
Performance Measurement and
Analysis with gprof

Tri-Lab Tools Workshop

Mahesh Rajan, SNL
Wednesday, March 24, 2010 @ SNL
Thursday March 25, 2010 @ LANL

Thursday July 29, 2010 @ LLNL

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States National Nuclear Security Administration and the Department of Energy under contract DE-AC04-94AL85000

Objectives

• A quick overview of gprof

• Information to get started on TLCC system like
SNL’s glory

• Information to get started on dawndev

• A simple example to illustrate the use of the
tool and analysis of an application

gprof: What can it do?
A simple to use performance profiler that provides: function flat
profile, call-graph profiles and the number of function calls

 Program Instrumentation through compiler flag – No
source modification
 Timings are collected by statistical sampling
 Could be used with serial or parallel program
 Measurement impacts run time. Typically the program
counter is looked at around 100 times per second of run
time
 Mostly used as a command line tool without a GUI, but
GUIs are available: http://kprof.sourceforge.net/

Basic Information for getting started -
TLCC

Platform Version Setup Example Dir POC Help-line

TLCC glory
(glogin1)

2.17.50.0.6-
12.el5

none /project/tools_work
shop/gprof

Rajan glory-help@sandia.gov

Documentation: http://sourceware.org/binutils/docs/gprof/index.html
Limitations:
1) Beware that compiling with `-pg' adds a significant overhead to function calls – specially

for small functions with very large number of calls compared to others
2) output from gprof gives no indication of parts of your program that are limited by I/O.

i.e. it says nothing about the time the program was not running
3) No easy way to get load balance related performance information for parallel runs
4) Hardware counter information typically not available
5) May need a filter for c++ demangling for convenient viewing of the results

Basic Information for getting started -
dawndev

Platform Version Setup Example Dir POC Help-line

dawndev TBD none /home/mrajan/tools
_workshop

Rajan mrajan@sandia.gov

IBM Differences:
1) GMON_OUT_PREFIX environment variable does not seem to work in renaming profile

output files
2) IBM Red Book suggests just linking with `-pg‘ to reduce overhead of function calls –

needs further investigation on dawndev
3) Profile data goes to gmon.out.<mpi_rank_id> for parallel runs
4) ‘gprof a.out gmon.out.*’ DOES NOT produce an ASCI profile output properly interpreting

wild-card ‘*’; Behavior different from clusters running Linux (like TLCC) where the
profile has the sum of the run times from all the processors

Using gprof

Steps to use gprof with your application:

1. Compile and Link complete program with –pg (gnu, Intel)
2. Run instrumented application; information about function

calls and time spent is kept in memory. At program exit, this
information is written to a file called gmon.out.

3. For parallel runs by default each process writes to same file
- not good! The work-around is to set the environment
variable GMON_OUT_PREFIX. Then the gmon.out files
from each process with process ID, pid, is named
${GMON_OUT_PREFIX}.<pid>

4. Run gprof. Output of gprof goes to stdout.

gprof Example
SNL Mantevo HPCCG (Conjugate Gradient Mini-app)

STEP 1: Edit the Makefile to add –pg to the compile and link lines
STEP 2: Build the application with ‘make’
STEP 3: Set the environment variable:

export GMON_OUT_PREFIX=profile_data
STEP 4: Run the application:

mpirun –np 16 ./test_HPCCG 100 100 100
you should see sixteen profile_data.* raw profile data files

STEP 5: run gprof to get profile report:
gprof ./test_HPCCG profile_data.*
(the output from gprof goes to stdout; redirect to a file)

STEP 6: View the profile report and analyze the data gathered. Be aware that
step 5 produces sum of the run times. Both user and library functions appear in
the report. There are usually quite a number of library functions of little
interest.

