
IBM Research

© 2009 IBM Corporation

A Holistic Approach towards Automatic
Performance Analysis and Tuning

Advanced Computing Technology

IBM T.J. Watson Research Center

ihchung@us.ibm.com

IBM Research

© 2009 IBM Corporation

System Evolution

� Device Scaling imposing fundamental constraints on system

– Power dissipation and energy consumption

– Physical size / packaging

� Pressure to re-think system architecture

– Blue Gene: low power devices, embedded (small)

– Cell: Attached (embedded) co-processing engine

� Systems become inherently more complex

– Connectivity / hierarchical topology (torus, intra-cell)

– Multi-core processors (and less memory per processor)

– Multi-thread (SMT, hyperthreading)

� This poses new challenge to application programming

– New programming paradigm? (but ~$1T in legacy codes, ISV apps, etc.)

� Conclusion: New software tools essential to mitigate evolving system complexity and
improve productivity.

IBM Research

© 2009 IBM Corporation

Enablement Productivity Gap = Hardware – Software
C

om
pl

ex
ity

Time

Productivity
Gap

1960

Hardware

HPC Programming Languages
(Fortran, C)(Fortran, C)

IBM Research

© 2009 IBM Corporation

PERCS Impact on Productivity Gap
� State-of-Art Application Enablement circa 2002+

– Source code modification (e.g., timing routines)

– Non-selective, non-source code correlated tools (e.g., PAPI)

– Dynamic instrumentation via external agents (e.g., DynInst)

– GUI frameworks to look at data (e.g., Vampir, Vtune, Tau)

– No unified analysis framework (CPU, MPI, OpenMP, and I/O)

– No management of large scale performance data

� IBM DARPA HPCS Toolkit

– Next generation unified framework for automated (not automatic) intelligent-
assist of application performance tuning including…

• No source code modifications…but with source code correlation of the data
• Selective and dynamic instrumentation without external agents
• Large scale data management

� In a Nutshell:

– Previous tools only show you the data…does not resolve the Productivity Gap.

– The HPCS Toolkit makes sense of the data…closes the Productivity Gap.

IBM Research

© 2009 IBM Corporation

High Level Design Flow for HPCS Toolkit

� HPCS Toolkit provides Automated Framework for Performance Analysis.

– Intelligent automation of performance evaluation and decision system.

– Interactive capability with graphical/visual interface always available.

H
P
M

FPU
stalls

L2
misses

MPI

Bottleneck Discovery Engine

Original
Program

Compiler

Execution
File

Data
Collection

(pSigma)

Performance
Data (Memory,
MPI, I/O, …)

Performance Bottlenecks
Program

Information

Solution Determination Engine

Modified Program and/or log files

Bottleneck: elapsed time exceeds threshold for completing work.

IBM Research

© 2009 IBM Corporation

HPCS Toolkit Scalability

� Self-Contained Performance Data Collection Framework

– Part of the instrumented application executable
• No background processes or external agents
• Extensible to MRNet (University of Wisconsin)

� Use of Parallel File System (GPFS)

– Data managed in parallel via distributed files
• Up to five files per process (e.g., for each MPI task):

1. HPM data
2. MPI data
3. OpenMP data
4. Memory reference data
5. I/O data

� Pre-runtime and Post-runtime Filtering Capability

– User-defined logic to reduce data to be captured and/or analyzed

� IBM Research Blue Gene test-bed

– Up to 0.5 million processor systems

IBM Research

© 2009 IBM Corporation

Closing the Enablement Productivity Gap
C

om
pl

ex
ity

Time

Productivity
Gap

1960

Hardware

HPC Programming Languages
(Fortran, C)(Fortran, C)

HPCS Toolkit = bridge to
“Super”-Compiler

IBM Research

© 2009 IBM Corporation

Automated Performance Tuning – Timetable
2007 Deliverables:

� Performance Data Collection
– Scalable, dynamic, programmable
– Completely binary: no source code modification to instrument application…
– But retains ability to correlate all performance data with source code

� Bottleneck Discovery
– Make sense of the performance data
– Mines the performance data to extract bottlenecks

FUTURE MILESTONE DELIVERABLES:

� Solution Determination - 2008 - 2009
– Make sense of the bottlenecks
– Mines bottlenecks and suggests system solutions (hardware and/or software)
– Assist compiler optimization (including custom code transformations)

� Performance “Visualization” - 2008 - 2010
– Performance Data / Bottleneck / Solution Information feedback to User

• Logging (textual information)
• Compiler feedback

– Output to other tools (e.g., Kojak analysis, Paraver visualization, Tau, etc.)

