF

OPENMP DEVICE ENABLE - Enable OpenMP device offloading (build the OpenMPDEV nvector) if sup-
ported by the provided compiler.
Default: OFF

OPENMP DEVICE WORKS - advanced option - Skip the check done to see if the OpenMP provided by
the compiler supports OpenMP device offloading.
Default: OFF

ENABLE PETSC - Enable petsc support
Default: OFF
Note: See additional information on building with petsc enabled in ??.

PETSC DIR - Path to petsc installation
Default:

PETSC LIBRARIES - advanced option - Semi-colon separated list of PETSc link libraries. Unless
provided by the user, this is autopopulated based on the PETSc installation found in PETSC DIR.
Default:

PETSC INCLUDES - advanced option - Semi-colon separated list of PETSc include directories. Unless
provided by the user, this is autopopulated based on the PETSc installation found in PETSC DIR.
Default:

ENABLE PTHREAD - Enable Pthreads support (build the Pthreads nvector).
Default: OFF

ENABLE RAJA - Enable raja support.
Default: OFF
Note: You need to enable CUDA or HIP in order to build the raja vector module.

SUNDIALS RAJA BACKENDS - If building SUNDIALS with RAJA support, this sets the RAJA backend
to target. Values supported are CUDA and HIP.
Default: CUDA

ENABLE SUPERLUDIST - Enable SuperLU DIST support
Default: OFF
Note: See additional information on building with SuperLU DIST enabled in A.1.4.

SUPERLUDIST INCLUDE DIR - Path to SuperLU DIST header files (typically SRC directory)

SUPERLUDIST LIBRARY DIR - Path to SuperLU DIST installed library files

SUPERLUDIST LIBRARIES - Semi-colon separated list of libraries needed for SuperLU DIST
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SUPERLUDIST OpenMP - Enable sundials support for SuperLU DIST built with OpenMP
Default: OFF
Note: SuperLU DIST must be built with OpenMP support for this option to function properly.
Additionally the environment variable OMP NUM THREADS must be set to the desired number of
threads.

ENABLE SUPERLUMT - Enable superlumt support
Default: OFF
Note: See additional information on building with superlumt enabled in A.1.4.

SUPERLUMT INCLUDE DIR - Path to SuperLU MT header files (typically SRC directory)

SUPERLUMT LIBRARY DIR - Path to SuperLU MT installed library files

SUPERLUMT LIBRARIES - Semi-colon separated list of libraries needed for SuperLU MT

SUPERLUMT THREAD TYPE - Must be set to Pthread or OpenMP
Default: Pthread

ENABLE SYCL - Enable sycl support.
Default: OFF
Note: At present the only supported SYCL compiler is the DPC++ (Intel oneAPI) compiler.
CMake does not currently support autodetection of SYCL compilers and CMAKE CXX COMPILER

must be set to a valid SYCL compiler i.e., dpcpp in order to build with SYCL support.

ENABLE TRILINOS - Enable Trilinos support (build the Tpetra nvector).
Default: OFF

Trilinos DIR - Path to the Trilinos install directory.
Default:

TRILINOS INTERFACE C COMPILER - advanced option - Set the C compiler for building the Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C compiler exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE C COMPILER or MPI C COMPILER if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same compiler that was used to build the Trilinos library.

TRILINOS INTERFACE C COMPILER FLAGS - advanced option - Set the C compiler flags for Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C compiler flags exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE C FLAGS if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same flags that were used to build the Trilinos library.

TRILINOS INTERFACE CXX COMPILER - advanced option - Set the C++ compiler for builing Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C++ compiler exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE CXX COMPILER or MPI CXX COMPILER if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same compiler that was used to build the Trilinos library.

TRILINOS INTERFACE CXX COMPILER FLAGS - advanced option - Set the C++ compiler flags for Trili-
nos interface (i.e., nvector trilinos and the examples that use it).
Default: The C++ compiler flags exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE CXX FLAGS if USE XSDK DEFAULTS=ON.
Note: Is is recommended to use the same flags that were used to build the Trilinos library.

SUNDIALS BUILD WITH MONITORING - Build sundials with capabilties for fine-grained monitoring of
solver progress and statistics. This is primarily useful for debugging.
Default: OFF
Note: Building with monitoring may result in minor performance degradation even if monitoring
is not utilized.
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SUNDIALS BUILD PACKAGE FUSED KERNELS - Build specialized fused kernels inside cvode.
Default: OFF
Note: This option is currently only available when building with CUDA ENABLE = ON. Building
with fused kernels requires linking to either libsundials cvode fused cuda.lib or libsundials cvode fused stubs.lib,
where the latter provides CPU-only placeholders for the fused routines, in addition to libsundials cvode.lib.

