
A Flexible and Dynamic Infrastructure for MPI Tool Interoperability

Martin Schulz and Bronis R. de Supinski
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551
{schulzm,bronis}@llnl.gov

Abstract

The MPI standard provides tool builders with an efficient
profiling interface, PMPI. Although many tools have suc-
cessfully used this interface, it has three major drawbacks:
a need to relink the application in order to use a tool; an
inability to combine existing tools easily; and a lack of sup-
port for tool modularity. These limitations restrict tool flex-
ibility and increase the threshold for using MPI tools.

We present PN MPI , an infrastructure to load MPI tools
dynamically and to chain multiple MPI tools for concurrent
use. It works with existing PMPI tools, which can be trans-
parently converted in binary form into loadable PN MPI
modules, and newly developed tools, which can exploit ad-
ditional PN MPI inter-tool communication services. We
show that our implementation achieves our design goals,
including ease-of-use and minimal overhead.

1 Motivation

Efficient and flexible support for tools is essential for any
parallel programming environment. The Message Passing
Interface (MPI) [4] provides an efficient mechanism to sup-
port profiling and tracing tools through its name shifted pro-
filing interface (PMPI). Tool writers can transparently inter-
cept any MPI call and wrap their own functionality around
the actual MPI library invocation. Many popular tools use
PMPI, including profilers like mpiP [8, 10], trace libraries
such as those from Oregon [1] or Intel [11], or MPI correct-
ness checkers like Umpire [9] or MARMOT [3].

Despite PMPI being widely used, it lacks flexibility. One
problem is that it requires users to relink their application
with the PMPI-based tool to include its functionality. More
importantly, the PMPI interface only supports one tool at
a time. The user cannot use multiple tools in a single run
of their application, a significant limitation since not only
application programmers might want to perform multiple

0This work was performed under the auspices of the U.S. Department
of Energy by University of California Lawrence Livermore National Lab-
oratory under contract No. W-7405-Eng-48 (UCRL-CONF-221608).

performance analyses concurrently, but also tool builders
cannot use existing tools, such as an MPI profiler, to eval-
uate the quality of the implementation of new tools, such
as a correctness checker. Further, tool builders cannot eas-
ily create tool modules since functionality cannot be split
into individual PMPI-accessing layers that could be reused
by other tools. Thus, it discourages code reuse during tool
development. Figure 1 (left) illustrates these points further.
Applying multiple tools to an application requires linking
the application with each tool individually to create multi-
ple, separately run executables.

We present an infrastructure, PN MPI , that eliminates
these limitations of PMPI as the middle of Figure 1 shows.
PN MPI allows users to load dynamically and to execute
(i.e., without relinking) one or more existing or newly de-
veloped PMPI-based tools (or modules) concurrently. We
accomplish this by linking the PN MPI infrastructure into
applications by default. PN MPI then transforms the wrap-
per libraries included in the PMPI tools into a single tool
stack. Once initialized, PN MPI redirects any MPI routine
executed by the application into this dynamically created
stack and independently calls each tool that contains a wrap-
per for the routine. This eliminates the need to create a sepa-
rate executable for each tool and to run each tool separately.

Since PN MPI is lightweight by design, it can be included
in the default build process thereby removing the need for
recompilation to include or remove a tool. PN MPI also pro-
vides tool interaction functionality through services in the
PN MPI core. Thus, separate modules can now implement
common tool functionality to improve code reuse, modular-
ity, and flexibility as well as tool interoperability.

Figure 1 (right) shows just some of the possible usage
scenarios for the PN MPI infrastructure. Tracing and profil-
ing tools can be combined transparently. It allows efficient
MPI debugging by combining deterministic reply mecha-
nisms with MPI checker libraries like Umpire [9]. A generic
piggyback mechanism can be used as the basis of applica-
tion level checkpointing mechanisms [7] or critical path de-
tection [6]. The flexibility of the PN MPI infrastructure sup-
ports many more scenarios.

