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PVODE, AN ODE SOLVER FOR PARALLEL COMPUTERS
GEORGE D. BYRNE AND ALAN C. HINDMARSH

1. Summary. PVODE is a general purpose solver for ordinary differential equation
(ODE) systems, which implements methods for both stiff and non-stiff systems. The code
is designed for Single Program Multiple Data environments. It is written in ANSI standard
C, with a highly modular structure. The version being distributed uses the MPI (Message-
Passing Interface) system for communication. In the stiff case, PVODE uses a Backward
Differentiation Formula method combined with preconditioned GMRES iteration. Paral-
lelism is achieved by distributing the ODE solution vector into user-specified segments, and
parallelizing a set of vector kernels accordingly. For PDE-based ODE systems, we provide
a module which generates a band block-diagonal preconditioner for use with the GMRES
iteration. We also provide a set of interfaces to accommodate Fortran applications. The
paper includes a stiff example problem, and test results on a Cray-T3D with three different
message-passing systems. PVODE is publicly available.

2. Introduction. PVODE is a general purpose ordinary differential equation (ODE)
solver for stiff and nonstiff ODEs. It is based on CVODE (Cohen and Hindmarsh, 1994)
and (Cohen and Hindmarsh, 1996), which is written in ANSI-standard C. PVODE uses MPI
(Message-Passing Interface) (Gropp et al., 1994) and a revised version of the vector module in
CVODE to achieve parallelism and portability. PVODE is intended for the SPMD (Single
Program Multiple Data) environment with distributed memory, in which all vectors are
identically distributed across processors. In particular, the vector module is designed to help
the user assign a contiguous segment of a given vector to each of the processors for parallel
computation. The idea is for each processor to solve a certain fixed subset of the ODEs.

To better understand PVODE, we first need to understand CVODE and its histori-
cal background. The ODE solver CVODE, which was written by Cohen and Hindmarsh,
combines features of two earlier Fortran codes, VODE (Brown et al., 1989) and VODPK
(Byrne, 1992). Those two codes were written by Brown, Byrne, and Hindmarsh. Both use
variable-coefficient multistep integration methods, and address both stiff and nonstiff sys-
tems. (Stiffness is characterized by the presence of one or more strong damping modes in
which the minimum associated time constant is much less than the time scale of the solution
of interest.) In the stiff case, VODE uses direct linear algebra techniques to solve the under-
lying dense or banded linear systems of equations, in conjunction with a modified Newton
method. On the other hand, VODPK uses a preconditioned Krylov iterative method (Brown
and Hindmarsh, 1989) to solve the underlying linear system. User-supplied preconditioners
directly address the dominant source of stiffness. Consequently, CVODE implements both
the direct and iterative methods. Currently, with regard to the nonlinear and linear system
solution, PVODE has three method options available: functional iteration, Newton itera-
tion with a diagonal approximate Jacobian, and Newton iteration with the iterative method
SPGMR (Scaled Preconditioned Generalized Minimal Residual method). Both CVODE and
PVODE are written in such a way that other linear algebraic techniques could be easily
incorporated, since the code is written with a layer of linear system solver modules that is
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isolated, as far as possible, from the rest of the code. Further, the code is structured so
that it can readily be converted from double precision to single precision. This precludes the
maintenance of two versions of PVODE.

PVODE has been run on an IBM SP2, a Cray-T3D and Cray-T3E, and a cluster of Sun
workstations. It is currently being used in a simulation of tokamak edge plasmas at LLNL.
Recently, the PVODE solver was incorporated into the PETSc package (Portable Extensible
Toolkit for Scientific computation) (Balay et al., 1996) developed at Argonne.

The remainder of this paper is organized as follows: Section 3 sets the mathematical
notation and summarizes the basic methods. Section 4 summarizes the organization of the
PVODE solver, while Section 5 summarizes its usage. Section 6 describes a preconditioner
module, and Section 7 describes a set of Fortran/C interfaces. Section 8 describes an exam-
ple problem and gives some test results. Following that are comments on availability and
conclusions.

3. Mathematical Considerations. PVODE solves initial-value problems (IVPs) for
systems of ODEs. Such problems can be stated as

(1) y = f(t7 y)7 y(tO) = Yo, (/S RN )

where §j = dy/dt and R” is the real N-dimensional vector space. That is, (1) represents a
system of N coupled ordinary differential equations and their initial conditions at some t,.
The dependent variable is ¥y and the independent variable is t. The independent variable
need not appear explicitly in the N-vector-valued function f.

