
IBM Research

© 2008 IBM Corporation

IBM High Performance Computing Toolkit

I-Hsin Chung

IBM T.J. Watson Research Center

ihchung@us.ibm.com

IBM Research

© 2008 IBM Corporation

What is it?

• IBM long-term goal:
• An automatic performance tuning framework

• Assist users to identify performance problems
• Provide possible solutions

• A common application performance analysis environment across all HPC
platforms

• Look at all aspects of performance (communication, memory, processor,
I/O, etc) from within a single interface

• Where we are: one consolidated package
• One consolidate package (AIX, Linux/Power)
• Tools for MPI, OMP, processor, memory etc

• Operate on the binary and yet provide reports in terms of source-level
symbols

• Dynamically activate/deactivate data collection and change what
information to collect

• One common visualization GUI

IBM Research

© 2008 IBM Corporation

IBM High Performance Computing Toolkit on Blue Gene

� MPI performance: MPI Profiler/Tracer

� CPU performance: Xprofiler, HPM

� Threading performance: OpenMP profiling

� I/O performance: I/O profiling

� Visualization and analysis: PeekPerf

IBM Research

© 2008 IBM Corporation

Supported Platforms

� AIX

� Linux

– PowerPC

– Blue Gene /L and Blue Gene /P

– Intel x86 & AMD (planned)

� Eclipse integration

� Windows (Intel/AMD) + Mac (coming soon)

– Offline Peekperf visualization capability only

IBM Research

© 2008 IBM Corporation5

AGENDA

• Xprofiler: call-graph profiling

• HPM: hardware counter data

• MPI Profiler/Tracer: MPI profiling

• PompProf: OpenMP profiling

• MIO: I/O profiling and optimization

• IBM HPC Toolkit

• Questions/Comments

IBM Research

© 2008 IBM Corporation6

XProfiler

IBM Research

© 2008 IBM Corporation

Xprofiler

• Visualizer CPU time profiling data

• Compile and link with -g -pg flags + optimization

• Code execution generates gmon.out file

• MPI applications generate gmon.out.1, …,
gmon.out.n

• Analyze gmon.out file with Xprofiler

• xprofiler a.out gmon.out

• Important factors:

• Sampling interval is in the order of ms

• Profiling introduces overhead due to function calls

IBM Research

© 2008 IBM Corporation

Xprofiler - Initial View

Clustered
functions

Library
calls

IBM Research

© 2008 IBM Corporation

Xprofiler - Unclustering Functions

on “Filter” menuon “Filter” menu
select “Uncluster

Functions”

IBM Research

© 2008 IBM Corporation

Xprofiler - Full View - Application and Library Calls

IBM Research

© 2008 IBM Corporation

Xprofiler - Hide Lib Calls Menu

Now select
“Hide All

Library Calls”

Can also filter by:
Function Names,
CPU Time,
Call Counts

IBM Research

© 2008 IBM Corporation

Xprofiler - Application View

• Width of a bar:
time including
called routines

• Height of a bar:
time excluding
called routines

• Call arrows
labeled with
number of calls

• Overview
window
for easy
navigation
(View ����
Overview)

IBM Research

© 2008 IBM Corporation

Xprofiler: Zoom In

IBM Research

© 2008 IBM Corporation

Xprofiler: Flat Profile

• Menu Report provides usual gprof reports plus some extra ones

– Flat
Profile

– Call
Graph
Profile

– Function
Index

– Function
Call
Summary

– Library
Statistics

IBM Research

© 2008 IBM Corporation

Xprofiler: Source Code Window

• Source code
window displays
source code
with time profile
(in ticks=0.01 sec)

• Access

– Select function
in main display

– � context menu

– Select function
in flat profile

– � Code Display

– � Show Source
Code

IBM Research

© 2008 IBM Corporation

Xprofiler - Disassembler Code

IBM Research

© 2008 IBM Corporation

Xprofiler: Tips and Hints
• monenable()/mondisable() to sample certain regions

• Simplest when gmon.out.*, executable, and source code are in one directory

– Select “Set File Search Path” on “File” menu to set source directory when
source, and executable are not in the same directory

– Can use -qfullpath to encode the path of the source files into the binary

• By default, call tree in main display is “clustered”

– Menu Filter � Uncluster Functions

– Menu Filter � Hide All Library Calls

• Libraries must match across systems!