Sample Scenarios

P
^N

M
P

I
C

or
e

Application

MPI Library

Multiple PMPI tools
using P^NMPI

Running multiple
PMPI Tools

Application

MPI Library
PMPI Tool 3

Application

MPI Library
PMPI Tool 2

Application

MPI Library
PMPI Tool 1

Application

MPI Library
Det. Replay
MPI Checker

Application

MPI Library

Tracing
Profiling

Application
Checkpointer
Message Log

MPI Library
Piggyback

Application

MPI Library

Crit.Path
Piggyback

PMPI Tool N

PMPI Tool 2

PMPI Tool 1

Figure 1. Multiple tools without (left) or by chaining them together with PN MPI (middle); sample scenarios for PN MPI (right).

2 MPI Tools

2.1 The MPI Profiling Interface

MPI includes a portable and efficient mechanism for tool
development, the PMPI Profiling Interface. Tools can create
wrappers for any MPI routine and then transparently insert
them between the MPI library and the application. PMPI,
a name-shifted interface, makes all MPI functionality avail-
able through alternate names (with the prefix PMPI instead
of MPI). Tools can overwrite the existing MPI functions,
add their own processing, and then invoke the original MPI
functionality using the shifted names.

Figure 2 shows the common PMPI implementation
through weak symbols. All original MPI routines are de-
clared using weak symbols. Thus, any library linked to the
application that uses the same names will overwrite them.
The PMPI names, on the other hand, are regular symbols;
tool wrappers can use them for the actual communication li-
brary work. Thus, tools can transparently register any MPI
invocation and record its arguments by wrapping the corre-
sponding MPI routine. Many MPI tools use this infrastruc-
ture, including profilers [8, 10], tracers [1, 11] and correct-
ness checkers [9, 3].

2.2 Limitations

We address three major shortcomings of PMPI:

Restricted to one tool at a time:

The PMPI interface allows only one tool to be linked be-
tween the MPI library and the application at a time. Users
must link and run with each tool separately in order to apply
multiple PMPI tools. Further, combining results from mul-
tiple runs requires a highly deterministic application execu-
tion, a property that does not hold for many codes or sys-
tems. Even worse, application of one tool to another (e.g.,
evaluation of the performance impact of a correctness tool)
is not supported.

Tool
PMPI
with

Relink

...
Call MPI_Send
...

...
Call MPI_Send
...

An MPI Application calls
a message routine

Transparently intercepting
MPI calls using a PMPI Tool

MPI_Send(...)

...
Call PMPI_Send

declare strong

MPI_Send(...)
declare weak

send msg.

PMPI_Send(...)
declare strong

send msg.

Application

Application

PMPI Tool

MPI Library

MPI Library

Figure 2. Typical implementation of the PMPI library
using weak symbols for all MPI routines.

Need to relink for each tool:

In order to use a PMPI tool, the application must be relinked
to include the PMPI wrappers. While much less invasive
than requiring recompilation, it still requires tool users to
have all application binary components. Also, specific MPI
tools must be integrated into the make environment or build
process, which can be difficult in larger projects.

Limited support for tool modularity:

Many MPI tools require similar components, such as log-
ging, handle replacement, request tracking, or piggyback
messaging. Generic tool libraries must provide this com-
mon functionality since PMPI does not include it. How-
ever, these libraries cannot take the form of PMPI tools
themselves, which heavily restricts their design. Thus, tool
builders often must rewrite such components from scratch.

In summary, these shortcomings lead to a restricted tool
environment and raise the bar for users to apply tools in their
MPI applications. They also greatly limit or even eliminate
any interaction between tools. Finally, they increase tool
development efforts by discouraging code reuse.