The IVP is solved by one of two numerical methods. These are the backward dif-
ferentiation formula (BDF) and the Adams-Moulton formula. Both are implemented in a
variable-stepsize, variable-order form. The BDF uses a fixed-leading-coefficient form. These
formulas can both be represented by a linear multistep formula

K K>
(2) Z O, iYn—i + by, Z /Bn,iyn—i =0,
1=0 1=0

where the N-vector y,, is the computed approximation to y(t,), the exact solution of (1) at ¢,,.
The stepsize is hy, = t, —t,_1. The coefficients «, ; and (3, ; are uniquely determined by the
particular integration formula, the history of the stepsize, and the normalization oy, o = —1.
The Adams-Moulton formula is recommended for nonstiff ODEs and is represented by (2)
with K1 = 1 and Ky = ¢ — 1. The order of this formula is ¢ and its values range from 1
through 12. For stiff ODEs, BDF should be selected and is represented by (2) with K; = ¢
and Ky = 0. For BDF, the order ¢ may take on values from 1 through 5. In the case of
either formula, the integration begins with ¢ = 1, and after that ¢ varies automatically and
dynamically.

For either BDF or the Adams formula, 9, denotes f(¢,, y,). That is, (2) is an implicit
formula, and the nonlinear equation

G(yn) = Yn — hnﬂn,of(tna yn) —ap, =0
Z(an,iyn—i + hnﬂn,zyn—z)

1>0
2

where a,



must be solved for y, at each time step. For nonstiff problems, functional (or fixpoint)
iteration is normally used and does not require the solution of a linear system of equations.
For stiff problems, a Newton iteration is used and for each iteration an underlying linear
system must be solved. This linear system of equations has the form

(3) M[yn(m—H) - yn(m)] = _G(yn(m)) )
where ¥/n(m) is the mth approximation to y,, and M approximates 0G/0y:

M=~1—~J, J:g—f, v =hpBhyo -
Y

At present, aside from the diagonal Jacobian approximation, the only option implemented
in PVODE for solving the linear systems (3) is the iterative method SPGMR, (Scaled, Pre-
conditioned GMRES) (Brown and Hindmarsh, 1989), which is a Krylov subspace method.
In most cases, performance of SPGMR is improved by a user-supplied preconditioner. The
user may precondition the system on the left, on the right, on both the left and right, or
use no preconditioner. The SPGMR solver provides for the saving and conditional re-use of
Jacobian data that may be involved in the preconditioner.

The integrator computes an estimate F,, of the local error at each time step, and strives
to satisfy the following inequality
(4) [ En]| <1.

Here the weighted root-mean-square norm is defined by
N o1 1/2
2
||En||'rms,w = Z N (w'lETLaZ)
o N
where E, ; denotes the ith component of E,, and the ¢th component of the weight vector is
1
w; = )
Y rtolly;| + atol;

This permits an arbitrary combination of relative and absolute error control. The user-
specified relative error tolerance is the scalar rtol and the user-specified absolute error tol-
erance is atol which may be an N-vector (as indicated above) or a scalar. The value for rtol
indicates the number of digits of relative accuracy for a single time step. The specified value
for atol; indicates the values of the corresponding component of the solution vector which
may be thought of as being at the noise level. In particular, if we set atol; = rtol - floor;
then floor; represents the floor value for the 7th component of the solution and is that mag-
nitude of the component for which there is a crossover from relative error control to absolute
error control. Since these tolerances define the allowed error per step, they should be chosen
conservatively. Experience indicates that a conservative choice yields a more economical
solution than error tolerances that are too large.

During the course of the integration, PVODE will vary both the stepsize h, and the
order ¢ in an attempt to produce a solution with the minimum number of steps, but always
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subject to the local error test (4). Normally, PVODE takes steps until a user-defined output
value ¢ = tout is overtaken, and then computes y(tout) by interpolation. See (Brown et al.,
1989) for details.

In most PVODE applications of interest, the appropriate method choices will be BDF,
Newton iteration, and SPGMR.

