. D |
allinea eb.ug.gmg
disciplined debugging by D IS C I p ‘ I n e

3. Keep alogbook 1. Make simple scripts to compile,

$ mkdir 1 reproduce and test whether a bug
mkdir logs

$ vim logs/short-description OCCuUrs or FWC)TZ

Start by describing what was
seen when the problem first $ wget http://content.allinea.com/downloads/test-script.sh

appeared. $ vim test-script.sh # instructions are in the file

To reproduce: the steps that
can be taken to reproduce . . .
. , Example of such a script in use:
it. Bonus: make a script, put

it in the logs/ directory and
give it the same name as $./test-script.sh
this file.

Hypothesis: what I suspect

Compiling hello with debug information
Submitted to the queue with id srv03-ib.20374
Waiting for srv03-ib.20374 to start

Job started at Sun Sep 30 20:23:03 CEST 2012
Waiting for srv03-ib.20374 to finish

Job finished at Sun Sep 30 20:37:42 CEST 2012
Program crashed: FAIL

Experiment: how I can test it
Observation: what did I see?
Conclusion: what I learned.

4, Use mercurial (or git):
Start for the first time:

S hg init # in project dir 2. Set up your debugger and check it
® vim .hgignore works before you need it:
syntax: glob
*.0
%~ $ module load ddt
*_out $ cp -r /path/to/ddt-directory/examples .
*.err $ cd examples
$ mpicc -g -00 hello.c -o hello
Add main.c: $ ddt -np 160 -start ./hello
$ hg add main.c
§essioLgontrol Search View Help
e [W]E @ S REBLEEIE ! O-D-
SOVe ChO nges' Current Group: |All :‘Focus on current: @ Group Process Thread Step Threads Together
: 160 processes (0-159) Paused: 160 Playing: 0 Finished: 0
$ hg commit Al Currently selected: o | (on Namaste-Il, pid 4846, main thread
Create Group
Project Files B® m
. Search (Ctrl+K) LU “: bigArray[p]=80000+p;
See ChOngeS. S » Ll fo;éﬁ?;gfﬁi;fﬂ”
$ hg log | = eader s T e H AP ol
4+ Source Files 85 MPI Comm_rank(MPI_COMM WORLD, &my rank);

86 MPI_Comm size(MPI_COMM WORLD, &p);

Go back to version 4:
$ hg update 4

Problem? Email support@allinea.com - we will fix it!

Go to latest version: Bonus: keep a DDT session file for each logbook file:
$ hg update -C Session -> Save session... -> logs/short-description.ddt

allinea

inspired debugging

Sources of inspiration

1. Search your logbook

$ grep -ir r_send logs/*
segfault-at-64: Conclusion:
increase buffer size in r_send
to stop MPI buffering it
deadlock-at-512: Conclusion:
reduce buffer size in r_ send
and hope MPI buffers it

2. Talk to a duck

"So I'm sure it can't be a mutex
problem, because it's locked in
both the send and the reciev-
oh, wait! That might be it!"

3. Be blessed with a logical
mind

The rest of us may have to try
harder.

Also be lucky enough to have
over two decades of some of
the finest education in the
history of our species!

Debugging
by Inspiration

Listen to your instincts and test them

Suspect the bounds are incorrect somewhere in the
loop? Make Allinea DDT log them all:

$ ddt -offline log.html -n 64 -trace-at watchpoint.c:
46,i,j,k,numprocs ./watchpoint

Time Tracep Pre Values
1 |00:11.029 |main (watchmatrix.c:46) [0-63 iz— O numprocs: — 64j: — Ok: — 0
2 |00:11.029 [main (watchmatrix.c:46) | 0-63 iz— Onumprocs: — 64j: — O0k:— 1
3 |00:11.029 | main (watchmatrix.c:46) | 0-63 iz — Onumprocs: — 64j: — O0k: — 2
4 |00:11.029 [main (watchmatrix.c:46) | 0-63 ir— Onumprocs: — 64j: — O0k:— 3

Not true? Add it to your log and try something else!

Just look at the problem (for 10 minutes)

$ ddt -n 160 -start programs/linkedlist

The code view shows where processes stop and
current Line and Locals let you explore the state:

€ linked.c X

69 }

70 Locals | Current Line(s) l Current Stack

71 do { i i Current Line(s) ®
72 struct llist* next = list->next; -

72 value = List-on this line: Variable Name | Value

I free(list); |7 process: rank 59| — st W ax7fiecoe07b8

76 list = next;

77 } while (list != NULL);

That's interesting - why does one process have a
much lower address for "list"? Click on the graph to
see a more detailed comparison:

Expression: | list > 0x0 v/
Processes in current group (All, 96 procs) | Align stack frames
Limit comparison to I B‘ s.f.
Only show if: See Examples Gancel
¥ Use as MPI Rank = Create Groups [Export Full Window
Values Process(es) pal=tS
0 59 ®
Count: 96
1 0-58,60-95
Not shown: 0

Create groups, add tracepoints and explore freely:

Current Group: |All + |Focus on current: ® Group () Process () Thread [Step Threads Together | Locals | Current Line(s) \ Current Stack \
Al 96 processes (0-95) Paused: 96 Playing: 0 Finished: 0 Locals]
Currently selected: o] (on Namaste-Il, pid 31398, main’ Variable Name value
-argc —1
+-argv — Ox7fffffffcae8
95 processes (0-58,60-95) Paused: 95 Playing: 0 Finished: 0 - T T 0 7ffrecoe07c8
~rank ~~0
Values logged size —9%
X = Htv {tv_sec = 1349083426
last: — Ox0 primes->next: OxcOcOablbcOcOablb value: =~ from 29 to 89 -value o 35

