
PNMPI Tools:
A Whole Lot Greater Than the Sum of Their Parts

Martin Schulz and Bronis R. de Supinski
Center for Applied Scientific Computing

∗

Lawrence Livermore National Laboratory
Livermore, CA 94551

{schulzm,bronis}@llnl.gov

ABSTRACT
PN MPI extends the PMPI profiling interface to support multiple
concurrent PMPI-based tools by enabling users to assemble tool
stacks. We extend this basic concept to include new services for
tool interoperability and to switch between tool stacks dynamically.
This allows PN MPI to support modules that virtualize MPI execu-
tion environments within an MPI job or that restrict the application
of existing, unmodified tools to a dynamic subset of MPI calls or
even call sites.

Further, we extend PN MPI to platforms without dynamic link-
ing, such as BlueGene/L, and we introduce an extended perfor-
mance model along with experimental data from microbenchmarks
to show that the performance overhead on any platform is negligi-
ble. More importantly, we provide significant new MPI tool com-
ponents that are sufficient to compose interesting MPI tools. We
present three detailed PN MPI usage scenarios that demonstrate that
it significantly simplifies the creation of application-specific tools.

1. MOTIVATION
The MPI specification includes a standardized interface for tools

to wrap MPI calls and thereby to monitor the communication of
applications: the name shifted PMPI interface. While it is has
been successfully used for many tools, including mpiP [12], Um-
pire [13], or TAU [2] it comes with severe limitations: PMPI limits
users to a single tool at a time, preventing tool modularity and in-
teraction, and forces any tool to always be applied to all MPI ranks.
The result are complex, monolithic tools with limited code reuse,
which are hard to implement and to debug.

To overcome these deficiencies of PMPI, while maintaining its
successful and widely used interface, we have introduced PN MPI
[11]. It enables users to load and to stack arbitrary PMPI tools
dynamically and run them concurrently. In this work we extend on

∗This work was performed under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48 (UCRL-
CONF-229978).

Copyright 2005 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
SC’07, November 11–16, 2007, Reno, Nevada, USA.
Copyright 2007 ACM ...$5.00.

this basic infrastructure to enable the composition of novel types
of tools that can exceed their original functionality. Our extensions
include:

• A registration mechanism that enables tool service layers to
extend the core framework;

• Switch Modules, a mechanism to select tool stacks dynami-
cally;

• An MPI virtualization module that provides multiple, sepa-
rate MPI environments.

These new capabilities can be used to compose new tools directly
from existing tools or out of a library of generic services or to re-
strict tools transparently to relevant subsets of applications. Our
registration mechanism enables code reuse by modularizing com-
mon tasks, like datatype flattening or request tracking, without hav-
ing to recode them in every tool. Switch Modules support both ex-
ternal steering and the multiplexing of existing tools to dynamic
subsets of MPI jobs. MPI virtualization allows the transparent cou-
pling of cooperating, yet separate application components without
requiring the recoding that might be needed under MPI-2. We il-
lustrate the power of our extensions through three widely different
case studies: using a cooperative tool stack for the generation of
message checksums, applying multiple copies of an existing MPI
profiling tool to different sets of communicators, and combining
multiple SPMD applications into a single MPI job.

In addition to these new capabilities, we also present an alter-
native design of the PN MPI core framework that allows its use on
machines without dynamic linking support. As a result, PN MPI
now runs on machines such as Blue Gene/L and Red Storm, which
operate with lightweight compute node kernels, as well as more
standard clusters that use Linux or other Unix variants such as AIX.
Thus, PN MPI now represents a truly global solution for managing
and composing MPI tools.

The remainder of this paper is organized as follows. In Sec-
tion 2 we present the concepts behind PN MPI followed in Section 3
with details on its implementation. Section 4 extends the existing
PN MPI performance model to reflect the new capabilities enabled
by Switch Modules and evaluates it on a large scale Linux cluster.
In Section 5 we illustrate the capabilities of PN MPI with the three
case studies introduced above followed by a short discussion. Sec-
tion 6 briefly covers related work, followed by some final remarks
in Section 7.

2. COMPOSING TOOLS IN PNMPI
PN MPI eliminates the restriction of a single PMPI tool layer per

execution [11]. In this work we generalize the basic concept of
a dynamically defined and loaded tool stack managed by PN MPI
to dynamic MPI tool chains potentially consisting of multiple tool
stacks. To manage these chains, the PN MPI infrastructure pro-
vides a set of services that allow individual tools to interact with
each other, to rely on cross-tool services, or to switch between tool
stacks dynamically. This enables the composition of a new class of
modular MPI tools previously only possible in complex, monolithic
tool designs. In this section we describe the individual components
and services provided by PN MPI to create MPI tool chains as well
as the composition process itself.

2.1 Building MPI Tool Chains
The basic component in any PN MPI tool chain is a single PMPI

tool, in the following referred to as a PN MPI module. We dis-
tinguish between two types of modules: transparent and PN MPI
-aware. The former type relies only on the original PMPI interface
to wrap MPI calls and includes all tools that can run on MPI ap-
plications without the PN MPI infrastructure. The inclusion of this
type of modules enables PN MPI to support any existing MPI tool,
even in binary form, and ensures that PN MPI’s capabilities are a
strict superset of the PMPI interface. Alternatively, PN MPI -aware
modules have been designed to specifically work within the PN MPI
environment and therefore can take advantage of PN MPI services
beyond wrapping any MPI call to implement their functionality.

Users can combine any PN MPI module, transparent or PN MPI
-aware, into tool stacks that recursively wrap all MPI calls included
in the respective modules. Figure 1 (left) illustrates how two PMPI
tools, which are designed to individually intercept MPI calls of ap-
plications, are composed into a single tool stack. With our exten-
sions to PN MPI, users can define multiple independent tool stacks
to create a single overall composite tool. Special PN MPI aware
modules, which we call Switch Modules, support switching be-
tween stacks at runtime. For this, the PN MPI infrastructure ex-
ports an extended PMPI interface, through which a target stack can
be specified for each PMPI function call.