4. Code Organization. One can visualize PVODE as being organized in layers, as
shown in Fig. 1. The user’s main program resides at the top level. This program makes
various initialization calls, and calls the core integrator CVode, which carries out the inte-
gration steps. Of course, the user’s main program also manages input/output. At the next
level down, the core integrator CVode manages the time integration, and is independent of
the linear system method. CVode calls the user-supplied function f and accesses the linear
system solver. At the third level, the linear system solver CVSPGMR, can be found, along
with the approximate diagonal solver CVDIAG. Actually, CVSPGMR calls a generic solver
for the SPGMR method, consisting of modules SPGMR and ITERATIV. CVSPGMR also
accesses the user-supplied preconditioner solve routine, if specified, and possibly also a user-
supplied routine that computes and preprocesses the preconditioner by way of the Jacobian
matrix or an approximation to it. Other linear system solvers may be added to the package
in the future. Such additions will be independent of the core integrator and CVSPGMR.
Several supporting modules reside at the fourth level. The LLNLTYPS module defines types
real, integer, and boole (boolean), and facilitates changing the precision of the arithmetic
in the package from double to single, or the reverse. The LLNLMATH module specifies
power functions and provides a function to compute the machine unit roundoff. Finally, the
NVECTOR module is discussed below.

The key to moving from the sequential computing environment to the parallel computing
environment lies in the NVECTOR module. The idea is to distribute the system of ODEs
over the several processors so that each processor is solving a contiguous subset of the
system. This is achieved through the NVECTOR module, which handles all calculations on
N-vectors in a distributed manner. For any vector operation, each processor performs the
operation on its contiguous elements of the input vectors, of length (say) Nlocal, followed by
a global reduction operation where needed. In this way, vector calculations can be performed
simultaneously with each processor working on its block of the vector. Vector kernels are
designed to be used in a straightforward way for various vector operations that require the
use of the entire distributed N-vector. These kernels include dot products, weighted root-
mean-square norms, linear sums, and so on. The key lies in standardizing the interface
to the vector kernels without referring directly to the underlying vector structure. This
is accomplished through abstract data types that describe the machine environment data
block (type machEnvType) and all N-vectors (type N_Vector). Functions to define a block
of machine-dependent information and to free that block of information are also included in
the vector module.

While all N-vectors are distributed across the processors, PVODE itself does not deal
with distributed matrices. This is done (if at all) by the user-supplied routines that handle
the preconditioner matrix.

The version of PVODE described so far uses the MPI (Message-Passing Interface) system
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User Program

main(...), f(..), Precond(..), Psolve(...)

‘ Main CVODE Integrator ‘

‘ cvode.h, cvode.c ‘

‘ CVDIAG ‘ CVSPGMR Future additional
linear solvers
‘ cvspgmr.h, cvspgmr.c

|

SPGMR

‘ cvdiag.h, cvdiag.c

spgmr.h, spgmr.c

¢

ITERATIV

iterativ.h, iterativ.c

NVECTOR

nvector.h, nvector.c

LLNLTYPS

lInityps.h

LLNLMATH

lInimath.h, lInlmath.c

F1G. 1. Overall structure of the PVODE package. Modules comprising the central solver are distinguished
by rounded boxes, while the user program, generic linear solvers, and auxiliary modules are in unrounded
bozes.



(Gropp et al., 1994) for all inter-processor communication. This achieves a high degree
of portability, since MPI is becoming widely accepted as a standard for message-passing
software. In addition, however, we have prepared a version for the Cray-T3D and -T3E
using the Cray Shared Memory (SHMEM) Library. This involves a separate version of the
vector module based on SHMEM instead of MPI.

For a different parallel computing environment, some rewriting of the vector module
could allow the use of other specific machine-dependent instructions.

5. Using PVODE. This section briefly outlines the use of PVODE, in terms of the
header files, the layout of the user’s main program, user-supplied functions, and use with
C++. For a complete user document, the reader should refer to the report (Byrne and
Hindmarsh, 1998). For further details not specific to the parallel extensions, the reader
should see the CVODE User Guide (Cohen and Hindmarsh, 1994). Also, a sample program
is included in the PVODE package and is intended to serve as a template.

The calling program must include several header files so that various macros and data
types can be used. Four header files are always required: 11nltyps.h, cvode.h, nvector.h,
and mpi.h. These files define several types and macros, set various constants, and provide
function prototypes.

If the user chooses Newton iteration together with the linear system solver SPGMR, then
(minimally) CVODE will require a header file cvspgmr.h for the Krylov solver SPGMR in
the context of PVODE. This in turn includes a header file which enumerates the kind of
preconditioning and the choices for the Gram-Schmidt process.

