
SUNDIALS: Suite of Nonlinear and
Differential/Algebraic Equation Solvers

ALAN C. HINDMARSH, PETER N. BROWN, KEITH E. GRANT, STEVEN L. LEE,
RADU SERBAN, DAN E. SHUMAKER, and CAROL S. WOODWARD
Lawrence Livermore National Laboratory

SUNDIALS is a suite of advanced computational codes for solving large-scale problems that can
be modeled as a system of nonlinear algebraic equations, or as initial-value problems in ordi-
nary differential or differential-algebraic equations. The basic versions of these codes are called
KINSOL, CVODE, and IDA, respectively. The codes are written in ANSI standard C and are suit-
able for either serial or parallel machine environments. Common and notable features of these codes
include inexact Newton-Krylov methods for solving large-scale nonlinear systems; linear multistep
methods for time-dependent problems; a highly modular structure to allow incorporation of differ-
ent preconditioning and/or linear solver methods; and clear interfaces allowing for users to provide
their own data structures underneath the solvers. We describe the current capabilities of the codes,
along with some of the algorithms and heuristics used to achieve efficiency and robustness. We also
describe how the codes stem from previous and widely used Fortran 77 solvers, and how the codes
have been augmented with forward and adjoint methods for carrying out first-order sensitivity
analysis with respect to model parameters or initial conditions.

Categories and Subject Descriptors: G.4 [Mathematical Software]; G.1.7 [Numerical Analy-
sis]: Ordinary Differential Equations—Differential-algebraic equations; multistep and multivalue
methods; stiff equations; G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations—Iterative
methods; convergence

General Terms: Algorithms, Design

Additional Key Words and Phrases: ODEs, DAEs, nonlinear systems, sensitivity analysis

1. INTRODUCTION

With the ever-increasing capabilities of modern computers, simulation code
developers are challenged to develop fast and robust software capable of

This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory, under contract No. W-7405-Eng-48.
Authors’ addresses: Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551;
email: {alanh,pnbrown,keg,slee,radu,shumaker,cswoodward}@llnl.gov.
c©2005 Association for Computing Machinery. ACM acknowledges that this contribution was au-
thored or co-authored by a contractor or affiliate of the [U.S.] Government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0098-3500/05/0900-0363 $5.00

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005, Pages 363–396.

364 • A. C. Hindmarsh et al.

solving problems with increasingly higher resolutions and modeling more com-
plex physical phenomena. At the heart of many numerical simulation codes lie
systems of nonlinear algebraic or time-dependent equations, and simulation
scientists continue to require efficient solvers for these systems.

To meet this need, Lawrence Livermore National Laboratory (LLNL) has
a long history of research and development in ordinary differential equation
(ODE) methods and software, as well as closely related areas, with emphasis
on applications to partial differential equations (PDEs). Among the popular
Fortran 77 solvers written at LLNL are the following:

—VODE: a solver for ODE initial-value problems for stiff/nonstiff systems, with
direct solution of linear systems, by Brown, Byrne, and Hindmarsh [Brown
et al. 1989].

—VODPK: a variant of VODE with preconditioned Krylov (GMRES iteration
[Saad and Schultz 1986]) solution of the linear systems in place of direct
methods, by Brown, Byrne, and Hindmarsh [Byrne 1992].

—NKSOL: a Newton-Krylov (GMRES) solver for nonlinear algebraic systems,
by Brown and Saad [Brown and Saad 1990].

—DASPK: a solver for differential-algebraic equation (DAE) systems (a variant
of DASSL) with both direct and preconditioned Krylov solution methods for
the linear systems, by Brown, Hindmarsh, and Petzold [Brown et al. 1994].

Starting in 1993, the push to solve large systems in parallel motivated work
to write or rewrite solvers in C. Moving to the C language was done to ex-
ploit features of C not present in Fortran 77 while using languages with stable
compilers (F90/95 were not yet stable when this work started); achieve a more
object-oriented design; facilitate the use of the codes with other object-oriented
codes being written in C and C++; maximize the reuse of code modules; and
facilitate the extension from a serial to a parallel implementation. The first
result of the C effort was CVODE. This code was a rewrite in ANSI standard
C of the VODE and VODPK solvers combined, for serial machines [Cohen and
Hindmarsh 1994, 1996]. The next result of this effort was PVODE, a parallel
extension of CVODE [Byrne and Hindmarsh 1998, 1999]. Similar rewrites of
NKSOL and DASPK followed, using the same general design as CVODE and
PVODE. The resulting solvers are called KINSOL and IDA, respectively. More
recently, we have merged the PVODE and CVODE codes into a single solver,
CVODE.

The main numerical operations performed in these codes are operations on
data vectors, and the codes have been written in terms of interfaces to these
vector operations. The result of this design is that users can relatively easily
provide their own data structures to the solvers by telling the solver about
their structures and providing the required operations on them. The codes also
come with default vector structures with predefined operation implementa-
tions for both serial and distributed memory parallel environments in case a
user prefers to not supply their own structures. In addition, all parallelism is
contained within specific vector operations (norms, dot products, etc.). No other
operations within the solvers require knowledge of parallelism. Thus, using a

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 365

solver in parallel consists of using a parallel vector implementation, either the
one provided with SUNDIALS, or the user’s own parallel vector structure, un-
derneath the solver. Hence, we no longer make a distinction between parallel
and serial versions of the codes.

These codes have been combined into the core of SUNDIALS, the SUite of
Nonlinear and DIfferential/Algebraic equation Solvers. This suite, consisting of
CVODE, KINSOL, and IDA (along with current and future augmentations to
include forward and adjoint sensitivity analysis capabilities), was implemented
with the goal of providing robust time integrators and nonlinear solvers that
can easily be incorporated into existing simulation codes. The primary design
goals were to require minimal information from the user, allow users to easily
supply their own data structures underneath the solvers, and allow for easy
incorporation of user-supplied linear solvers and preconditioners.

As simulations have increased in size and complexity, the relationship
between computed results and problem parameters has become harder to es-
tablish. Scientists have a greater need to understand answers to questions like
the following. Which model parameters are most influential? How can parame-
ters be adjusted to better match experimental data? What is the uncertainty in
solutions given uncertainty in data? Sensitivity analysis provides information
about the relationship between simulation results and model data, which can
be critical to answering these questions. In addition, for a given parameter,
sensitivities can be computed in a modest multiple of the computing time of the
simulation itself.

SUNDIALS is being expanded to include forward and adjoint sensitivity
versions of the solvers. The first of these, CVODES, is complete. A brief de-
scription of the strategy for adding sensitivity analysis in a way that respects
the user interfaces of the SUNDIALS codes is contained in this article, and
a more thorough description of the CVODES package (which is distinct from
but built on the same core code as CVODE) is contained in a companion article
[Serban and Hindmarsh 2005]. The second sensitivity solver will be IDAS and is
currently under development. An extension, to be called KINSOLS, to KINSOL
for sensitivity analysis will be completed if need arises.

The rest of this article is organized as follows. In Section 2, the algorithms
in the three core solvers of SUNDIALS are presented. We have attempted to
identify many of the heuristics related to stopping criteria and finite-difference
parameter selection where appropriate, as these items can sometimes affect
algorithm performance significantly. In Section 3, the preconditioning pack-
ages supplied with SUNDIALS are described. Section 4 overviews the CVODES
package and strategies for adding sensitivity capabilities to the codes. Sections
5 and 6 describe the organization of the codes within the suite and the philoso-
phy of the user interface. Availability of the codes is given in Section 7. Finally,
comments on applications of SUNDIALS, concluding remarks, and indications
of future development are contained in the last section.

2. THE BASIC SOLVERS

In this section we overview each of the three core solvers in SUNDIALS, giving a
detailed summary of the methods and algorithms used in each. Although many

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

366 • A. C. Hindmarsh et al.

of the algorithmic features are common to the three codes (e.g., finite-difference
Jacobian-vector approximations and stopping criteria), we still outline them
with respect to each package, as some of the details in their implementation
are different.

All three of the solver descriptions below involve a number of heuristic rules,
safety factors, and the like. We do not attempt to justify or explain these heuris-
tics here, for two reasons. First, most of them are largely arbitrary, and have
little or no solid mathematical basis. For example, a safety factor less than 1
is needed in many places (such as in step size selection based on estimated
local error), but we know of no good argument for preferring any particular
value over another. (In a few cases, some performance testing was done to op-
timize heuristic parameters, but this is rare.) The second reason is that all of
these heuristics were inherited from earlier solvers, and the documentation of
those solvers includes some discussion of the heuristics used. Each of the three
descriptions cites the appropriate earlier literature.

2.1 CVODE

CVODE solves ODE initial value problems in real N -space. We write such
problems in the form

ẏ = f (t, y), y(t0) = y0, (1)

where y ∈ RN . Here we use ẏ to denote dy/dt. While we use t to denote
the independent variable, and usually this is time, it certainly need not be.
CVODE solves both stiff and nonstiff systems. Roughly speaking, stiffness is
characterized by the presence of at least one rapidly damped mode, whose time
constant is small compared to the time scale of the solution itself. (See Hairer
and Wanner [1991] for more on stiffness.)

The methods used in CVODE are variable-order, variable-step multistep
methods, based on formulas of the form

K1∑
i=0

αn,i yn−i + hn

K2∑
i=0

βn,i ẏn−i = 0.

Here the yn are computed approximations to y(tn), and hn = tn − tn−1 is the
step size. The user of CVODE must choose appropriately from one of two fami-
lies of multistep formulas. For nonstiff problems, CVODE includes the Adams-
Moulton formulas, characterized by K1 = 1 and K2 = q above, where the order q
varies between 1 and 12. For stiff problems, CVODE includes the Backward Dif-
ferentiation Formulas (BDFs) in so-called fixed-leading coefficient form, given
by K1 = q and K2 = 0, with order q varying between 1 and 5. The coefficients
are uniquely determined by the method type, its order, the recent history of the
step sizes (the last q values), and the normalization αn,0 = −1. See Byrne and
Hindmarsh [1975] and Jackson and Sacks-Davis [1980].

For either choice of formula, the nonlinear system

G(yn) ≡ yn − hnβn,0 f (tn, yn) − an = 0, (2)

where an ≡ ∑
i>0(αn,i yn−i + hnβn,i ẏn−i), must be solved (approximately) at each

integration step. For this, CVODE offers the choice of either functional iteration,

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 367

suitable only for nonstiff systems, and various versions of Newton iteration. If
we denote the Newton iterates by yn,m, then functional iteration, given by

yn,m+1 = hnβn,0 f (tn, yn,m) + an,

involves evaluations of f only. In contrast, Newton iteration requires the solu-
tion of linear systems

M [yn,m+1 − yn,m] = −G(yn,m),

in which

M ≈ I − γ J, J = ∂ f /∂ y , and γ = hnβn,0. (3)

In either case, the initial guess for the iteration is a predicted value yn,0 com-
puted explicitly from the available history data (the last q + 1 computed val-
ues of y or ẏ). For the Newton corrections, CVODE provides a choice of four
methods:

—a dense direct solver (serial version only),
—a band direct solver (serial version only),
—a diagonal approximate Jacobian solver [Radhakrishnan and Hindmarsh

1993], or
—SPGMR = Scaled Preconditioned GMRES, without restarts [Brown and

Hindmarsh 1989].