Figure 1 (right) shows an example of a tool chain using a switch
module. Each MPI call from the application is first directed into
Stack A before reaching the Switch Module. The Switch Mod-
ule forwards the MPI call to either Stack B or Stack C based on
a programmer specified selection criteria. At the end of either
of these stacks, the MPI call is forwarded to the PMPI interface
of the MPI library. On return from the MPI library, PN MPI tra-
verses the selected tool stacks in reverse order. The programmer
of the Switch Module can use any data available to it, including
global state or MPI function arguments, to select the appropri-
ate target stack. Thus, PN MPI supports external steering based
on global state. Similarly, certain communicators, datatypes, or
sender/receiver pairs can determine the selection.

Switch Module control can be transparent to the tools inside the
tool stacks. Further, modules can be replicated in multiple stacks.
Thus, Switch Modules enable transparent extensions of existing
tools. For example, PN MPI can apply a single tool to multiple
independent subsets of MPI calls without having to modify the tool
itself, which we show in Section 5.2 allows communicator-specific
profiling.

2.2 Service Registration and Execution
PN MPI -aware modules must register themselves with the PN MPI

infrastructure. Once registered, they can offer a set of services to
other modules using a publish/subscribe interface. Modules can

query for services, obtain a global function pointer, and then use
this pointer to invoke cross module functionality. All services in-
clude a signature provided by the module offering the service that
specifies the types of all arguments. Modules querying this service
must provide a matching signature to avoid type conflicts.

Cross module services can encapsulate tasks commonly required
by MPI tools. Typical examples include tracking of request objects
or walking of MPI datatypes. With PN MPI , tools that require these
functionalities can request them from service modules that provide
them. This enables efficient code reuse, promotes modularity, and
enables quick prototyping of new tools.

3. PNMPI IMPLEMENTATION
We have implemented PN MPI on a wide range of platforms in-

cluding Linux-based clusters using IA-32, IA-64, and x64 64 based
CPUs, Power-based AIX clusters, and BlueGene/L. The implemen-
tation is highly portable: only details of the stacking mechanism are
system specific.

3.1 Architecture
PN MPI’s base architecture, shown in Figure 2, consists of three

major components: the PN MPI stub library intercepts the applica-
tion’s MPI calls; the core component constructs and executes the
tool stacks; and the configuration and loader initializes the tool
stacks. The user specifies a configuration file that controls the con-
figuration and loader, which must locate, load, and instantiate the
specified PN MPI modules and assemble them into logical stacks.
The PN MPI core then connects the logical stacks to a single tool
chain using the stacking mechanism appropriate for the target ar-
chitecture. It also provides the service registration and query mech-
anisms that allow modules to interact. The stub library, which is
itself built using PMPI to intercept all MPI calls, activates the tool
chain by forwarding all MPI invocations wrapped by at least one
loaded tool to the PN MPI core. The stub library directly forwards
all other MPI invocations to the MPI library to minimize overhead.

The PN MPI installer ensures complete coverage of all calls of-
fered by the underlying MPI implementation through automatic
generation of the MPI stub library. During the build process it
parses the mpi.h header file, extracts all routines that have PMPI
counterparts, and instantiates the corresponding routines in the stub
library and the PN MPI core.

All components of PN MPI are written in C or C++. Fortran ap-
plications are supported through a wrapping layer inside the stub
library. This layer transform MPI calls made in Fortran into the
equivalent C calls before invoking the PN MPI core. Other lan-
guages could be supported similarly, if needed.

3.2 Creating Tool Stacks
The implementation of the PN MPI core, which creates and exe-

cutes the tool stacks, depends on whether or not the target operating
system supports dynamic linking. In either case, however, PN MPI
works with binary versions of PMPI tools: it does not require re-
compilation of existing tools.

Dynamic Stacking
If the host OS supports dynamic linking through shared libraries,
the runtime PN MPI initialization creates the tool stacks. This re-
quires that all PN MPI modules are available as shared libraries; if
not, we convert them with automated support. We then use a binary
rewriter to modify the dynamic symbol table so all PMPI calls are
redirected to the PN MPI core. Both steps also apply to existing bi-
nary tools, allowing integration of commercial tools without source
code access.

Application
PMPI Tool 1

MPI Library Application
PMPI Tool 1

PMPI Tool 2
MPI Library

Application
MPI Library

Application
PMPI Tool 2

MPI Library

Application

Stack A
PNMPI

Tool

Switch Mod.

Stack C
PNMPI

Tool
Stack B
PNMPI

Tool

MPI Library

Native Execution

Using a Tool StackIndividual Tools

Figure 1: Combining multiple tool modules into a tool stack (left); dynamically choosing tools stacks (right).

MPI Application

MPI Library

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

PNMPI Stub
Library

Generator

mpi.h

PNMPI

Wrapper

Specification

PNMPI Module

PNMPI Module

PNMPI Module

MPI_X

PMPI_X

PMPI_X
MPI_X

PMPI_X
MPI_X

MPI_X
PMPI_X

PNMPI Module

PNMPI Module

PNMPI Module

PNMPI Module

PNMPI Module

PNMPI Module

PNMPI Module

PNMPI Module

PNMPI Module
P

N
M

P
I C

on
fig

. &
 L

oa
de

r

System−wide
PNMPI Tool
Repository

P
N

M
P

I S
tu

b
Li

br
ar

y

P
N

M
P

I C
or

e

Figure 2: PN MPI components and their interactions.

At application start PN MPI parses the configuration file, loads
the patched shared libraries, and searches them for wrapped MPI
functions. The PN MPI core uses this information to create sepa-
rate wrapper stacks for each MPI routine. When the application
calls an MPI routine, the stub library forwards it to the core, which
then calls the wrapper function of the appropriate tool layer. The
wrapper itself calls the matching PMPI routine, which returns con-
trol to the PN MPI core due to the modified symbol table. The core
continues activating tool layers until the completion of all wrap-
pers, after which it invokes the PMPI routine of the MPI library to
complete the MPI call.