The user’s program must have the following steps, in the order indicated:

e Initialize MPI if used by the user’s program.

e Set Nlocal, the length of the local vector; the global vector length neq (the problem
size N); and the active set of processors.
Call PVecInitMPI to initialize the NVECTOR module.
Set the vector y of initial values.
Call CvodeMalloc to allocate CVODE’s internal memory and initialize CVODE.
Call CVSpgmr if Newton iteration and SPGMR were chosen.
Call CVode for each point at which output is desired. An input parameter specifies
whether to overshoot a user-defined point t = tout and interpolate, or take a single
step and return.

e Deallocate memory for the vector y upon completion of the integration.

e (Call CVodeFree to free the memory allocated for CVODE.

e Call PVecFreeMPI to free machine-dependent data.
Several optional inputs and optional outputs are also available through some of these calls.

The user-supplied routines consist of one function defining the ODE, and (optionally)
one or two functions that define the preconditioner for use in the SPGMR algorithm. The
first of these C functions defines f in (1) and must be of type RhsFn, which specifies the call
sequence that the user’s £ function must adhere to.

If preconditioning is used, then the user must provide a C function to solve the linear
system Pz = r, where P may be either a left or a right preconditioner matrix. This C
function must be of type CVSpgmrPSolveFn. If this function is to use preprocessed Jacobian-
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related data, then another routine, of type CVSpgmrPrecondFn, must be supplied to do the
evaluation and preprocessing involved.

PVODE is written in a manner that permits it to be used by applications written in
C++ as well as in C. For this purpose, each PVODE header file is wrapped with conditionally
compiled lines reading extern "C" { ... }, conditional on the variable __cplusplus being
defined. This directive causes the C++ compiler to use C-style names when compiling the
function prototypes encountered. Users with C++ applications should also be aware that
we have defined, in 11nltyps.h, a boolean variable type, boole, since C has no such type.

6. A Band-Block-Diagonal Preconditioner Module. A principal reason for using
a parallel ODE solver such as PVODE lies in the solution of partial differential equations
(PDEs). Moreover, the use of a Krylov iterative method for the solution of many such
problems is motivated by the nature of the underlying linear system of equations (3) that
must be solved at each time step. The linear algebraic system is large, sparse, and often
structured. However, if a Krylov iterative method is to be effective in this setting, then a
nontrivial preconditioner needs to be used. Otherwise, the rate of convergence of the Krylov
iterative method is usually unacceptably slow. Unfortunately, effective preconditioners tend
to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of
PDE-based problems. It has been successfully used for several realistic, large-scale problems
(Hindmarsh and Taylor, 1998) and is included in a software module within the PVODE
package. The given PDE system may be discretized by any method, as long as the result
is an explicit ODE system of the form (1). However, this semi-discrete system is assumed
to have predominantly local coupling, and the ordering of the variables on each processor is
assumed to reflect that local coupling. This module then generates a preconditioner that is
a block-diagonal matrix with each block being a band matrix. The blocks need not have the
same number of super- and sub-diagonals and these numbers may vary from block to block.
This Band-Block-Diagonal Preconditioner module is called PVBBDPRE.

To envision these preconditioners, think of the domain of the computational PDE prob-
lem as being subdivided into M non-overlapping subdomains. Each of these subdomains is
then assigned to one of the M processors to be used to solve the ODE system. The basic idea
is to isolate the preconditioning so that it is local to each processor, and also to use a (pos-
sibly cheaper) approximate right-hand side function in the calculation of the preconditoner.
This requires the specification of a new user-defined function g¢(t,y) which approximates the
function f(¢,y) in the ODE system (1). Of course, the user may take ¢ = f. Correspond-
ing to the domain decomposition, there is a decomposition of the solution vector y into M
disjoint blocks y,,, and a decomposition of g into blocks g,,. The block g,, depends on v,
and also on components of blocks y,,, associated with neighboring subdomains (so-called
ghost-cell data). Let ¥, denote y,, augmented with those other components on which g,
depends. Then we have

g(t’ y) = [gl (ta gl): QQ(t, gZ)’ R ’gM(ta gM)]T )
and each of the blocks g,,(t, ¥ ) is uncoupled from the others.
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The preconditioner associated with this decomposition has the form
P =diag[P,, Ps, ..., Pyl ,
a block-diagonal matrix with blocks
P,~1—-~J,,

