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Background

LLNL has a long history of R&D in ODE and DAE methods and 
software, and closely related areas, with emphasis on applications to 
PDEs.
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Focus on recent years:
Parallel solution of large-scale problems

Sensitivity analysis
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Background (cont.)

Starting in 1993, the push to solve large systems in parallel motivated 
work to write or rewrite solvers in C:

CVODE: a C rewrite of VODE/VODPK [Cohen and Hindmarsh, 1994]

PVODE: parallel extension of CVODE [Byrne and Hindmarsh, 1998]
KINSOL: C rewrite of NKSOL [Taylor and Hindmarsh, 1998]

IDA: C rewrite of DASPK [Hindmarsh and Taylor, 1999]

Preliminary sensitivity variants:
SensPVODE, SensIDA, SensKINSOL [Brown, Hindmarsh, Lee, 2000-2001]

After the reorganization into SUNDIALS, there is one ODE solver,
CVODE, in two versions – serial and parallel (through the NVECTOR 
module)
New sensitivity capable solvers in SUNDIALS:

CVODES [Hindmarsh and Serban, 2002]

IDAS [Serban, 2003] – in development
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Structure of SUNDIALS
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• x’ = f(t,x), x(t0) = x0 CVODE
• F(t,x,x’) = 0, x(t0) = x0 IDA
• F(x) = 0 KINSOL
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• x’ = f(t,x), x(t0) = x0 CVODE
• F(t,x,x’) = 0, x(t0) = x0 IDA
• F(x) = 0 KINSOL
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The SUNDIALS Basic Solvers
CVODE

Variable-order, variable-step BDF (stiff) or implicit Adams (nonstiff)

Nonlinear systems solved by Newton or functional iteration
Linear systems solved by direct (dense or band) or SPGMR solvers

IDA
Variable-order, variable-step BDF

Nonlinear system solved by Newton 

Linear systems solved by direct or SPGMR solvers

KINSOL
Inexact Newton method 

Krylov solver: SPGMR (Scaled Preconditioned GMRES)

Preconditioners
Band preconditioner (CVODE)

Band-Block-Diagonal preconditioner (CVODE, IDA, KINSOL)
User-defined (setup and solve user routines)
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Sensitivity Analysis

Sensitivity Analysis (SA) is the study of how the variation in the output of 
a model (numerical or otherwise) can be apportioned, qualitatively or 
quantitatively, to different sources of variation.
Applications:

Model evaluation (most and/or least influential parameters)

Model reduction

Data assimilation
Uncertainty quantification

Optimization (parameter estimation, design optimization, optimal control, …)

Approaches:
Forward sensitivity analysis

Adjoint sensitivity analysis
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Sensitivity Analysis Approaches

Parameter dependent system

Forward sensitivity                                    Adjoint sensitivity

Computational cost: (1+Np)Nx                      Computational cost: (1+NG)Nx

increases with Np increases with NG





=
=
)()0(

0),,,(

0 pxx

ptxxF &

p
pi

pixix
Ni

i

i

xs

FsFsF
,,1,

0)0(

0
K

&&
=







=
=++

px
gsg

p
g

pxtg

+=
d
d

),,(

TT
pxpp

T

xFdtFg

dtpxtg

p
G

pxG

00
**

0

|)()(

),,(

d
d

),(

∫ −−
∫

=

=

&λλ









==
−=−′

TtxF
xgFF

px

xx

at...

)(
*

**

&

&

λ
λλ



RS - 8

Forward Sensitivity Analysis
For a parameter dependent system

find si=dx/dpi by simultaneously solving the original system with the Np

sensitivity systems obtained by differentiating the original system with 
respect to each parameter in turn:

Gradient of a derived function

Can obtain gradients with respect to p for any derived function 
Computational cost - (1+Np)Nx - increases with Np
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Adjoint Sensitivity Analysis

index-0 and index-1 DAE

Hessenberg index-2 DAE

search for final conditions of the form
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Adjoint Sensitivity - Sensitivity of g(x,T,p)

Sensitivity of objective 
function

Adjoint system
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Stability of the adjoint system
Explicit ODE: proof using Green’s function;

Semi-explicit index-1 and Hessenberg index-2 DAE: the EUODE of the 
adjoint system is the adjoint of the EUODE of the original system;

Example: Semi-explicit index-1 DAE
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Stability of the adjoint system (contd.) 

Implicit ODE and index-1 DAE: use bounded transformation
Lemma (Campbell, Bichols, Terrel)
Given the time dependent linear DAE system

and nonsingular time dependent differentiable matrices P(t) multiplying 
the equations of the DAE and Q(t) transforming the variables, the 
adjoint system of the transformed DAE is the transformed system of the 
adjoint DAE.
Theorem
For general index-0 and index-1 DAE systems, if the original DAE 
system is stable then the augmented DAE system is stable.
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User main routine
Specification of problem parameters
Activation of sensitivity computation
User problem-defining function
User preconditioner function

User main routine
Specification of problem parameters
Activation of sensitivity computation
User problem-defining function
User preconditioner function

CVODES
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Integrator

CVODES
ODE

Integrator

IDAS
DAE

Integrator

IDAS
DAE

Integrator

KINSOLS
Nonlinear

Solver

KINSOLS
Nonlinear

Solver

Options
- sensitivity approach (simultaneous or staggered)
- sensitivity residuals: analytical, FD(DQ), AD, CS
- error control on sensitivity variables
- user-defined tolerances for sensitivity variables