3 PNMPI : Chaining MPI Tools

Our novel PN MPI infrastructure overcomes PMPI’s lim-
itations while maintaining its advantages and leveraging the
existing code base. PN MPI can dynamically load and chain
multiple PMPI tools into a single tool stack and then inter-
ject this complete stack between the target application and
the library without changing the view for each individual
tool. It enables the user to combine arbitrary MPI tools and
the tool developer to rely on services provided by other tools
without having to reimplement them. Our PN MPI tool in-
frastructure meets these requirements:

1. Concurrently execute multiple PMPI tools during a
single application execution.

2. Work with any existing MPI implementation.

3. Transparent adaptation to the underlying MPI layer.

4. Negligible overhead when not activated.

5. Dynamically load modules (i.e., no relinking).

6. Low overhead for actually intercepted MPI routines.

7. Binary backward compatibility with existing tools
(i.e., run any PMPI-based tool without recompiling it).

8. Optional communication and interoperation of newly
developed tools, including information exchange.

3.1 PNMPI Architecture

Once PN MPI is included into the application, users can
dynamically specify a set of PMPI tools to apply in a sin-
gle application execution (Requirement 1). These individ-
ual tools are dynamically loaded at runtime and integrated
into a single tool chain that is inserted between the applica-
tion and the MPI library.

PN MPI consists of three main components (Figure 3):
a stub library, itself written in PMPI (Requirement 2), that
integrates the complete tool chain into the MPI application;
the PN MPI core managing and controlling the tool chain;
and a configuration and loader module to specify the PMPI
modules to use and to initialize the infrastructure. In addi-
tion, it also includes an automatic customization and adap-
tation mechanism that retargets PN MPI to the underlying
MPI implementation on the target platform, as well as a
transparent migration tool to integrate existing binary PMPI
tools into PN MPI .

The stub library uses PMPI to cover all MPI calls that the
native MPI layer provides, which can vary between MPI
implementations and does vary between MPI-1 and MPI-
2. Thus, the PN MPI installation process generates this li-
brary automatically (Requirement 3). During this process,
the stub library generator parses the native header file and
extracts all routines with a PMPI implementation along with

their parameters. It then generates corresponding stub rou-
tines that direct the calls into the PN MPI core if and only
if at least one of the PMPI tools used in the current session
implements this particular routine within its wrapper layer.
If no active tool implements a routine, the stub wrapper di-
rectly hands the call to the underlying MPI library without
further processing (Requirement 4).

This shortcut mechanism is introduced to keep the
PN MPI layer lightweight and to ensure that it incurs vir-
tually no overhead for any MPI call not intercepted by a
PMPI tool. As a consequence, an application’s regular build
process can include linking in the PN MPI stub library into
the program by default without concern for additional over-
head. This can even be done site-wide transparently to the
user, e.g., by integrating it into the mpicc compiler script.
In either case, user’s can then add PMPI tools to any exe-
cution, irrespective of whether they intended to do so dur-
ing the build process (Requirement 5). This is especially
helpful for debugging purposes where it is often unknown a
priori what problems to expect.

If a routine is included in at least one tool, the stub library
passes control to the PN MPI core, which calls all tool lay-
ers that implement a wrapper for this routine. For this pur-
pose, PN MPI maintains separate link stacks for each MPI
routine to avoid searching the entire tool stack for each ac-
tivation (Requirement 6). The initialization process extracts
the starting addresses of all MPI routines in each PMPI tool
and populates these link stacks.

During the execution of a wrapper routine, any call to an
PMPI routine must lead back to the PN MPI core rather than
to the MPI implementation to enable PN MPI to gain control
between layers and invoke the next one. This mechanisms
works in scenarios where a MPI wrapper only calls its direct
PMPI counterpart or where it uses one or more other PMPI
calls to accomplish its task.

To achieve this redirection of PMPI calls, PN MPI in-
cludes an external patch utility that transforms PMPI tool
binaries into PN MPI modules. This tool scans the dynamic
symbol table and rewrites the names of PMPI routines to
match internal PN MPI core routine names. During the load
process of the module, the calls to the PMPI routines are
linked to the core rather than the MPI library, ensuring that
the core gains control after each tool invocation. This patch
utility directly modifies existing tools for use with PN MPI
without recompiling them (Requirement 7).