Sample gprof report
Flat & Call graph profile

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
82.48 688.07 688.07 2400 0.29 0.29 HPC_sparsemv(HPC_Sparse_Matrix_STRUCT*, double const*, double*)
11.10 780.68 92.60 7184 0.01 0.01 waxpby(int, double, double const*, double, double const*, double*)
4.95 821.99 41.32 4768 0.01 0.01 ddot(int, double const*, double const*, double*, double&)

CODE Timer Output:
********** Performance Summary (times in sec) ***********
Total Time/FLOPS/MFLOPS = 57.123/1.52576e+11/2671.01.
DDOT Time/FLOPS/MFLOPS = 3.14276/9.536e+09/3034.27.

Minimum DDOT MPI_Allreduce time (over all processors) = 0.029531
Maximum DDOT MPI_Allreduce time (over all processors) = 0.773707
Average DDOT MPI_Allreduce time (over all processors) = 0.488581

WAXPBY Time/FLOPS/MFLOPS = 6.36643/1.4304e+10/2246.78.
SPARSEMV Time/FLOPS/MFLOPS = 47.5337/1.28736e+11/2708.31.

Observe that gprof
profile times have
small discrepancies
to the times
reported by the
code. However
percentages are
close

Call graph (explanation follows)

granularity: each sample hit covers 2 byte(s) for 0.00% of 834.33 seconds

index % time self children called name

0.00 822.56 16/16 main [1]
[2] 98.6 0.00 822.56 16 HPCCG(HPC_Sparse_Matrix_STRUCT*, double const*, double*, int, double, int&, double&, double*) [2]

688.07 0.00 2400/2400 HPC_sparsemv(HPC_Sparse_Matrix_STRUCT*, double const*, double*) [3]
92.60 0.00 7184/7184 waxpby(int, double, double const*, double, double const*, double*) [4]
41.32 0.00 4768/4768 ddot(int, double const*, double const*, double*, double&) [5]
0.57 0.00 2400/2400 exchange_externals(HPC_Sparse_Matrix_STRUCT*, double const*) [8]
0.00 0.00 28768/38368 mytimer() [19]

Code Reported Total time 57.12

Function
gprof flat
self

code
time

code_t
_16X Difference

gprof %
flat

code %
calculated

HPC_sparsemv 688.8 47.53 760.5 71.64 82.48 82.83%

waxpby 92.44 6.366 101.8 9.422 11.10 11.06%

ddot 41.68 3.142 50.28 8.604 4.95 5.80%

Performance Measurement and
Analysis with CrayPat and

Apprentice

Tri-Lab Tools Workshop

Mahesh Rajan, SNL
Wednesday, March 24, 2010 @ SNL
Thursday March 25, 2010 @ LANL

Thursday July 29, 2010 @ LLNL

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States National Nuclear Security Administration and the Department of Energy under contract DE-AC04-94AL85000

Objectives

• A quick overview of Cray’s CrayPat and
Apprentice tools

• Information to get started on SNL’s Red Storm,
and Cray XT5 and ACES Cielo/Cray XE6

• A simple example to illustrate the use of the
tool and analysis of an application

• A preview of what is covered in the afternoon
session -- experience with use of CrayPat with
a few applications

CrayPat: What can it do?
Helps you identify and characterize performance issues

 Automatic Program Instrumentation – No source or
Makefile modification
 Can be used to measure MPI, I/O, heap, hardware
counter data
 Basic infrastructure consists of:

pat_build, pat_hwpc/lib_hwpc, pat_report, pat_help
 Single Processor Optimization: call graph, hardware
counter data, API for low level instrumentation
 Message Passing Optimization: MPI profiler, load balance
information, message statistics, MPI tracing

Basic Information for getting started – Red Storm
Platform Version Setup Example Dir POC Help-line

Red Storm
Qual
(rsqual01)

3.2/4.3.2
(CrayPat
/apprentice2)

Module load
craypat/3.2
Module load
apprentice2/4.3.2

/home/mrajan/tools
_workshop

Rajan, Davis, Dinge redstorm-
help@sandia.gov

Red Storm -
classified

3.2/4.3.2
(CrayPat
/apprentice2)