CMAKE CXX STANDARD - The C++ standard to build C++ parts of sundials with.
Default: 11
Note: Options are 99, 11, 14, 17. This option only used when a C++ compiler is required.

SUNDIALS F77 FUNC CASE - advanced option - Specify the case to use in the Fortran name-mangling
scheme, options are: lower or upper
Default:
Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available or
to override the inferred or default (lower) scheme if one can not be determined. If used,
SUNDIALS F77 FUNC UNDERSCORES must also be set.

SUNDIALS F77 FUNC UNDERSCORES - advanced option - Specify the number of underscores to append
in the Fortran name-mangling scheme, options are: none, one, or two
Default:
Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available
or to override the inferred or default (one) scheme if one can not be determined. If used,
SUNDIALS F77 FUNC CASE must also be set.

SUNDIALS INDEX TYPE - advanced option - Integer type used for sundials indices. The size must
match the size provided for the
SUNDIALS INDEX SIZE option.
Default:
Note: In past SUNDIALS versions, a user could set this option to INT64 T to use 64-bit integers,
or INT32 T to use 32-bit integers. Starting in SUNDIALS 3.2.0, these special values are dep-
recated. For SUNDIALS 3.2.0 and up, a user will only need to use the SUNDIALS INDEX SIZE

option in most cases.

SUNDIALS INDEX SIZE - Integer size (in bits) used for indices in sundials, options are: 32 or 64
Default: 64
Note: The build system tries to find an integer type of appropriate size. Candidate 64-bit
integer types are (in order of preference): int64 t, int64, long long, and long. Candidate
32-bit integers are (in order of preference): int32 t, int, and long. The advanced option,
SUNDIALS INDEX TYPE can be used to provide a type not listed here.

SUNDIALS PRECISION - Precision used in sundials, options are: double, single, or extended
Default: double

SUNDIALS INSTALL CMAKEDIR - Installation directory for the sundials cmake files (relative to CMAKE INSTALL PREFIX).
Default: CMAKE INSTALL PREFIX/cmake/sundials

USE GENERIC MATH - Use generic (stdc) math libraries
Default: ON

USE XSDK DEFAULTS - Enable xSDK (see for more information) default configuration settings. This
sets CMAKE BUILD TYPE to Debug, SUNDIALS INDEX SIZE to 32 and SUNDIALS PRECISION to dou-
ble.
Default: OFF

https://xsdk.info
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A.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.

To configure sundials using the default C and Fortran compilers, and default mpicc and mpif77

parallel compilers, enable compilation of examples, and install libraries, headers, and example sources
under subdirectories of /home/myname/sundials/, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DENABLE_MPI=ON \

> -DFCMIX_ENABLE=ON \

> /home/myname/sundials/solverdir

%

% make install

%

To disable installation of the examples, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DENABLE_MPI=ON \

> -DFCMIX_ENABLE=ON \

> -DEXAMPLES_INSTALL=OFF \

> /home/myname/sundials/solverdir

%

% make install

%

A.1.4 Working with external Libraries

The sundials suite contains many options to enable implementation flexibility when developing so-
lutions. The following are some notes addressing specific configurations when using the supported
third party libraries. When building sundials as a shared library any external libraries used with
sundials must also be build as a shared library or as a static library compiled with the -fPIC flag. !

Building with LAPACK

To enable LAPACK, set the ENABLE LAPACK option to ON. If the directory containing the LAPACK li-
brary is in the LD LIBRARY PATH environment variable, CMake will set the LAPACK LIBRARIES variable
accordingly, otherwise CMake will attempt to find the LAPACK library in standard system locations.
To explicitly tell CMake what library to use, the LAPACK LIBRARIES variable can be set to the desired
libraries rquired for LAPACK.

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DENABLE_LAPACK=ON \

> -DLAPACK_LIBRARIES=/mylapackpath/lib/libblas.so;/mylapackpath/lib/liblapack.so \

> /home/myname/sundials/solverdir

%

% make install

%
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If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the op-
tions SUNDIALS F77 FUNC CASE and SUNDIALS F77 FUNC UNDERSCORES must be set in order to bypass
the check for a Fortran compiler and define the name-mangling scheme. The defaults for these options
in earlier versions of sundials were lower and one respectively.

Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas
A&M University website: http://faculty.cse.tamu.edu/davis/suitesparse.html. sundials has
been tested with SuiteSparse version 5.7.2. To enable KLU, set ENABLE KLU to ON, set KLU INCLUDE DIR

to the include path of the KLU installation and set KLU LIBRARY DIR to the lib path of the KLU
installation. The CMake configure will result in populating the following variables: AMD LIBRARY,
AMD LIBRARY DIR, BTF LIBRARY, BTF LIBRARY DIR, COLAMD LIBRARY, COLAMD LIBRARY DIR, and
KLU LIBRARY.

Building with SuperLU MT

The SuperLU MT libraries are available for download from the Lawrence Berkeley National Labo-
ratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu mt. sundials has been
tested with SuperLU MT version 3.1. To enable SuperLU MT, set ENABLE SUPERLUMT to ON, set
SUPERLUMT INCLUDE DIR to the SRC path of the SuperLU MT installation, and set the variable
SUPERLUMT LIBRARY DIR to the lib path of the SuperLU MT installation. At the same time, the vari-
able SUPERLUMT LIBRARIES must be set to a semi-colon separated list of other libraries SuperLU MT
depends on. For example, if SuperLU MT ws build with an external blas library, then include the full
path to the blas library in this list. Additionally, the variable SUPERLUMT THREAD TYPE must be set
to either Pthread or OpenMP.

Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having either ENABLE OPENMP or ENABLE PTHREAD set to ON then SuperLU MT should be set to use
the same threading type.!

Building with SuperLU DIST

The SuperLU DIST libraries are available for download from the Lawrence Berkeley National Lab-
oratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu dist. sundials has
been tested with SuperLU DIST 6.1.1. To enable SuperLU DIST, set ENABLE SUPERLUDIST to ON, set
SUPERLUDIST INCLUDE DIR to the include directory of the SuperLU DIST installation (typically SRC),
and set the variable
SUPERLUDIST LIBRARY DIR to the path to library directory of the SuperLU DIST installation (typ-
ically lib). At the same time, the variable SUPERLUDIST LIBRARIES must be set to a semi-colon
separated list of other libraries SuperLU DIST depends on. For example, if SuperLU DIST was built
with LAPACK, then include the LAPACK library in this list. If SuperLU DIST was built with
OpenMP support, then you may set SUPERLUDIST OPENMP to ON to utilize the OpenMP functionality
of SuperLU DIST.

Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having ENABLE PTHREAD set to ON then SuperLU DIST should not be set to use OpenMP.!

Building with PETSc

The petsc libraries are available for download from the Argonne National Laboratory website: http://www.mcs.anl.gov/petsc.
sundials has been tested with petsc version 3.10.0–3.14.0. To enable petsc, set ENABLE PETSC to
ON and then set PETSC DIR to the path of the petsc installation. Alternatively, a user can provide
a list of include paths in PETSC INCLUDES, and a list of complete paths to the libraries needed in
PETSC LIBRARIES.
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Building with hypre

The hypre libraries are available for download from the Lawrence Livermore National Laboratory
website: http://computing.llnl.gov/projects/hypre. sundials has been tested with hypre ver-
sion 2.14.0–2.19.0. To enable hypre, set ENABLE HYPRE to ON, set HYPRE INCLUDE DIR to the include

path of the hypre installation, and set the variable HYPRE LIBRARY DIR to the lib path of the hypre
installation.

Note: sundials must be configured so that SUNDIALS INDEX SIZE (or equivalently, XSDK INDEX SIZE)
equals the precision of HYPRE BigInt in the corresponding hypre installation.

Building with CUDA

sundials cuda modules and examples have been tested with versions 9 through 11.0.2 of the cuda
toolkit. To build them, you need to install the Toolkit and compatible NVIDIA drivers. Both are avail-
able for download from the NVIDIA website: https://developer.nvidia.com/cuda-downloads.
To enable cuda, set ENABLE CUDA to ON. If cuda is installed in a nonstandard location, you may be
prompted to set the variable CUDA TOOLKIT ROOT DIR with your cuda Toolkit installation path. To
enable cuda examples, set EXAMPLES ENABLE CUDA to ON.

Building with RAJA

raja is a performance portability layer developed by Lawrence Livermore National Laboratory and
can be obtained from https://github.com/LLNL/RAJA. sundials raja modules and examples have
been tested with raja up to version 0.12.1. Building sundials raja modules requires a cuda-enabled
raja installation. To enable raja, set ENABLE CUDA and ENABLE RAJA to ON. If raja is installed in a
nonstandard location you will be prompted to set the variable RAJA DIR with the path to the raja
CMake configuration file. To enable building the raja examples set EXAMPLES ENABLE CUDA to ON.