– on measurement nodes

– on workstation used for display!

• Must sample realistic problem (sampling rate is 1/100 sec)

IBM Research

© 2008 IBM Corporation18

HPM – HW counter library

IBM Research

© 2008 IBM Corporation

HPM: What Are Performance Counters
• Extra logic inserted in the processor to count specific events

� Updated at every cycle

� Strengths:

– Non-intrusive

– Very accurate

– Low overhead

� Weakness

– Provides only hard counts

– Specific for each processor

– Access is not well documented

– Lack of standard and documentation on what is counted

IBM Research

© 2008 IBM Corporation

HPM: Hardware Counters
• 8 counters on PPC970 and Power4, 6 counters on Power 5/5+

– Several (100+) events per counter
• 48 UPC counters on Blue Gene/L, 328 events

• 256 UPC counters on Blue Gene/P, ~1000 events

• Events can not be selected independently

– PPC970: 41 groups, default: 23
– Power 4: 64 groups, default: 40

– Power 5: 140 groups (AIX 5.2), 148 groups (AIX 5.3),
default 137

– Power 5+: 152 groups, default 145
– Blue Gene/L: 16 groups
– Blue Gene/P: 4 groups

IBM Research

© 2008 IBM Corporation

• Derived metrics allow users to correlate the behavior of the
application to one or more of the hardware components

• One can define threshold values acceptable for metrics and
take actions regarding program optimization when values
are below the threshold

HPM: Hardware Counters
• Cycles

• Instructions

• Floating point instructions

• Integer instructions

• Load/stores

• Cache misses

• TLB misses

• Branch taken / not taken

• Branch mispredictions

• Useful derived metrics

– IPC - instructions per cycle
– Float point rate (Mflip/s)
– Computation intensity
– Instructions per load/store
– Load/stores per cache

miss
– Cache hit rate
– Loads per load miss
– Stores per store miss
– Loads per TLB miss
– Branches mispredicted %

IBM Research

© 2008 IBM Corporation

Derived Metrics

� Utilization rate

� Total FP load and store operations

� MIPS

� Instructions per cycle/run cycle/load
store

� % Instructions dispatched that
completed

� Fixed point operations per Cycle or
load/stores

� Branches mispredicted percentage

� number of loads per load miss

� number of stores per store miss

� number of load/stores per L1 miss

� L1 cache hit rate

� number of loads per TLB miss

� number of loads/stores per TLB miss

�Total Loads from L2

�L2 load traffic

�L2 load bandwidth per processor

�Estimated latency from loads from L2

�% loads from L2 per cycle

�Total Loads from local L2

�local L2 load traffic

�local L2 load bandwidth per processor

�Estimated latency from loads from local L2

�% loads from local L2 per cycle

�Total Loads from L3

�L3 load traffic

�L3 load bandwidth per processor

�Estimated latency from loads from L3

�…

IBM Research

© 2008 IBM Corporation

CPU/Memory Performance

� Instrumentation library

� Provides performance information for instrumented
program sections

� Supports multiple instrumentation sections

� Supports MPI, threading and mixed mode

� Multiple sections may have the same ID

� Run-time performance information collection

IBM Research

© 2008 IBM Corporation

LIBHPM
• Allows to go in the source code and instrument different sections

independently

• Supports Fortran, C, and C++

• For each instrumented section provides:

• Total count & duration (wall clock time)

• Hardware performance counters information

• Derived metrics

• Provides resource usage statistics for the total execution of the
instrumented program

• Supports:
• MPI, OpenMP, & pThreads
• Multiple instrumentation points
• Nested instrumentation
• Multiple calls to an instrumented point

IBM Research

© 2008 IBM Corporation

Event Sets

� 4 sets (0-3); ~1000 events

� Information for

– Time

– FPU

– L3 memory

– Processing Unit

– Tree network

– Torus network

IBM Research

© 2008 IBM Corporation

Instrumentation section

hpmInit(tasked, "my program");

hpmStart(1, "outer call");

do_work();

hpmStart(2, "computing meaning of life");

do_more_work();

hpmStop(2);

hpmStop(1);

hpmTerminate(taskID);

IBM Research

© 2008 IBM Corporation

Use MPI
taskID with

MPI programs

Using LIBHPM

• Declaration:

• Use:

– #include f_hpm.h

call f_hpminit(0, “ prog”)

call f_hpmstart(1, “ work”)

do

call do_work()

call f_hpmstart(22, “ more work”)

– call compute_meaning_of_life()

call f_hpmstop(22)

end do

call f_hpmstop(1)

call f_hpmterminate(0)

IBM Research

© 2008 IBM Corporation

OpenMP/Threading

� Thread-safe libhpm supports OpenMP and threaded
applications.