IBM Research

© 2009 IBM Corporation

Typical Tuning Life Cycle

� Observing behavior, formulating hypothesis,
conducting validation tests

– Application instrumentation for performance data
collection

– Correlate performance data with the program
characteristics

– Trace back to the source program

� Optimization to improve performance

IBM Research

© 2009 IBM Corporation

Performance Diagnosis

� Requirement

– In depth knowledge of Algorithm, Architecture,
Compiler, Run time behavior

� Performance data

– Collecting, Filtering, Searching, Interpreting

� Coordinating multiple components of a complex
system

� Challenging and time consuming even for experienced
users

IBM Research

© 2009 IBM Corporation

Performance Optimization Strategy

� A framework provides
– Performance data collection
– Bottleneck identification
– Solution discovery
– Implementation
– Iteration of the tuning process

� Key components
– Performance tools
– Compiler
– Expert knowledge

IBM Research

© 2009 IBM Corporation

Performance data

� Wide array of information
– Static analysis
– Runtime behavior
– Algorithm property
– Architecture feature
– Expert knowledge

� Correlate performance metrics from different aspects
– Computation
– Memory
– Communication
– I/O

IBM Research

© 2009 IBM Corporation

Bottleneck Discovery

� Bottleneck is part of the system that limits the performance

� A mechanism to mining the expert knowledge is necessary to
automate the tuning process

– Wisdom is often expressed in fuzzy terms

� Example

– MPI derived data type for data packing

– Detect packing behavior
• Identify the buffer being sent (MPI tracing)
• Runtime memory access analysis (intercepting loads/stores)
• Flow analysis (via static analysis)

IBM Research

© 2009 IBM Corporation

Bottleneck Discovery (continue)

� A bottleneck

– A rule (pattern) defined on a set of metrics

– Currently is a logic expression

– Provides a way to compare and correlate metrics from multiple
sources and dimensions

� A performance metric is any quantifiable aspect about or related to
application performance. For example,

– Number of pipeline stalls for a given loop

– Number prefetchable streams

– Number of packets sent from a certain processor

– Size of physical memory

IBM Research

© 2009 IBM Corporation

Metrics from existing performance tools

ScalascaTime a receiving process
is waiting for a message

Mpi_latesender

SiGMANumber of prefetched
cache lines

#prefetches

Open MP profilerThread work load
imbalance

Thread_imbalance

MPI profilerAverage message sizeAvg_msg_size

HPML1 miss rateL1_miss_rate

HPMInstruction completedPM_INST_CMPL

Collected byDescriptionMetric name

IBM Research

© 2009 IBM Corporation

Bottleneck rule example

� a potential pipeline stalling problem caused by costly
divide operations in a loop

#divides>0 && PM_STALL_FPU/PM_RUN_CYC>t && vectorized=0

– #divides : number of divide operations

– PM_STALL_FPU and PM_RUN_CYC: hardware counter events

– t: threshold

IBM Research

© 2009 IBM Corporation

Metrics from the compiler

� Static analysis
– Estimate of number of prefetchable streams
– Estimate of pipeline stalls
– Basic block information