(By serial version we mean the CVODE solver with the serial NVECTOR module
attached.)

For large stiff systems, where direct methods are not feasible, the combi-
nation of a BDF integrator with the SPGMR algorithm yields a powerful tool
because it combines established methods for stiff integration, nonlinear iter-
ation, and Krylov (linear) iteration with a problem-specific treatment of the
dominant source of stiffness, in the form of the user-supplied preconditioner
matrix [Brown and Hindmarsh 1989].

In the process of controlling errors at various levels, CVODE uses a weighted
root-mean-square norm, denoted ‖ · ‖WRMS, for all error-like quantities:

‖v‖WRMS =
√√√√N−1

N∑
1

(vi/Wi)2. (4)

The weights Wi are based on the current solution (with components denoted
yi), and on the relative tolerance RTOL and absolute tolerances ATOLi input by
the user, namely,

Wi = RTOL · | yi| + ATOLi. (5)

Because Wi represents a tolerance in the component yi, a vector representing
a perturbation in y and having norm of 1 is regarded as “small.” For brevity,
we will usually drop the subscript WRMS on norms in what follows.

In the cases of a direct solver (dense, band, or diagonal), the iteration is a
Modified Newton iteration, in that the iteration matrix M is fixed through-
out the nonlinear iterations. However, for SPGMR, it is an Inexact Newton

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

368 • A. C. Hindmarsh et al.

iteration, in which M is applied in a matrix-free manner, with matrix-vector
products Jv obtained by either difference quotients or a user-supplied routine.
The matrix M (direct cases) or preconditioner matrix P (SPGMR case) is up-
dated as infrequently as possible, to balance the high costs of matrix operations
against other costs. Specifically, this matrix update occurs when

—starting the problem,
—more than 20 time steps have been taken since the last update,
—the current value of γ and its value at the last update (γ̄) satisfy |γ /γ̄ − 1| >

0.3,
—a convergence failure just occurred, or
—an error test failure just occurred.

When forced by a convergence failure, an update of M or P may or may not
involve a reevaluation of J (in M) or of Jacobian data (in P), depending on
whether Jacobian error was the likely cause of the failure. More generally, the
decision is made to reevaluate J (or instruct the user to reevaluate Jacobian
data in P) when

—starting the problem,
—more than 50 steps have been taken since the last evaluation,
—a convergence failure occurred with an outdated matrix, and the value γ̄ of

γ at the last update satisfies |γ /γ̄ − 1| < 0.2, or
—a convergence failure occurred that forced a step size reduction.

The stopping test for the Newton iteration is related to the subsequent local
error test, with the goal of keeping the nonlinear iteration errors from inter-
fering with local error control. The final computed iterate yn,m will have to
satisfy a local error test ‖ yn,m − yn,0‖ ≤ ε, where ε is an error test constant
described below. Letting yn denote the exact solution of (2), we want to ensure
that the iteration error yn − yn,m is small relative to ε, specifically that it is
less than 0.1ε. (The safety factor 0.1 can be changed by the user.) For this, we
also estimate the linear convergence rate constant R as follows. We initialize
R to 1, and reset R = 1 when M or P is updated. After computing a correction
δm = yn,m − yn,m−1, we update R if m > 1 as

R ← max{0.3R, ‖δm‖/‖δm−1‖},
and we use the estimate

‖ yn − yn,m‖ ≈ ‖ yn,m+1 − yn,m‖ ≈ R‖ yn,m − yn,m−1‖ = R‖δm‖.
Therefore the convergence (stopping) test is

R‖δm‖ < 0.1ε.

We allow at most three iterations (but this limit can be changed by the user).
We also declare the iteration to be diverging if any ‖δm‖/‖δm−1‖ > 2 with m > 1.
If the iteration fails to converge with a current J or P , we are forced to reduce
the step size, and we replace hn by hn/4. The integration is halted after a preset

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 369

number of convergence failures; the default value of this limit is 10, but this
can be changed by the user.

When SPGMR is used to solve the linear system, its errors must also be
controlled, and this also involves the local error test constant ε. The linear
iteration error in the solution vector δm is approximated by the preconditioned
residual vector. Thus to ensure (or attempt to ensure) that the linear iteration
errors do not interfere with the nonlinear error and local integration error
controls, we require that the norm of the preconditioned residual in SPGMR is
less than 0.05 · (0.1ε).

With the direct dense and band methods, the Jacobian may be supplied by a
user routine, or approximated by difference quotients, at the user’s option. In
the latter case, we use the usual approximation

Jij = [f i(t, y + σ j e j) − f i(t, y)]/σ j .

The increments σ j are given by

σ j = max{
√

U | y j |, σ0W j },
where U is the unit roundoff, σ0 is a dimensionless value (involving the unit
roundoff and the norm of ẏ), and W j is the error weight defined in (5). In the
dense case, this scheme requires N evaluations of f , one for each column of
J . In the band case, the columns of J are computed in groups, by the Curtis-
Powell-Reid algorithm [Curtis et al. 1974], with the number of f evaluations
equal to the bandwidth.

In the case of SPGMR, preconditioning may be used on the left, on the right,
or on both, with user-supplied routines for the preconditioning setup and solve
operations, and optionally also for the required matrix-vector products Jv. If a
routine for Jv is not supplied, these products are computed as

Jv = [f (t, y + σv) − f (t, y)]/σ. (6)

The increment σ is 1/‖v‖, so that σv has norm 1.
A critical part of CVODE, making it an ODE “solver” rather than just an ODE

method, is its control of local error. At every step, the local error is estimated
and required to satisfy tolerance conditions, and the step is redone with reduced
step size whenever that error test fails. As with any linear multistep method,
the local truncation error LTE, at order q and step size h, satisfies an asymptotic
relation

LTE = Chq+1 y (q+1) + O(hq+2)

for some constant C, under mild assumptions on the step sizes. A similar re-
lation holds for the error in the predictor yn,0. These are combined to get a
relation

LTE = C′[yn − yn,0] + O(hq+2),

where C′ is another known constant. The local error test is simply ‖LTE‖ ≤ 1
(recalling that a vector of WRMS norm 1 is considered small). Using yn =
yn,m (the last iterate computed) above, the local error test is performed on the

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

370 • A. C. Hindmarsh et al.

predictor-corrector difference �n ≡ yn,m − yn,0, and takes the form

‖�n‖ ≤ ε ≡ 1/|C′|.
If this test passes, the step is considered successful. If it fails, the step is rejected
and a new step size h′ is computed based on the asymptotic behavior of the local
error, namely, by the equation

(h′/h)q+1‖�n‖ = ε/6.

Here 1/6 is a safety factor. A new attempt at the step is made, and the error
test repeated. If it fails three times, then the order q is reset to 1 (if it was >1),
or (if q = 1) the step is restarted from a fresh value of f (discarding all history
data). The ratio h′/h is restricted (during the current step only) to be ≤0.2 after
two error test failures, and to be ≥0.1 after three. After seven failures, CVODE
returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, CVODE
periodically adjusts the order, with the goal of maximizing the step size. The
integration starts out at order 1 and varies the order dynamically after that.
The basic idea is to pick the order q for which a polynomial of order q best
fits the discrete data involved in the multistep method. However, if either a
convergence failure or an error test failure occurs on any given step, no change
in step size or order is allowed on the next step. At the current order q, selecting
a new step size is done exactly as when the error test fails, giving a tentative
step size ratio

h′/h = (ε/6‖�n‖)1/(q+1) ≡ ηq .

We consider changing order only after taking q+1 steps at order q, and then we
consider only orders q′ = q−1 (if q > 1) or q′ = q+1 (if q < max. order allowed).
The local truncation error at order q′ is estimated using the history data. Then a
tentative step size ratio is computed on the basis that this error, LTEq′ , behaves
asymptotically as hq′+1. With safety factors of 1/6 and 1/10, respectively, these
ratios are

h′/h = [1/6‖LTEq−1‖]1/q ≡ ηq−1

and

h′/h = [1/10‖LTEq+1‖]1/(q+2) ≡ ηq+1.

The new order and step size are then set according to

η = max{ηq−1, ηq , ηq+1} , h′ = ηh,

with q′ set to the index achieving the above maximum. However, if we find that
η < 1.5, we do not bother with the change. Also, h′/h is always limited to 10,
except on the first step, when it is limited to 104.

The various algorithmic features of CVODE described above, as inherited
from VODE and VODPK, are documented in Brown et al. [1989], Byrne [1992],
and Hindmarsh [2000]. A full description of the usage of CVODE is given in
Hindmarsh and Serban [2004a].

There is an important additional part of the CVODE order selection algo-
rithm that is not based on local error, but instead provides protection against

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 371

potentially unstable behavior of the BDF methods. At order 1 or 2, the BDF
method is A-stable. But at orders 3 to 5 it is not, and the region of instability
includes a portion of the left half-plane that is concentrated near the imaginary
axis. The size of that region of instability grows as the order increases from 3
to 5. What this means is that when running BDF at these higher orders, if an
eigenvalue λ of the system lies close enough to the imaginary axis, the step
sizes, h, for which the method is stable are limited (at least according to the
linear stability theory) to a set that prevents hλ from leaving the stability re-
gion. System eigenvalues that are likely to cause this instability are ones that
correspond to weakly damped oscillations, such as might arise from a semidis-
cretized advection-diffusion PDE with advection dominating over diffusion.

CVODE includes an optional algorithm called STALD (STAbility Limit De-
tection), which attempts to detect directly the presence of a stability region
boundary that is limiting the step sizes in the presence of a weakly damped os-
cillation [Hindmarsh 1992]. Working directly with history data that is readily
available, if it concludes that the step size is in fact stability-limited, it dictates
a reduction in the method order, regardless of the outcome of the error-based
algorithm.

STALD has been tested in combination with the VODE solver on linear
advection-dominated advection-diffusion problems [Hindmarsh 1995], where
it works well. The implementation in CVODE has been successfully tested on
linear and nonlinear advection-diffusion problems, among others. The STALD
option adds some overhead computational cost to the CVODE solution. In tim-
ing tests, these overhead costs have ranged from 2% to 7% of the total, de-
pending on the size and complexity of the problem, with lower relative costs for
larger problems. Therefore, it should be activated only when there is reasonable
expectation of modes in the user’s system for which it is appropriate, together
with poor performance at orders 3–5, for no apparent reason, with the option
turned off.

Normally, CVODE takes steps until a user-defined output value t = tout is
overtaken, and then it computes y(tout) by interpolation. However, a “one-step”
mode option is available, where control returns to the calling program after
each step. There are also options to force CVODE not to integrate past a given
stopping point t = tstop.

Last, CVODE has been augmented to include a rootfinding feature, whereby
the roots of a set of user-defined functions gi(t, y) can be found while integrating
the initial value problem for y(t). The algorithm checks for changes in sign in
the gi over each time step, and when a sign change is found, it homes in on the
root(s) with a weighted secant iteration method [Hiebert and Shampine 1980].
(CVODE also checks for exact zeros of the gi.) The iteration stops when the root
is bracketed within a tolerance that is near the roundoff level of t.

