
LLNL-PRES-777723
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory 
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

ZFP: Compressed Floating-Point Arrays for
Exascale Computing
ISC High Performance 2019

Peter Lindstrom

June 19, 2019



LLNL-PRES-777723
2

Data movement will dictate performance and power usage at 
exascale

Mega

Giga

Tera

Peta

Exa

1995 2000 2005 2010 2015 2020

Compute power (FLOPs/s)

Memory bandwidth (bytes/s)

O(106)
increase

O(103)
increase

Otherwise idle compute cycles can be spent on data compression to reduce memory traffic



LLNL-PRES-777723
3

1.11 1.07 1.07 1.05 1.04 1.03 1.02 1.01

[L
in

ds
tr

om
 '0

6]

[A
lte

d 
'0

9]

[L
in

ds
tr

om
 '1

4]

[B
ur

ts
ch

er
 '0

7]

[B
ur

ts
ch

er
 '1

6]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

fpzip BLOSC zfp FPC gzip szip SPDP bzip2

co
m

pr
es

si
on

 ra
tio

 (u
nc

om
p.

/c
om

p.
 s

iz
e)

(64-bit) floating-point data does not compress well losslessly



LLNL-PRES-777723
4

§ Large improvements in compression are
possible by allowing even small errors
— Simulation often computes on meaningless bits 

• Round-off, truncation, iteration, model errors abound
• Last few floating-point bits are effectively random noise

§ Still, lossy compression often makes scientists nervous
— Even though lossy data reduction is ubiquitous

• Decimation in space and/or time (e.g., store every 100 time steps)
• Averaging (hourly vs. daily vs. monthly averages)
• Truncation to single precision (e.g., for history files)

— State-of-the-art compressors support error tolerances

Lossy compression enables greater reduction, but is often met 
with skepticism by scientists 

0.27 bits/value 
240x compression



LLNL-PRES-777723
5

Can lossy-compressed in-memory storage of numerical 
simulation state be tolerated?

Simulation Outer Loop

Update elementsUpdate nodes

Update 
elements

Compute time 
constraints

Decompress 
block

Element 
kernel(s)

Compress 
block

Our Approach

Decompress 
all state

Update nodes

Update 
elements

Compute time 
constraints

Compress
all state

[Laney et al., “Assessing the effects of data compression in simulations using physically motivated metrics,” SC 2013] 



LLNL-PRES-777723
6

High-order Eulerian hydrodynamics
• QoI: Rayleigh-Taylor mixing layer thickness
• 10,000 time steps
• At 4x compression, relative error < 0.2%

Laser-plasma multi-physics
• QoI: backscattered laser energy
• At 4x compression, relative error < 0.1%

Lagrangian shock hydrodynamics
• QoI: radial shock position
• 25 state variables compressed over 2,100 time steps
• At 4x compression, relative error < 0.06%

Using lossy FPZIP to store simulation state compressed, we 
have shown that 4x lossy compression can be tolerated

20 bits/value uncompressed16 bits/value

Lossy compression of state is viable, but streaming compression increases data movement—need inline compression



LLNL-PRES-777723
7

§ ZFP provides a C++ d-dimensional compressed array primitive
— Based on decomposition into independent blocks of 4d values
— O(1) read & write random access with user-defined memory footprint
— Replaces IEEE as number format for numerical computations
— Very fast: up to 150 GB/s parallel throughput

• H/w friendly: uses only integer additions and bitwise operations

— Conventional API: C++ operator overloading hides complexity of (de)compression
• double a[n] Û std::vector<double> a(n) Û zfp::array<double> a(n, bits_per_value)

§ ZFP can also be used for streaming compression to reduce I/O and storage
— Supports absolute and (local) relative error tolerances
— Supports spatially adaptive & progressive compression
— Resilient to data corruption

ZFP is an inline compressor for floating-point arrays



LLNL-PRES-777723
8

ZFP’S C++ compressed arrays can replace STL vectors and C 
arrays with minimal code changes