� Optimization report

<Message>

<SourceId>1</SourceId><FileNumber>1</FileNumber>

<LineNumber>114</LineNumber><LoopId>6</LoopId>

<MessageId>131587</MessageId><SubKey>0</SubKey>

</Message>

IBM Research

© 2009 IBM Corporation

Solution Composition and Implementation

� Candidate solutions mined from expert knowledge

� Stored in the solution database

� Solutions are in generic forms and need to be
instantiated. For example

– Excessive time is spent on blocking MPI calls

– To overlap computation with communication

– Whether and how to overlap are application dependent

IBM Research

© 2009 IBM Corporation

Solution Composition and Implementation (continued)

� Solution determination/instantiation
– Legality check
– Parameter values computed
– Performance improvement estimation
– Code modification and environment setting determination

� Current solutions
– Standard transformation through compiler

• Compiler directives
• Polyhedral framework

– Customized optimization from standard transformation

– Modifications to the source code
– Suggestions

IBM Research

© 2009 IBM Corporation

Architecture of the Framework

IBM Research

© 2009 IBM Corporation

Case Study - LBMHD

� Lattice Boltzmann Magneto-Hydrodynamics code
(LBMHD)

– A mesoscopic description of the transport properties of
physical systems using linearized Boltzmann equations.

– Offers an efficient way to model turbulence and
collisions in a fluid to model magneto-hydrodynamics

– Performs a 2D simulation of high-temperature
conduction

IBM Research

© 2009 IBM Corporation

Case Study – LBMHD (continue)

� Excessive stalls

� PM_CMPLU_STALL_LSU/PM_CYC > a and
SA_STRIDE_ONE_ACCESS_RATE < b and
SA_REGULAR_ACCESS_RATE(n) >
SA_STRIDE_ONE_ACCESS_RATE + d

� if there is a significant number of cycles spent on LSU
unit, and there are more n-stride accesses than stride-
1 access, there is potentially a bottleneck

IBM Research

© 2009 IBM Corporation

Case Study – LBMHD (continue)
do j = jsta, jend

do i = ista, iend
...

do k = 1, 4
vt1 = vt1 + c(k,1)*f(i,j,k) + c(k+4,1)*f(i,j,k+4)
vt2 = vt2 + c(k,2)*f(i,j,k) + c(k+4,2)*f(i,j,k+4)
Bt1 = Bt1 + g(i,j,k,1) + g(i,j,k+4,1)
Bt2 = Bt2 + g(i,j,k,2) + g(i,j,k+4,2)

enddo
...

do k = 1, 8
...

feq(i,j,k)=vfac*f(i,j,k)+vtauinv*(temp1+trho*.25*vdotc+ &
.5*(trho*vdotc**2- Bdotc**2))
geq(i,j,k,1)= Bfac*g(i,j,k,1)+ Btauinv*.125*(theta*Bt1+ &
2.0*Bt1*vdotc- 2.0*vt1*Bdotc)

...
enddo

...
enddo

enddo

IBM Research

© 2009 IBM Corporation

Case Study – LBMHD (continue)

� For multi-dimensional arrays f, g, feq, and geq
– The access order incurred by the j, i, k iteration order does not

match with their storage order
– Creates massive cache misses

� Two ways to match the array access order and the storage order
– Change the access order by loop-interchange

• Loops are not perfected nested
• Impossible to implement loop interchange without violating the

dependency constraints
– Change the storage order to match the access order by re-laying out

the array
• Use compiler directives to implement the new storage order
• !IBM SUBSCRIPTORDER(f(3, 1, 2), feq(3, 1, 2), g(4, 3, 1, 2), geq(4, 3, 1, 2))

IBM Research

© 2009 IBM Corporation

Case Study – LBMHD (continue)

20% improvement in execution time with a grid size 2048×2048 and 50 iterations
on a P575+ (1.9 GHz Power5+, 16 CPUs. Memory: 64GB, DDR2) on one
processor

IBM Research

© 2009 IBM Corporation

Case Study – Distributed Poisson Solver

� Interleaved computation and communication phases

� All the communications in a phase are independent of each other, and can occur
simultaneously

� if the CPU spends a significant portion of its time idling in an MPI hotspot and
there are blocking MPI calls, there is a potential bottleneck caused by the
communication pattern.