2.2 KINSOL

KINSOL solves nonlinear algebraic systems in real space, which we write as

F (u) = 0, F : RN → RN , (7)

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

372 • A. C. Hindmarsh et al.

given an initial guess u0. It is a rewrite in C of the Fortran 77 code NKSOL of
Brown and Saad [1990].

KINSOL employs the Inexact Newton method developed in Brown and Saad
[1990], Brown [1987], and Dembo et al. [1982] and further described in Dennis
and Schnabel [1996] and Kelley [1995], resulting in the following iteration:

INEXACT NEWTON ITERATION.

(1) Set u0 = an initial guess
(2) For n = 0, 1, 2, . . . until convergence do:

(a) Approximately solve J (un)δn = −F (un)
(b) Set un+1 = un + λδn, λ ≤ 1
(c) Test for convergence

Here, un is the nth iterate to u, and J (u) = F ′(u) is the system Jacobian. As this
code module is anticipated for use on large systems, only iterative methods are
provided to solve the system in step 2(a). These solutions are only approximate.
At each stage in the iteration process, a scalar multiple of the approximate
solution, δn, is added to un to produce a new iterate, un+1. A test for convergence
is made before the iteration continues.

The linear iterative method currently implemented is one of the class of
Krylov methods, GMRES [Brown and Hindmarsh 1989; Saad and Schultz
1986], provided through the SPGMR module common to all SUNDIALS codes.
Use of SPGMR provides a linear solver which, by default, is applied in a matrix-
free manner, with matrix-vector products Jv obtained by either finite differ-
ence quotients or a user-supplied routine. In the case where finite differences
are used, the matrix-vector product J (u)v is approximated by a quotient of
the form given in (6), where f (t, y) = F (y) for our nonlinear system, u is the
current approximation to a root of (7), and σ is a scalar. The choice of σ is taken
from Brown and Saad [1990] and is given by

σ = max{|uT v|, typuT |v|}
‖v‖2

sign(uT v)
√

U , (8)

where typu is a vector of typical values for the absolute values of the solution
(and can be taken to be inverses of the scale factors given for u as described be-
low), and U is unit roundoff. Convergence of the Newton method is maintained
as long as the value of σ remains appropriately small, as shown in Brown [1987].

To the above methods are added scaling and preconditioning. Scaling is al-
lowed for both the solution vector and the system function vector. For scaling to
be used, the user should supply values Du, which are diagonal elements of the
scaling matrix such that Duun has all components roughly the same magnitude
when un is close to a solution, and DF F has all components roughly the same
magnitude when un is not too close to a solution. In the text below, we use the
following scaled norms:

‖z‖Du = ‖Duz‖2, ‖z‖DF = ‖DF z‖2, and ‖z‖D,∞ = ‖Dz‖∞, (9)

where ‖ ·‖∞ is the max norm. When scaling values are provided for the solution
vector, these values are automatically incorporated into the calculation of σ in
(8). Additionally, right preconditioning is provided if the preconditioning setup

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 373

and solve routines are supplied by the user. In this case, GMRES is applied to
the linear systems (JP−1)(Pδ) = −F .

Two methods of applying a computed step δn to the previously computed
solution vector are implemented. The first and simplest is the Inexact Newton
strategy, which applies step 2(b) as above with λ always set to 1. The other
method is a global strategy, which attempts to use the direction implied by δn in
the most efficient way for furthering convergence of the nonlinear problem. This
technique is implemented in the second strategy, called Linesearch. This option
employs both the α and β conditions of the Goldstein-Armijo linesearch given
in Dennis and Schnabel [1996] for step 2(b), where λ is chosen to guarantee a
sufficient decrease in F relative to the step length as well as a minimum step
length relative to the initial rate of decrease of F . One property of the algorithm
is that the full Newton step tends to be taken close to the solution. For more
details, the reader is referred to Dennis and Schnabel [1996].

Stopping criteria for the Newton method can be required for either or both of
the nonlinear residual and the step length. For the former, the Newton iteration
must pass a stopping test

‖F (un)‖DF ,∞ < FTOL,

where FTOL is an input scalar tolerance with a default value of U 1/3. For the
latter, the Newton method will terminate when the maximum scaled step is
below a given tolerance

‖δn‖Du,∞ < STEPTOL,

where STEPTOL is an input scalar tolerance with a default value of U 2/3.
Three options for stopping criteria for the linear system solve are imple-

mented, including the two algorithms of Eisenstat and Walker [1996]. The
Krylov iteration must pass a stopping test

‖Jδn + F‖DF < (ηn + U)‖F‖DF ,

where ηn is one of the following:

—Eisenstat and Walker Choice 1

ηn = | ‖F (un)‖DF − ‖F (un−1) + J (un−1)δn‖DF |
‖F (un−1)‖DF

;

—Eisenstat and Walker Choice 2

ηn = γ

(‖F (un)‖DF

‖F (un−1)‖DF

)α

,

where default values of γ and α are 0.9 and 2, respectively;
—ηn = constant with 0.1 as the default.

The default is Eisenstat and Walker Choice 1. For both options 1 and 2, ap-
propriate safeguards are incorporated to ensure that η does not decrease too
fast [Eisenstat and Walker 1996].

As a user option, KINSOL permits the application of inequality constraints,
ui > 0 and ui < 0, as well as ui ≥ 0 and ui ≤ 0, where ui is the ith component

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

374 • A. C. Hindmarsh et al.

of u. Any such constraint, or no constraint, may be imposed on each compo-
nent. KINSOL will reduce step lengths in order to ensure that no constraint
is violated. Specifically, if a new Newton iterate will violate a constraint, the
maximum (over all i) step length along the Newton direction that will satisfy
all constraints is found and δn in Step 2(b) is scaled to take a step of that length.

2.3 IDA

The IDA code is a C implementation of a previous code, DASPK, a DAE system
solver written in Fortran 77 by Petzold, Brown, and Hindmarsh [Brown et al.
1994; Brenan et al. 1996]. IDA solves the initial-value problem for a DAE system
of the general form

F (t, y , ẏ) = 0, y(t0) = y0, ẏ(t0) = ẏ0, (10)

where y , ẏ , and F are vectors in RN , t is the independent variable, ẏ = dy/dt,
and initial conditions y(t0) = y0, ẏ(t0) = ẏ0 are given. (Often t is time, but it
certainly need not be.)

Prior to integrating a DAE initial-value problem, an important requirement
is that the pair of vectors y0 and ẏ0 are both initialized to satisfy the DAE resid-
ual F (t0, y0, ẏ0) = 0. For a class of problems that includes so-called semiexplicit
index-one systems [Brenan et al. 1996], IDA provides a routine that computes
consistent initial conditions from a user’s initial guess [Brown et al. 1998].
For this, the user must identify subvectors of y (not necessarily contiguous),
denoted yd and ya, which are its differential and algebraic parts, respectively,
such that F depends on ẏd but not on any components of ẏa. The assumption
that the system is “index one” means that, for a given t and yd , the system
F (t, y , ẏ) = 0 defines ya uniquely. In this case, a solver within IDA computes
ya and ẏd at t = t0, given yd and an initial guess for ya.

A second available option with this solver also computes all of y(t0) given
ẏ(t0); this is intended mainly for quasi-steady-state problems, where ẏ(t0) = 0
is given. In both cases, IDA solves the system F (t0, y0, ẏ0) = 0 for the unknown
components of y0 and ẏ0, using Newton iteration augmented with a line search
global strategy. In doing this, it makes use of the existing machinery that is
to be used for solving the linear systems during the integration, in combina-
tion with certain tricks involving the step size (which is set artificially for this
calculation).

For problems that do not fall into either of these categories, the user is respon-
sible for passing consistent values or risk failure in the numerical integration.

The integration method in IDA is variable-order, variable-coefficient BDF,
in fixed-leading-coefficient form [Brenan et al. 1996]. The method order ranges
from 1 to 5, with the BDF of order q given by the multistep formula

q∑
i=0

αn,i yn−i = hn ẏn, (11)

where yn and ẏn are the computed approximations to y(tn) and ẏ(tn), respec-
tively, and the step size is hn = tn − tn−1. The coefficients αn,i are uniquely
determined by the order q, and the history of the step sizes. The application of

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 375

the BDF (11) to the DAE system (10) results in a nonlinear algebraic system to
be solved at each step:

G(yn) ≡ F

(
tn, yn, h−1

n

q∑
i=0

αn,i yn−i

)
= 0. (12)

Regardless of the method options, the solution of the nonlinear system (12) is
accomplished with some form of Newton iteration. This leads to a linear system
for each Newton correction, of the form

J [yn,m+1 − yn,m] = −G(yn,m), (13)

where yn,m is the mth approximation to yn. Here J is some approximation to
the system Jacobian

J = ∂G
∂ y

= ∂F
∂ y

+ α
∂F
∂ ẏ

, (14)

where α = αn,0/hn. The scalar α changes whenever the step size or method
order changes. The linear systems are solved by one of three methods:

—direct dense solve (serial version only),
—direct banded solve (serial version only), or
—SPGMR = Scaled Preconditioned GMRES, with restarts allowed.

(By serial version we mean the IDA solver with the serial NVECTOR module
attached.) For the SPGMR case, preconditioning is allowed only on the left,1 so
that GMRES is applied to systems (P−1 J)�y = −P−1G.

In the process of controlling the various errors, IDA uses the same weighted
root-mean-square norm as CVODE, ‖ · ‖WRMS, for all error-like quantities. The
weights used are based on the current solution and on input tolerances, as given
by (5).

In the cases of a direct linear solver (dense or banded), the nonlinear iter-
ation (13) is a Modified Newton iteration, in that the Jacobian J is fixed (and
usually out of date), with a coefficient ᾱ in place of α in J . When using SPGMR
as the linear solver, the iteration is an Inexact Newton iteration, using the cur-
rent Jacobian (through matrix-free products Jv), in which the linear residual
J�y + G is nonzero but controlled. The Jacobian matrix J (direct cases) or
preconditioner matrix P (SPGMR case) is updated when

—starting the problem,
—the value ᾱ at the last update is such that α/ᾱ < 3/5 or α/ᾱ > 5/3, or
—a nonfatal convergence failure occurred with an out-of-date J or P .

The above strategy balances the high cost of frequent matrix evaluations and
preprocessing with the slow convergence due to infrequent updates. To reduce

1Left preconditioning is required in order to make the norm of the (preconditioned) linear residual
in the Newton iteration meaningful. Otherwise this WRMS-norm, ‖J�y + G‖, is meaningless
in general, because it involves division by weights that correspond to y , not G. The appropriate
scalings for the components of G, or even their physical units, need not agree with those of y .

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

376 • A. C. Hindmarsh et al.

storage costs on an update, Jacobian information is always reevaluated from
scratch.

