
IBM Research

Oct 2003 | Blue Gene/L © 2003 IBM Corporation

MPI Internals

George Almási, Charles Archer, Xavier Martorell,
Chris Erway, José Moreira

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Contents

Layers of communication software
BGL/MPI roadmap & status
MPI Point-to-point messages
Implementing collective communication primitives
Process management
Preliminary performance results
Lessons learned so far
Conclusion

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Layers of BlueGene/L Communication Software

Packet layer
Initialize network HW, (tree & torus), send and receive packets
As simple as we can afford to make it

Torus message layer
Active message layer similar to LAPI and GAMMA

on top of packet layer
Handles hardware complexity

alignment, ordering, transmission protocols
Cache coherence, processor use policy

MPI
BlueGene/L is primarily an MPI machine
A port of Argonne National Labs’ MPICH2
Currently deployed: beta 0.93 – about to upgrade to 0.94

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

The MPICH2 BG/L Roadmap

Message passing Process management

MPI PMI

bgltorus

collectivespt2pt datatype topo

Abstract Device Interface

CH3

socket

MM

sim
ple

uniprocessor
m

pd

Message
Layer

torus tree GI

Torus
Packet Layer

Tree
Packet Layer

GI
Device

CIO
Protocol

bgltorus

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

MPI Implementation Status Today (10/14/2003)

Point-to-point
communication

MPI-1 compliant, except:
No synchronous sends
Missing MPI_Cancel
Buggy & suboptimal

handling of non-
contiguous data streams

No one-sided comm.
Eager protocol only

No flow control
Heater mode only

Process management
Two hard-coded processor

layouts available (XYZ, ZYX)
Underway: user-defined

processor layout

Optimized collectives:
First steps towards

torus/mesh optimized
broadcast

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Point-to-point Communication

Basic MPI functionality
MPI_Send(), MPI_Recv()

Enough to get MPI-1 compliance in MPICH2.
MPICH2 provides everything else

Do-or-die: no high performance MPI without good point-
to-point communication performance
Implementation:

Glue layer (“mpid/bgltorus”): implementation of ADI
Torus message layer
Torus packet layer

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

The Torus Message Layer

Connection Manager

Rank 0 (0,0,0)
Rank 1 (0,0,1)
Rank 2 (0,0,2)

Rank n (x,y,z)
…

…

sendQ

sendQ

recv
sendQ

sendQ

recv

recv

recv

Progress Engine

Dispatcher

Send manager

msg1 msg2 msgP…
Send Queue

Message Data

(un)packetizeruser buffer

protocol & state info

MPID_Request

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Message Layer API

Initialization & advance
BGLML_Initialize()
BGLML_RegisterProtocol()
BGLML_Advance()
…

Message creation
BGLMP_EagerSend_Init()
BGLMP_RvzSend_Init()
BGLMP_EagerRecv_Init()
…

Sending:
BGLML_postsend()

Upcall prototypes:
cb_recvnew()
cb_recvdone()
cb_senddone()

cb_dispatch()

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

The Eager Message Protocol: send side

MPI_Send

MPID_Send BGLMP_EagerSendInit

BGLML_postsend

BGLML_advance

eager_senddone

MPID_Progress

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

The Eager Message Protocol: receive side

MPI_Recv
MPID_Recv

BGLML_advance MPID_Progress

eager_dispatch

eager_recvdone

packet dispatch

BGLMP_EagerRecvInit

FDP_or_AUEeager_recvnew

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Packetization and packet alignment

SENDER

RECEIVER

•Constraint: Torus hardware only handles 16 byte aligned data

•When sender/receiver alignments are same:

•head and tail transmitted in a single “unaligned” packet

•aligned packets go directly to/from torus FIFOs

•When alignments differ, extra memory copy is needed

•Sometimes torus read op. can be combined with re-alignment op.

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

The cost of packet re-alignment

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

alignment

cy
cl

es

non-aligned receive
receive + memcpy
Ideal

The cost (cycles) of reading a packet from the torus into un-aligned memory
Receiver is responsible for re-alignment (e.g. eager protocol)

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Out-of-order packet delivery on torus network

Constraint: routing on torus
network

Deterministic: ordered delivery,
but prone to network bottlenecks

Adaptive: good network behavior,
but out-of-order packet delivery

MPI requires in-order matching of
messages received from same
host.

Only MPI matching information
needs to be delivered in order.