PN MPI provides a low overhead method to create tool-ready ex-
ecutables. After linking their application with PN MPI , users can
change tool stacks merely by changing the configuration file. No
additional relinking (or recompilation) is necessary.

Static Stacking
If the host OS does not support dynamic linking, PN MPI must cre-
ate the tool stacks before the application is linked with the MPI
library. For this, we provide an offline stacking tool, which creates
a static PN MPI core, specialized to match the PN MPI configura-
tion file. Any application can then be linked with this specialized
stack.

In order to avoid duplicate names caused by linking multiple
PMPI tools as well as to redirect the execution after the completion
of a wrapper back to the static core, we again use the binary rewrite
tool, this time applied to the static version of the libraries. The
patch utility adds a module specific prefix to all MPI and PMPI
calls as well as all definitions of MPI routines. This prefix is then
used by the static stacking tool to identify the individual modules
and tie them into the created stack at the appropriate levels.

Switch Modules still support switching between multiple stacks
dynamically using with static stacking: only the stack contents
must be defined at link time. Hence, the static version of PN MPI
provides the same functionality as its dynamic counterpart except
that configuration changes require rerunning the static stacking tool
and subsequent relinking.

3.3 Tool Initialization
Individual tool modules execute their initialization during the

wrapper routine for MPI Init, as it is typical for all PMPI tools.
A PN MPI -aware module must also provide an initialization rou-
tine that registers its services. The PN MPI core probes for this
routine in all modules and, if found, invokes it before calling the
MPI Init wrappers. Registration prior to those wrappers ensures
that all queries return all available services.

4. BASE PERFORMANCE AND OVERHEAD
Tool infrastructures like PN MPI must minimize application per-

turbation. In this section we extend the analytical overhead model
for PN MPI to include Switch Modules. We then calibrate the over-
head through microbenchmarks and compare them for dynamic and
static stacking. Our results demonstrate that both have negligible
overhead although they are slightly lower with the slightly less flex-
ible static stacking.

4.1 Modeling the Overhead
To model the overhead of PN MPI, we must first consider the

overhead of a single tool stack. Assuming Nstack tools in the stack,
each wrapping all MPI function calls, and each tool has an execu-
tion time of Ttool(i) for each function call, the overall tool stack
execution time is:

T (stack) =
PNstack

i=1
(β + Ttool(i))

β represents the invocation overhead of PN MPI for a single tool
module. Since most tools wrap a small subset of MPI calls, the
above formula is a strict upper bound on tool stack execution time.

A complete tool chain can consist of multiple stacks coupled by
Switch Modules. Assuming the simplest case of three stacks A, B,
C with NA, NB , and NC tools respectively, coupled by a single
Switch Module as shown in Figure 1 (right), the maximal execution
time of the complete tool chain can be described as:

Tchain = T (stackA) + Tswitch + max(T (stackB), T (stackC))

Following the longest execution time decision path would extend
this to multiple Switch Module tool chains.

For our purpose of measuring PN MPI overhead, this simplified
model ignores individual tool overheads:

Toverhead = αstub + β ∗ (NA + max(NB , NC)) + γ

αstub describes the initial PN MPI activation overhead of the stub
library, while γ is the Switch Module overhead. Note that αstub is
zero with static stacking: it creates the PN MPI core statically and,
thus, does not require the stub library.

Closer examination of the stack switching code reveals that its
execution sequence is essentially equivalent to continuing execu-
tion of the same stack. Thus, we can express γ as:

γ = β + Ttool(switch)

Ttool(switch) describes the module-specific portion of the switch
decision overhead, which we again ignore for our purpose of mod-
eling PN MPI overhead. Thus, the overall model is:

Toverhead = αstub + β ∗ (NA + max(NB , NC) + 1)

Based on this model and assuming similar communication be-
havior on all nodes (as it is typical for most SPMD MPI codes), we
expect overhead linear in the number of tools loaded into PN MPI
plus a constant, which is independent of the number of MPI tasks.
Hence, PN MPI is generally neutral to the scaling behavior of ap-
plications. However, long tool stacks with significant execution
times inside the tools themselves, as well as unbalanced stack sizes
in scenarios with dynamic switch modules can lead to unbalanced
system perturbation, which is known to affect scalability. The user
must control this perturbation through careful configuration of the
individual tools inside the MPI tool chain. We leave service mod-
ules that measure the perturbation and detect when it is large or
unbalanced for future work.

4.2 Model Parameters
For the following experiments we use Atlas, an 1152 node, 44

TFlop/s peak capacity Linux cluster at Lawrence Livermore Na-
tional Laboratory. Each node has four dual core, 2.4 GHz AMD
Opteron processors and 16 GB main memory. An Infiniband net-
work based on Mellanox hardware connects the nodes. Each node
runs a full copy of Linux using a specialized version of RHEL
4 adapted for high performance computing. Thus, Atlas supports
both dynamic and static stacking.

To validate the model and to determine the parameters αstub and
β we use a standard pingpong benchmark to measure MPI message
latency. We vary the number of “empty” PN MPI modules, i.e.,
modules that wrap all MPI calls, but do not perform any operation
when activated. As a result, the execution time induced by them is
equivalent to the overhead caused by their activation.

Our first experiment aims at calculating αstub by comparing the
latency of running the benchmark without linking to PN MPI and
with PN MPI , but without loading any modules. In the latter, the
stub library directly forwards any MPI call from the application to
the MPI library without invoking the PN MPI core. Our experi-
ments show that this difference is below the system noise threshold
for Atlas and hence effectively zero with dynamic stacking. Recall
that αstub is always zero with static stacking.