Unlike the CVODE/CVODES case, the stopping test for the Newton iteration
in IDA ensures that the iteration error yn − yn,m is small relative to y itself.
For this, we estimate the linear convergence rate at all iterations m > 1 as

R = (‖δm‖/‖δ1‖)
1

m−1 ,

where the δm = yn,m − yn,m−1 is the correction at iteration m = 1, 2, The
Newton iteration is halted if R > 0.9. The convergence test at the mth iteration
is then

S‖δm‖ < 0.33, (15)

where S = R/(R − 1) whenever m > 1 and R ≤ 0.9. The user has the option
of changing the constant in the convergence test from its default value of 0.33.
The quantity S is set to 20 initially and whenever J or P is updated, and it
is reset to 100 on a step with α
= ᾱ. Note that at m = 1, the convergence test
(15) uses an old value for S. Therefore, at the first Newton iteration, we make
an additional test and stop the iteration if ‖δ1‖ < 0.33 · 10−4 (since such a δ1 is
probably just noise and therefore not appropriate for use in evaluating R). We
allow only a small number (default value 4) of Newton iterations. If convergence
fails with J or P current, we are forced to reduce the step size hn, and we replace
hn by hn/4. The integration is halted after a preset number (default value 10)
of convergence failures. Both the maximum allowable Newton iterations and
the maximum nonlinear convergence failures can be changed by the user from
their default values.

When SPGMR is used to solve the linear system, to minimize the effect of
linear iteration errors on the nonlinear and local integration error controls, we
require the preconditioned linear residual to be small relative to the allowed
error in the Newton iteration, that is, ‖P−1(Jx + G)‖ < 0.05 · 0.33. The safety
factor 0.05 can be changed by the user.

In the direct cases, the Jacobian J defined in (14) can be either supplied by
the user or have IDA compute one internally by difference quotients. In the
latter case, we use the approximation

Jij = [F i(t, y + σ j e j , ẏ + ασ j e j) − F i(t, y , ẏ)]/σ j , with

σ j =
√

U max
{| y j |, |h ẏ j |, W j

}
sign(h ẏ j),

where U is the unit roundoff, h is the current step size, and W j is the error
weight for y j defined by (5). In the SPGMR case, if a routine for Jv is not
supplied, such products are approximated by

Jv = [F (t, y + σv, ẏ + ασv) − F (t, y , ẏ)]/σ,

where the increment σ is 1/‖v‖ (as with CVODE).2 (As an option, the user can
specify a constant factor that is inserted into this expression for σ .)

2All vectors v occurring here have been scaled so as to have weighted L2 norm equal to 1. Thus, in
fact σ = 1/‖v‖WRMS = √

N .

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 377

During the course of integrating the system, IDA computes an estimate of
the local truncation error LTE at the nth time step, and requires this to satisfy
the inequality

‖LTE‖ ≤ 1.

Asymptotically, LTE varies as hq+1 at step size h and order q, as does the
predictor-corrector difference �n ≡ yn − yn,0. Thus there is a constant C such
that

LTE = C�n + O(hq+2),

and so the norm of LTE is estimated as |C| · ‖�n‖. In addition, IDA requires
that the error in the associated polynomial interpolant over the current step be
bounded by 1 in norm. The leading term of the norm of this error is bounded
by C̄‖�n‖ for another constant C̄. Thus the local error test in IDA is

max{|C|, C̄}‖�n‖ ≤ 1. (16)

A user option is available by which the algebraic components of the error vector
are omitted from the test (16), if these have been so identified.

In IDA, the local error test is tightly coupled with the logic for selecting the
step size and order. First, there is an initial phase that is treated specially; for
the first few steps, the step size is doubled and the order raised (from its initial
value of 1) on every step, until (a) the local error test (16) fails, (b) the order is
reduced (by the rules given below), or (c) the order reaches 5 (the maximum).
For step and order selection on the general step, IDA uses a different set of local
error estimates, based on the asymptotic behavior of the local error in the case
of fixed step sizes. At each of the orders q′ equal to q, q − 1 (if q > 1), q − 2 (if
q > 2), or q +1 (if q < 5), there are constants Cq′ such that the norm of the local
truncation error at order q′ satisfies

LTEq′ = Cq′ ‖φ(q′ + 1)‖ + O(hq′+2),

where φ(k) is a modified divided difference of order k that is retained by IDA
(and behaves asymptotically as hk). Thus the local truncation errors are esti-
mated as ELTEq′ = Cq′ ‖φ(q′ + 1)‖ to select step sizes. But the choice of order in
IDA is based on the requirement that the scaled derivative norms, ‖hk y (k)‖, are
monotonically decreasing with k, for k near q. These norms are again estimated
using the φ(k), and in fact

‖hq′+1 y (q′+1)‖ ≈ T (q′) ≡ (q′ + 1)ELTEq′ .

The step/order selection begins with a test for monotonicity that is made even
before the local error test is performed. Namely, the order is reset to q′ = q − 1
if (a) q = 2 and T (1) ≤ T (2)/2, or (b) q > 2 and max{T (q − 1), T (q − 2)} ≤ T (q);
otherwise q′ = q. Next the local error test (16) is performed, and if it fails, the
step is redone at order q ← q′ and a new step size h′. The latter is based on the
hq+1 asymptotic behavior of ELTEq , and, with safety factors, is given by

η = h′/h = 0.9/[2ELTEq]1/(q+1).

The value of η is adjusted so that 0.25 ≤ η ≤ 0.9 before setting h ← h′ = ηh. If
the local error test fails a second time, IDA uses η = 0.25, and on the third and

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

378 • A. C. Hindmarsh et al.

subsequent failures it uses q = 1 and η = 0.25. After 10 failures, IDA returns
with a give-up message.

As soon as the local error test has passed, the step and order for the next
step may be adjusted. No such change is made if q′ = q − 1 from the prior
test, if q = 5, or if q was increased on the previous step. Otherwise, if the last
q + 1 steps were taken at a constant order q < 5 and a constant step size, IDA
considers raising the order to q + 1. The logic is as follows: (a) If q = 1, then
reset q = 2 if T (2) < T (1)/2. (b) If q > 1 then

—reset q ← q − 1 if T (q − 1) ≤ min{T (q), T (q + 1)};
—else reset q ← q + 1 if T (q + 1) < T (q);
—leave q unchanged otherwise [then T (q − 1) > T (q) ≤ T (q + 1)].

In any case, the new step size h′ is set much as before:

η = h′/h = 1/[2ELTEq]1/(q+1).

The value of η is adjusted such that (a) if η > 2, η is reset to 2; (b) if η ≤ 1, η is
restricted to 0.5 ≤ η ≤ 0.9; and (c) if 1 < η < 2, we use η = 1. Finally h is reset
to h′ = ηh. Thus we do not increase the step size unless it can be doubled. See
Brenan et al. [1996] for details.

IDA permits the user to impose optional inequality constraints on individual
components of the solution vector y . Any of the following four constraints can
be imposed: yi > 0, yi < 0, yi ≥ 0, or yi ≤ 0. The constraint satisfaction is
tested after a successful nonlinear system solution. If any constraint fails, we
declare a convergence failure of the Newton iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, IDA estimates a new
step size h′ using a linear approximation of the components in y that failed the
constraint test (including a safety factor of 0.9 to cover the strict inequality
case). These additional constraints are also imposed during the calculation of
consistent initial conditions.

Normally, IDA takes steps until a user-defined output value t = tout is over-
taken, and then computes y(tout) by interpolation. However, a “one-step” mode
option is available, where control returns to the calling program after each step.
There are also options to force IDA not to integrate past a given stopping point
t = tstop.

3. PRECONDITIONING

All of the SUNDIALS solvers make repeated use of a Krylov method to solve
linear systems of the form A (correction vector) = −(residual vector), where A
is an appropriate Jacobian or Newton matrix. But simple (unpreconditioned)
Krylov methods are rarely successful; it is generally necessary to precondition
the system in order to obtain acceptable efficiency. A system Ax = b can be
preconditioned on the left, as (P−1 A)x = P−1b; on the right, as (AP−1)Px = b;
or on both sides, as (P−1

L AP−1
R)PR x = P−1

L b. The Krylov method is then applied
to a system with the matrix P−1 A, or AP−1, or P−1

L AP−1
R , instead of A. In order

to improve the convergence of the Krylov iteration, the preconditioner matrix
P , or the product PL PR in the last case, should in some sense approximate the

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 379

system matrix A. Yet at the same time, in order to be cost-effective, the matrix
P , or matrices PL and PR , should be reasonably efficient to evaluate and solve.
Finding a good point in this tradeoff between rapid convergence and low cost
can be very difficult. Good choices are often problem-dependent, but not always,
as we show below.

The CVODE and CVODES solvers allow for preconditioning either side, or
on both sides, although we know of no situation where preconditioning on both
sides is clearly superior to preconditioning on one side only (with the product
PL PR). In contrast, as noted in the previous section, KINSOL allows only right
preconditioning, while IDA and IDAS allow only left preconditioning.

Typical preconditioners used with the solvers in SUNDIALS are based on
approximations to the Jacobian matrices of the systems involved. Because the
Krylov iteration occurs within a Newton iteration, and often also within a
time integration, and each of these iterations has its own test for convergence,
the preconditioner may use a very crude approximation, as long as it captures
the dominant numerical feature(s) of the system. We have found that the combi-
nation of a preconditioner with the Newton-Krylov iteration, using even a fairly
poor approximation to the Jacobian, can be surprisingly superior to using the
same matrix without Krylov acceleration (i.e., a modified Newton iteration), as
well as to using the Newton-Krylov method with no preconditioning.

We further exploit this nested iteration setting, and differences in the costs
of the various preconditioner operations, by treating in two separate phases
each preconditioner matrix P involved:

—a setup phase: evaluate and preprocess P (done infrequently), and
—a solve phase: solve systems Px = b (done frequently).

Accordingly, the user of each solver must supply two separate routines for these
operations. The setup of P is generally more expensive than the solve opera-
tion, and so it is done as infrequently as possible, with updates to P dictated
primarily by convergence failures of the Newton iteration. The system solves
Px = b must of course be done at every Krylov iteration (once for each matrix
in the case of two-sided preconditioning).

We provide help to SUNDIALS users with respect to preconditioning in two
ways. First, for each solver, there is at least one example problem program
which illustrates a preconditioner for reaction-diffusion systems, based on the
concept of operator splitting. The example does not perform operator splitting
(which generally requires giving up error control), but builds the precondi-
tioner from one of two operators (reaction) in the problem. These examples are
intended to serve as templates for possible user-defined preconditioners in sim-
ilar applications. See Brown and Hindmarsh [1989] for an extensive study of
preconditioners for reaction-transport systems.

Second, the SUNDIALS package includes some extra preconditioner mod-
ules, for optional use with the solvers. For parallel environments, each of the
SUNDIALS solvers provides a preconditioner module which generates a band-
block-diagonal (BBD) preconditioner. For serial environments, CVODE and
CVODES also supply a band preconditioner module. These band and BBD pre-
conditioners are described below. Full details on the usage of these optional

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

380 • A. C. Hindmarsh et al.

modules are given in the respective user guides—Hindmarsh and Serban
[2004a, 2004b], Hindmarsh et al. [2004], and Hindmarsh and Serban [2004c].