// example using STL vectors

std::vector<double> u(nx * ny, 0.0);
u[x0 + nx*y0] = 1;
for (double t = 0; t < tfinal; t += dt) {

std::vector<double> du(nx * ny, 0.0);
for (int y = 1; y < ny - 1; y++)

for (int x = 1; x < nx - 1; x++) {
double uxx = (u[(x-1)+nx*y] - 2*u[x+nx*y] + u[(x+1)+nx*y]) / dxx;
double uyy = (u[x+nx*(y-1)] - 2*u[x+nx*y] + u[x+nx*(y+1)]) / dyy;
du[x + nx*y] = k * dt * (uxx + uyy);

}
for (int i = 0; i < u.size(); i++)

u[i] += du[i];
}

// example using ZFP arrays

zfp::array2<double> u(nx, ny, bits_per_value);
u(x0, y0) = 1;
for (double t = 0; t < tfinal; t += dt) {

zfp::array2<double> du(nx, ny, bits_per_value);
for (int y = 1; y < ny - 1; y++)

for (int x = 1; x < nx - 1; x++) {
double uxx = (u(x-1, y) - 2*u(x, y) + u(x+1, y)) / dxx;
double uyy = (u(x, y-1) - 2*u(x, y) + u(x, y+1)) / dyy;
du(x, y) = k * dt * (uxx + uyy);

}
for (int i = 0; i < u.size(); i++)

u[i] += du[i];
}

required changes
optional changes for improved readability



LLNL-PRES-777723
9

ZFP arrays limit data loss via a small write-back cache

virtual array compressed blocks

dirty
bit uncompressed blocks

software cache

block
index

application



LLNL-PRES-777723
10

The ZFP compressor is comprised of three distinct components

1
0

Raw floating-
point array

Block floating-
point transform

Orthogonal
block transform

Embedded
coding

Compressed
bit stream

§ Align values in a 4d block to a 
common largest exponent

§ Transmit exponent verbatim

§ Lifted, separable transform using 
integer adds and shifts

§ Similar to but faster and more 
effective than JPEG DCT

§ Encode one bit plane at a time 
from MSB using group testing

§ Each bit increases quality—can 
truncate stream anywhere



LLNL-PRES-777723
11

ZFP OpenMP compression achieves up to 20 GB/s throughput

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32

th
ro

ug
hp

ut
 (G

B/
s)

threads



LLNL-PRES-777723
12

ZFP CUDA compression achieves up to 150 GB/s throughput

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 32

th
ro

ug
hp

ut
 (G

B/
s)

compressed storage size (bits/value)

ZFP CUDA compression speed on NVIDIA V100



LLNL-PRES-777723
13

ZFP provides >100x compression with imperceptible loss in 
visual quality



LLNL-PRES-777723
14

ZFP provides >100x compression with imperceptible loss in 
visual quality



LLNL-PRES-777723
15

ZFP provides >100x compression with imperceptible loss in 
visual quality



LLNL-PRES-777723
16

Got artifacts?



LLNL-PRES-777723
17

Velocity field Runge-Kutta integration shows good agreement 
with uncompressed field

0.30 bits/value 1.33 bits/value



LLNL-PRES-777723
18

Morse segmentation at 16x compression shows lack of 
blocking artifacts 

0%

5%

10%

15%

20%

25%

30%

35%

40%

0.25 1 4 16 64

se
gm

en
ta

tio
n 

er
ro

r

rate (bits/value)

1 bit/value 2 bits/value

4 bits/value 64 bits/value



LLNL-PRES-777723
19

ZFP shows no artifacts in derivative computations
(velocity divergence)



LLNL-PRES-777723
20

ZFP shows no artifacts in derivative computations
(velocity divergence)



LLNL-PRES-777723
21

ZFP shows no artifacts in derivative computations
(velocity divergence)