Building with Trilinos

Trilinos is a suite of numerical libraries developed by Sandia National Laboratories. It can be obtained
at https://github.com/trilinos/Trilinos. sundials Trilinos modules and examples have been
tested with Trilinos version 12.14.1 – 12.18.1. To enable Trilinos, set ENABLE TRILINOS to ON. If
Trilinos is installed in a nonstandard location you will be prompted to set the variable Trilinos DIR

with the path to the Trilinos CMake configuration file. It is desireable to build the Trilinos vector
interface with same compiler and options that were used to build Trilinos. CMake will try to find the
correct compiler settings automatically from the Trilinos configuration file. If that is not successful,
the compilers and options can be manually set with the following CMake variables:

• Trilinos INTERFACE C COMPILER

• Trilinos INTERFACE C COMPILER FLAGS

• Trilinos INTERFACE CXX COMPILER

• Trilinos INTERFACE CXX COMPILER FLAGS

A.1.5 Testing the build and installation

If sundials was configured with EXAMPLES ENABLE <language> options to ON, then a set of regression
tests can be run after building with the make command by running:

% make test

Additionally, if EXAMPLES INSTALL was also set to ON, then a set of smoke tests can be run after
installing with the make install command by running:

% make test_install
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A.2 Building and Running Examples

Each of the sundials solvers is distributed with a set of examples demonstrating basic usage. To
build and install the examples, set at least of the EXAMPLES ENABLE <language> options to ON,
and set EXAMPLES INSTALL to ON. Specify the installation path for the examples with the variable
EXAMPLES INSTALL PATH. CMake will generate CMakeLists.txt configuration files (and Makefile

files if on Linux/Unix) that reference the installed sundials headers and libraries.

Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as
well as serve as a template for creating user developed solutions. To use the supplied Makefile simply
run make to compile and generate the executables. To use CMake from within the installed example
directory, run cmake (or ccmake to use the GUI) followed by make to compile the example code.
Note that if CMake is used, it will overwrite the traditional Makefile with a new CMake-generated
Makefile. The resulting output from running the examples can be compared with example output
bundled in the sundials distribution.

NOTE: There will potentially be differences in the output due to machine architecture, compiler
versions, use of third party libraries etc.!

A.3 Configuring, building, and installing on Windows

CMake can also be used to build sundials on Windows. To build sundials for use with Visual
Studio the following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the solverdir

2. Create a separate builddir

3. Open a Visual Studio Command Prompt and cd to builddir

4. Run cmake-gui ../solverdir

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE INSTALL PREFIX to instdir

(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL BUILD.vcxproj

(b) Run msbuild INSTALL.vcxproj

The resulting libraries will be in the instdir. The sundials project can also now be opened in Visual
Studio. Double click on the ALL BUILD.vcxproj file to open the project. Build the whole solution to
create the sundials libraries. To use the sundials libraries in your own projects, you must set the
include directories for your project, add the sundials libraries to your project solution, and set the
sundials libraries as dependencies for your project.

A.4 Installed libraries and exported header files

Using the CMake sundials build system, the command

% make install
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will install the libraries under libdir and the public header files under includedir. The values for these
directories are instdir/CMAKE INSTALL LIBDIR and instdir/include, respectively. The location can be
changed by setting the CMake variable CMAKE INSTALL PREFIX. Although all installed libraries reside
under libdir/CMAKE INSTALL LIBDIR, the public header files are further organized into subdirectories
under includedir/include.

The installed libraries and exported header files are listed for reference in Table A.1. The file
extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in the Tables,
names are relative to libdir for libraries and to includedir for header files.

A typical user program need not explicitly include any of the shared sundials header files from
under the includedir/include/sundials directory since they are explicitly included by the appropriate
solver header files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and
safe to do so, and would be useful, for example, if the functions declared in sundials dense.h are to
be used in building a preconditioner.

A.4.1 Using sundials as a Third Party Library in other CMake Projects

The make install command will also install a CMake package configuration file that other CMake
projects can load to get all the information needed to build against sundials. In the consuming
project’s CMake code, the find package command may be used to search for the configuration file,
which will be installed to instdir/SUNDIALS INSTALL CMAKEDIR/SUNDIALSConfig.cmake alongside
a package version file instdir/SUNDIALS INSTALL CMAKEDIR/SUNDIALSConfigVersion.cmake. To-
gether these files contain all the information the consuming project needs to use sundials, including
exported CMake targets. The sundials exported CMake targets follow the same naming conven-
tion as the generated library binaries, e.g. the exported target for cvode is SUNDIALS::cvode. The
CMake code snipped below shows how a consuming project might leverage the SUNDIALS package
configuration file to build against sundials in their own CMake project.

project(MyProject)