In any case, for any given choice of the approximate Jacobian, it may be best to
consider choices for the preconditioner linear solver that are more appropriate
to the specific problem than those supplied with SUNDIALS.

3.1 Preconditioners for CVODE

Assuming that the CVODE user has chosen one of the stiff system options,
recall from (3) that the Newton matrix for the nonlinear iteration has the form
I − γ J , where J is the ODE system Jacobian J = ∂ f /∂ y . Therefore, a typical
choice for the preconditioner matrix P is

P = I − γ J̃ , with J̃ ≈ J.

As noted above, the approximation may be a crude one.
The setup phase for P is generally performed only once every several time

steps, in an attempt to minimize costs. In addition to evaluating P , it may
involve preprocessing operations, such as LU decomposition, suitable for later
use in the solve phase. Within the setup routine, the user can save and reuse the
relevant parts of the approximate Jacobian J̃ , as directed by CVODE (in its call
to the user routine), so as to further reduce costs when the scalar γ has changed
since the last setup call. This option requires the user to manage the storage
of the saved data involved. But this tradeoff of storage for potential savings
in computation may be beneficial if the cost of evaluating J̃ is significant in
comparison with the other operations performed on P .

For serial environments, CVODE supplies a preconditioner called
CVBANDPRE, whose use is optional. This preconditioner computes and solves
a banded approximation P to the Newton matrix, computed with difference
quotient approximations. The user supplies a pair of lower and upper half-
bandwidths—ml, mu—that define the shape of the approximate Jacobian J̃ ;
its full bandwidth is ml+mu+1. J̃ is computed using difference quotients, with
ml+mu+1 evaluations of f . The true Jacobian need not be banded, or its true
bandwidth may be larger, as long as J̃ approximates J sufficiently well.

Extending this idea to the parallel setting, CVODE also includes a mod-
ule, called CVBBDPRE, that generates a band-block-diagonal preconditioner.
CVBBDPRE is designed for PDE-based problems and uses the idea of do-
main decomposition, as follows. Suppose that a time-dependent PDE sys-
tem, with the spatial operators suitably discretized, yields the ODE system
ẏ = f (t, y). Now consider a decomposition of the (discretized) spatial domain
into M non-overlapping subdomains. This decomposition induces a block form
y = (y1, . . . , yM) for the vector y , and similarly for f . We will use this distri-
bution for the solution with CVODE on M processors.

The mth block of f , fm(t, y), depends on both ym and ghost cell data from
other blocks ym′ , typically in a local manner, according to the discretized spatial
operators. However, when we build the preconditioner P , we will ignore that
coupling and include only the diagonal blocks ∂ fm/∂ ym. In addition, it may be
cost-effective to exclude from P some parts of the function f . Thus, for the

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 381

computation of these blocks, we replace f by a function g ≈ f (and g = f
is certainly allowed). For example, g may be chosen to have a smaller set of
ghost cell data than f . In the CVBBDPRE module, the matrix blocks ∂ gm/∂ ym
are approximated by band matrices Jm, again exploiting the local spatial cou-
pling, and on processor m these matrices are computed by a difference quotient
scheme. Then the complete preconditioner is given by

P = diag[P1, . . . , PM], Pm = Im − γ Jm.

Linear systems Px = b are then solved by banded LU and backsolve opera-
tions on each processor. The setup phase consists of the evaluation and banded
LU decomposition of Pm, and the solve phase consists of a banded backsolve
operation.

In order to minimize costs in the difference quotient scheme, the function
g is supplied by the user in the form of two routines. One routine, called once
per P evaluation, performs interprocessor communication of data needed to
evaluate the gm. The other routine evaluates gm on processor m, assuming
that the communication routine has already been called. The banded structure
of the problem is exploited in two different ways. First, the user supplies a
pair of half-bandwidths, ml and mu, that defines the shape of the matrix Jm.
But the user also supplies a second pair of half-bandwidths, mldq and mudq,
for use in the difference quotient scheme, in which Jm is computed by way of
mldq+mudq+2 evaluations of gm. The values ml and mu may be smaller than mldq
and mudq, giving a tradeoff between lower matrix costs and slower convergence.
Thus, for example, a matrix based on five-point coupling in two dimensions (2D)
(mldq = mudq = mesh dimension) might be well approximated by a tridiagonal
matrix (ml = mu = 1). In any case, for the sake of efficiency, both pairs of half-
bandwidths may be less than the true values for ∂ gm/∂ ym, and both pairs may
depend on m.

3.2 Preconditioners for KINSOL and IDA

The KINSOL package includes a module, called KINBBDPRE, that provides a
band-block-diagonal preconditioner for use in parallel environments, analogous
to that of the CVODE module CVBBDPRE. Here the problem to be solved is
F (u) = 0, and the preconditioner is constructed by way of a function g ≈ F .
Namely, it is defined as

P = diag[P1, . . . , PM], Pm ≈ ∂ gm/∂um,

in terms of the blocks of g and u on processor m. Again, Pm is banded and is
computed using difference quotients, with user-supplied half-bandwidths for
both the difference quotient scheme and the retained band matrix.

Likewise, the IDA package, in the parallel setting, includes a band-
block-diagonal preconditioner module, called IDABBDPRE. For the problem
F (t, y , ẏ) = 0, the preconditioner is defined by way of a function G ≈ F .
Specifically, the preconditioner is

P = diag[P1, . . . , PM], Pm ≈ ∂Gm/∂ ym + α∂Gm/∂ ẏm.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

382 • A. C. Hindmarsh et al.

Each block Pm is banded, computed using difference quotients, with user-
supplied half-bandwidths for the difference quotient scheme and the retained
matrix.

4. SENSITIVITY ANALYSIS

Many times, models depend on parameters, either through their defining
function— f (t, y) for the ODE in (1), F (t, y , ẏ) for the DAE (10), and F (u)
for nonlinear systems (7)—or through initial conditions in the case of ODEs
and DAEs. In addition to the solution y or u, we often want to quantify how
the solution (or some other output functional that depends on the solution) is
influenced by changes in these model parameters.

Depending on the number of model parameters and the number of functional
outputs, one of two sensitivity methods is more appropriate. The forward sen-
sitivity method is mostly suitable when we need the gradients of many outputs
(for example the entire solution vector) with respect to relatively few parame-
ters. In this approach, the model is differentiated with respect to each parame-
ter in turn to yield an additional system of the same size as the original one, the
result of which is the solution sensitivity. The gradient of any output function
depending on the solution can then be directly obtained from these sensitivi-
ties by applying the chain rule of differentiation. The adjoint sensitivity method
is more practical than the forward approach when the number of parameters
is large and when we need the gradients of only few output functionals. In
this approach, the solution sensitivities need not be computed explicitly. In-
stead, for each output functional of interest, we form and solve an additional
system, adjoint to the original one, the solution of which can then be used to
evaluate the gradient of the output functional with respect to any set of model
parameters.

For each of the basic solvers described in Section 2, extensions that are
sensitivity-enabled are already available (CVODES), or under development
(IDAS), or under consideration depending on the need (KINSOLS). The var-
ious algorithmic features of CVODES and IDAS are documented in Cao et al.
[2003]. A detailed description of the CVODES software package is presented
in Serban and Hindmarsh [2005], while full usage description is given in
Hindmarsh and Serban [2004b].

4.1 CVODES

CVODES is an extension of CVODE that, besides solving ODE initial-value
problems of the form (1), also provides forward and adjoint sensitivity analysis
capabilities. Here, we assume that the system depends on a vector of parame-
ters, p = [p1, . . . , pNp],

ẏ = f (t, y , p), y(t0, p) = y0(p), (17)

including the case where the initial value vector y0 depends on p, and we
consider a scalar output functional of the form g (t, y , p). In addition to y as a
function of t, we want the total derivative dg/dp = (∂ g/∂ y)s + ∂ g/∂p, where
s = dy/dp ∈ RN×Np is the so-called sensitivity matrix. Each column si = dy/dpi

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 383

of s satisfies the sensitivity ODE

ṡi = Jsi + ∂ f
∂pi

, si(t0) = dy0

dpi
, (18)

where J is the system Jacobian defined in (3).

4.1.1 Forward Sensitivity. CVODES can be used to integrate an extended
system Y = [y , s1, . . . , sNs] forward in time, where [s1, . . . , sNs] are a subset of
the columns of s. CVODES provides the following three choices for the sequence
in which the states and sensitivity variables are advanced in time at each step.

—Simultaneous Corrector: the nonlinear system (2) is solved simultaneously
for the states and all sensitivity variables [Maly and Petzold 1996], using a
coefficient matrix for the Newton update, which is simply the block-diagonal
portion of the Newton matrix.

—Staggered Corrector 1: the correction stages for the sensitivity variables take
place after the states have been corrected and have passed the error test. To
prevent frequent Jacobian updates, the linear sensitivity systems are solved
with a modified Newton iteration [Feehery et al. 1997].

—Staggered Corrector 2: a variant of the previous one, in which the error test
for the sensitivity variables is also staggered, one sensitivity system at a
time.

The matrices in the staggered corrector methods and all of the diagonal blocks
in the simultaneous corrector method are identical to the matrix M in (3),
and therefore the linear systems corresponding to the sensitivity equations
are solved using the same preconditioner and/or linear system solver that were
specified for the original ODE problem. The sensitivity variables may be sup-
pressed from the step size control algorithm, but they are always included in
the nonlinear system convergence test.

The right-hand side of the sensitivity equations may be supplied by a user
routine, or approximated by difference quotients at the user’s option. In the
latter case, CVODES offers both forward and central finite difference approxi-
mations. We use increments that take into account several problem-related fea-
tures, namely, the relative ODE error tolerance RTOL, the machine unit roundoff
U , scale factors p̄ for the problem parameters p, and the weighted root-mean-
square norm of the sensitivity vector si. Using central finite differences as an
example, the two terms Jsi and ∂ f /∂pi in the right-hand side of (18) can be
evaluated separately:

Jsi ≈ f (t, y + σ ysi, p) − f (t, y − σ ysi, p)
2 σ y

,

∂ f /∂pi ≈ f (t, y , p + σiei) − f (t, y , p − σiei)
2 σi

, (19)

σi = | p̄i|
√

max(RTOL, U), σ y = 1
max(1/σi, ‖si‖WRMS/| p̄i|) ;

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

384 • A. C. Hindmarsh et al.

or simultaneously:

Jsi + ∂ f /∂pi ≈ f (t, y + σsi, p + σei) − f (t, y − σsi, p − σei)
2 σ

, (20)

σ = min(σi, σ y),

or adaptively switching between (19)+(19′) and (20), depending on the relative
size of the estimated finite difference increments σi and σ y .