Problem? Email support@allinea.com - we will fix it!

allinea

magical debugging

Magical ingredients

1. Keep alogbook in your
project directory, also in
source control. Use one text
file for each bug
investigated.

2. Set up Allinea DDT

$ module load ddt

User guide also available
online:

http://www.allinea.com/
products/ddt-support/

3. Try static analysis
$ /path/to/ddt/libexec/cppcheck
$ /path/to/ddt/libexec/ftnchek

On by default in Allinea DDT.
4. MPIl checker tools

Marmot: http://www.hlrs.de/
organization/av/spmt/research/

marmot/downloads/

MUST is in beta until SC12

5. Make Mercurial find the
bug for you:

$ hg bisect --reset

$ hg bisect --bad # broken now
$ hg bisect --good 4 # was ok

$ hg bisect -c ./test-script.sh

The first bad revision is:

changeset: 6:a06eaeb2cf30

$ hg log -pr 6 # shows the bug!

Debugging
by Magic

Program crashes (segfault):

$ ddt -offline log.html -n 256 examples/hello argl arg2

4| A\ |00:25.325|0-255

Process stopped in main (hello.c:118) with signal SIGSEGV (Segmentation fault).
Reason/Origin: tkill

Your program will probably be terminated if you continue.

You can use the stack controls to see what the process was doing at the time.

P Stacks
'¥ Stack for process 0

XTEEEEE£D5T8, environ=OxTEEff££fbec0) at /home/hpc/h1%02/di34cud/examples/hello.c:118

'V Local variables for process 0 (ranges shown for 0-255)
Name | Value

H'l

Program gets stuck (deadlock):

$ ddt -n 128 -start programs/loop argl arg2

Press play, wait for the deadlock, then hit pause

> [

Check the parallel stack view and variables:

Processes Function Variable Name Value
1 2main (loop.c:48) +-send_buffer — 0xe90af008
1 e pass1tOn (loop.c:27) “to —
| &
127 Smain (loop.c:51)

e

Or use the MPI message queues window:

TN

Text Communicator Queue Pointer
1 Send: 0x8... MPI_COMM_WORLD Send 0x0 0 0 1

From (local) From (global) To (local)

Suspected memory errors:

$ ddt -n 256 examples/hello argl arg2

¥ Memory Debugging: Balanced, No guard pages, Backtraces, Preload Details...

Heap Overflow/Underflow Detection
¥ Add guard pages to detect out of bounds heap access

Guard pages: ‘ 1 E‘:\ Add guard pages: | After s

Allinea DDT

£ hello.c X

45 N -
46 } ‘ Processes 0-143: G W)

47 void func3() Variable Name Value
48 { Memory error detected in func3 (hello.c:51): b —ox2

49 void* i = (void*) 1;
50 while(i++ || 'i)

51 free((void*)i);
52
53
54 int main(int argc, cha
22

cannot locate pointer in heap

‘ > Continue ‘ ‘

Problem? Email support@allinea.com - we will fix it!

Locals | Current Line(s) | Current

allinea

scientific debugging

An example logbook

Seen: "Signal: Segmentation
fault(ll). Failing at address:
0x8". Reproduce: mpirun -n 64
Debugger: Memory error detected
in main (linked.c:75) - "a
previous write overwrite the

reserved memory."

Hypothesis: Classic off-by-one.
Prediction: Adding guard pages
will show where the bad write
takes place.

Experiment: Run DDT again with
guard pages set to "After", 1
page.

Observation: 61 procs stop at
line 65, with an invalid "list"
pointer (0x7ff£f3cb5£f00). last
and list->next are both 0x0.
Conclusion: The value of list

is *already* invalid here!

Hypothesis: Allocation failed
Prediction: The call to calloc
doesn't assign enough memory.
Experiment: Run to line 65 and
examine the "list".
Observation: View pointer
details claims the size
allocated is 0 bytes.
Conclusion: Confirmed. The man
page for calloc shows we are
allocating an array of size 0.

Hypothesis: Calloc is the wrong
function to use here.
Prediction: Using malloc
instead fixes the bug.
Experiment: Replace both calls.
Observation: 1 proc segfaults
at line 72 with list = 0x0.
Conclusion: Confirmed, this

crash is from another bug!

Debugging
by Science

1. Suggest a falsifiable hypothesis

The line "list->next = last" crashes because the call to
calloc isn't allocating enough memory here:

64 list = calloc(sizeof(struct 1llist), 0);
65 list->next = last; // <- list->next crashes
66 list->value = value;

2. Make a testable prediction
View pointer details on line 65 says "invalid memory"

3. Experiment

Run to line 65:

61 -

62 while ((value = rand() % size) !'=0) {

63 struct 1list* last = list;

64 st = calloc(sizeof(struct 1list), 0); Line Number:

st->next = last; -
list->value = value; ’

6
65

1
Run H Cancel "

Use "View pointer details" on "list":

i Pointer: list
Type: The expression points beyond the end of an allocation.
| Size: 0 bytes

; This pointer was allocated at:

! [#0 main (linked.c:64)
| | #1 _libc_start_main
#2 _start

4. Observe and record the results

Cadlloc is returning a valid pointer to 0 bytes of
memory, which isn't enough for list->next to be valid.

5. Form a conclusion
Confirmed. The calloc man page tells us:

If nmemb or size is 0, then calloc() returns either NULL, or
a unique pointer that can later be successfully passed to
free().

We are passing size = 0 (parameter 2) - a mistake!

Repeat until solved
A new hypothesis - is calloc the wrong function here?