# Set the variable SUNDIALS_DIR to the SUNDIALS instdir.

# When using the cmake CLI command, this can be done like so:

# cmake -D SUNDIALS_DIR=/path/to/sundials/installation

find_project(SUNDIALS REQUIRED)

add_executable(myexec main.c)

# Link to SUNDIALS libraries through the exported targets.

# This is just an example, users should link to the targets appropriate

# for their use case.

target_link_libraries(myexec PUBLIC SUNDIALS::cvode SUNDIALS::nvecpetsc)

https://cmake.org/cmake/help/v3.12/manual/cmake-packages.7.html#package-configuration-file
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Table A.1: sundials libraries and header files
shared Libraries n/a

Header files sundials/sundials config.h
sundials/sundials fconfig.h
sundials/sundials types.h
sundials/sundials math.h
sundials/sundials nvector.h
sundials/sundials fnvector.h
sundials/sundials matrix.h
sundials/sundials linearsolver.h
sundials/sundials iterative.h
sundials/sundials direct.h
sundials/sundials dense.h
sundials/sundials band.h
sundials/sundials nonlinearsolver.h
sundials/sundials version.h
sundials/sundials mpi types.h
sundials/sundials cuda policies.hpp

nvector serial Libraries libsundials nvecserial.lib
libsundials fnvecserial mod.lib
libsundials fnvecserial.a

Header files nvector/nvector serial.h
Module
files

fnvector serial mod.mod

nvector parallel Libraries libsundials nvecparallel.lib
libsundials fnvecparallel.a
libsundials fnvecparallel mod.lib

Header files nvector/nvector parallel.h
Module
files

fnvector parallel mod.mod

nvector manyvector Libraries libsundials nvecmanyvector.lib
libsundials nvecmanyvector mod.lib

Header files nvector/nvector manyvector.h
Module
files

fnvector manyvector mod.mod

nvector mpimanyvector Libraries libsundials nvecmpimanyvector.lib
libsundials nvecmpimanyvector mod.lib

Header files nvector/nvector mpimanyvector.h
Module
files

fnvector mpimanyvector mod.mod

continued on next page
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nvector mpiplusx Libraries libsundials nvecmpiplusx.lib
libsundials nvecmpiplusx mod.lib

Header files nvector/nvector mpiplusx.h
Module
files

fnvector mpiplusx mod.mod

nvector openmp Libraries libsundials nvecopenmp.lib
libsundials fnvecopenmp mod.lib
libsundials fnvecopenmp.a

Header files nvector/nvector openmp.h
Module
files

fnvector openmp mod.mod

nvector openmpdev Libraries libsundials nvecopenmpdev.lib
Header files nvector/nvector openmpdev.h

nvector pthreads Libraries libsundials nvecpthreads.lib
libsundials fnvecpthreads mod.lib
libsundials fnvecpthreads.a

Header files nvector/nvector pthreads.h
Module
files

fnvector pthreads mod.mod

nvector parhyp Libraries libsundials nvecparhyp.lib
Header files nvector/nvector parhyp.h

nvector petsc Libraries libsundials nvecpetsc.lib
Header files nvector/nvector petsc.h

nvector cuda Libraries libsundials nveccuda.lib
Header files nvector/nvector cuda.h

nvector hip Libraries libsundials nvechip.lib
Header files nvector/nvector hip.h

nvector raja Libraries libsundials nveccudaraja.lib
libsundials nvechipraja.lib

Header files nvector/nvector raja.h
nvector sycl Libraries libsundials nvecsycl.lib

Header files nvector/nvector sycl.h
nvector trilinos Libraries libsundials nvectrilinos.lib

Header files nvector/nvector trilinos.h
nvector/trilinos/SundialsTpetraVectorInterface.hpp
nvector/trilinos/SundialsTpetraVectorKernels.hpp

sunmatrix band Libraries libsundials sunmatrixband.lib
libsundials fsunmatrixband mod.lib
libsundials fsunmatrixband.a

Header files sunmatrix/sunmatrix band.h
Module
files

fsunmatrix band mod.mod

continued on next page
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sunmatrix dense Libraries libsundials sunmatrixdense.lib
libsundials fsunmatrixdense mod.lib
libsundials fsunmatrixdense.a

Header files sunmatrix/sunmatrix dense.h
Module
files

fsunmatrix dense mod.mod

sunmatrix sparse Libraries libsundials sunmatrixsparse.lib
libsundials fsunmatrixsparse mod.lib
libsundials fsunmatrixsparse.a