Module load
craypat/3.2
Module load
apprentice2/4.3.2

/home/mrajan_s/to
ols_workshop

Rajan, Davis, Dinge redstorm-
help@sandia.gov

Documentation: http://docs.cray.com -- click on ‘platforms’, choose ‘XT3’ , ‘XT4’
Limitations:
1) pat_build –g mpi –u <executable> can bloat run time; sampling available in later release

of CrayPat
2) Pat_build –g mpi for complex codes like Sierra can make the executable > 2GB
3) lib_hwpc on Red Storm may not give correct counts for quad-core Opterons
4) Pat_build –g mpi –u < executable> may break for complex codes like Sierra – may need

to selectively instrument

Tutorials Offered by Cray: At every SC conference, at CUG meetings and at LCI conference

http://docs.cray.com/

Basic Information for getting started –
Cray XT5, Cielo/Cray XE6

Platform Version Setup Example Dir POC Help-line

Cray
XT5(xtplogin
01)

5.0.2.2 (xt-
crayPat
/apprentice2)

Module load xt-
craypat/5.0.2.2
Module load
apprentice2/5.0.2.2

/home/mrajan/tools
_workshop

Rajan, Davis, Dinge xtp-
users@sandia.gov

Cray XE6 (
mzlogin01)
Or Cielito at
LANL (ci-fe1)

5.0.2/5.1.0.14
(CrayPat
/apprentice2)

Module load
craypat/5.0.2.
Module load
apprentice2/5.1.0.14

/home/mrajan/tools
_workshop

Rajan, Davis, Dinge TBD

Documentation: http://docs.cray.com -- click on ‘platforms’, choose ‘XT3’ , ‘XT4’
Enhancements:
1) Sampling is available - helps lower instrumentation overhead and run time bloat

mailto:xtp-users@sandia.gov
mailto:xtp-users@sandia.gov
mailto:xtp-users@sandia.gov
http://docs.cray.com/

Using CrayPat

Six steps to use of CrayPat with your application:

1. Load CrayPat module
2. Build application - No makefile modification needed
3. Instrument application with pat_build

% pat_build [-g group] [-u] [options] a.out
Analysis Groups: mpi, io, heap, user function (-u) …

4. Run instrumented application
5. Generate performance file (.ap2) with pat_report

% pat_report –f ap2 [options] <.xf file>
6. Performance analysis and visualization with CrayPat and Cray
Apprentice2

CrayPat & Apprentice Example
SNL Mantevo HPCCG (Conjugate Gradient Mini-app)

STEP 1: Load craypat Module; module load craypat/3.2
STEP 2: Build the application: ‘make’ gives executable ‘test_HPCCG’
STEP 3: Instrument the application:

pat_build –u –g mpi test_HPCCG
(gives an instrumented executable test_HPCCG+pat)

STEP 4: Run the application:
yod –sz 4 test_HPCCG+pat 100 100 100

STEP 5: Generate ap2 or ASCI performance file
pat_report –f ap2 <the .xf file produced in STEP 4>
pat_report <the .xf file produced in STEP 4>
pat_report has options: -b, -d, -s to customize the report; get from manpage

STEP 6: Visualize the performance data; module load apprentice2/4.3.2
app2 <.ap2 file from STEP 5>

CrayPat runtime environment variables:
1) PAT_RT_SUMMARY=1 (summary) ; PAT_RT_SUMMARY=0 (for trace)
2) PAT_RT_EXPFILE_PER_PROCESS=1 (one file per process if running from
NFS, Do not need if running from /scratch Lustre)
3) PAT_RT_HWPC=1 (hardware counter event set 1)
EVENT_SET 1 gives: Float Ops, Load Stores, L1 Misses, & TLB Misses
more info: man hwpc

(example batch script)
#!/bin/bash
#PBS -lselect=16:dual
#PBS -lwalltime=0:10:00
#PBS -A FY092581
export PAT_RT_EXPFILE_PER_PROCESS=1
export PAT_RT_HWPC=1
export PAT_RT_SUMMARY=1
cd $PBS_O_WORKDIR
yod -VN2 -sz 16 test_HPCCG+pat 100 100 100

