Data Mining and Pattern Recognition for Large-Scale Scientific Data

Chandrika Kamath

Center for Applied Scientific Computing Lawrence Livermore National Laboratory October 15, 1998

We need an effective way to deal with data overload

- Widening gap between data collection capabilities and data analysis abilities
 - Data from simulations, experiments, observations
 - Terabytes of data, soon to be petabytes
 - Complex data (images, time series data)
- Manual exploration and analysis is impractical
 - Poor utilization of resources
 - Potential loss of information
- Need computational tools and techniques to automate the exploration and analysis of large, complex data sets

What do we mean by the terms Data Mining and Pattern Recognition?

- Data Mining: Uncovering patterns, associations, anomalies, and statistically significant structures in data
- Pattern Recognition: Characterization of patterns in data
- **Pattern:** Arrangement or ordering with an underlying structure
- Feature: An extractable measurement or attribute

Images of Radio Emitting Galaxies with Bent-Double Morphology

Data Mining: Key steps in an iterative and interactive process

Our research plan for scaling data mining to large and complex data sets

Data pre-processing

- Implement effective image processing algorithms
- Investigate the use of multi-resolution analysis
- Research methods for dimension reduction

Pattern recognition algorithms

- Consider different algorithms for an application
- Implement in an object-oriented framework
- Research ways of making them more effective and efficient
- Examine accuracy versus computational effort issues

Parallel implementation

Data pre-processing: a time-consuming but critical first step

- Extraction of features: image processing and wavelets
 - De-noising
 - Multi-resolution analysis
- **Dimension reduction:** identification of key features
 - Features with greatest variance
 - Principal component analysis

Pattern Recognition: need for scalable classification and clustering algorithms

Classification: learn a function to map a data item into one of several predefined classes $\frac{2}{3}$ no loan

- Neural networks
 - Genetic algorithms
 - Simulated annealing

Feature 1 (income)

Clustering: a task that identifies a finite set of clusters to describe the data

- Graph theoretic techniques
 - Hypergraph partitioning
 - Promising for high dimensional data

Pattern Recognition: need for efficient, accurate, and scalable classifiers

Classification: learning a function that maps a data item into one of several pre-defined classes

- Neural networks: avoid local minima
 - Genetic algorithms
 - Simulated annealing
- Decision trees
 - attribute selection
 - tree pruning
- Hybrid algorithms
 - techniques for combining classifiers

Pattern Recognition: need for scalable and interpretable clustering algorithms

Clustering: a descriptive task that seeks to identify a finite set of clusters to describe the data

- Implement known techniques
 - k-means
 - fuzzy k-means
 - k-nearest-neighbors
- Graph theoretic techniques
 - hypergraph partitioning
 - initial promise for high dimensional data

Feature 1

Large-scale pattern recognition can benefit several applications

- Visualization
- Computational steering
- Computer Security
- Verification and validation
- Global climate modeling
- Astrophysics (MACHO and FIRST)
- • • •
- A capability for large-scale pattern recognition will strengthen our ability to perform science by providing an effective way to cope with data overload.

Sapphire: a multi-disciplinary endeavor

- Core Team (CASC)
 - C. Kamath (PI), C. Baldwin, R. Musick
- Collaborators
 - C. Alcock (IGPP), M. Aufderheide (B Division), R. Becker (UC Davis/LLNL)
- Faculty and students
 - G. Bebis, M. Giamporcaro, R. Karchin, I. Kirby

For more information http://www.llnl.gov/CASC/sapphire kamath2@llnl.gov

UCRL-MI-132151: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48