3.2 Configuration Mechanism

Once the PN MPI stub library is linked into the appli-
cation, the user can dynamically specify a PMPI tool set
to load into the framework as PMPI modules (Requirement
1). The tool set can include existing ones and those specif-
ically developed for PN MPI . The former can be transpar-
ently transformed using the patch tool (Requirement 7).

MPI Application

MPI Library

PNMPI Component

copy

copy

"New"
PNMPI
ToolTool

PMPI
"Legacy"

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

PNMPI Stub
Library

Generator

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Transparently
Link & Patch
Binary Tool

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

mpi.h

PNMPI

Wrapper

Specification

PNMPI Module

PNMPI Module

PNMPI Module

MPI_X

PMPI_X

PMPI_X
MPI_X

PMPI_X
MPI_X

MPI_X
PMPI_X

PNMPI Module

PNMPI Module

PNMPI Module

PNMPI Module

PNMPI Module

PNMPI Module

PNMPI Module

PNMPI Module

PNMPI Module

P
N

M
P

I C
on

fig
. &

 L
oa

de
r

User specific
Config. File

System−wide
PNMPI Tool
Repository

P
N

M
P

I S
tu

b
Li

br
ar

y

P
N

M
P

I C
or

e

PNMPI Infrastructure

Figure 3. PN MPI components and their interactions.

A configuration file (in the user’s home directory or spec-
ified by an environment variable) controls the load process.
This file lists the PMPI modules to load during PN MPI ini-
tialization. The core’s MPI Init wrapper loads, instantiates
and chains these modules in the file-specified order.

Thus, users can specify new tools for each run without
changing the make or link process or the binary itself; they
only change the configuration file. Further, PMPI tools can
be removed after the respective analysis is completed, while
the same binary can continue to be used for production runs.
Hence, the application no longer has to be relinked to add,
change, or remove tools (Requirement 5).

3.3 Inter-Tool Communication

Running multiple tools at the same time also opens the
possibility to develop cooperative tools. This promotes both
tool modularity and code reuse by allowing tools to by lay-
ered on top of functionality provided by other tools.

To enable this functionality the PN MPI core provides a
set of services to implement inter-tool communication (Re-
quirement 8). The core includes a publisher/subscriber in-
terface that tools can use to register services they offer and
to search for services offered by other tools. A detailed dis-
cussion of these services is beyond the scope of this paper.

4 Experimental Setup

We conducted all experiments on MCR, a 1152 node,
Quadrics’s QsNet (Elan-3) cluster at LLNL. Each node has
2.4 MHz Dual Xeon processors and 4 GByte memory. The
system uses the CHAOS–3.1 Linux distribution, which is
based on Red Hat Enterprise Linux 4. All codes were
compiled with gcc 3.4.4 and linked to Quadrics’s MPI im-
plementation. PN MPI was automatically customized for
Quadric’s MPI during its installation.

Besides the microbenchmarks described below, we use
two well-known scientific applications: SMG2000 and
HPL. The former is a Semicoarsining Multigrid Solver
based on the hypre library [2]. The latter is a portable high-
performance implementation of the Linpack benchmark [5].
We executed these on four nodes/eight CPUs, 32 nodes/64
CPUs, and 256 nodes/512 CPUs. The working set size for
SMG2000 was a 60x60x60 cube per node and we ran HPL
with N=10000 on eight CPUs, N=14000 on 64 CPUs, and
N=20000 on 512 CPUs.

Most experiments1 were run at least five times each and
the numbers presented are the minimal values2 of all exper-
iments, since these runs are likely to show the least exter-
nal perturbation. Nevertheless, all numbers below are influ-
enced by unavoidable system noise, which from previous
experience can be several percent for individual runs.

1Experiments on 512 CPUs were run less frequently due to resource
limitations. The noise on this data is therefore expected to be higher.