Figure 3 shows the results for latency measurements across a
range of message sizes up to 4KB and with varying numbers of
empty tool layers. As expected, each layer adds a roughly constant
overhead across all message sizes by increasing the time spent dur-
ing the invocation of the MPI Send and MPI Recv calls. The
graphs also show that static stacking has slightly lower overhead
than dynamic stacking, but behaves roughly similar. This observa-
tion is not surprising, since the code generated by the static stack
creation tool is basically equivalent to the code included in the dy-
namic PN MPI core, but contains fewer operations since it is created
at compile time.

To further study this behavior, Figure 4 shows the latency for the
minimal message size plotted against the number of tool layers as
well as a linear curve fitted over the data. In both versions, the data
matches the expected model, although system noise impacts static
stacking more. The parameters used for fitting the curves result in
a value for β of 61ns for the dynamic and 38ns for static stacking.

We arbitrarily chose the maximum number of fifty layers for
these experiments to measure PN MPI overhead. In reality we ex-
pect typical configurations of far fewer layers (under ten) resulting
in negligible overall overhead, in particalur compared with the ex-
pected additional overhead of the actual tools. Alternatively, fifty
is not an inherent limitation for PN MPI: our stress tests have suc-
cessfully used over 10,000 concurrent tool layers.

In addition to Atlas we have conducted similar experiments on
several other machines including an x86-based cluster and a Blue
Gene/L system. In all cases, the results were similar and matched
the model presented above. As with Atlas the parameters for αstub

were negligible and the value for β were in the same order of mag-
nitude.

4.3 Memory Overhead
Memory overhead is also a concern with PN MPI, since any mem-

ory that it uses is no longer available to the application or other
tools. In this section, we present a model for the memory con-
sumption of PN MPI .

Dynamic Stacking Memory Overhead
We first model PN MPI’s memory usage under dynamic stacking.
The model consists of three equations for for global variables, heap

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

La
te

nc
y

[u
s]

Message Size [Bytes]

No P^nMPI
10 layers
20 layers
30 layers
40 layers
50 layers

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

La
te

nc
y

[u
s]

Message Size [Bytes]

No P^nMPI
10 layers
20 layers
30 layers
40 layers
50 layers

Figure 3: Latency with varying number of tool layers. Left: dynamic stacking; Right: static stacking.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 10 20 30 40 50

M
in

im
al

 la
te

nc
y

[u
s]

Number of tool layers

latency
model fit

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 10 20 30 40 50

M
in

im
al

 la
te

nc
y

[u
s]

Number of tool layers

latency
model fit

Figure 4: Minimal message size latency. Left: dynamic stacking; Right: static stacking.

allocated memory, and stack space utilized during MPI invocations.
These equations depend on two parameters: N , the number of mod-
ules loaded, and M , the number of MPI routines that the PMPI
interface implements. In the following, we assume a 64-bit archi-
tecture, as is the case on Atlas. Note that the results for a 32-bit
architecture would be reduced by almost a factor of two, since most
stored values are pointers.

PN MPI uses a static pointer array with an entry for each MPI
routine accessible through the PMPI interface. This array stores the
individual function stacks. Further, PN MPI maintains a bit vector
in its stub library to limit performance overhead for routines that no
tool intercepts. With an additional 32 bytes for global configuration
information, the following models global memory usage:

Mglobal = 32 + 8 ∗ M + dM/8e (Bytes).

Two data structures use the heap: a descriptor for each loaded
module, which is currently 140 bytes, and the stacks for each MPI
function intercepted by at least one tool. The number of these
stacks allocated is always smaller or equal to M ; the following
therefore represents the worst case when at least one tool intercepts
each MPI function:

Mheap ≤ 140 ∗ N + 8 ∗ M ∗ N (Bytes).

If any tool calls MPI routines recursively, we cannot bound mem-
ory usage. However, if calls in every tool are restricted to PMPI
routines, PN MPI will not use more than eight bytes of stack stor-
age for each invocation of its core plus two additional stack frames
caused by redirecting PMPI calls back into the PN MPI core. This
includes the initial MPI call and one for each active PMPI tool:

Mstack = (8 + 2 ∗ Sizestackframe ∗ (N + 1) (Bytes).

In our experiments on Atlas, we observe Sizestackframe = 36
and M = 201, so the total memory overhead is:

Moverhead/dynamic ≤ 1896 + 1688 ∗ N (Bytes).

The above is the worst case: many MPI tools only wrap a few
MPI routines. Since PN MPI allocates only required function stacks,
these tools incur reduced heap usage. We could further reduce
memory overhead through a smaller limit on module names, which
is currently set to a comfortable 100 characters per module.

Static Stacking Memory Overhead
Static stacking requires less global memory since it eliminates any
state associated with dynamic stack management. Thus, static stack-
ing does not consume any extra stack storage space and reduces the
number of required additional stack frames to one. It also reduces
global and heap memory usage to 20 Bytes of global information
plus the 140 Bytes for module management discussed above. Thus,
its complete memory consumption is:

Moverhead/static ≤ 164 + 36 ∗ N (Bytes).

Static stacking does not require tracking which MPI calls are in-
tercepted since they are known when the offline stacking tool cre-
ates the specialized stack. Thus, the memory overhead of static
stacking is independent of M and is, therefore, a good solution
when most MPI calls are intercepted or for systems with limited
memory per node, like Blue Gene/L.

5. PNMPI CASE STUDIES
In this section we present three case studies that illustrate how

to use PN MPI’s new capabilities to compose novel MPI tools: a
message checksum computation tool, built directly from PN MPI
service modules; a communicator-specific MPI profiling tool, built
on top of mpiP [12]; and an MPI environment virtualizer. These
new tools are themselves useful. The checksum tool supports veri-
fication of MPI implementations. Communicator-specific profiling
can significantly ease the effort required to optimize applications
that use communicators to improve scalability, as is becoming in-
creasingly common. Finally, the MPI virtualizer can provide an ef-
ficient, out-of-band communication mechanism to tools or support
the dynamic combination of SPMD applications into one MPMD
job.