4.1.2 Adjoint Sensitivity. CVODES can also be used to carry out adjoint
sensitivity analysis, in which the original system for y is integrated forward, an
adjoint system is then integrated backward, and finally the desired sensitivities
are obtained from the backward solution. To be specific about how the adjoint
approach works, we consider the following situation. We assume as before that
f and/or y0 involves the parameter vector p and that there is a functional
g (t, y , p) for which we desire the total derivative (dg/dp)|t=tf at the final time
tf. We first integrate the original problem (17) forward from t0 to tf. The next
step in the procedure is to integrate from tf to t0 the adjoint system

λ̇ = −J T λ, λ(tf) =
(

∂ g
∂ y

)T
∣∣∣∣∣
t=tf

. (21)

When this backward integration is complete, then the desired sensitivity array
is given by

d g
dp

∣∣∣∣
t=tf

= λT (t0)
dy0

dp
+

∫ tf

t0

λT ∂ f
∂p

dt + ∂ g
∂p

∣∣∣∣
t=tf

. (22)

Other situations, with different forms for the desired sensitivity information,
are covered by different adjoint systems [Cao et al. 2003].

For the efficient evaluation of integrals such as the one in (22), CVODES
allows for special treatment of quadrature equations by excluding them from
the nonlinear system solution, while allowing for inclusion or exclusion of the
corresponding variables from the step size control algorithm.

During the backward integration, we regenerate y(t) values, as needed, in
evaluating the right-hand side of the adjoint system. CVODES settles for a
compromise between storage space and execution time by implementing a
checkpoint scheme combined with piecewise cubic Hermite interpolation: at
the cost of, at most, one additional forward integration, this approach offers the
best possible estimate of memory requirements for adjoint sensitivity analysis.
Finally, we note that the adjoint sensitivity module in CVODES provides the
infrastructure to integrate backward in time any ODE terminal-value problem
dependent on the solution of the IVP (17), not just adjoint systems such as
(21). In particular, for ODE systems arising from semidiscretization of time-
dependent PDEs, this feature allows for integration of either the discretized
adjoint PDE system or the adjoint of the discretized PDE.

4.2 IDAS

IDAS, an extension to IDA with sensitivity analysis capabilities, is currently
under development and will be soon released as part of SUNDIALS.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 385

Forward sensitivity analysis for systems of DAEs system is similar to that
for ODEs. Writing the system as F (t, y , ẏ , p) = 0 and defining s = dy/dp as
before, we obtain DAEs for the individual sensitivity vectors,

∂F
∂ y

si + ∂F
∂ ẏ

ṡi + ∂F
∂pi

= 0, si(t0) = dy0/dpi, ṡi(t0) = dẏ0/dpi. (23)

IDAS implements the same three options for correction of the sensitivity vari-
ables as CVODES. For the simultaneous corrector approach, the coefficient
matrix for the Newton update of the extended system (10) + (23) is again ap-
proximated by its diagonal blocks, each of them identical to the matrix J of
(14). For the generation of the residuals of the sensitivity equations, IDAS pro-
vides several difference quotient approximations equivalent to those described
in Section 4.1.

The use of adjoint DAE systems for adjoint sensitivity analysis is also similar
to the ODE case. As an example, if λ satisfies

d
dt

[(
∂F
∂ ẏ

)T

λ

]
−

(
∂F
∂ y

)T

λ = −
(

∂ g
∂ y

)T

, (24)

with appropriate conditions at tf, then the total derivative of G(p) =∫ tf

t0
g (t, y , p)dt is obtained as

dG
dp

=
∫ tf

t0

(
∂ g
∂p

− λT ∂F
∂p

)
dt −

(
λT ∂F

∂ ẏ
s
)∣∣∣∣

tf

t0

.

However, unlike the ODE case, homogeneous final conditions for the adjoint
variables may not always be enough (such is the case for Hessenberg index-2
DAEs). Moreover, for implicit ODEs and index-1 DAEs the adjoint system may
not be stable to integration from the right, even if the original system (10) is
stable from the left. To circumvent this problem for such systems, IDAS inte-
grates backward in time the so-called augmented adjoint DAE system defined
as

˙̄λ −
(

∂F
∂ y

)T

λ = −
(

∂ g
∂ y

)T

,

λ̄ −
(

∂F
∂ ẏ

)T

λ = 0,
(25)

which can be shown to preserve stability [Cao et al. 2003].
IDAS employs a combination of checkpointing with piecewise cubic Hermite

interpolation for generation of the solution y(t) needed during the backward
integration phase in (24) or (25). As in CVODES, for efficiency, pure quadrature
equations are treated separately in that their correction phase does not include
a nonlinear system solution. At the user’s discretion, the quadrature variables
can be included or excluded from the step size control algorithm.

4.3 KINSOLS

In the case of a nonlinear algebraic system, the sensitivity equations are con-
siderably simpler. If the system is written F (u, p) = 0 and we define s = du/dp,

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

386 • A. C. Hindmarsh et al.

then for the individual sensitivity vectors si,

Jsi = −∂F
∂pi

, (26)

where J = ∂F/∂u.
Forward sensitivity analysis for nonlinear systems thus reduces to solving

a number of linear systems equal to the number of model parameters. The
Jacobian-vector product and right-hand side of (26) can be provided by the user
or evaluated with directional derivatives. In the latter case we approximate Jsi
with the formulas presented in Section 2.2 and ∂F/∂pi with

∂F
∂pi

≈ F (u, p + σiei) − F (u, p)
σi

,

where σi = | p̄i|
√

U .
When the dimension Np of the problem parameters p is large, the adjoint

sensitivity is again a much more efficient method for computing the total deriva-
tive of some functional g (u, p). If λ is the solution of the adjoint system

J T λ =
(

∂ g
∂u

)T

,

then the desired gradient becomes dg/dp = −λT (∂F/∂p) + (∂ g/∂p).

5. CODE ORGANIZATION

The writing of CVODE from the Fortran 77 solvers VODE and VODPK initiated
a complete redesign and reorganization of the existing LLNL solver coding. The
features of the design of CVODE include the following:

—memory allocation is heavily used;
—the linear solver modules are separate from the core integrator, so that the

latter is independent of the method for solving linear systems;
—each linear solver module contains a generic solver, which is independent of

the ODE context, together with an interface to the CVODE core integrator
module;

—the vector operations (linear sums, dot products, norms, etc.) on N -vectors
are isolated in a separate NVECTOR module.

The process of modularization has continued with the development of
CVODE, KINSOL, and IDA. The SUNDIALS distribution now contains a
number of common modules in a shared directory. Additionally, compilation
of SUNDIALS is now independent of any prior specification of a particular
NVECTOR implementation, facilitating the use of binary libraries. The cur-
rent NVECTOR design also allows the use of multiple implementations within
the same code, as may be required to meet user needs.

Figure 1 shows the overall structure of SUNDIALS, with the various
separate modules. The evolution of SUNDIALS has been directed toward keep-
ing the entire set of solvers in mind. Thus, CVODE, KINSOL, and IDA share

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 387

Fig. 1. Overall structure of the SUNDIALS package.

much in their organization and have a number of common modules. The sep-
aration of the linear solvers from the core integrators allows for easy addition
of linear solvers not currently included in SUNDIALS. At the bottom level is
the NVECTOR module, providing key vector operations such as creation, du-
plication, destruction, summation, and dot products on potentially distributed
data vectors. Serial and parallel NVECTOR implementations are included with
SUNDIALS, but a user can substitute his/her own implementation as useful.
Two small modules defining several data types and elementary mathematical
operations are also included.

A number of necessary and optional user-supplied routines for the solvers
in SUNDIALS are not shown in Figure 1. The user must provide a routine
for the evaluation of f (CVODE) or F (KINSOL and IDA). The user-provided
routines may include, depending on the options chosen, routines for Jacobian
evaluation (direct cases) or Jacobian-vector products (Krylov case), and routines
for the setup and solution of Krylov preconditioners.

5.1 Shared Modules—Linear Solvers

As can be seen in Figure 1, three linear solver packages are currently included
with SUNDIALS: a direct dense matrix solver (DENSE); a direct band solver
(BAND); and an iterative Krylov solver (SPGMR). These are stand-alone pack-
ages in their own right.

The shared linear solvers are accessed from SUNDIALS via solver-
specific wrappers. Thus, SPGMR is accessed via CVSPGMR, IDASPGMR,
and KINSPGMR, for CVODE (and CVODES), IDA, and KINSOL, respec-
tively. For the DENSE solver, the wrappers are CVDENSE and IDADENSE
for CVODE/CVODES and IDA, respectively. Similar wrappers for BAND are
CVBAND and IDABAND.

Within each solver, each linear solver module consists primarily of the user-
callable function that specifies that linear solver, and four or five wrapper
routines. The wrappers conform to a fixed set of specifications, enabling the
central solver routines to be independent of the linear system method used.
Specifically, for each such module, there are four wrappers—for initialization,
Jacobian/precondioner matrix setup, linear system solution, and memory

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

388 • A. C. Hindmarsh et al.

freeing. The IDA modules have a fifth wrapper, for linear solver performance
monitoring. These wrapper specifications are fully described in the user doc-
umentation for each solver. By following those, and using any of the existing
modules as a model, the user can add a linear solver module to the package, if
appropriate.

5.2 Shared Modules—NVECTOR

A generic NVECTOR implementation is used within SUNDIALS to operate on
vectors. This generic implementation defines an NVECTOR structure which
consists of an implementation-specific content and a set of abstract vector op-
erations. The NVECTOR module also provides a set of wrappers for accessing
the actual vector operations of the implementation under which an NVECTOR
was created. Because details of vector operations are thus encapsulated within
each specific NVECTOR implementation, the solvers in SUNDIALS are now
independent of a specific implementation. This allows the solvers to be precom-
piled as binary libraries and allows more than one NVECTOR implementation
to be used within a single program.

A particular NVECTOR implementation, such as the serial and parallel im-
plementations included with SUNDIALS or a user-provided implementation,
must provide certain functionalities. At a minimum, each implementation must
provide functions to create a new vector, a function to destroy such vectors, and
the definitions of vector operations required by the SUNDIALS solvers, includ-
ing, for example, duplication, summation, element-by-element inversion, and
dot product.

If neither the serial nor parallel NVECTOR implementation provided within
SUNDIALS is suitable, the user can provide one or more NVECTOR implemen-
tations. For example, it might (and has been) more practical to substitute a more
complex data structure in a parallel implementation.

For complete details, see the user documentation for any of the solvers in
SUNDIALS [Hindmarsh and Serban 2004a, 2004b, 2004c; Hindmarsh et al.
2004].

5.3 User Interface Design

When CVODE was initially developed from VODE and VODPK, its user inter-
face was completely redesigned, and the same design principles were adopted
when the other solvers were added to the suite. Further changes in the inter-
face design were made more recently. Unlike the typical Fortran solver, where
the interface consists of one callable routine with many arguments, the user in-
terface to each of the SUNDIALS solvers involves many callable routines, each
with only a few arguments. The various routines specify the various aspects
of the problem to be solved and of the solution method to be used, or retrieve
information about the solution. For each solver, there are separate (required)
calls that initialize and allocate memory for the problem solver and for the lin-
ear system solver it will use. Then there are optional calls to specify various
optional inputs (ranging from scalars like maximum method order to the user-
supplied Jacobian routine), and optional calls to obtain optional outputs (mostly

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 389

performance statistics). Finally, there is a call to restart the solver, when a new
problem of the same size is to be solved, but possibly with different initial con-
ditions or a different right-hand side function. The interface design is intended
to be fairly simple for the casual user, but also suitably rich and flexible for the
more expert user.