2Except for bandwidth numbers where we chose the maximal value.

5 PNMPI Overhead

5.1 Overhead model

The PN MPI performance overhead for each MPI call can
be split into three components: one-time overhead in the
stub library αstub, one-time overhead in the core for any
routine activation αcore, and the cost per tool. The latter
consists of the cost in PN MPI to run through the tool chain
β and the cost of the tool itself. The following formula de-
scribes the complete model for the overall overhead.

Toverhead = αstub + αcore +
∑Ntools

i=1 (β + Ttool(i))

In order to model the overhead of PN MPI only, we ig-
nore the overhead of each tool in this simplified formula:

Toverhead = αstub + αcore + β ∗ Ntools

Based on this model, we expect overhead linear in the
number of tools loaded into PN MPI plus a constant.

5.2 Model Verification

To verify this model, we first measure both bandwidth
and latency for native execution and execution with the
PN MPI stub library included and compute the difference
(αstub). Table 1 shows that latency increases minimally
(66ns) and bandwidth is essentially unchanged.

Once the application includes the stub library, we can
measure the impact of adding tools to PN MPI . For this we
use an empty PMPI wrapper layer (Ttool(i) = 0), which
simply intercepts all MPI routines and immediately calls
the matching PMPI routines without any further processing.
Figure 4 shows the message latency for the combined exe-
cution of zero to 100 of such empty layers3. As predicted
by the model, the overhead increases linearly with the num-
ber of included tool layers at an average overhead of 50ns
for each tool layer (β). Also, these experiments show that
αcore is negligible for all practical purposes.

3Although users are unlikely to apply even 100 tools concurrently, we
test PN MPI with up to 1000 concurrently loaded tools to evaluate its ro-
bustness. The measured overheads continued to fit the model.

Benchmark Native PN MPI Overhead

Latency 4.760µs 4.824µs 0.066µs
Bandwidth 304.66 MB/s 304.62 MB/s 0.04 MB/s

SMG, 8 CPUs 63.15s 63.29s 0.22%
SMG, 64 CPUs 77.19s 77.39s 0.26%
SMG, 512 CPUs 100.91s 100.472s -0.44%

HPL, 8 CPUs 79.17s 79.93s 0.95%
HPL, 64 CPUs 30.62s 30.89s 0.88%
HPL, 512 CPUs 17.84s 17.82s -0.11%

Table 1. Overhead αstub of the PN MPI stub library.

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

P
in

g/
P

on
g

La
te

nc
y

[u
se

c]

Number of tool layers

Figure 4. Impact on message latency for varying number
of empty layers.

 0

 20000

 40000

 60000

 80000

 100000

 0 20 40 60 80 100

M
P

I_
In

it
tim

e
[u

se
c]

Number of tool layers

Figure 5. Time for MPI Init for varying number of empty
layers.

5.3 Module Initialization

We also measured the overhead on MPI Init of PN MPI
tool module loading. Figure 5 shows this overhead also in-
creases nearly linear with the number of tools, but still stays
within 12ms or 20% compared to the native MPI Init for
100 tools. This cost is certainly acceptable since it is a one
time overhead.

5.4 Delay Microbenchmark

To illustrate the impact of multiple tools on the perfor-
mance and to demonstrate the functionality and correctness
of PN MPI , we generated a PMPI benchmark layer that in-
troduces an artificial delay of 100µs into every send call and
acts like the empty layer for each other call. Figure 6 shows
the latency with zero to ten of these layers activated. As ex-
pected, each tool layer works independently and adds 100µs
to the overall latency measured at the application level.

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10

P
in

g/
P

on
g

la
te

nc
y

[u
se

c]

Number of 100usec delays

Figure 6. Impact on message latency for varying number
of layers introducing 100µs delay each.