LLNL-PRES-777723
22

6-bit ZFP gives one more digit of accuracy than 32-bit IEEE in
2nd, 3rd derivative computations (Laplacian and highlight lines)

IEEE half (16 bits) POSIT(1) (16 bits) IEEE float (32 bits)

ZFP (6 bits) IEEE double (64 bits) IEEE double (64 bits)



LLNL-PRES-777723
23

ZFP improves accuracy in finite difference computations using 
less precision than IEEE



LLNL-PRES-777723
24

ZFP compression errors are well behaved and follow a normal 
distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−ε −ε/2 0 +ε/2 +ε

pr
ob

ab
ili

ty
 d

en
si

ty

error relative to tolerance ε

theory observation



LLNL-PRES-777723
25

We have developed rigorous error bounds for ZFP, both for 
static data and in iterative methods

truncation error

zfp error bound

observed zfp error

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 500 1000 1500 2000 2500 3000

er
ro

r

time step

2D Diffusion

truncation error

observed zfp error

zfp error bound

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 100 200 300 400 500 600 700 800 900 1000

er
ro

r

time step

1D Lax-Wendroff

[Diffenderfer et al., “Error Analysis of ZFP Compression for Floating-Point Data,” SIAM Journal on Scientific Computing, 2019] 



LLNL-PRES-777723
26

ZFP variable-rate arrays adapt storage spatially and allocate 
bits to regions where they are most needed

16 bits/value8 bits/value 32 bits/value 64 bits/value



LLNL-PRES-777723
27

ZFP adaptive arrays improve accuracy in PDE solution over IEEE
by 6 orders of magnitude using less storage



LLNL-PRES-777723
28

Adaptive-rate ZFP increases accuracy over IEEE float by 6 orders 
of magnitude while using less storage

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

RM
S 

er
ro

r

time

IEEE (32-bit) posit (32-bit) zfp (32-bit) adaptive zfp (28-bit)



LLNL-PRES-777723
29

I/O Compression: ZFP reduces I/O by 30x on average in CM1
[Work done by Leigh Orf, UW-Madison] 



LLNL-PRES-777723
30

Tabular data: Compressed, pre-computed wavefunctions 
enable reduced memory footprint in QMCPACK code

uncompressed (32 bits/value) ZFP (1 bit/value) FPZIP (1 bit/value)



LLNL-PRES-777723
31

Tabular data: LEOS library reduces memory footprint of 
equation-of-state tables by 4-8x using ZFP



LLNL-PRES-777723
32

Inline compression: ZFP reduces 5D simulation state in GENE 
fusion code by 10x with acceptable loss in accuracy
[Work by Denis Jarema & Frank Jenko, MPI]



LLNL-PRES-777723
33

§ Registered compression filter in HDF5
— H5Z-ZFP plugin: https://github.com/LLNL/H5Z-ZFP

§ Available in ADIOS I/O library since version 1.11
— AtoZ = ADIOS + ZFP: https://github.com/suchyta1/AtoZ

§ Third-party I/O library in VTK
— https://gitlab.kitware.com/third-party/zfp

§ AVX implementation in Intel IPP
— https://software.intel.com/ipp-dev-reference

§ Available in VTK-m since December 2018
— http://m.vtk.org/images/c/c8/VTKmUsersGuide.pdf

ZFP compression is available in I/O libraries and viz tools

https://github.com/LLNL/H5Z-ZFP
https://github.com/suchyta1/AtoZ
https://gitlab.kitware.com/third-party/zfp
https://software.intel.com/ipp-dev-reference
http://m.vtk.org/images/c/c8/VTKmUsersGuide.pdf


LLNL-PRES-777723
34

ZFP is BSD licensed and available on GitHub: 
https://github.com/LLNL/zfp

https://github.com/LLNL/zfp


Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the 
United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, 
expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or 
Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for 
advertising or product endorsement purposes.