Header files sunmatrix/sunmatrix sparse.h
Module
files

fsunmatrix sparse mod.mod

sunmatrix slunrloc Libraries libsundials sunmatrixslunrloc.lib
Header files sunmatrix/sunmatrix slunrloc.h

sunlinsol cusparse Libraries libsundials sunmatrixcusparse.lib
Header files sunmatrix/sunmatrix cusparse.h

sunlinsol band Libraries libsundials sunlinsolband.lib
libsundials fsunlinsolband mod.lib
libsundials fsunlinsolband.a

Header files sunlinsol/sunlinsol band.h
Module
files

fsunlinsol band mod.mod

sunlinsol dense Libraries libsundials sunlinsoldense.lib
libsundials fsunlinsoldense mod.lib
libsundials fsunlinsoldense.a

Header files sunlinsol/sunlinsol dense.h
Module
files

fsunlinsol dense mod.mod

sunlinsol klu Libraries libsundials sunlinsolklu.lib
libsundials fsunlinsolklu mod.lib
libsundials fsunlinsolklu.a

Header files sunlinsol/sunlinsol klu.h
Module
files

fsunlinsol klu mod.mod

sunlinsol lapackband Libraries libsundials sunlinsollapackband.lib
libsundials fsunlinsollapackband.a

Header files sunlinsol/sunlinsol lapackband.h
sunlinsol lapackdense Libraries libsundials sunlinsollapackdense.lib

libsundials fsunlinsollapackdense.a
Header files sunlinsol/sunlinsol lapackdense.h

sunlinsol pcg Libraries libsundials sunlinsolpcg.lib
libsundials fsunlinsolpcg mod.lib

continued on next page
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libsundials fsunlinsolpcg.a
Header files sunlinsol/sunlinsol pcg.h
Module
files

fsunlinsol pcg mod.mod

sunlinsol spbcgs Libraries libsundials sunlinsolspbcgs.lib
libsundials fsunlinsolspbcgs mod.lib
libsundials fsunlinsolspbcgs.a

Header files sunlinsol/sunlinsol spbcgs.h
Module
files

fsunlinsol spbcgs mod.mod

sunlinsol spfgmr Libraries libsundials sunlinsolspfgmr.lib
libsundials fsunlinsolspfgmr mod.lib
libsundials fsunlinsolspfgmr.a

Header files sunlinsol/sunlinsol spfgmr.h
Module
files

fsunlinsol spfgmr mod.mod

sunlinsol spgmr Libraries libsundials sunlinsolspgmr.lib
libsundials fsunlinsolspgmr mod.lib
libsundials fsunlinsolspgmr.a

Header files sunlinsol/sunlinsol spgmr.h
Module
files

fsunlinsol spgmr mod.mod

sunlinsol sptfqmr Libraries libsundials sunlinsolsptfqmr.lib
libsundials fsunlinsolsptfqmr mod.lib
libsundials fsunlinsolsptfqmr.a

Header files sunlinsol/sunlinsol sptfqmr.h
Module
files

fsunlinsol sptfqmr mod.mod

sunlinsol superlumt Libraries libsundials sunlinsolsuperlumt.lib
libsundials fsunlinsolsuperlumt.a

Header files sunlinsol/sunlinsol superlumt.h
sunlinsol superludist Libraries libsundials sunlinsolsuperludist.lib

Header files sunlinsol/sunlinsol superludist.h
sunlinsol cusolversp batchqrLibraries libsundials sunlinsolcusolversp.lib

Header files sunlinsol/sunlinsol cusolverp batchqr.h
sunnonlinsol newton Libraries libsundials sunnonlinsolnewton.lib

libsundials fsunnonlinsolnewton mod.lib
libsundials fsunnonlinsolnewton.a

Header files sunnonlinsol/sunnonlinsol newton.h
Module
files

fsunnonlinsol newton mod.mod

sunnonlinsol fixedpoint Libraries libsundials sunnonlinsolfixedpoint.lib
continued on next page
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libsundials fsunnonlinsolfixedpoint.a
libsundials fsunnonlinsolfixedpoint mod.lib

Header files sunnonlinsol/sunnonlinsol fixedpoint.h
Module
files

fsunnonlinsol fixedpoint mod.mod

sunnonlinsol petscsnes Libraries libsundials sunnonlinsolpetscsnes.lib
Header files sunnonlinsol/sunnonlinsol petscsnes.h

cvode Libraries libsundials cvode.lib
libsundials fcvode.a
libsundials fcvode mod.lib

Header files cvode/cvode.h cvode/cvode impl.h
cvode/cvode direct.h cvode/cvode ls.h
cvode/cvode spils.h cvode/cvode bandpre.h
cvode/cvode bbdpre.h