� A thread-safe linker invocation, such as xlc_r and xlf_r,
should be used or

� libpthreads.a must be included in the list of libraries.

IBM Research

© 2008 IBM Corporation

HPM: Multi-thread Support

�

� � � � � �

�

�

hpmTstarthpmTstarthpmTstart

hpmTstophpmTstophpmTstop

hpmStart

hpmStop

IBM Research

© 2008 IBM Corporation

Functions

� hpmInit(taskID, progName) / f_hpminit(taskID, progName)

– taskID is an integer value indicating the node ID.

– progName is a string with the program name.

� hpmStart(instID, label) / f_hpmstart(instID, label)

– instID is the instrumented section ID. It should be > 0 and <= 100
(can be overridden)

– Label is a string containing a label, which is displayed by PeekPerf.

� hpmStop(instID) / f_hpmstop(instID)

– For each call to hpmStart, there should be a corresponding call to
hpmStop with matching instID

� hpmTerminate(taskID) / f_hpmterminate(taskID)

– This function will generate the output. If the program exits without
calling hpmTerminate, no performance information will be generated.

IBM Research

© 2008 IBM Corporation

Overhead

� libhpm collects information and performs summarization during run
time

– there can be considerable overhead if instrumentation
sections are inserted inside inner loops.

� Guideline

– If the overhead is several orders of magnitude smaller than
the total duration of the instrumented section, you can
safely ignore the overhead timing.

– If the overhead is in the same order as the total duration of
the instrumented section, you should be suspicious of the
results.

– If the overhead is within 20% of the measured wall clock
time, a warning is printed to the ASCII output file.

IBM Research

© 2008 IBM Corporation

C and C++ example

declaration:

#include "libhpm.h"

use:

hpmInit(tasked, "my program");

hpmStart(1, "outer call");

do_work();

hpmStart(2, "computing meaning of life");

do_more_work();

hpmStop(2);

hpmStop(1);

hpmTerminate(taskID);

IBM Research

© 2008 IBM Corporation

Fortran example

declaration:

#include "f_hpm.h"

use:

call f_hpminit(taskID, "my program")

call f_hpmstart(1, "Do Loop")

do …

call do_work()

call f_hpmstart(5, "computing meaning of life");

call do_more_work();

call f_hpmstop(5);

end do

call f_hpmstop(1)

call f_hpmterminate(taskID)

IBM Research

© 2008 IBM Corporation

Multithreaded program

!$OMP PARALLEL

!$OMP&PRIVATE (instID)

instID = 30+omp_get_thread_num()

call f_hpmtstart(instID, "computing meaning of life")

!$OMP DO

do ...

do_work()

end do

call f_hpmtstop(instID)

!$OMP END PARALLEL

� If two threads use the same ID numbers for call to hpmTstart or hpmTstop, libhpm exits with
the following error message:

– hpmcount ERROR - Instance ID on wrong thread

IBM Research

© 2008 IBM Corporation

Output

� HPM_OUTPUT_NAME

� The name <name> is expanded into different file names:

– <name>.hpm is the file name for ASCII output, which is
a one-to-one copy of the screen output.

– <name>.viz is the file name for XML output.

� HPM_UNIQUE_FILE_NAME
– The following string is inserted before the last dot (.) in the

file name:

– _<hostname>_<process_id>_<date>_<time>

IBM Research

© 2008 IBM Corporation

Considerations for MPI parallel programs

� HPM_AGGREGATE

– does aggregation

– restricting the output to a subset of MPI tasks

– takes a value, which is the name of a plug-in that
defines the aggregation strategy

� plug-in

– a shared object

– distributor and aggregator

IBM Research

© 2008 IBM Corporation

Distributor

� A subroutine that determines the MPI task ID

� Sets or resets environment variables accordingly

� Environment variable can be any environment variable

� The distributor is called before any environment
variable is evaluated by HPM

IBM Research

© 2008 IBM Corporation

Aggregator

� Aggregation of the hardware counter data across the
MPI tasks

� After the hardware counter data is gathered

� Before the data is printed

� Before the derived metrics are computed

� Check Redbook for detailed interface description

IBM Research

© 2008 IBM Corporation

Plug-in shipped with HPCT

� mirror.so

– the plug-in that is called when no plug-in is requested.