For all following experiments we use dynamic stacking on Atlas.
As shown in the previous section, performance with static stacking
will generally be slightly better. We use only four cores in all exper-
iments to minimize system noise. Finally, we present the minimum
execution time from at least five runs per experiment.

5.1 Computing Checksums using a Stack of
Tools

A message checksum tool can verify the correct transmission of
messages by the MPI layer. To implement one, we must intercept
all send events within an MPI application, compute checksums over
the complete message data, and piggyback each checksum with the
original message. Then, we must intercept the matching receive
events, compute checksums over the complete received data and
compare them to the piggybacked checksums.

Support Modules
We must track two central MPI data structures in order to compute
message checksums. First, we need the type signatures of arbitrary
MPI datatypes in order to traverse the message data. Second, we
must associate request handles with their asynchronous operations
in order to recreate all communication parameters at the completion
of the message transfer during wait or test operations.

Many MPI tools must track these data structures. In general,
each tool reimplements the services that provide this functionality
due to the lack of modularity support in the PMPI interface. With
PN MPI , we implement each service in separate modules that is
easily reused.

To traverse MPI datatypes, we implement a PN MPI aware mod-
ule that captures all MPI datatype creation operations and main-
tains a complete copy of this information. On request, the datatype
module then provides a service for other MPI tools to create a han-
dle for a given MPI message buffer as well as an iterator derived
from a previously acquired handle to access all parts of the mes-
sage buffer. Our checksum tool uses this mechanism to read the
complete message contents and to compute the actual checksum.

The requestmodule, the second service module that our check-
sum tool uses, allows tools to identify the corresponding communi-
cation initiation operation and its parameters during all MPI com-
pletion operations such as MPI Wait or MPI Test. The module
intercepts all MPI operations that create MPI request objects, re-
places these objects with its own copies and then uses these copies
to store the context of their creation. This context includes the op-
eration that initiated the request, the communication channel and
the message parameters. Thus, MPI tools can retrieve any required
context information during the corresponding completion.

However, we use an alternative mechanism to report the context
to the tool since the MPI standard requires the destruction of re-
quest objects when the communication is completed. We use an

#tool stack to create checksums

#extend status object
module status

#register datatypes
module datatype

#track communication and compute checksums
comm-checksum

#track requests
module requests

Figure 5: Configuration file to combine the necessary services
to compute checksums.

additional module (status) to extend the MPI status object for
this service. During its initialization, the request module uses
this service to request additional storage space for the context in-
formation and then stores the context into a status object before
returning from the respective test or wait operation.

Module to Intercept Communication
In addition to the service modules described above, we must inter-
cept all MPI communication events. Thus, we wrap all MPI com-
munication calls and each of these wrapper invokes the checksum
routines. The need to wrap all communication events, however, is
also common among many tools. Thus, we implement a general-
ized module that provides callbacks for each abstracted communi-
cation event independent of the actual MPI operation. This module
abstracts all point-to-point (asynchronous and synchronous) and
collective operations into a small set of routines, which the target
tool can specialize for its particular purpose.

Our message checksum tool computes the checksums in the call-
backs for send and receive completion events. It also transmits the
checksum as a separate message in the send event callback and re-
ceives it in the receiver’s callback for comparison. By using the
same communicator and tag for this additional message, we are
able to associate the checksum message uniquely with the origi-
nal message, which is equivalent to piggybacking the information.
This piggyback service is another common tool requirement. We
are currently generalizing the mechanism to allow arbitrary pay-
loads in a generic piggyback service module.

Using the services provided by the request and datatype
modules and specializing the generic communication tracking mod-
ule as describe above resulted in a highly modular, fully structured,
and low complexity checksum tool implementation. In fact, its
tool-specific module only requires 86 lines of code.

Configuration and Setup
Figure 5 shows the checksum tool configuration file. We first load
the status module that extends the status objects. We load the
request module last to make the extended request objects avail-
able in the entire tool stack. The remainder of the file specifies
the loading of the datatype module and the tool-specific module
(comm-checksum).

Results
We test our checksum tool with SMG2000 from the ASCI Purple
benchmark suite, a Semicoarsening Multigrid Solver based on the
hypre library [4]. It uses asynchronous send and receives in com-

bination with MPI Waitall for all communication. Also, it makes
extensive use of custom MPI datatypes. Thus, it stresses the tool’s
performance.

We use input sizes of 1003 on 4, 16, and 64 nodes with 4 cores
each and compare the measured performance of the benchmark
without PN MPI, with each tool layer separately, and with the com-
plete checksum tool. In addition, we use additional modules for
communication tracking only (comm) and for piggybacking with-
out checksum computation (piggyback) to further understand
the overhead caused by the complete toolstack. Table 1 shows the
results of these experiments.

The individual support modules alone incur only minimal over-
head. Even the communication tracking module, which uses the
other support modules to implement its functionality, exhibits a
maximum overhead of 1.3%. Thus, both the PN MPI infrastructure
and its service modules only slightly impact performance. Also,
their overhead is roughly constant across node counts, consistent
with our analytical overhead model.

The majority of the overhead is caused by the actual tool. Pig-
gybacking the additional data leads to an overhead between 2.8%
and 5.5% and the complete checksum tool incurs a total overhead
between 17.8% and 22.5%. We expect this higher overhead since
it has to traverse each message at the sender and the receiver node
to compute the checksums and piggybacking the checksums further
results in twice the amount of messages during the application’s ex-
ecution. While such overhead is typically too high for performance
analysis, it is often justified for debugging and correctness tools as
it is the case for the checksum computation discussed here.

5.2 Enabling Multiple Scopes for Tools
Tools built using the PMPI interface are by default of global

scope and hence get invoked on every MPI call. It is not easy to
restrict them to parts of the application without explicitly adding
this capability. A Switch Module easily supports this functional-
ity without modifications to the tool. The Switch Module simply
distinguishes the different application scopes and then activates a
separate stack with an independent copy of the tool for each scope.