Module
files

fcvode mod.mod

cvodes Libraries libsundials cvodes.lib
libsundials fcvodes mod.lib

Header files cvodes/cvodes.h cvodes/cvodes impl.h
cvodes/cvodes direct.h cvodes/cvodes ls.h
cvodes/cvodes spils.h cvodes/cvodes bandpre.h
cvodes/cvodes bbdpre.h

Module
files

fcvodes mod.mod

arkode Libraries libsundials arkode.lib
libsundials farkode.a
libsundials farkode mod.lib

Header files arkode/arkode.h arkode/arkode impl.h
arkode/arkode ls.h arkode/arkode bandpre.h
arkode/arkode bbdpre.h

Module
files

farkode mod.mod farkode arkstep mod.mod

farkode erkstep mod.mod farkode mristep mod.mod
ida Libraries libsundials ida.lib

libsundials fida.a
libsundials fida mod.lib

Header files ida/ida.h ida/ida impl.h
ida/ida direct.h ida/ida ls.h
ida/ida spils.h ida/ida bbdpre.h

Module
files

fida mod.mod

continued on next page
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idas Libraries libsundials idas.lib
libsundials fidas mod.lib

Header files idas/idas.h idas/idas impl.h
idas/idas direct.h idas/idas ls.h
idas/idas spils.h idas/idas bbdpre.h

Module
files

fidas mod.mod

kinsol Libraries libsundials kinsol.lib
libsundials fkinsol.a
libsundials fkinsol mod.lib

Header files kinsol/kinsol.h kinsol/kinsol impl.h
kinsol/kinsol direct.h kinsol/kinsol ls.h
kinsol/kinsol spils.h kinsol/kinsol bbdpre.h

Module
files

fkinsol mod.mod





Appendix B

KINSOL Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

B.1 KINSOL input constants

kinsol main solver module

KIN ETACHOICE1 1 Use Eisenstat and Walker Choice 1 for η.
KIN ETACHOICE2 2 Use Eisenstat and Walker Choice 2 for η.
KIN ETACONSTANT 3 Use constant value for η.
KIN NONE 0 Use inexact Newton globalization.
KIN LINESEARCH 1 Use linesearch globalization.

Iterative linear solver modules

PREC NONE 0 No preconditioning
PREC RIGHT 2 Preconditioning on the right.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

B.2 KINSOL output constants

kinsol main solver module

KIN SUCCESS 0 Successful function return.
KIN INITIAL GUESS OK 1 The initial user-supplied guess already satisfies the stopping cri-

terion.
KIN STEP LT STPTOL 2 The stopping tolerance on scaled step length was satisfied.
KIN WARNING 99 A non-fatal warning. The solver will continue.
KIN MEM NULL -1 The kin mem argument was NULL.
KIN ILL INPUT -2 One of the function inputs is illegal.
KIN NO MALLOC -3 The kinsol memory was not allocated by a call to KINMalloc.
KIN MEM FAIL -4 A memory allocation failed.
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KIN LINESEARCH NONCONV -5 The linesearch algorithm was unable to find an iterate suffi-
ciently distinct from the current iterate.

KIN MAXITER REACHED -6 The maximum number of nonlinear iterations has been reached.
KIN MXNEWT 5X EXCEEDED -7 Five consecutive steps have been taken that satisfy a scaled step

length test.
KIN LINESEARCH BCFAIL -8 The linesearch algorithm was unable to satisfy the β-condition

for nbcfails iterations.
KIN LINSOLV NO RECOVERY -9 The user-supplied routine preconditioner slve function failed re-

coverably, but the preconditioner is already current.
KIN LINIT FAIL -10 The linear solver’s initialization function failed.
KIN LSETUP FAIL -11 The linear solver’s setup function failed in an unrecoverable

manner.
KIN LSOLVE FAIL -12 The linear solver’s solve function failed in an unrecoverable man-

ner.
KIN SYSFUNC FAIL -13 The system function failed in an unrecoverable manner.
KIN FIRST SYSFUNC ERR -14 The system function failed recoverably at the first call.
KIN REPTD SYSFUNC ERR -15 The system function had repeated recoverable errors.

kinls linear solver interface

KINLS SUCCESS 0 Successful function return.
KINLS MEM NULL -1 The kin mem argument was NULL.
KINLS LMEM NULL -2 The kinls linear solver has not been initialized.
KINLS ILL INPUT -3 The kinls solver is not compatible with the current nvector

module, or an input value was illegal.
KINLS MEM FAIL -4 A memory allocation request failed.
KINLS PMEM NULL -5 The preconditioner module has not been initialized.
KINLS JACFUNC ERR -6 The Jacobian function failed
KINLS SUNMAT FAIL -7 An error occurred with the current sunmatrix module.
KINLS SUNLS FAIL -8 An error occurred with the current sunlinsol module.
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SUNDIALS Release History