Sample pat_report ASCI Output
Notes for table 1:

Table option:
-O profile

Options implied by table option:
-d ti%@0.05,ti,imb_ti,imb_ti%,tr -b ex,gr,fu,pe=HIDE

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Experiment=1
| | | Time % | |Group
| | | | | Function
| | | | | PE='HIDE'

100.0% | 35.307257 | -- | -- | 123578 |Total
|---
| 99.2% | 35.008960 | -- | -- | 55216 |USER
||--
|| 78.7% | 27.567933 | 0.054516 | 0.2% | 2400 |HPC_sparsemv(HPC_Sparse_Matrix_STRUCT *, const double *, double *)
|| 14.5% | 5.080704 | 0.024785 | 0.5% | 7184 |waxpby(int, double, const double *, double, const double *, double *)
|| 4.9% | 1.711066 | 0.037586 | 2.3% | 4768 |ddot(int, const double *, const double *, double *, double &)
|| 1.0% | 0.359326 | 0.000920 | 0.3% | 16 |generate_matrix(int, int, int, HPC_Sparse_Matrix_STRUCT **, double **, double **, double **)
|| 0.7% | 0.240166 | 0.003094 | 1.4% | 16 |make_local_matrix(HPC_Sparse_Matrix_STRUCT *)
|| 0.1% | 0.026610 | 0.004042 | 14.1% | 2400 |exchange_externals(HPC_Sparse_Matrix_STRUCT *, const double *)

CODE Timer Output:
********** Performance Summary (times in sec) ***********

Total Time/FLOPS/MFLOPS = 34.626/1.52576e+11/4406.41.
DDOT Time/FLOPS/MFLOPS = 2.18476/9.536e+09/4364.77.

Minimum DDOT MPI_Allreduce time (over all processors) = 0.115714
Maximum DDOT MPI_Allreduce time (over all processors) = 0.433244
Average DDOT MPI_Allreduce time (over all processors) = 0.17458

WAXPBY Time/FLOPS/MFLOPS = 5.06025/1.4304e+10/2826.74.
SPARSEMV Time/FLOPS/MFLOPS = 27.3116/1.28736e+11/4713.6.

Observe: CrayPat profile times match the times
reported by the code (similar colors)

Run time of instrumented code can bloat; be
aware!

Sample pat_report; Hardware Performance
Counter PAT_RT_HWPC=1

Table 1: Profile by Function Group and Function

Experiment=1 / Group / Function / PE='HIDE'
..
..

==
USER / HPC_sparsemv(HPC_Sparse_Matrix_STRUCT *, const double *, double *)
--
Time% 77.6%
Time 25.835989
Imb.Time 0.324971
Imb.Time% 1.3%
Calls 2400
PAPI_TLB_DM 8.557M/sec 221065210 misses
PAPI_L1_DCA 8357.318M/sec 215916426481 ops
PAPI_FP_OPS 5571.610M/sec 143945966653 ops
DC_MISS 559.023M/sec 14442703857 ops
User time 25.836 secs 62005472433 cycles
Utilization rate 100.0%
HW FP Ops / Cycles 2.32 ops/cycle
HW FP Ops / User time 5571.610M/sec 143945966653 ops 7.3%peak
HW FP Ops / WCT 5571.529M/sec
Computation intensity 0.67 ops/ref
LD & ST per TLB miss 976.71 ops/miss
LD & ST per D1 miss 14.95 ops/miss
D1 cache hit ratio 93.3%
% TLB misses / cycle 0.0%

Flat Profile times

HWC data

Derived Metrics

Sample apprentice screen-shots

Afternoon Session Possible Topics

• Live demo of CrayPat and Apprentice with
couple of applications

• Analysis of an application to understand
performance issues

• Limitations of CrayPat and possible work-
around

• Answer user specific questions

