Session 4: Advanced Use Cases and Discussion

Dr. Matthias S. Müller (RWTH Aachen University)
Tobias Hilbrich (Technische Universität Dresden)
Joachim Protze (RWTH Aachen University, LLNL)

Email:
mueller@itc.rwth-aachen.de
tobias.hilbrich@tu-dresden.de
protze@itc.rwth-aachen.de
Content

- MUST
 - Frontend/Backend
 - Application Crash Handling
 - Scalability
 - Integrations

- Vampir
 - Tracing at Large Scale
 - Paradigms: Xeon Phi, OpenSHMEM
 - External Energy Counters
 - GPGPU Critical Paths
Vampir – Advanced (Select Topics)

Scalability
- Jaguar 220K processes
- SIONlib

Paradigms
- XeonPhi
- OpenSHMEM

Energy
- Cray XC30 Counters

Evaluation
- GPGPU Critical paths
Vampir: Scalability – Collaboration with ORNL

Goal:
- Support hybrid system and software architecture at 10 Petascale
- Show MPI and GPGPU programming
- Do full system performance profiling and tracing

Facts:
- Jaguar + Successor
- >220,000 cores
- 200,448 monitored MPI processes
- >20 Tera-bytes of performance data
- 21,515 VampirServer processes
Vampir: Scalability – Collaboration with ORNL
Vampir: Scalability – Collaboration with ORNL
Vampir: Scalability – Collaboration with ORNL
On local machine with remote VampirServer

% module load UNITE vampirserver
% vampirserver start -n 12

% module load UNITE vampir
% vampir
Vampir Scalability: SIONlib with Score-P 1.3

- > 10K processes: Filesystem becomes scalability bottleneck
- SIONlib merges multiple trace files into a single physical file
- Enabled via environmental variables, e.g.:

```
% export SCOREP_ENABLE_PROFILING=0
% export SCOREP_ENABLE_TRACING=1
% export SCOREP_TRACING_USE_SION=true
% export SCOREP_TRACING_NLOCATIONS_PER_SION_FILE=64
% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt_trace
% export SCOREP_FILTERING_FILE=filter.txt
% mpirun ...
```
Long running applications:
⇒ Either huge traces or little detail

Exascale:
⇒ Memory/core ratio very low (Straw man, 22MiB)
⇒ Very limited I/O bandwidth per core

Online tracing workflows avoid these and allow:
– Increased detail for short time periods (e.g. iteration)
– Adapt event sources (e.g., add OpenMP tracing)
– Stop on conditions (e.g., slow iteration, I/O activity)
Modified workflow
With MUST/GTI technology:

- Parallel Application
 - Core
 - Application
 - GTI
 - Core
 - Application
 - GTI
 - Core
 - Application
 - GTI
 - Core
 - Application
 - GTI

- Distributed and Hierarchic Trace Evaluation
 - Core
 - Trace
 - Core
 - Trace

- GUI

Fixed-size memory buffer with reduction techniques (OTFX)
Vampir: Paradigm Support – XeonPhi

Offloading with OpenMP 4.0 target construct:
- Support in early Score-P prototypes
- Employs new OpenMP tools interface OMPT
One-sided operation analysis and visualization

Time

PE0
shmem_int_out

PE1
shmem_int_out

PE2
shmem_int_get

Vampir: Paradigm Support – OpenSHMEM

Contact: Ronny Tschüter (TUD)
Detailed statistics about data transfers between processes in the currently selected time interval.

Contact: Ronny Tschüter (TUD)
Vampir: Energy Efficiency – XC30 Counter Support

Contact: Jens Doleschal (TUD)
Identifies critical optimization targets for heterogeneous applications (MPI+OpenMP+CUDA)

Technique: Post-mortem rule-based trace analysis

BlameKernelRule
Identifies blocking synchronization that is delayed by device activities.

Contact: Felix Schmitt (TUD)
CASITA: analysis results as trace counters
- Waiting time
- Critical path
- Blame

Enables visualization in Vampir
Example: Hybrid n-body code (PHI-GPU) using MPI, CUDA and OpenMP
Vampir: Research in Evaluation – CASITA Use Case

Analysis results visualized in Vampir *master timeline* and *performance radar*

- Critical path (red) over MPI, CUDA and OpenMP
- Waiting time distribution
- Blame distribution (penalty assigned to wait-state root causes)

Contact: Felix Schmitt (TUD)
Critical path (red) on GPU due to blocking cuCtxSynchronize call

Wait-state on CPU stalled waiting for the device

Blame (combined with critical path) identifies optimization targets

Contact: Felix Schmitt (TUD)
Roadmap

November 2014

Vampir:
- Collapsing timelines

Score-P:
- Sampling+tracing
- Xeon Phi (Native+Offload)
- Full SIONlib support (multi-flush, MPI+OpenMP)
- Memory tracing
- CPU ID
- 3rd party library wrapping
- OpenCL support

June 2015

Score-P:
- Cobi (Dyninst) instrumentation
- I/O tracing
- More MPI-3 support

 Longer term

Vampir:
- Evaluation of traces with semantic compression

Score-P:
- Generation of traces with semantic compression