Example Scenario
To demonstrate this functionality, we use an example from the area
of dense matrix computations. These applications often create sep-
arate communicators for row and column communication, as shown
in Figure 6. Using a traditional profiler, like mpiP [12], would ag-
gregate the communication behavior across all communicators and
thereby hide the differences in row and column communication.
Those differences can, however, provide necessary insight in order
to optimize the application. Thus, the user could benefit from the
option to profile each communicator set separately.

0 1 2 3 0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

4 5 6 7

8 9 10 11

12 13 14 15

MPI_COMM_WORLD Row Communicators Column Communicators

Figure 6: Using row and column communicators for matrix
computations on a 4x4 matrix.

#define default stack
module commsize-switch
argument sizes 8 4
argument stacks row column
module mpiP

#define tool stack for rows
stack row
module mpiP1

#define tool stack for columns
stack column
module mpiP2

Figure 7: Configuration file to apply multiple copies of mpiP to
individual application scopes.

Switch Module Design and Configuration
To achieve this functionality without having to hardcode it into a
profiling tool, we use a PN MPI switch module. It intercepts each
communication call and then forwards the call into separate tool
stacks depending on the size of the communicator1 used for the
particular MPI call. In each tool stack, we then run an unmodified,
separate copy of mpiP, which collects a profile only for MPI calls
forwarded to that particular stack.

Figure 7 shows our configuration file. We load the switch module
with a sizes argument that applies different stacks to communi-
cators of sizes eight and four (assuming a 32 task job mapped to
a 8x4 processor grid). The former size is associated with the row
stack, while the latter is associated with the column stack.

The rest of the configuration file then loads mpiP on the de-
fault stack as well as the row and column stacks. The different
names of the mpiP instantiations represent copies of the mpiP li-
brary. These copies guarantee that the dynamic linker treats them
as distinct libraries and allocates a separate global state for each.

Experiments and Results
Our experiments use QBox [5], a well-known and widely used
First Principle Molecular Dynamics (FPMD) code developed at
Lawrence Livermore National Laboratory. Its basic data structure
is a large dense matrix and it uses ScaLAPACK/BLACS as well as
BLACS directly to manipulate it. During the optimization of this
code, the developers distinguished row and column communicators
manually since the appropriate tool support did not exist. Further,
the use of external libraries hides the use of row and column com-
municators and made profiling even more difficult.

Table 2 shows the profiling results for the top five MPI routine
counts observed during an execution of QBox (using a working set
size of 54 molecules on 32 tasks). The second column shows the
results of a global profiling run, while the last three columns rep-
resent the results from our multiplexed tool stack (the third column
is the sum of the last three, computed post-profiling). The results
clearly show the different behavior for the three types of commu-
nicators used in the code: all-reduces and all-to-all calls are mainly
restricted to MPI COMM WOLRD, while rows and columns domi-
nate for point-to-point communication. Further, the code uses a

1We use the communicator size instead of its handle since many
libraries, like BLACS, recreate the communicators multiple times
leading to different handles in a single execution while the size
remains constant.

Active 16 tasks / 4 nodes 64 tasks / 16 nodes 256 tasks / 64 nodes
Modules Exec. Time Overhead Exec. Time Overhead Exec. Time Overhead

No PN MPI 29.18 — 31.35 — 34.84 —
Status 29.28 0.3% 31.45 0.3% 34.98 0.4%

Requests 29.37 0.6% 31.59 0.8% 35.18 1.0%
Datatype 29.25 0.2% 31.42 0.2% 34.98 0.4%
Comm 29.47 1.0% 31.75 1.3% 35.30 1.3%

Piggyback 29.85 2.3% 32.48 3.6% 36.77 5.5%
Checksum 34.39 17.8% 37.11 18.4% 42.67 22.5%

Table 1: Execution times in seconds and overhead compared to the uninstrumented baseline for SMG2000.

Count Global Sum COMM WOLRD Row Column

Send 317365 317245 31014 202972 83259
Allreduce 319028 319028 269876 49152 0
All2allv 471488 471488 471488 0 0

Recv 379355 379265 93034 202972 83259
Bcast 401312 401042 11168 331698 58176

Table 2: Top five most called MPI routines during the execution of QBox. The minor difference in aggregate number of calls across
both executions is caused by nondeterministic differences during the computation.

Exec. Time Overhead

Native 446.62 0.0%
mpiP 499.40 11.8%

PN MPI & mpiP 499.88 11.9%
Multplexed 500.03 12.0%

Table 3: Execution times in seconds and overhead compared
to the native baseline for QBox (using a working set size of 54
molecules) running with different versions of profiling (8 nodes,
32 tasks).

high number of broadcasts along rows. The standard profiling run
does not reveal these differences and modifying mpiP to gather this
data directly would have required significant changes.

Table 3 shows the execution times and overhead numbers for
running the above experiments. We compare the native execution
without tool support to using mpiP as a standard PMPI tool, using
mpiP as a transparent PN MPI module, and running our complete
multiplexed tool stack. The results show that mpiP adds about an
11% overhead to the execution, while the differences between the
various types of tool stacks is minimal.

5.3 MPI Virtualization
Many application scenarios require the cooperative execution of

multiple MPI applications. A typical example for this are coupled
simulations like in the Cooperative Programming Model [9] or in
the Community Climate System Model (CCSM) [10]. Typically,
these scenarios either use a framework specific MPI virtualization
(as with CCSM) or rely on more loosely coupled mechanisms such
as RMI [7]. Our virtualization module implemented in PN MPI pro-
vides a generalized MPI virtualization that separates the execution
environment of two or more independent, unmodified MPI appli-
cations.

Virtualization Module
To achieve virtualization, the module must first assign each rank
to one application and then create separate communicators for the
ranks assigned to each application. The module then uses these

newly created communicators to replace MPI COMM WORLD in
the virtualized applications. We wrap all communication calls that
take a communicator as argument for this purpose. This automat-
ically supports derived communicators since operations that origi-
nally derive new communicators from MPI COMM WORLD auto-
matically use the restricted application-specific communicator in-
stead.