� loc merge.so

– does a local merge on each MPI task separately

� single.so

– does the same as mirror.so, but only on MPI task 0. The
output on all other tasks is discarded.

� average.so

– a plug-in for taking averages across MPI tasks

IBM Research

© 2008 IBM Corporation

Hardware Counter Performance Visualization

IBM Research

© 2008 IBM Corporation41

MPI Profiler/Tracer

IBM Research

© 2008 IBM Corporation

Message-Passing Performance
MPI Profiler/Tracer

– Implements wrappers around MPI calls using the PMPI interface

• start timer

• call pmpi equivalent function
• stop timer

– Captures MPI calls with source code traceback

– No changes to source code, but MUST compile with -g

– Microsecond order of magnitude overhead per MPI call

– Does not synchronize MPI calls

– Compile with –g and link with libmpitrace.a

– Generate XML files for peekperf

IBM Research

© 2008 IBM Corporation

Message-Passing Performance

MPI Tracer

–Captures “timestamped” data for MPI calls
with source traceback

–Provides a color-coded trace of execution

–Very useful to identify load-balancing
issues

IBM Research

© 2008 IBM Corporation

Compiling and Linking

� Consider turning off or having a lower level of optimization (-O2, -
O1,...)

– High level optimization affects the correctness of the
debugging information and can also affect the call stack
behavior.

� To link the application with the library

– The option -L/path/to/libraries, where /path/to/libraries is
the path where the libraries are located

– The option -lmpitrace, which should be before the MPI
library -lmpich, in the linking order

– The option -llicense to link the license library

IBM Research

© 2008 IBM Corporation

Environment Flags
� TRACE_ALL_EVENTS (default yes)

– saves a record of all MPI events one after MPI Init(), until the
application completes or until the trace buffer is full.

– By default, for MPI ranks 0-255, or for all MPI ranks, if there are
256 or fewer processes in MPI_COMM_WORLD.

– Alternative: trace_start/stop()

� MAX_TRACE_EVENTS (Default: 30,000)

� TRACE_ALL_TASKS
– Set to “yes” to trace all tasks/ranks

� MAX_TRACE_RANK

� TRACEBACK_LEVEL (Default: 0)
– Level of trace back the caller in the stack
– Used to skipped wrappers

� TRACE_SEND_PATTERN
– Has to set to “yes” to trace communication pattern (e.g., Average hops)
– AverageHops = sum(Hopsi × Bytesi)/sum(Bytesi)