where J,,, is a difference quotient approximation to d¢,,/0¥y,,. This matrix is taken to be
banded, with upper and lower half-bandwidths mu and ml, defined as the number of non-
zero diagonals above and below the main diagonal, respectively. However, the true band
structure of 0¢,, /0y, is typically larger, and for this reason another pair of half-bandwidths,
mudq and m1dq, is specified for use in the difference quotient approximation procedure. Thus
Jm is computed using mudq + mldq + 2 evaluations of g,,, but a band matrix of bandwidth
mu + ml + 1 is retained. Neither of these pairs, (mu, ml) or (mudq, mldq), need be the
true values of the half-bandwidths of 0¢,,/0yn,, if smaller values provide a more efficient
preconditioner. Also, they need not be the same on every processor.
The solution of the complete linear system

Px=1b
reduces to solving each of the equations

and this is done by banded LU factorization of P,, followed by a banded backsolve.

To use this PVBBDPRE module, the user must supply two functions which the module
calls to construct P. These are in addition to the user-supplied right-hand side function f.
The first of these functions computes the local version of ¢(t,y), while the second performs
all inter-processor communications necessary for the first. The elements needed in the user’s
calling program are described in (Byrne and Hindmarsh, 1998).

Similar block-diagonal preconditioners could be considered with different treatment of
the blocks P,,. For example, incomplete LU factorization or an iterative method could be
used instead of banded LU factorization. Generally, iterative methods become preferable
over direct methods for PDE-based systems (5) as the size Nlocal grows large. Also, a
more scalable linear system method such as Algebraic Multigrid would provide an attractive
alternative approach for the preconditioner to Eq. (3). These issues have engendered active
areas of research in themselves.

7. The Fortran/C Interface Package. We anticipate that many users of PVODE
will work from existing Fortran application programs. To accommodate them, we have
provided a set of interface routines that make the required connections to PVODE with a
minimum of changes to the application programs. Specifically, a Fortran/C interface package
called FPVODE is a collection of C language functions and header files which enables the
user to write a main program and all user-supplied subroutines in Fortran and to use the
C language PVODE package. This package entails some compromises in portability, but we
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have kept these to a minimum by requiring fixed names for user-supplied routines, and by
using a name-mapping scheme to set the names of externals in the Fortran/C linkages. The
latter depends on two parameters, set in a small header file, which determine whether the
Fortran external names are to be in upper case and whether they are to have an underscore
character prefix.

Details on the use of these routines can be found in the header file fpvode.h and in the
user documentation (Byrne and Hindmarsh, 1998). The functions which are callable from
the user’s Fortran program interface with PVecInitMPI, CVodeMalloc, CVSpgmr, CVode,
CVodeFree, and PVecFreeMPI.

The user-supplied Fortran subroutines have fixed names, which are case-sensitive. These
subroutines define the function f, the right-hand side function of the system of ODEs,
solve the preconditioner equation (required if preconditioning is used), and compute the
preconditioner (required if preconditioning involves pre-computed matrix data).

A similar interface package, called FPVBBD, has been written for the block banded
preconditioner module and works in conjunction with the FPVODE interface package. There
are three additional user-callable functions in the package and the user must supply two
additional Fortran subroutines.

8. Example Problem - A Stiff PDE System. We illustrate the capabilities of
PVODE with a test problem that involves the method of lines solution of a system of stiff
partial differential equations (PDEs) wherein finite differences are used to reduce the PDEs
to a system of ODEs. The problem is based on a two-dimensional system of two PDEs
involving diurnal kinetics, advection, and diffusion. The equations represent a simplified
model for the transport, production, and loss of the oxygen singlet and ozone in the upper
atmosphere. The PDEs can be written as follows:

oc
oy

oct o%c oct 9
g =+ 2K,
(6) ot K 0z? T Vax T Jy l v)

] +R'(c", ) (i=1,2),

where the superscript ¢ distinguishes the chemical species, and the reaction terms are given
by

R'(c', A1) = —qc'c® — gt + 2¢3(t)c + qut)?

R2(cl, cQ,t) = qctc® — gl — q4(t)02 )

The spatial domain is the square 0 < x < 20, 30 < y < 50. The various coefficients for this
problem have the following values: K, =4.0-107%, V' =103, K, =10"%exp(y/5), ¢ =
1.63-107%, g, =4.66-10716, ¢ =3.7-10'%, and the diurnal rate constants are defined as
follows:

) exp[—a;i/sinwt], for sinwt >0 .
ai(t) = { 0, for sinwt <0 (1=3.4),

where w = 7/43200, a3 = 22.62, a4 = 7.601. The time interval of integration is [0, 86400],
representing 24 hours measured in seconds.