Rendezvous protocol:
Packets belonging to message

body use adaptive routing, can be
unpacked in arbitrary order

RTS packets use deterministic
routing (so messages are matched in
order)

Eager protocol, adaptive
routing:

Re-order messages via
message numbers

Temporary storage for
packets that arrive early

Include MPI matching info in
every packet belonging to a
message

Lower bandwidth when traffic is
high, because of high per-packet
overhead

Eager protocol, deterministic
routing:

Lower per-packet overhead
Potential of network bottlenecks

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Using the Communication Co-processor

Constraint 1: one CPU cannot
keep up with network
Constraint 2: BG/L chip has
two non-coherent 440 cores

Original design point: second
processor acts as an intelligent
DMA engine (“co-processor
mode”)

Initial software development
done with 2nd processor in an
idle loop (“heater mode”)

Considered: “virtual node
mode” (2nd processor has its
own O/S image and stack,
shares all resources equally)

Simple co-processor solution (1
extra memory copy):

CPU0 and CPU1 interact through
common non-cached area
(scratchpad)

Simple, but low performance
Complex 0-copy solution:

Main CPU, coprocessor execute
software cache coherency protocol

Sequences of cache flush and
invalidate instructions

Need kernel support
Danger of false sharing
Complicated, fragile

implementation (“heroic
programming”)

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Co-processor implementation, today (10/14/2003)

Important because it allows
Overlapping communication and

computation
Allows CPUs to keep up with torus

network
“Simple” solution works, but has
low performance
Torus read bandwidth: 1.2B/cycle
“scratchpad” read bandwidth:
2B/cycle for small (256B) packets
We expected 5 B/cycle.
Problem exacerbated by out-of-
orderness of incoming packets
By eager protocol
And by careless programming

We think that the complex solution
will not suffer from performance
problems.

Rendezvous protocol, combined
with co-processor mode and partial
packet method

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

“Partial” packets

Would like to avoid unnecessary copies
Don’t read the packet out of the torus until we know where the data go

Packet header is necessary to determine data destination
Eager protocol: header contains identity of receiving message
Rendezvous protocol: header contains data buffer address

Solution: partial packet
Contains the read-out first “chunk” of the packet
A read function can read the rest of the data
Also usable in co-processor mode

Read function is memory copy

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Scaling problems:
How to crash BGL/MPI in two easy steps

For (I=0;I<1000;I++) {
If (rank==0) {

MPI_Recv(…, 1,);
MPI_Recv(…, 2,);

} Else if (rank<=2) {
MPI_Send (…, 0,);

}
}

Torus routing gives pass-through
packets preferential treatment

Local packets have a lower chance
to get on the network

In the program to the left, assume
that 1 gets preferential treatment:
sends much faster than rank 2
There is no flow control for rank 1.
It can send as fast as the network
allows.
Rank 0 is unable to post the
receives for rank 1, because it is
waiting for rank 2
All rank 1’s messages will be
unexpected in rank 0.
Rank 0 runs out of memory.

Flow control:
Connections own tokens
Receiver grants tokens based

on traffic
Token grants are packets

Introduces latency, safety

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Optimizing Collective Operations

MPICH2 comes with default collective algorithms
Bcast: MST or scatter/allgather
Alltoall: recursive dbl., pairwise exchanges
Alltoallv: post & waitall
Scatter: MST

Default algorithms not suitable for torus topology
Designed for ethernet, switched (crossbar) environments
E.g. a good plane broadcast algorithm uses the four available
links of a node to the maximum

Taxonomy of possible optimizations

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Red-blue broadcast on a mesh
Vernon Austel, John Gunnels, Phil Heidelberger, Nils Smeds

3S+2R

2S+2R

1S+2R

0S+2R

4S+2R

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Implementing collectives on the torus network

torustorus

datatypes

network

topology

kind

All datatypesAll datatypes

1,2,3
dimensional

meshes

1,2,3
dimensional

meshes otherother

Allreduce
Barrier

Allreduce
Barrier Planned for

later
Planned for

later

Bcast
Alltoall

Bcast
Alltoall

Make sure all
links on all
nodes are used

“Deposit bit”
helps w/ latency

Make sure all
links on all
nodes are used

“Deposit bit”
helps w/ latency

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Implementing collectives on the tree network

treetree

datatypes

network

topology

kind

Easier when user
data type resolves to

a homogeneous
built-in data type

Easier when user
data type resolves to

a homogeneous
built-in data type

builtinbuiltin useruser

COMM_WORLDCOMM_WORLD otherother
Control system

support needed to
calculate class route
COMM_WORLD

Control system
support needed to

calculate class route
COMM_WORLD

Easiest
to implement

Easiest
to implement

Bcast
Reduce

Allreduce
Barrier

Bcast
Reduce

Allreduce
Barrier

Scatter
Gather

Alltoall

Scatter
Gather

Alltoall

Danger of
deadlock

Danger of
deadlock

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Global Interrupts

GIGInetwork

COMM_WORLDCOMM_WORLD otherother

MPI_BarrierMPI_Barrier

Only 4 wires are
available –

allocation must
be made with

care.

Only 4 wires are
available –

allocation must
be made with

care.

communicator

Non-
participating
nodes have to
take positive

action!

Non-
participating
nodes have to
take positive

action!