IBM Research

© 2009 IBM Corporation

Case Study - Distributed Poisson Solver (continued)

� Solution

– To initiate the communication as early as possible, and wait for its result as
late as possible.

– While the communication is taking place, more computation can be done

� Locations to place MPI calls

– For each MPI call in the hotspot loop, generate lists of input (in) and output
(out) variables.

– Identify the first location, where the MPI call can be moved without breaking
the original data dependency.

• The earliest that a communication can be initiated.

– Identify the last location where the MPI call can be moved to without breaking
the original data dependency

• The latest that a communication should complete.

IBM Research

© 2009 IBM Corporation

Case Study - Distributed Poisson Solver (continued)

� Rewrite MPI functions

� For example

� Original
– call MPI_SEND(x, n, MPI_REAL, dst, 0, MPI_COMM_WORLD, istat, ierr)

� Modified

– integer NEW0_1 ! Declaration

– call MPI_ISEND(x, ..., NEW0_1, ierr) ! Initiation

– call MPI_WAIT(NEW0_1, ..., ierr) ! Wait

IBM Research

© 2009 IBM Corporation

Case Study - Distributed Poisson Solver (continued)

� For a mesh size of 1G (1024 × 1024 × 1024), the optimization
achieved about 50% improvement in communication time on
Blue Gene/P

IBM Research

© 2009 IBM Corporation

Conclusion and Future Work

� High productivity performance tuning

– Unifying performance tools, compiler, and expert knowledge

– Metrics from performance data collected by existing performance
tools

– The analysis of multiple tools can be correlated and combined
through bottleneck rules.

� Future work

– Populate the databases with more rules and solutions

IBM Research

© 2009 IBM Corporation

IBM Research

© 2009 IBM Corporation

HD Results (Loop Level)

IBM Research

© 2009 IBM Corporation

Source Code with Clock Ticks

IBM Research

© 2009 IBM Corporation

BDE Results

IBM Research

© 2009 IBM Corporation

Query Execution

IBM Research

© 2009 IBM Corporation

1.0E+02

1.0E+03

1.0E+04

1990 1995 2000 2005 2010

C
lo

ck
 S

p
ee

d
 (

M
H

z)

103

102

104

Microprocessor Clock Speed Trends
Managing power dissipation is limiting clock speed increases

2004 Frequency Extrapolation

IBM Research

© 2009 IBM Corporation

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1980 1985 1990 1995 2000 2005 2010

N
u

m
b

er
 o

f
T

ra
n

si
st

o
rs

106

105

108

109

1010

107

1 Million

1 Billion

~50% CAGR

Microprocessor Transistor Trend
Lithography will continue to deliver density scaling

IBM Research

© 2009 IBM Corporation

� Observation

– Although frequency scaling is “ dead” , Moore’s Law is still
alive: transistor density continues to increase exponentially

� Trend #1: Multi-core processor chips

– Maintain (or even reduce) frequency while replicating cores

� Trend #2: Accelerators

– Previously, processors would “ catch” up with accelerator
function in the next generation

• Accelerator design expense not amortized well
– New accelerator designs will maintain their speed advantage

– And will continue an enormous power advantage for target
workloads

Hardware trends that address the power problem

IBM Research

© 2009 IBM Corporation

Blue Gene/P, an example of addressing power in a
massive scale-out system

� 40K compute processors

– 557 Teraflop Peak

� 80 Terabytes memory

� 3D torus interconnect

� Collective and barrier
networks

� Power:

– 0.33 Gigaflop/W

� 40 compute racks

BG/P at ANL, #4 on the Top500 list

IBM Research

© 2009 IBM Corporation

IBM Roadrunner – a system with accelerators

� Architecture

– 12,960 IBM PowerXCell
8i CPUs

– 6,480 AMD Opteron dual-
core processors

– Infiniband, Linux

� Power2.35 MW

� Space296 racks, 6,000 sq ft
(560 m

2
)

� Memory103.6 TiB

� Speed1.7 petaflops (peak)

Roadrunner at LANL, #1 on the Top500 list