Homogeneous Neumann boundary conditions are imposed on each boundary and the
initial conditions are

c(z,y,0) = 10°a(z)B(y), *(z,y,0)=10"a(z)B(y)
a(r) = 1—(0.1z —1)*+ (0.1z — 1)*/2
Bly) = .75+ .25tanh(10y — 400) .

The function §(y) adds some realistic complexity to the solution by introducing a fairly steep
front in the vertical direction of the initial profile.This function rises from about 0.5 to about
1.0 over a length of about 0.2 on the y axis (i.e. 1/100 of the total span in y). This vertical
variation, together with the horizonatal advection and diffusion in the problem, demands a
fairly fine spatial mesh to achieve acceptable resolution.

We discretize the PDE system as follows. The domain of the PDE is discretized with
MX and MY uniformly spaced grid points on the z and y axes, respectively. The semi-
discrete form for the two PDEs (6) constitute a pair of ODEs at each spatial node, giving
an ODE system u = f(t,u) of size N =2- MX - MY. The differencing scheme is central
except for the advection terms Vdc'/0xz, where it is biased-upwind. More specifically, the
ODEs in the system are

dc_j’k _ K g =28+, LV (3/2)¢i 14 — i — (1/2)¢_y 4,
dt " Ag? 2AT
Az?
(1=1,21<j<MX; 1<k<MY),

+ Rz (C}ka C?k:a t)

where ¢y, ~ ¢ (zj, yk, 1), Az =20/(MX —1), Ay =20/(MY —1), z; = (j — 1)Az, y =
30 + (k — 1)Ay, and Kyg11/2 = [Ko(yr) + Ko(Yk+1)] /2. It is to be understood that the
boundary conditions are applied in discrete form, by defining ¢, = ¢, for the left edge,
and likewise for the other three edges.

For this example, we regard the processors as being laid out in a rectangle, and each
processor being assigned a subgrid of size MXSUB x MYSUB of the z — y grid. If there are
NPEX processors in the z direction and NPEY processors in the y direction, then the overall
grid size is MX x MY with MX = NPEX-MXSUB and MY = NPEY-MYSUB. To compute f in this
setting, the processors pass and receive information as follows. The solution components
for the bottom row of grid points in the current processor are sent to the processor below
it, and the solution components for the top row of grid points in the current processor are
sent to the processor above it. Similarly, the components for the leftmost and rightmost
columns of grid points are sent from the current processor to the processors to its left and
right. If this is the first or last processor in either direction, then message-passing is bypassed
for that direction. In MPI terminology, the message-passing is done with blocking sends,
non-blocking receives, and receive-waiting. For clarity of illustration, we have used a simple,
uniform discretization and domain decomposition, but any other methods for these steps
could be applied, including the use of automatic domain decomposition packages, as long as
the discretization results in an explicit ODE system of the form (1).
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The solution method is BDF with Newton iteration and SPGMR. The left preconditioner
is the block-diagonal part of the Newton matrix, with 2 x 2 blocks, and the corresponding
diagonal blocks of the Jacobian are saved each time the preconditioner is generated, for re-
use later as directed by the SPGMR solver. (The choice of 2 for the block size is based on
the number of species. Larger values may also be effective, but would involve a tradeoff of
cost vs speed of convergence.)

A series of tests was performed using this problem. This work was largely carried out by
M. Wittman and reported in (Wittman, 1996). To test the scalability of PVODE, we fix the
subgrid dimensions at MXSUB = MYSUB = 50, so that the local (per-processor) problem size
is 5000, while the processor array dimensions, NPEX and NPEY, are varied. In one (typical)
sequence of tests, we fixed NPEY = 8 (for a vertical mesh size of MY = 400), and set NPEX =
8 (MX = 400), NPEX = 16 (MX = 800), and NPEX = 32 (MX =1600). Thus the largest problem
size N is 2 -400 - 1600 = 1,280,000. For these tests, we also raise the maximum Krylov
dimension, max1, to 10 (from its default value of 5).