5.5 Application Overhead

Next we applied the same overhead experiments to both
SMG2000 and HPL to measure how the overhead seen in
individual routines translates to application overhead. The
results in Table 1 shows that the stub library infers no or
only minimal overhead. Especially at large scale, other per-
formance effects dominate completely masking the influ-
ence of the PN MPI stub library.

With increasing numbers of empty tool layers the over-
head remains low (Figure 7). SMG2000 is generally more
affected than HPL, which can be explained by looking at
the applications’ internal structures: HPL has less commu-
nication requirements than SMG2000 and hence is less im-
pacted by increased latency. Only at larger scale and with
more than 20 tools, HPL shows some performance degra-
dation, most likely caused by HPL’s synchronous struc-
ture, which is more susceptible to load imbalance caused
by noise. Nevertheless, the overhead of about 1% for 20
tools and 2-5% for 60 tools is still extremely low.

5.6 Memory Overhead

Memory overhead is also a concern with an infrastruc-
ture such as PN MPI , since any memory that it uses is no
longer available to the application or other tools. In this
section, we present a model for the memory consumption
of PN MPI .

We model PN MPI ’s memory usage with equations for
global variables, heap allocated memory, and stack space
utilized during MPI invocations. These equations depend
on two parameters: N , the number of modules loaded, and
M , the number of MPI routines that the PMPI interface im-
plements. We assume a 32 bit architecture, as is the case on
MCR. On 64 bit architectures the memory footprint will be
larger at most by a factor of two, mainly due to the larger
pointer size.

PN MPI uses a static pointer array with an entry for each
MPI routine accessible through the PMPI interface. This
array stores the individual function stacks. Further, PN MPI
maintains a bit vector in its stub library to limit performance
overhead for routines that no tool intercepts. With an ad-
ditional 24 bytes for global configuration information, the
following models global memory usage:

Mglobal = 24 + 4 ∗ M + �M/8� (Bytes).

The heap is used for two data structures: a descriptor for
each loaded module, which is currently 116 bytes, and the
function stacks for each function used by at least one tool.
The number of these stacks allocated is always smaller or
equal to M ; the following therefore represents the worst
case behavior, i.e., the case in which every MPI function is
wrapped by at least one tool:

Mheap ≤ 116 ∗ N + 4 ∗ M ∗ N (Bytes).

If any tool calls MPI routines recursively, we cannot
bound memory usage. However, if calls in every tool are
restricted to PMPI rotuines, PN MPI will not use more than
eight bytes for each invocation of its core. This includes the
initial MPI call and one for each active PMPI tool:

Mstack = 8 ∗ (N + 1) (Bytes).

In our experiments M = 128, so the total memory over-
head is:

Moverhead ≤ 560 + 636 ∗ N (Bytes).

The above is the worst case: many MPI tools only wrap
a few MPI routines. Since PN MPI allocates only required
function stacks, these tools incur reduced heap usage. We
could further reduce memory overhead through a smaller
limit on module names, which is currently set to a comfort-
able 100 characters.

6 Case Study: Combining Independent Tools
for Profiling and Tracing

The most common MPI performance analysis tools gen-
erally use one of two basic mechanisms: profiling, i.e.,
the collection of statistical data summarizing the execution
characteristics; and tracing, i.e., the collection of all MPI-
level events throughout the execution of an application. In
some situations, however, it is necessary to gather both trac-
ing and profiling data from one application. Using the con-
ventional PMPI profiling layer, both tools need to be each
individually linked with the application and executed sepa-
rately. Using PN MPI , both tools can be executed together
in a single application run.

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 0 10 20 30 40 50 60

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Number of tool layers

SMG2000, 8 CPUs
SMG2000, 64 CPUs

SMG2000, 512 CPUs

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 0 10 20 30 40 50 60

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Number of tool layers

HPL, 8 CPUs
HPL, 64 CPUs

HPL, 512 CPUs

Figure 7. Overhead for applications when used with varying numbers of empty layers: Left: SMG2000, Right: HPL.