IBM Research

© 2008 IBM Corporation

MPI Profiler Output

IBM Research

© 2008 IBM Corporation

MPI Profile Visualization

IBM Research

© 2008 IBM Corporation

MPI Tracer output

IBM Research

© 2008 IBM Corporation

MPI Trace Visualization

IBM Research

© 2008 IBM Corporation

MPI Message Size Distribution

9E-0710485761M ... 4M1 (B)MPI_Isend

1.7E-06786432256K ... 1M2 (A)MPI_Isend

1.7E-0619660864K ... 256K2 (9)MPI_Isend

1.3E-064915216K ... 64K2 (8)MPI_Isend

1.3E-06122884K ... 16K2 (7)MPI_Isend

1.3E-0630721K ... 4K2 (6)MPI_Isend

1.3E-06768257 ... 1K2 (5)MPI_Isend

1.3E-0619265 ... 2562 (4)MPI_Isend

1.3E-064817 ... 642 (3)MPI_Isend

1.4E-06125 ... 162 (2)MPI_Isend

0.00000630 ... 42 (1)MPI_Isend

1E-0700 ... 41 (1)MPI_Comm_rank

1E-0700 ... 41 (1)MPI_Comm_size

Walltime#BytesMessage Size#CallsMPI Function

7.8E-0600 ... 45 (1)MPI_Barrier

1.98E-0500 ... 421 (1)MPI_Waitall

0.00051710485761M ... 4M1 (B)MPI_Irecv

0.00039786432256K ... 1M2 (A)MPI_Irecv

9.98E-0519660864K ... 256K2 (9)MPI_Irecv

2.23E-054915216K ... 64K2 (8)MPI_Irecv

7.1E-06122884K ... 16K2 (7)MPI_Irecv

3.4E-0630721K ... 4K2 (6)MPI_Irecv

2.6E-06768257 ... 1K2 (5)MPI_Irecv

2.4E-0619265 ... 2562 (4)MPI_Irecv

1.5E-064817 ... 642 (3)MPI_Irecv

1.4E-06125 ... 162 (2)MPI_Irecv

4.7E-0630 ... 42 (1)MPI_Irecv

Walltime#BytesMessage Size#CallsMPI Function

IBM Research

© 2008 IBM Corporation

Communication Summary

…………………
15.016010016
75.016003315
15.016003214
15.016003113
15.016003012
45.016002311
15.016002210
15.01600219
15.01600208
45.01600137
15.01600126
15.01600115
15.01600104
45.01600033
15.01600022
15.01600011
10.01500000

avg_hopstotal_comm(sec)procidzcoordycoordxcoordtaskid

maximum communication time = 5.016 sec for task 20
median communication time = 5.016 sec for task 30
minimum communication time = 0.015 sec for task 0

Communication summary for all tasks:

�

� ×
=

i
i

i
ii

Bytes

BytesHops
sAverageHop

IBM Research

© 2008 IBM Corporation

Configuration

� Reduce data volume

– The volume of trace data can be controlled

– The cost or overhead to collect, transfer and store will
be reduced significantly.

– Helping to solve the scalability issue

� Provide flexibility

– Help user focus on interesting points

– Can be used as a basis towards automatic performance
tuning.

IBM Research

© 2008 IBM Corporation

Existing MPI profiling/tracing tool

Program execution

Trace
Buffer

Trace
Buffer

MPI library

TraceTrace

Derived
Metrics

Derived
Metrics

MPI function calls

MPI Profiling tool

IBM Research

© 2008 IBM Corporation

Implementation Example – Programmable MPI
profiling/tracing tool

User defined output

Program execution

Record trace? Trace
Buffer

Trace
Buffer

MPI library

TraceTrace

Derived
Metrics

Derived
Metrics

MPI function calls MPI_Finalize

Utility functions

Yes

Yes
Output trace?

MPI Profiling tool

IBM Research

© 2008 IBM Corporation

Configuration Functions

� MT_trace_event()

– Called by every profiled MPI functions

– Decide whether the information should be logged

� MT_output_trace()

– Called in MPI_Finalize()

– Decide whether the node should output the trace collected

� MT_output_text()

– Called in MPI_Finalize()

– Used for customize performance data output (e.g., user-defined
metrics)

IBM Research

© 2008 IBM Corporation

Utility functions

Profile

Profiler

User

Application

Environment

� Software specific info.
– Code segment

� “ Tool factor”
– Memory usage

� System info.
– Node location

� User preference
– User-defined metrics

IBM Research

© 2008 IBM Corporation

Utility Functions

� Help user configure the profiling/tracing tool

� Information include

– MPI functions (call counts, size/distance of data transferred)

– Time

– Memory usage

– Compute node environment (coordinates…)

– Statistics

IBM Research

© 2008 IBM Corporation

Utility Functions

� long long MT_get_mpi_counts(int); /* number of calls for a MPI */

� double MT_get_mpi_bytes(int); /* size of data tranfer for a MPI */

� double MT_get_mpi_time(int); /* time used for a MPI */

� double MT_get_avg_hops(void); /* average hops each MPI message
travels */

� double MT_get_time(void); /* time from the MPI_Init */

� double MT_get_elapsed_time(void); /* time between MPI_Finalize and
MPI_Init */

� char *MT_get_mpi_name(int); /* name for a MPI */

� int MT_get_tracebufferinfo(struct …); /* info for trace buffer */

� int MT_get_memoryinfo(struct …); /* info for the stack/heap */

� int MT_get_calleraddress(void); /* info for the caller */

� int MT_get_callerinfo(int, struct …); /* get caller detailed info */

� void MT_get_environment(struct …); /* self id info e.g., mpi rank */

IBM Research

© 2008 IBM Corporation

Example Usage

int MT_trace_event(int id) {

/* collect call count distribution */
for (i=0; i< env.nmpi; i++)