6. USAGE

The new design and organization of SUNDIALS as described in Section 5 makes
the codes flexible and easy to use. This versatility is due primarily to the
control that the user has over the modules that comprise SUNDIALS: the spec-
ification of vectors; the linear solver and preconditioner methods; the basic
solvers; and sensitivity analysis. Default routines are provided for computing
Jacobian-vector approximations, or the right-hand side of the forward sensi-
tivity systems, for example. But for these routines and other basic operations,
SUNDIALS allows the user to provide their own variants that may be better
suited to their problem-solving needs. Additionally, SUNDIALS provides the
user with a fine level of control over various algorithmic parameters, heuris-
tic values, and data structure pointers contained within the codes. Finally,
SUNDIALS provides optional routines for extracting the solution, solver statis-
tics, and other useful information from the codes.

A general approach for using SUNDIALS is given below. The outline conveys
the basic elements of what is needed to properly specify and solve a problem,
the order in which certain tasks must be done, the opportunities for providing
user-supplied routines or input values, and so on. Complete details and ad-
ditional examples are in the documentation that accompanies each solver in
SUNDIALS.

(1) SUNDIALS contains header files that define various constants, enumer-
ations, macros, data types, and function prototypes. At a minimum, the
user must include header files that declare the SUNDIALS data types for
real, integer, and Boolean variables; the NVECTOR implementation to be
used; and the solver functions needed to set up and initialize the problem,
compute, and extract the solution. Typically, additional header files will
be specified to declare the preconditioning and/or linear solver methods to
be used.

(2) The user must provide a function for evaluating the equations to be solved.
Optionally, a user-defined data structure can be created and passed to this
function.

(3) To completely specify the problem, the user must provide whatever initial
guesses and/or initial values are needed, specify solution error tolerances,
and so on.

(4) The next step is to call a routine for initializing a block of memory that will
be used in solving the problem. The memory block is created with certain
default values for the solver, such as the use of standard output for writing
warning and error messages, or NULL as a default value for the pointer
to the user-specified data structure to be passed in evaluating the user’s
function.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

390 • A. C. Hindmarsh et al.

Table I. Optional Inputs for the Basic Solvers in SUNDIALS (The value of unit
roundoff for the machine is denoted by U , and est. indicates that a quantity is

automatically estimated by the code)

Optional Input CVODE IDA KINSOL
Pointer to the user-defined data NULL NULL NULL
Pointer to an error file NULL NULL NULL
Maximum order for BDF method 5 5 —
Maximum order for Adams method 12 — —
Maximum number of internal steps before tout 500 500 —
Maximum number of warnings for h < U 10 — —
Flag to activate stability limit detection FALSE — —
Initial step size est. est. —
Minimum absolute step size 0.0 — —
Maximum absolute step size ∞ ∞ —
Value of tstop — ∞ —
Maximum number of Newton iterations 3 4 200
Maximum number of convergence failures 10 10 —
Maximum number of error test failures 7 10 —
Coefficient in the nonlinear convergence test 0.1 0.33 —
Flag to exclude algebraic variables from error test — FALSE —
Differential-algebraic identification vector — NULL —
Vector with additional constraints — NULL NULL
Flag to skip initial linear solver setup call — — FALSE
Maximum number of prec. solves without setup — — 10
Flag for selection of η computation — — choice 1
Constant η value — — 0.1
Parameters α and γ in η choice 2 — — 2.0,0.9
Flag to control minimum value for ε — — FALSE
Maximum length of Newton step — — est.
Relative error in computing F (u) — — U
Stopping tolerance on residual — — U1/3

Stopping tolerance on max. scaled step — — U2/3

(5) At this stage, the default values in the solver memory block can be changed
if so desired. Choices and default values are given in Table I for each of
the basic solvers and are discussed further below.

(6) After checking the initialized memory block for errors in the default or op-
tional input values, the user now calls the appropriate routine to perform
any required memory allocation.

(7) Typically, preconditioning and/or linear solver methods are needed for
solving the linear systems that may arise. These methods can now be
attached to the block of memory allocated for the solver. Likewise, if
rootfinding is to be done (by CVODE or CVODES) along with the inte-
gration, then the user specifications for that task are also attached at this
point.

(8) The appropriate routine is called to solve the problem according to the
tolerances and other settings that have been specified.

(9) To extract the solution, solver statistics, and other information, optional
output extraction routines can be called. A listing of the optional outputs
for the basic solvers is given in Table II.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 391

Table II. Optional Outputs for the Basic Solvers in SUNDIALS

Optional Output CVODE IDA KINSOL
Size of workspace allocated by the solver � � �
Cumulative number of internal steps taken � � —
Number of calls to the user’s function � � �
Number of calls to the linear solver’s setup routine � � —
Number of local error test failures that have occurred � � —
Number of nonlinear solver iterations � � �
Number of nonlinear convergence failures � � —
Order used during the last step � � —
Order to be attempted on the next step � � —
Order reductions due to stability limit detection � — —
Actual initial step size used � � —
Step size used for the last step � � —
Step size to be attempted on the next step � � —
Current internal time reached by the solver � � —
Vector containing the error weights for state variables � � —
Vector containing the estimated local errors � — —
Number of backtrack operations during linesearch — � �
Number of times the β condition could not be met — — �
Scaled norm at a given iteration — — �
Last step length in the global strategy routine — — �
Information on roots found � — —

(10) To end the process, the user must make the appropriate calls to free mem-
ory that was allocated in the previous steps. Otherwise, if applicable, a
reinitialization routine can be called for solving additional problems.

In order to carry out sensitivity analysis, the above outline needs to be modi-
fied at several steps. For forward sensitivities, step (1) requires that the appro-
priate header file for forward sensitivity analysis be used in place of the header
file for the basic solver. At step (2), the user must create an array of real param-
eters upon which the solution depends and attach a pointer to this array to the
user-defined data structure that is passed to the user’s function. Also, the user
must specify the number of sensitivities to be computed and provide an array
that indicates which solution sensitivities are to be computed. Step (6) requires
that the user call the memory allocation routine for the forward sensitivity ver-
sion of the basic solver. As the solution and forward sensitivities are computed,
these results and various solver statistics can be extracted as part of steps
(8)–(9). Finally, memory space that has been allocated previously must be freed
at step (10). For complete details on performing forward or adjoint sensitivity
analysis for CVODES, the reader is referred to Serban and Hindmarsh [2005].

If using the parallel NVECTOR module in SUNDIALS, the MPI header file
must be specified in step (1) so that in step (3) the MPI communicator can be ini-
tialized, the set of active processors can be established, and the global and local
vector lengths can be set. In step (10), memory allocated for MPI must be freed.

6.1 Optional Inputs and Outputs

Within SUNDIALS, an attempt is made to set reasonable defaults for the vari-
ous methods, heuristic parameters, and pointers used in the codes. A key feature

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

392 • A. C. Hindmarsh et al.

of SUNDIALS is that it provides a collection of optional input and output rou-
tines so that default settings can be changed, or various solver statistics and
other information can be extracted. These “set” and “get” routines are available
for each of the solvers, as noted, as well as for the linear solver and precondi-
tioning methods that support them.

—Basic solvers. Table I lists the various optional inputs that the user can set
to control the basic solvers within SUNDIALS. Under each solver column we
give the default value for the respective input. Inputs marked with a “—”
are not applicable to that particular solver. Table II lists the various optional
outputs that the user can get to monitor solver performance. Optional outputs
available for a solver are marked with a “�” and those not available are
marked by a “—”.

—Sensitivity analysis. Each sensitivity solver (CVODES and IDAS) offers the
complete list of optional “set” and “get” routines as the corresponding basic
solver (CVODE and IDA, respectively). In addition, the user has control over
various inputs that affect sensitivity calculations. The following are examples
of options that can be set by the user with the default given in parentheses: a
user-supplied routine to compute sensitivity ODEs or DAE sensitivity resid-
uals (CVODES or IDAS difference quotient approximation); a pointer to user
data that will be passed to this user-supplied ODE or DAE sensitivity rou-
tine (NULL); a pointer to the sensitivity relative error tolerance scalar (same
value as for state variables); and a Boolean flag indicating whether the sen-
sitivity variables are included in the error control mechanism (FALSE). For
more options and details, see Serban and Hindmarsh [2005] and Hindmarsh
and Serban [2004b].

—Linear solvers and preconditioners. For any of the linear solvers, the user
can set optional inputs so that a user-supplied routine providing Jacobian-
related information is used instead of the default difference quotient routine.
Also, a pointer can be set so that user data is passed each time this user-
supplied routine is called. In addition, for the SPGMR case, the following can
be optionally changed from their default values (provided in parentheses):
a classical Gram-Schmidt orthogonalization (modified Gram-Schmidt), the
factor by which the tolerance on the nonlinear iteration is multiplied to get
a tolerance on the linear iteration (0.05); the preconditioner setup routine
(NULL); the preconditioner solver routine (NULL); and a pointer to the user
preconditioner data (NULL).

The optional outputs for any of the linear solvers are the amount of inte-
ger and real workspace used; the number of calls made to the user-supplied
Jacobian evaluation routine; and the number of calls to the user’s function
within the default difference quotient routine. In addition, for the SPGMR case
the user can obtain the number of preconditioner evaluations, the number of
calls made to the preconditioner solve routine, the number of linear iterations,
and the number of linear convergence failures.

For the band-block-diagonal preconditioner, the optional outputs are the
amount of integer workspace used; the amount of real workspace used; and
the number of calls to the local function that approximates the user’s function.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 393

6.2 Fortran Usage

Some support is available for using Fortran 77 and Fortran 90 applications
with SUNDIALS. In particular, a Fortran/C interface package is provided with
CVODE and KINSOL. Each package is a collection of C header files and func-
tions that provide interfaces from user Fortran routines to solver C routines, and
the reverse. These enable the user to write a main program and all user-supplied
routines in Fortran, and then use either CVODE or KINSOL to solve the prob-
lem. This mixed-language capability entails some compromises in portability,
such as requiring fixed names for the user-supplied routines, but the restrictions
are minor. For complete details, see the CVODE and KINSOL user documen-
tation ([Hindmarsh and Serban 2004a; Hindmarsh et al. 2004]).

7. AVAILABILITY

SUNDIALS and each of its individual solvers have been released under BSD
open-source licenses. Sources for the entire suite or separately for each of
CVODE, CVODES, KINSOL, and IDA are available from the LLNL/CASC web
site at

www.llnl.gov/CASC/sundials,

or from the DOE ACTS software collection at

acts.nersc.gov/sundials/main.html.

Both serial and parallel example applications utilizing the solvers are contained
in these sources.

8. CONCLUSIONS

The time integrators and nonlinear solvers within SUNDIALS have been
developed to take advantage of the long history of research and development
of such codes at LLNL. The codes feature state-of-the-art technology for BDF
time integration as well as for inexact Newton-Krylov methods. The design phi-
losophy of providing clear interfaces to the user and allowing the user to supply
their own data structures makes the solvers reasonably easy to add into exist-
ing simulation codes. As a result, these solvers have been used in numerous
applications.