Table C.1: Release History

Date SUNDIALS ARKODE CVODE CVODES IDA IDAS KINSOL

Jan 2021 5.7.0 4.7.0 5.7.0 5.7.0 5.7.0 4.7.0 5.7.0
Dec 2020 5.6.1 4.6.1 5.6.1 5.6.1 5.6.1 4.6.1 5.6.1
Dec 2020 5.6.0 4.6.0 5.6.0 5.6.0 5.6.0 4.6.0 5.6.0
Oct 2020 5.5.0 4.5.0 5.5.0 5.5.0 5.5.0 4.5.0 5.5.0
Sep 2020 5.4.0 4.4.0 5.4.0 5.4.0 5.4.0 4.4.0 5.4.0
May 2020 5.3.0 4.3.0 5.3.0 5.3.0 5.3.0 4.3.0 5.3.0
Mar 2020 5.2.0 4.2.0 5.2.0 5.2.0 5.2.0 4.2.0 5.2.0
Jan 2020 5.1.0 4.1.0 5.1.0 5.1.0 5.1.0 4.1.0 5.1.0
Oct 2019 5.0.0 4.0.0 5.0.0 5.0.0 5.0.0 4.0.0 5.0.0
Feb 2019 4.1.0 3.1.0 4.1.0 4.1.0 4.1.0 3.1.0 4.1.0
Jan 2019 4.0.2 3.0.2 4.0.2 4.0.2 4.0.2 3.0.2 4.0.2
Dec 2018 4.0.1 3.0.1 4.0.1 4.0.1 4.0.1 3.0.1 4.0.1
Dec 2018 4.0.0 3.0.0 4.0.0 4.0.0 4.0.0 3.0.0 4.0.0
Oct 2018 3.2.1 2.2.1 3.2.1 3.2.1 3.2.1 2.2.1 3.2.1
Sep 2018 3.2.0 2.2.0 3.2.0 3.2.0 3.2.0 2.2.0 3.2.0
Jul 2018 3.1.2 2.1.2 3.1.2 3.1.2 3.1.2 2.1.2 3.1.2
May 2018 3.1.1 2.1.1 3.1.1 3.1.1 3.1.1 2.1.1 3.1.1
Nov 2017 3.1.0 2.1.0 3.1.0 3.1.0 3.1.0 2.1.0 3.1.0
Sep 2017 3.0.0 2.0.0 3.0.0 3.0.0 3.0.0 2.0.0 3.0.0
Sep 2016 2.7.0 1.1.0 2.9.0 2.9.0 2.9.0 1.3.0 2.9.0
Aug 2015 2.6.2 1.0.2 2.8.2 2.8.2 2.8.2 1.2.2 2.8.2
Mar 2015 2.6.1 1.0.1 2.8.1 2.8.1 2.8.1 1.2.1 2.8.1
Mar 2015 2.6.0 1.0.0 2.8.0 2.8.0 2.8.0 1.2.0 2.8.0

continued on next page
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Date SUNDIALS ARKODE CVODE CVODES IDA IDAS KINSOL

Mar 2012 2.5.0 – 2.7.0 2.7.0 2.7.0 1.1.0 2.7.0
May 2009 2.4.0 – 2.6.0 2.6.0 2.6.0 1.0.0 2.6.0
Nov 2006 2.3.0 – 2.5.0 2.5.0 2.5.0 – 2.5.0
Mar 2006 2.2.0 – 2.4.0 2.4.0 2.4.0 – 2.4.0
May 2005 2.1.1 – 2.3.0 2.3.0 2.3.0 – 2.3.0
Apr 2005 2.1.0 – 2.3.0 2.2.0 2.3.0 – 2.3.0
Mar 2005 2.0.2 – 2.2.2 2.1.2 2.2.2 – 2.2.2
Jan 2005 2.0.1 – 2.2.1 2.1.1 2.2.1 – 2.2.1
Dec 2004 2.0.0 – 2.2.0 2.1.0 2.2.0 – 2.2.0
Jul 2002 1.0.0 – 2.0.0 1.0.0 2.0.0 – 2.0.0
Mar 2002 – – 1.0.03 – – – –
Feb 1999 – – – – 1.0.04 – –
Aug 1998 – – – – – – 1.0.05

Jul 1997 – – 1.0.02 – – – –
Sep 1994 – – 1.0.01 – – – –
1cvode written, 2pvode written, 3cvode and pvode combined, 4ida written, 5kinsol written
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