For each of the three test cases, the test program was run on a Cray-T3D (256 processors)
with each of three different message-passing libraries:

e MPICH: an implemenation of MPI on top of the Chameleon library

e EPCC: an implemenation of MPI by the Edinburgh Parallel Computer Centre

e SHMEM: Cray’s Shared Memory Library
The following table gives the run time and selected performance counters for these 9 runs.
In all cases, the solutions agreed well with each other, showing expected small variations
with grid size. In the table, M-P denotes the message-passing library, RT is the reported run
time in CPU seconds, nst is the number of time steps, nfe is the number of f evaluations,
nni is the number of nonlinear (Newton) iterations, nli is the number of linear (Krylov)
iterations, and npe is the number of evaluations of the preconditioner.

NPEX M-P RT nst nfe | nni nli | npe
8 MPICH | 436. | 1391 9907 | 1512 8392 | 24
8 EPCC 355. | 1391 9907 | 1512 8392 | 24
8 SHMEM | 349. | 1999 | 10,326 | 2096 | 8227 | 34

16 | MPICH | 676. | 2513 | 14,159 | 2583 | 11,5673 | 42
16 EPCC 494. | 2513 | 14,159 | 2583 | 11,5673 | 42
16 | SHMEM | 471. | 2513 | 14,160 | 2581 | 11,576 | 42

32 | MPICH | 1367. | 2536 | 20,153 | 2696 | 17,454 | 43
32 EPCC 737. | 2536 | 20,153 | 2696 | 17,454 | 43

32 SHMEM | 695. | 2536 | 20,121 | 2694 | 17,424 43
TABLE 1
PVODE test results vs problem size and message-passing library

Some of the results were as expected, and some were surprising. For a given mesh
size, variations in performance counts were small or absent, except for moderate (but still
acceptable) variations for SHMEM in the smallest case. The increase in costs with mesh size
can be attributed to a decline in the quality of the preconditioner, which neglects most of the
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spatial coupling. The preconditioner quality can be inferred from the ratio nli/nni, which
is the average number of Krylov iterations per Newton iteration. The most interesting (and
unexpected) result is the variation of run time with library: SHMEM is the most efficient,
but EPCC is a very close second, and MPICH loses considerable efficiency by comparison, as
the problem size grows. This means that the highly portable MPI version of PVODE, with
an appropriate choice of MPI implementation, is fully competitive with the Cray-specific
version using the SHMEM library. While the overall costs do not represent a well-scaled
parallel algorithm (because of the preconditioner choice), the cost per function evaluation is
quite flat for EPCC and SHMEM, at .033 to .037 (for MPICH it ranges from .044 to .068).

For tests that demonstrate speedup from parallelism, we consider runs with fixed problem
size: MX = 800, MY = 400. Here we also fix the vertical subgrid dimension at MYSUB = 50 and
the vertical processor array dimension at NPEY = 8, but vary the corresponding horizontal
sizes. We take NPEX = 8, 16, and 32, with MXSUB = 100, 50, and 25, respectively. The
runs for the three cases and three message-passing libraries all show very good agreement
in solution values and performance counts. The run times for EPCC are 947, 494, and 278,
showing speedups of 1.92 and 1.78 as the number of processors is doubled (twice). For the
SHMEM runs, the times were slightly lower, and the ratios were 1.98 and 1.91. For MPICH,
consistent with the earlier runs, the run times were considerably higher, and in fact show
speedup ratios of only 1.54 and 1.03.

9. Availability. The PVODE package has been released for general distribution. Inter-
ested potential users should contact Alan Hindmarsh, alanh@llnl.gov. The CVODE package,
on which PVODE is based, is freely available from the Netlib collection. See for example
the listing cvode.tar.qz at the web site

http://www.netlib.org/ode/index.html
The latter file includes the CVODE User Guide (Cohen and Hindmarsh, 1994) in the form
of a PostScript file.

10. Conclusion. We have presented PVODE, a general purpose solver for stiff and
non-stiff ODE systems, written in C. Its modular design places all operations on N-vectors
into a separate module, where the parallelism is achieved using MPI. Included in the package
is a preconditioner module aimed at PDE-based problems, which generates a band block-
diagonal preconditioner for use with the GMRES iteration. The package also includes a
set of interfaces for Fortran applications. We have illustrated the use and performance of
PVODE with a stiff system of size 1.28 million based on a coupled pair of PDEs in two space
dimensions. PVODE is available to the public and is currently being applied to problems in
plasma physics.
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