Options
- sensitivity approach (simultaneous or staggered)
- sensitivity residuals: analytical, FD(DQ), AD, CS
- error control on sensitivity variables
- user-defined tolerances for sensitivity variables

Forward Sensitivity Analysis in SUNDIALS

Band
Linear
Solver

Band
Linear
Solver

Preconditioned
GMRES

Linear Solver

Preconditioned
GMRES

Linear Solver

General
Preconditioner

Modules

General
Preconditioner

Modules

Vector
Kernels
Vector
Kernels

Dense
Linear
Solver

Dense
Linear
Solver

nvSpec = NV_SpecInit_Parallel(…);
y0 = N_VNew(nvSpec);
cvmem = CVodeCreate(BDF,NEWTON);
flag = CVodeSet*(…);
flag = CVodeMalloc(cvmem,rhs,t0,y0, …);
flag = CVSpgmr(cvmem,…);
y0S = N_VNewS(Ns,nvSpec);
flag = CVodeSetSens*(…);
flag = CVodeSensMalloc(cvmem,y0S,…);
for(tout = …) {

flag = CVode(…,y,…);
flag = CVodeGetSens(…,yS,…);

}
NV_SpecFree_Parallel(…);
CVodeFree(cvmem);
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Forward Sensitivity Analysis - Methods

For ODE/DAE implicit integrators
Staggered Direct Method
On each time step, converge Newton iteration for state variables, then 
solve linear sensitivity system

Requires formation and storage of Jacobian matrices

Not matrix-free

Errors in finite-difference Jacobians lead to errors in sensitivities

Simultaneous Corrector Method
On each time step, solve the nonlinear system simultaneously for 
solution and sensitivity variables

Block-diagonal approximation of the combined system Jacobian

Requires formation of sensitivity R.H.S. at every iteration

Staggered Corrector Method 
On each time step, converge Newton for state variables, then iterate to 
solve sensitivity system

With SPGMR, sensitivity systems solved (theoretically) in 1 iteration
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Adjoint Sensitivity Analysis in SUNDIALS

User main routine
Activation of sensitivity computation
User problem-defining function
User reverse function
User preconditioner function
User reverse preconditioner function
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CVODES
ODE

Integrator

CVODES
ODE

Integrator

IDAS
DAE

Integrator

IDAS
DAE

Integrator

KINSOLS
Nonlinear

Solver
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Vector
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Vector
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Implementation
- check point approach; total cost is 2 forward 
solutions + 1 backward solution 
- integrate any system backwards in time
- may require modifications to some user-defined 
vector kernels

Implementation
- check point approach; total cost is 2 forward 
solutions + 1 backward solution 
- integrate any system backwards in time
- may require modifications to some user-defined 
vector kernels
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Adjoint Sensitivity – Implementation
Solution of the forward problem is needed in the backward integration 
phase need predictable and compact storage of solution values for 
the solution of the adjoint system
Checkpointing:

Cubic Hermite interpolation

Simulations are reproducible from each checkpoint
Force Jacobian evaluation at checkpoints to avoid storing it

Store solution and first derivative at all intermediate steps between two 
consecutive checkpoints

Computational cost: 2 forward and 1 backward integrations

t0 tf

ck0 ck1 ck2 …
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Applications

Parallel CVODE is being used in a 3D tokamak turbulence model in LLNL’s 
Magnetic Fusion Energy Division. A typical run has 7 unknowns on a 64x64x40 
mesh, with up to 60 processors

KINSOL with a HYPRE multigrid preconditioner is being applied within CASC to 
solve a nonlinear Richards equation for pressure in porous media flows. Fully 
scalable performance was obtained on up to 225 processors on ASCI Blue.

CVODE, KINSOL, IDA, with MG preconditioner, are being used to solve 3D 
neutral particle transport problems in CASC. Scalable performance obtained on 
up to 5800 processors on ASCI Red.

SensPVODE, SensKINSOL, SensIDA have been used to determine solution 
sensitivities in neutral particle transport applications.

IDA and SensIDA are being used in a cloud and aerosol microphysics model at 
LLNL to study cloud formation processes.

CVODES is used for sensitivity analysis of chemically reacting flows (SciDAC 
collaboration with Sandia Livermore)

CVODES is used for sensitivity analysis of radiation transport (diffusion 
approximation)
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Current and Future Work

Software development
IDAS (forward and adjoint sensitivity variant of IDA)
Automatic generation of sensitivity systems

Complex-step tools for forward sensitivity and/or Jacobian data
Incorporation of AD tools as they become available (forward/reverse)

Solvers as CCA components
Classic ccaffeine components for CVODE and CVODES exist

BABEL-ize SUNDIALS solvers

Adjoint sensitivity for parameter identification
POD-based reduced model to replace checkpointing
Treatment of discontinuous adjoint variables (observations at discrete times)

Sensitivity-based error analysis 
Error estimates for reduced models
Global error control for ODE/DAE systems using adjoint sensitivities

Multiple right hand side linear solvers
Efficiency improvements in forward sensitivity analysis
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Availability

Open source BSD license
www.llnl.gov/CASC/sundials

Publications
www.llnl.gov/CASC/nsde

The SUNDIALS Team
Peter Brown

Keith Grant
Alan Hindmarsh

Steven Lee

Radu Serban
Dan Shumaker

Carol Woodward

Past contributors 
Scott Cohen and Allan Taylor
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AUSPICES

This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or the University of California, and shall 
not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by the University of 
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.