After loading the virtualization module, applications no longer
see the complete MPI partition, but are rather restricted to their
own subcommunicators. Other additional modules loaded after the
virtualization module, however, do have a global view of the com-
plete MPI job and can be used to implement cross application com-
munication services. This provides programmers of cooperative
applications with a mechanism to exchange data between codes.

For the first step, the detection of the application ranks, our virtu-
alization module provides two separate mechanisms: either ranks
are assigned statically using a round robin or a block allocation
scheme or ranks are dynamically detected at runtime by grouping
binaries with the same filename (as provided by argv[0]). The for-
mer method can execute multiple, virtualized copies of the same
application (e.g., for parameter studies), while the latter can exe-
cute two independent codes.

Configuration and Setup
Figure 8 shows several possible configuration files to enable the
MPI virtualization. In all cases we only load the MPI virtualiza-
tion module and parameterize it to assign the appropriate tasks to
each application. The first two options show how to statically con-
figure a 64 task job for two 32 task applications using round robin
or block distributions respectively and the third option shows the
configuration for dynamic task detection.

In the following we use the latter option and apply it to two sepa-
rate applications: SMG2000, introduced above, and Sweep3D [1],
a neutron transport code developed in FORTRAN 77.

Results
To evaluate the virtualization module, we compare the basic run-
time of SMG2000 and Sweep3D with the execution time within
the virtualization layer running both as single applications and in

SMG2000 Local Working Set Size
Test N = 40

3
N = 60

3
N = 80

3
N = 100

3
N = 120

3

Case time overh. time overh. time overh. time overh. time overh.

Native 2.14 — 6.03 — 13.96 — 30.71 — 52.15 —
Virtualized/Alone 2.20 2.6% 6.11 1.4% 14.08 0.9% 30.87 0.5% 52.39 0.5%

Virtualize/Combined 2.21 3.0% 6.11 1.3% 14.07 0.8% 30.88 0.5% 52.36 0.4%

Table 4: Execution times in seconds and overhead compared to the native baseline for SMG2000 with various working set sizes and
running with and without virtualization (16 nodes, 32 tasks).

Sweep3D Global Working Set Size
Test N = 100

3
N = 150

3
N = 200

3
N = 250

3
N = 300

3

Case time overh. time overh. time overh. time overh. time overh.

Native 3.00 — 7.80 — 17.29 — 32.75 — 49.65 —
Virtualized/Alone 3.01 0.1% 7.81 0.0% 17.32 0.1% 32.75 0.0% 49.69 0.1%

Virtualize/Combined 3.01 0.1% 7.81 0.1% 17.32 0.2% 32.76 0.0% 49.61 -0.1%

Table 5: Execution times in seconds and overhead compared to the native baseline for Sweep3D with various working set sizes and
running with and without virtualization (4 nodes, 32 tasks per application) — the one negative overhead value is most likely caused
by system noise.

#virtualizing MPI jobs (round robin)
module virtual
argument jobs 2
argument tasks 32 32 round

#virtualizing MPI jobs (blocks)
module virtual
argument jobs 2
argument tasks 32 32 block

#virtualizing MPI jobs (by name)
module virtual
argument jobs name

Figure 8: Configuration files to virtualize an MPI job: 64 tasks
split into two tasks using round robin (top) and block (middle)
task distributions; based on the binary name (bottom).

combination. In the latter case we compare the performance of
the applications without the final barrier during the termination of
the virtualization module to disregard any differences in the overall
runtimes of the two applications.

Tables 4, 5 show the execution times of SMG2000 and Sweep3D
respectively. Overall, the overhead numbers for Sweep3D are sig-
nificantly lower than for SMG2000. This is caused by the lower
communication volume and frequency in Sweep3D compared to
the communication intensive algorithm in SMG2000. However, the
results always show that the virtualization overhead is very small
and decreases with increased working set sizes, since setup and
management overheads are amortized over a longer runtime. Fur-
ther, no noticeable differences exist between the overhead combin-
ing the two applications and that of running either on top of the
virtualization layer alone. Thus, virtualization works well with re-
spect to functionality and performance.

.C files .H files .W (wrapper generator) files

request 673 80 —
status 283 43 —

datatype 1165 171 —
comm-track 758 29 —

checksum 86 — —
virtualization 135 — 10

multiplex switch 111 — 11

mpiP 14379 1427 —

Table 6: Lines of code in each module of our case studies, split
into implementation files, header files, and MPI code wrap-
per generator descriptions, which automatically create wrap-
per code for subsets of MPI calls.

5.4 Discussion
These three case studies show that PN MPI can be used to com-

pose new MPI tool chains quickly and, in many cases, transparently
for a variety of application scenarios. PN MPI can even specialize
or enhance existing tools, even if source code is unavailable, to pro-
vide application-specific tools.

Application-specific tools built with PN MPI are not complex.
To support this claim, we examine the number of lines required
to implement each of the modules used during the case studies in
Table 6. While only an approximate complexity metric, the re-
sults show that the complexity is in the actual tools, such as mpiP,
and the support modules, which can be reused between tools. The
experiment-specific modules, i.e., the extension of communication
tracking to compute checksums, the switch module for matrix com-
putation and the virtualization module, require only about one hun-
dred lines of code. Further, those modules could also serve as
templates for other application-specific tools. For example, we
could easily implement a datatype-specific profiler based on the
communicator-specific one. Thus, PN MPI enables tool and appli-
cation developers to prototype tools quickly by encapsulating MPI
tool complexity in a few reusable support components.

6. RELATED WORK
We discuss here a small sampling of the many tools that use

the PMPI interface to cover a wide range of application scenarios.
mpiP [12] gathers profiling data about an application’s communi-
cation usage. The TAU/ParaProf toolset [2] and Vampir NG [3]
include MPI tracing tools for detailed performance analysis. UM-
PIRE [13] and Marmot [6] collect data for MPI correctness check-
ing. Jitterbug [14] can be used to study and debug race conditions
by randomizing nondeterministic communication paths.