6.1 Setup and Configuration

In the following we use the mpiP [8, 10] profiler, devel-
oped and maintained at LLNL, and the MPI trace wrapper
library from the TAU tool suite [1] developed and main-
tained by the University of Oregon. First, we convert both
tools into PMPI tool modules by linking them into two sepa-
rate shared objects and applying the PN MPI patch utility to
modify the dynamic symbol tables. We then store the com-
pleted modules in the PN MPI tool module library, which is
specified by the PNMPI LIB PATH environment variable.

To activate both modules, the application must be linked
with the PN MPI stub library and the modules must be speci-
fied in the configuration file .pnmpi-conf stored either in the
current working directory or in the user’s home. Figure 8
shows the file used to combine the tracing module, named
tautrace, and the profiler, named libmpip. The remaining
lines in the file (starting with #) are comments.

6.2 Performance Results

We tested this combination of tools using the experimen-
tal setup and the application benchmarks introduced in Sec-
tion 4: SMG2000 and HPL. Table 2 shows the results of the
experiments without PN MPI , with each tool loaded stati-
cally, with each tool loaded individually using PN MPI , and
both tools loaded concurrently.

Note that in general the largest scale runs exhibit more
noise and due to the tools’ higher I/O requirements, espe-

#Combine MPI tracing and profiling

#tracer first
module tautrace

#profiler second
module libmpip

Figure 8. Configuration file to combine tracing and pro-
filing (comment lines are denoted with #).

cially in the tracing library, also lead to larger overheads.
Further, since the I/O system is shared with other cluster
partitions, performance results can be highly variable, even
with multiple runs per data point.

As in the previous section, the overhead of the PN MPI
layer alone is minimal. Similarly, the difference between
using a single tool using PMPI and PN MPI is within the
noise level of the experiments. The tracing tool incurs
significantly more overhead than the profiler and the over-
head increases with growing processor numbers. This is ex-
pected, since a tracer must individually inspect and record
each MPI event, while a profiler only maintains aggregate
metrics.

The combined tool overhead using PN MPI is generally
comparable to the sum of the overhead caused by running
each tool individually. However, some overhead is added
by the second tool in the chain handling not only MPI traf-
fic caused by the application, but also with additional traffic
due to the first tool using additional PMPI calls for its func-
tionality.

In summary, we find that PN MPI overhead is negligible
compared to the overhead caused by the actual tools. How-
ever, combining tools for concurrent use can lead to accu-
mulative overheads from the individual tools. Users have
to be aware of this additional source of perturbation, espe-
cially when using PN MPI for performance analysis.

7 Conclusions

PMPI is a successful standardized interface that supports
a wide array of parallel tools, from MPI profilers and tracers
to MPI correctness checkers. However, users must relink
in order to include a tool, requiring a change to the build
process for each tool employed, and users can only use one
tool at a time. The latter means that users must generate a
separate executable and rerun the application for each tool.
Further, tools cannot easily be built by composition and one
tool cannot be applied to another.

Baseline Overhead
runtime static static PN MPI dynamic dynamic mpiP and

[sec] mpiP tracer no tools mpiP tracer tracer

SMG2000, 8 CPUs 63.15 2.30% 7.10% 0.22% 2.50% 7.56% 9.49%
SMG2000, 64 CPUs 77.19 1.30% 21.01% 0.26% 1.55% 21.72% 25.31%
SMG2000, 512 CPUs 100.91 3.69% 96.90% -0.44% 3.00% 98.68% 101.23%

HPL, 8 CPUs 79.17 1.64% 1.98% 0.95% 1.86% 2.81% 3.17%
HPL, 64 CPUs 30.56 1.57% 15.45% 0.16% 1.87% 13.45% 12.50%
HPL, 512 CPUs 17.84 12.33% 4271.69% -0.11% 4.71% 3323.93% 2068.5%

Table 2. Overhead results for running mpiP and/or the TAU tracer module with and without PN MPI .