event_count[i] = MT_get_mpi_counts(i);

if (compare_distribution(event_count,env.nmpi,0.5) == 1)
return 0; /* no trace recording if

call count distribution stays the same */
else

return 1; /* record trace if new call count distribution */
}

int MT_output_trace(int rank) {
if (rank < 32) return 1;

else return 0;
}

IBM Research

© 2008 IBM Corporation60

Modular I/O (MIO)

IBM Research

© 2008 IBM Corporation

Modular I/O (MIO)

� Addresses the need of application-level optimization for I/O.

� Analyze and tune I/O at the application level

– For example, when an application exhibits the I/O pattern of
sequential reading of large files

– MIO

• Detects the behavior

• Invokes its asynchronous prefetching module to prefetch user data.

� Work in progress - Integration into HPC Toolkit with PeekPerf
capabilities

– Source code traceback

– Future capability for dynamic I/O instrumentation

IBM Research

© 2008 IBM Corporation

Modular I/O Performance Tool (MIO)
• I/O Analysis

– Trace module

– Summary of File I/O Activity + Binary Events File

– Low CPU overhead

• I/O Performance Enhancement Library

– Prefetch module (optimizes asynchronous prefetch and write-behind)

– System Buffer Bypass capability

– User controlled pages (size and number)

• Recoverable Error Handling

– Recover module (monitors return values and errnor + reissues failed
requests)

• Remote Data Server

– Remote module (simple socket protocol for moving data)

IBM Research

© 2008 IBM Corporation

Performance Visualization (work in progress)

reads
writes

JFS performance

4500 15500

vmtune -p20 -P80 -f120 -F128 -r2 -R8

time (seconds)

fil
e

po
si

tio
n

(
by

te
s

)

IBM Research

© 2008 IBM Corporation

MSC.Nastran V2001

Benchmark:
SOL 111, 1.7M DOF, 1578 modes,
146 frequencies, residual flexibility
and acoustics. 120 GB of disk space.

Machine:
4-way, 1.3 GHz p655, 32 GB with 16
GB large pages, JFS striped on 16
SCSI disks.

MSC.Nastran:
V2001.0.9 with large pages,
dmp=2 parallel=2 mem=700mb
The run with MIO used mio=1000mb

T
im

e
(s

ec
on

ds
)

6.8 TB of I/O in 26666 seconds is an average of about 250 MB/sec

0

10,000

20,000

30,000

40,000

50,000

60,000

no MIO with MIO

Elapsed
CPU time

IBM Research

© 2008 IBM Corporation

ABAQUS Standard v6.3-4

Engine models

Parallel direct
solver

16 POWER4
processorsE

la
ps

ed
 T

im
e

(s
ec

on
ds

)

0

1000

2000

3000

4000

5000

6000

5 M dof,
36 GB fct

file

11.5 M dof,
80 GB fct

file

with MIO
w/o MIO

IBM Research

© 2008 IBM Corporation66

PompProf

IBM Research

© 2008 IBM Corporation

“Standard” OpenMP Monitoring API?

• Problem:
– OpenMP (unlike MPI) does not define

standard monitoring interface (at SC06 they accepted
a proposal from SUN and others)

– OpenMP is defined mainly by directives/pragmas

• Solution:
– POMP: OpenMP Monitoring Interface

– Joint Development
• Forschungszentrum Jülich
• University of Oregon

– Presented at EWOMP’01, LACSI’01 and SC’01
• “The Journal of Supercomputing”, 23, Aug. 2002.