These existing tools, however, only work in isolation. To our
knowledge PN MPI is the only infrastructure that enables the con-
current execution of multiple PMPI tools. Further, PN MPI sup-
ports building on existing tools to create new application-specific
tools. In particular, PN MPI’s ability to multiplex existing tools
allows users to apply these tools selectively to dynamic parts of ap-
plications, significantly widening their scope without the need for
modifications.

The general problem of tool interoperability has not been widely
studied. To our knowledge, OMIS, the Online Monitoring Interface
Specification [8], is the most comprehensive work on this topic. It
defines services that allow arbitrary online tools to register and de-
tect conflicts. Wismüller [15] discusses the various types of con-
flicts and proposes the use of couplers to resolve dependencies and
enable clean tool-to-tool communication. In PN MPI we face simi-
lar issues, but due to our restriction to PMPI message passing tools
we can avoid many of these general problems. However, PN MPI
users must consider tool dependencies, in most cases by enforcing
the correct order of the tools within the individual tool stacks.

7. CONCLUSIONS
PN MPI is an advanced tool infrastructure that supports running

multiple PMPI tools concurrently, without modification. In this
paper, we have presented extensions to this infrastructure that sig-
nificantly increase its power. Our extensions include a registration
mechanism that supports the creation and use of tool service mod-
ules, which support the reuse of code across tools. We have also
added Switch Modules, which enable users to apply unmodified ex-
isting tools selectively. Finally, our MPI virtualization module pro-
vides virtualized MPI environments to construct MPMD-style ap-
plications. Further, we modified the PN MPI core to support static
stacking as well as dynamic stacking, making PN MPI available on
platforms, like BG/L, that lack dynamic linking support.

We extended the existing PN MPI performance model to account
for our improvements. We calibrated the model on a large scale
Linux cluster and showed that dynamic and static stacking have
negligible overheads. More importantly, we presented three case
studies with extensive performance results. These case studies,
which implement useful MPI tools, demonstrate the power of our
PN MPI extensions. Overall, PN MPI provides a flexible, highly
productive environment that supports the design and implementa-
tion of application-specific MPI tools.

8. REFERENCES
[1] Accelerated Strategic Computing Initiative. The ASCI

sweep3d benchmark code.
http://www.llnl.gov/asci benchmarks/asci/limited/sweep3d/,
December 1995.

[2] R. Bell, A. Malony, and S. Shende. ParaProf: A Portable,
Extensible, and Scalable Tool for Parallel Performance
Profile Analysis. In Proceedings of the International
Conference on Parallel and Distributed Computing
(Euro-Par 2003), pages 17–26, August 2003.

[3] H. Brunst, D. Kranzlmüller, and W. Nagel. Tools for Scalable
Parallel Program Analysis - Vampir NG and DeWiz. The
International Series in Engineering and Computer Science,
Distributed and Parallel Systems, 777:92–102, 2005.

[4] R.D. Falgout and U.M. Yang. hypre: a Library of High
Performance Preconditioners. In Proceedings of the
International Conference on Computational Science (ICCS),
Part III, LNCS vol. 2331, pages 632–641, April 2002.

[5] F. Gygi, E.W. Draeger, M. Schulz, B.R. de Supinski, J.A.
Gunnels, V. Austel, J.C. Sexton, F. Franchetti, S. Kral,
J. Lorenz, and C.W. Überhuber. Large-Scale Electronic
Structure Calculations of High-Z Metals on the BlueGene/L
Platform. In Proceedings of IEEE/ACM Supercomputing ’06,
November 2006.

[6] B. Krammer, M. Müller, and M. Resch. Runtime Checking
of MPI Applications with MARMOT. In Mini-Symposium on
Tools Support for Parallel Programming at ParCo 2005,
September 2005.

[7] G. Kumfert, J. Leek, and T. Epperly. Babel remote method
invocation. In Proceedings of the 21st International Parallel
and Distributed Processing Symposium, March 2007.

[8] T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. OMIS
— On-line Monitoring Interface Specification (Version 2.0),
volume 9 of LRR-TUM Research Report Series. Shaker
Verlag, Aachen, Germany, 1997. ISBN 3-8265-3035-7.

[9] J. May, D. Jefferson, N. Barton, R. Becker, J. Knap,
G. Kumfert, J. Leek, and J. Tannahill. Introducing
Cooperative Parallelism. Presented at the CCA Forum,
presentation available at http://www.cca-
forum.org/download/mtg/2007-01/may-coop-cca.ppt,
January 2007.

[10] National Center for Atmospheric Research (NCAR).
Community Climate System Model (CCSM).
http://www.ccsm.ucar.edu/, 2006.

[11] M. Schulz and Bronis R. de Supinski. A Flexible and
Dynamic Infrastructure for MPI Tool Interoperability. In
Proceedings of the 2006 International Conference on
Parallel Processing, August 2006.

[12] J.S. Vetter and C. Chambreau. mpiP: Lightweight, Scalable
MPI Profiling. http://www.llnl.gov/CASC/mpip/, April 2005.

[13] J.S. Vetter and B.R. de Supinski. Dynamic software testing
of mpi applications with umpire. In Proceedings of
IEEE/ACM Supercomputing ’00, November 2000.

[14] R. Vuduc, M. Schulz, D. Quinlan, B. de Supinski, and
A. Sæbjørnsen. Improving Distributed Memory Applications
Testing By Message Perturbation. In Proceedings of Parallel
and Distributed Systems: Testing and Debugging (PADTAD),
July 2006.

[15] R. Wismüller. Interoperable Laufzeit-Werkzeuge für
parallele und verteilte Systeme. Inaugural dissertation
(Habilitation), Fakultät für Informatik, Technische
Universität München, München, Germany, August 2001.