We presented an infrastructure, PN MPI , that builds on
the advantages of PMPI to add these missing capabilities.
PN MPI allows users to load and activate arbitrary numbers
of PMPI tools dynamically by simply editing a configura-
tion file without the need for recompilation or relinking.
This provides the ability to add tool support when neces-
sary, even if not considered at the application’s build time,
and to remove tools when the necessary analysis steps are
completed, using the same binary.

PN MPI maintains a repository with all tool modules
available for use within MPI applications. Besides tools
with explicit PN MPI support, a binary patch tool can mod-
ify existing PMPI tools without recompiling so the repos-
itory can include them. This opens PN MPI to third-party
tools to which users often don’t have source access.

PN MPI provides low overhead for microbenchmarks
and large scale applications and can run hundreds of tools
at the same time. Our case study used PN MPI to combine
existing MPI tools for tracing and profiling in a single run
with minimal additional overhead.

Overall, PN MPI eases the use of MPI tools, by allow-
ing them to be dynamically linked, and provides efficient
interoperability between multiple tools. This interoperation
can be cooperative or transparent by concurrently execut-
ing multiple tools independently. PN MPI supports tool lay-
ering, which leads to more modularity and code reuse in
tool design. In the future we will continue to investigate
these inter-tool cooperation issues and extend the model for
a more general approach, including the ability to not only
stack MPI modules, but to allow users to specify a context
sensitive dataflow between multiple modules. This enables
the use of PMPI tools, e.g., on only subsets of MPI routines
or time slices of applications and thereby further increases
the flexibility in applying tools for MPI applications.

References

[1] R. Bell, A. Malony, and S. Shende. ParaProf: A Portable, Ex-
tensible, and Scalable Tool for Parallel Performance Profile
Analysis. In Proceedings of the International Conference on
Parallel and Distributed Computing (Euro-Par 2003), pages
17–26, Aug. 2003.

[2] R. Falgout and U. Yang. hypre: a Library of High Per-
formance Preconditioners. In Proceedings of the Interna-
tional Conference on Computational Science (ICCS), Part
III, LNCS vol. 2331, pages 632–641, Apr. 2002.

[3] B. Krammer, M. Müller, and M. Resch. Runtime Checking
of MPI Applications with MARMOT. In Mini-Symposium
on Tools Support for Parallel Programming at ParCo 2005,
Sept. 2005.

[4] Message Passing Interface Forum (MPIF). MPI: A Message-
Passing Interface Standard. Technical Report, Univer-
sity of Tennessee, Knoxville, June 1995. http://www.mpi-
forum.org/.

[5] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. Hpl -
a portable implementation of the high-performance linpack
be nchmark for distributed-memory computers. Available at
http://www.netlib.org/benchmark/hpl/.

[6] M. Schulz. Extracting Critical Path Graphs from MPI Appli-
cations. In Proceedings of IEEE Cluster 2005, Sept. 2005.

[7] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques,
K. Pingali, and P. Stodghill. Implementation and Evalu-
ation of a Scalable Application-level Checkpoint-Recovery
Scheme for MPI Programs. In Proceedings of IEEE/ACM
Supercomputing ’04, Nov. 2004.

[8] J. Vetter and C. Chambreau. mpiP: Lightweight, Scalable
MPI Profiling. http://www.llnl.gov/CASC/mpip/, Apr. 2005.

[9] J. Vetter and B. de Supinski. Dynamic software testing of
mpi applications with umpire. In Proceedings of IEEE/ACM
Supercomputing ’00, Nov. 2000.

[10] J. Vetter and M. McCracken. Statistical Scalability Analysis
of Communication Operations in Distributed Applications.
In Proceedings of the ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPOPP), 2001,
2001.

[11] I. Website. Intel (R) Cluster Toolkit,
Inte (R) Trace Analyzer and Collector 6.0.
http://www.intel.com/cd/software/products/asmo-
na/eng/cluster/clustertoolkit/244170.htm#trace, 2006.