IBM Research

© 2008 IBM Corporation

Profiling of OpenMP Applications: POMP

• Portable cross-platform/cross-language API to simplify the design and
implementation of OpenMP tools

• POMP was motivated by the MPI profiling interface (PMPI)

– PMPI allows selective replacement of MPI routines at link time

– Used by most MPI performance tools (including MPI Profiler/Tracer)

����������	

�	��� �����	��

�	��� ���� ���

 �������	��

 �����	��

� ���� ���

 ���� ���

 �������	��

 �����	��

� ���� ���

 ���� ���

��������������	��

 ���� ���

IBM Research

© 2008 IBM Corporation

POMP Proposal

• Three groups of events

– OpenMP constructs and directives/pragmas
• Enter/Exit around each OpenMP construct

– Begin/End around associated body

• Special case for parallel loops:
– ChunkBegin/End, IterBegin/End, or IterEvent instead of Begin/End

• “Single” events for small constructs like atomic or flush

– OpenMP API calls
• Enter/Exit events around omp_set_*_lock() functions

• “single” events for all API functions

– User functions and regions

• Allows application programmers to specify and control
amount of instrumentation

IBM Research

© 2008 IBM Corporation

1: int main() {
2: int id;
3:
4: #pragma omp parallel private(id)
5: {
6: id = omp_get_thread_num();
7: printf("hello from %d\n", id);
8: }
9: }

Example: POMP Instrumentation
1: int main() {
2: int id;

3:

4: #pragma omp parallel private(id)
5: {

6: id = omp_get_thread_num();
7: printf("hello from %d\n", id);

8: }

9: }

*** POMP_Init();

*** POMP_Finalize();

*** { POMP_handle_t pomp_hd1 = 0;
*** int32 pomp_tid = omp_get_thread_num();

*** int32 pomp_tid = omp_get_thread_num();

*** }

*** POMP_Parallel_enter(&pomp_hd1, pomp_tid, -1, 1,
*** "49*type=pregion*file=demo.c*slines=4,4*elines=8,8**");

*** POMP_Parallel_begin(pomp_hd1, pomp_tid);

*** POMP_Parallel_end(pomp_hd1, pomp_tid);

*** POMP_Parallel_exit(pomp_hd1, pomp_tid);

IBM Research

© 2008 IBM Corporation

SIGMA-POMP: Performance Monitoring Interface for
OpenMP based on PSIGMA Instrumentation

• Approach
– A POMP implementation using pSigma’s binary

instrumentation and rewriting

– Built on top of pSigma
• Modifies the binary with performance instrumentation
• No source code or re-compilation required

IBM Research

© 2008 IBM Corporation

POMP Profiler (PompProf)

• Profiler for OpenMP application implemented on top of
SIGMA-POMP

• Generates a detailed profile describing overheads and time
spent by each thread in three key regions of the parallel
application:

– Parallel regions

– OpenMP loops inside a parallel region

– User defined functions

–

• Profile data is presented in the form of an XML file that can
be visualized with PeekPerf

IBM Research

© 2008 IBM Corporation

IBM Research

© 2008 IBM Corporation74

Interactive Performance Debugger

IBM Research

© 2008 IBM Corporation

Interactive Performance Debugger

� Control instrumentation from the visualization GUI: one
complete framework for performance analysis

� Operate on the source code but perform modifications on
the binary

� Debugger-like interface

� Automatically display collected data

� Refine instrumentation (iterative tuning)

� Comparison between data and between multiple runs

� Graphics capabilities (tables, charts)

� Query language for “ what-if” analysis

IBM Research

© 2008 IBM Corporation

Structure of the HPC toolkit

pSigma

Binary Application

PeekPerf GUI

Communication Profiler

CPU Profiler

Memory Profiler

Shared-Memory Profiler I/O Profiler

Visualization

Query

Analysis

Instrumented Binary

execution

Binary instrumentation

IBM Research

© 2008 IBM Corporation

Peekperf Main Interface

IBM Research

© 2008 IBM Corporation

Peekperf Main Interface (Cont.)

IBM Research

© 2008 IBM Corporation

Peekperf Main Interface (Cont.)

IBM Research

© 2008 IBM Corporation

Peekperf Main Interface (Cont.)

IBM Research

© 2008 IBM Corporation

• The IBM HPC Toolkit provides an integrated framework
for performance analysis

• Support iterative analysis and automation of the
performance tuning process

• The standardized software layers make it easy to plug in
new performance analysis tools

• Operates on the binary and yet provide reports in terms
of source-level symbols

• Provides multiple layers that the user can exploit (from
low-level instrumentations to high-level performance
analysis)

• Full source code traceback capability

• Dynamically activate/deactivate data collection and
change what information to collect

Summery