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Process Management in BGL/MPI

Process startup and termination
Implemented using the BG/L CIO

protocol
ciorun asks control system

to start up job
Control system contacts CIO

daemons residing on 1024 I/O
nodes

CIO daemons issue
commands to 64 compute
nodes through tree network

Does not (and will not) support
dynamic MPI process creation

Work in progress: integration with
scheduler

Mapping of torus coordinates to
MPI ranks

Today: fixed torus rank mapping
can be selected through environment
variables at startup

Work in progress: arbitrary mapping
function provided at job startup time

MPI programs are topology
portable; MPI performance is not

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Performance: Bandwidth and Latency targets

MPI 6-way send bandwidth:
BMS = 0.5 BMP

BMS = 1.1 Bytes/cycle
926 MB/s @ 700 MHz

MPI 6-way receive bandwidth:
BMR = 0.5 BMP

BMS = 1.1 Bytes/cycle
926 MB/s @ 700 MHz

HW latency: 2.5 µs (worst case)
MPI latency target: 5 µs
HW Bandwidth:

Theoretical peak per link:
BTL = 0.25 Bytes/cycle

Theoretical peak per node:
12 links (6 snd + 6 rcv)
BTP = 12 BTL = 3 B/cycle
2100 MB/s @ 700MHz

MPI Bandwidth target:
240 of 272 bytes payload:
BMP=0.882 BTP

BMP = 2.2 Bytes/cycle
1850 MB/s @ 700MHz

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

BGL/MPI Latency (Oct. 2003)

½ roundtrip latency: ≈ 3000 cycles
About 6 µs @ 500MHz

Measured:
With Dave Turner’s mpipong
In heater mode; bound to increase

a bit in co-processor mode
Using Nearest neighbors: HW

latency is only about 1200 cycles
Constant up to 192 bytes payload

Single packet

HW
32%

msg layer
13%

packet
overheads

29%

High level
(MPI)
26%

Composition of roundtrip latency:

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

BGL/MPI Bandwidth (Oct. 2003)

On this machine, good bandwidth
is harder to achieve than good
latency.

Per-packet overhead
Bandwidth:

Measured with a custom made
program that sends nearest neighbor
messages

Heater mode
Eager protocol – suboptimally

implemented (224 byte packet
payload instead of 240)

Max bandwidth = 0.823 * BTP
(864 MBytes/s send, receive)

Torus packet writes:
60 cycles/256 byte packet:
4.26 Bytes/cycle
Bandwidth limited by torus
(1.5 B/cycle)

Torus packet reads:
204 cycles/256 byte packet
1.2 B/cycle
Bandwidth limited by CPU

MPI packet reads (eager protocol)
350 cycles/256 byte packet
Limited to 0.731 B/cycle by CPU
Only about 3 FIFOs worth

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Lessons learned during implementation

What we thought would happen
Packet layer would need no

changes
Performance will be influenced by

message start overhead
We will handle out-of-order eager

packets
Co-processor mode would improve

performance quickly
Heater mode would have low

performance

All kinds of low-level optimizations
would be needed for collectives

What really happened
Packet layer had to be re-written

almost from scratch
Performance was influenced by

per-packet overhead
Adaptive routing only used for

rendezvous protocol
Co-processor mode has

performance problems
Heater mode provides adequate

performance, making virtual node
mode a viable option

Collectives can be implemented
using standard pt-2-pt messages, if
hardware topology is taken into
account

IBM Research

Oct 2003 | Blue Gene/L | © 2003 IBM Corporation

Conclusion

MPICH2 point-to-point communication is almost MPI-1 compliant
NAS parallel benchmarks ported, run, measured
LLNL, IBM ported and ran several ASCI Purple benchmarks

sPPM, sweep3d, UMT2K, SMG2K, DD3D
LANL ported and ran SAGE in a single day
Watson developing high-performance Linpack application

.Ongoing work in:
Process management primitives
Topology aware collective operations
Functional correctness (sync. send, Cancel, non-contiguous data
types)
Improving point-to-point performance:

Deploying co-processor mode
Deploying rendezvous protocol

	MPI Internals
	Contents
	Layers of BlueGene/L Communication Software
	The MPICH2 BG/L Roadmap
	MPI Implementation Status Today (10/14/2003)
	Point-to-point Communication
	The Torus Message Layer
	Message Layer API
	The Eager Message Protocol: send side
	The Eager Message Protocol: receive side
	Packetization and packet alignment
	The cost of packet re-alignment
	Out-of-order packet delivery on torus network
	Using the Communication Co-processor
	Co-processor implementation, today (10/14/2003)
	“Partial” packets
	Scaling problems: How to crash BGL/MPI in two easy steps
	Optimizing Collective Operations
	Red-blue broadcast on a mesh
	Implementing collectives on the torus network
	Implementing collectives on the tree network
	Global Interrupts
	Process Management in BGL/MPI
	Performance: Bandwidth and Latency targets
	BGL/MPI Latency (Oct. 2003)
	BGL/MPI Bandwidth (Oct. 2003)
	Lessons learned during implementation
	Conclusion