In particular, CVODE has been used to solve three-dimensional radiation
diffusion problems on up to 5,800 processors of the ASCI Red machine and
verifying the scalability of a fully implicit approach for these problems [Brown
and Woodward 2001]. The same code using a preliminary sensitivity version of
CVODE was further used to examine behaviors of solution sensitivities to pa-
rameters that characterize material opacities for these diffusion problems Lee
et al. [2000, 2003]. CVODE is also being used in a three-dimensional tokamak
turbulence model within LLNL’s Magnetic Fusion Energy Division to solve fu-
sion energy simulation problems with approximately 1.1 million unknowns on
60 processors [Rognlien et al. 2002]. KINSOL is being applied within LLNL to
solve a nonlinear Richards’ equation model for pressures in variably saturated
porous media flows. Fully scalable solution performance of this code has been

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

394 • A. C. Hindmarsh et al.

obtained on up to 225 processors of ASCI Blue [Jones and Woodward 2001;
Woodward 1998]. The same code using a preliminary sensitivity version was
used to quantify uncertainty due to variations in relative permeability input
parameters within these groundwater problems [Woodward et al. 2002]. IDA
has been used in a cloud and aerosol microphysics model at LLNL to study
cloud formation processes and to study model parameter sensitivity. CVODE,
CVODES, KINSOL, and IDA, with multigrid preconditioners, are being used
to solve 3D neutral particle transport problems within LLNL.

Although the SUNDIALS codes have proven to be versatile and robust, fur-
ther development of the suite is underway. In particular, a sensitivity version
of IDA, called IDAS, is currently under development. This code will have for-
ward and adjoint sensitivity capabilities similar to CVODES. Further nonlinear
solver capabilities are being considered for extensions to KINSOL, including a
trust region globalization method as well as other strategies for choosing fi-
nite differencing parameters. In addition, a Picard iteration package and a
BiCGStab Krylov solver module are also planned for addition to SUNDIALS.

ACKNOWLEDGMENTS

The authors wish to acknowledge the contributions of Scott Cohen in the devel-
opment of CVODE, Allan Taylor in the development of KINSOL and IDA, and
Homer Walker for implementation of the Eisenstat and Walker forcing term
options in KINSOL.

REFERENCES

BRENAN, K. E., CAMPBELL, S. L., AND PETZOLD, L. R. 1996. Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations. SIAM Press, Philadelphia, PA.

BROWN, P. N. 1987. A local convergence theory for combined inexact-Newton/finite difference
projection methods. SIAM J. Numer. Anal. 24, 2, 407–434.

BROWN, P. N., BYRNE, G. D., AND HINDMARSH, A. C. 1989. VODE, a variable-coefficient ODE solver.
SIAM J. Sci. Stat. Comput. 10, 1038–1051.

BROWN, P. N. AND HINDMARSH, A. C. 1989. Reduced storage matrix methods in stiff ODE systems.
J. Appl. Math. Comp. 31, 49–91.

BROWN, P. N., HINDMARSH, A. C., AND PETZOLD, L. R. 1994. Using Krylov methods in the solution
of large-scale differential-algebraic systems. SIAM J. Sci. Comput. 15, 1467–1488.

BROWN, P. N., HINDMARSH, A. C., AND PETZOLD, L. R. 1998. Consistent initial condition calculation
for differential-algebraic systems. SIAM J. Sci. Comput. 19, 1495–1512.

BROWN, P. N. AND SAAD, Y. 1990. Hybrid Krylov methods for nonlinear systems of equations. SIAM
J. Sci. Stat. Comput. 11, 450–481.

BROWN, P. N. AND WOODWARD, C. S. 2001. Preconditioning strategies for fully implicit radiation
diffusion with material-energy transfer. SIAM J. Sci. Comput. 23, 2, 499–516.

BYRNE, G. D. 1992. Pragmatic experiments with Krylov methods in the stiff ODE setting. In
Computational Ordinary Differential Equations, J. Cash and I. Gladwell, Eds. Oxford University
Press, Oxford, U.K., 323–356.

BYRNE, G. D. AND HINDMARSH, A. C. 1975. A polyalgorithm for the numerical solution of ordinary
differential equations. ACM Trans. Math. Softw. 1, 71–96.

BYRNE, G. D. AND HINDMARSH, A. C. 1998. User documentation for PVODE, an ODE solver
for parallel computers. Tech. rep. UCRL-ID-130884. Lawrence Livermore National Laboratory,
Livermore, CA.

BYRNE, G. D. AND HINDMARSH, A. C. 1999. PVODE, an ODE solver for parallel computers. Intl. J.
High Perf. Comput. Apps. 13, 4, 254–365.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

SUNDIALS • 395

CAO, Y., LI, S., PETZOLD, L. R., AND SERBAN, R. 2003. Adjoint sensitivity analysis for differential-
algebraic equations: The adjoint DAE system and its numerical solution. SIAM J. Sci. Comput. 24,
3, 1076–1089.

COHEN, S. D. AND HINDMARSH, A. C. 1994. CVODE user guide. Tech. rep. UCRL-MA-118618.
Lawrence Livermore National Laboratory, Livermore, CA.

COHEN, S. D. AND HINDMARSH, A. C. 1996. CVODE, a stiff/nonstiff ODE solver in C. Comput.
Phys. 10, 2, 138–143.

COLLIER, A. M., HINDMARSH, A. C., SERBAN, R., AND WOODWARD, C. S. 2004. User documentation for
KINSOL v2.2.1. LLNL Tech. rep. UCRL-SM-208116. Lawrence Livermore National Laboratory,
Livermore, CA.

CURTIS, A. R., POWELL, M. J. D., AND REID, J. K. 1974. On the estimation of sparse Jacobian
matrices. J. Inst. Math. Applic. 13, 117–119.

DEMBO, R. S., EISENSTAT, S. C., AND STEIHAUG, T. 1982. Inexact Newton methods. SIAM J. Numer.
Anal. 19, 400–408.

DENNIS, J. E. AND SCHNABEL, R. B. 1996. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. SIAM, Press, Philadelphia, PA.

EISENSTAT, S. C. AND WALKER, H. F. 1996. Choosing the forcing terms in an inexact Newton method.
SIAM J. Sci. Comput. 17, 16–32.

FEEHERY, W. F., TOLSMA, J. E., AND BARTON, P. I. 1997. Efficient sensitivity analysis of large-scale
differential-algebraic systems. Appl. Num. Math. 25, 1, 41–54.

HAIRER, E. AND WANNER, G. 1991. Solving Ordinary Differential Equations II, Stiff and
Differential-Algebraic Problems. Springer-Verlag, Berlin, Germany.

HIEBERT, K. L. AND SHAMPINE, L. F. 1980. Implicitly defined output points for solutions of ODEs.
Tech. rep. SAND80-0180. Sandia National Laboratories, Albuquerque, NM.

HINDMARSH, A. C. 1992. Detecting stability barriers in BDF solvers. In Computational Ordinary
Differential Equations, J. Cash and I. Gladwell, Eds. Oxford University Press, Oxford, U.K.,
87–96.

HINDMARSH, A. C. 1995. Avoiding BDF stability barriers in the MOL solution of advection-
dominated problems. Appl. Num. Math. 17, 311–318.

HINDMARSH, A. C. 2000. The PVODE and IDA algorithms. Tech. rep. UCRL-ID-141558. Lawrence
Livermore National Laboratory, Livermore, CA.

HINDMARSH, A. C. AND SERBAN, R. 2004a. User documentation for CVODE v2.2.1. LLNL Tech. rep.
UCRL-SM-208108. Lawrence Livermore National Laboratory, Livermore, CA.

HINDMARSH, A. C. AND SERBAN, R. 2004b. User documentation for CVODES v2.2.1. LLNL Tech.
rep. UCRL-SM-208111. Lawrence Livermore National Laboratory, Livermore, CA.

HINDMARSH, A. C. AND SERBAN, R. 2004c. User documentation for IDA v2.2.1. LLNL Tech. rep.
UCRL-SM-208112. Lawrence Livermore National Laboratory, Livermore, CA.

JACKSON, K. R. AND SACKS-DAVIS, R. 1980. An alternative implementation of variable step-size
multistep formulas for stiff ODEs. ACM Trans. Math. Softw. 6, 295–318.

JONES, J. E. AND WOODWARD, C. S. 2001. Newton-Krylov-multigrid solvers for large-scale,
highly heterogeneous, variably saturated flow problems. Adv. Water Resourc. 24, 763–
774.

KELLEY, C. T. 1995. Iterative Methods for Solving Linear and Nonlinear Equations. SIAM Press,
Philadelphia, PA.

LEE, S. L., HINDMARSH, A. C., AND BROWN, P. N. 2000. User documentation for SensPVODE, a
variant of PVODE for sensitivity analysis. Tech. Rep. UCRL-MA-140211. Lawrence Livermore
National Laboratory, Livermore, CA.

LEE, S. L., WOODWARD, C. S., AND GRAZIANI, F. 2003. Analyzing radiation diffusion using time-
dependent sensitivity-based techniques. J. Comp. Phys. 192, 1, 211–230.

MALY, T. AND PETZOLD, L. R. 1996. Numerical methods and software for sensitivity analysis of
differential-algebraic systems. Appl. Num. Math. 20, 57–79.

RADHAKRISHNAN, K. AND HINDMARSH, A. C. 1993. Description and use of LSODE, the Livermore
solver for ordinary differential equations. Tech. rep. UCRL-ID-113855. Lawrence Livermore Na-
tional Laboratory, Livermore, CA.

ROGNLIEN, T. D., XU, X. Q., AND HINDMARSH, A. C. 2002. Application of parallel implicit methods to
edge-plasma numerical simulations. J. Comp. Phys. 175, 249–268.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

396 • A. C. Hindmarsh et al.

SAAD, Y. AND SCHULTZ, M. H. 1986. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 7, 856–869.

SERBAN, R. AND HINDMARSH, A. C. 2005. CVODES, the Sensitivity-enabled ODE solver in
SUNDIALS. In Proceedings of the 2005 ASME International Design Engineering Technical Con-
ference (Long Beach, CA, Sep. 24–28). Also published as 2005 LLNL Tech. rep. UCRL-PROC-
21030, Lawrence Livermore National Laboratory, Livermore, CA.

WOODWARD, C. S. 1998. A Newton-Krylov-multigrid solver for variably saturated flow problems.
In Proceedings of the Twelfth International Conference on Computational Methods in Water
Resources, vol. 2. Computational Mechanics Publications, Southampton, U.K., 609–616.

WOODWARD, C. S., GRANT, K. E., AND MAXWELL, R. 2002. Applications of sensitivity analysis to uncer-
tainty quantification for variably saturated flow. In Computational Methods in Water Resources,
S. M. Hassanizadeh, R. J. Schotting, W. G. Gray, and G. F. Pinder, Eds. Elsevier, Amsterdam, The
Netherlands, 73–80.

Received September 2003; revised September 2004; accepted October 2004

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

