Resource Management for BG/L

Andy Yoo
Lawrence Livermore National Laboratory

UCRL-PRES-200217
Outline

- Resource management plan for BG/L
- SLURM overview
- Structure of resource manager for BG/L
- Resource management strategy
 - Job scheduling
 - System partitioning (Allocation)
 - Fault management
- Job submission and execution
- Current development status and future work
- Concluding remarks
Resource management objectives for BG/L

- High scalability
- High system utilization
- Simplicity
- Flexibility
- Support to boost the performance of user applications
BG/L resource management strategy

- One logical partition - single job queue for entire system
- Space-sharing only - multiple physical partitions and one user per physical partition
- We will use SLURM, a new resource manager developed at LLNL, combined with low-level machine and task management infrastructure provided by IBM
- Key resource management algorithms for BG/L
 - Efficient node allocation
 - Innovative job scheduling strategy
What is Slurm? Unknown Facts

- Largest brand of carbonated beverage in the universe
- Manufactured on the planet Wormulon
- Rumor says it comes from the butt of a giant slug
- Slurm is *highly addictive*, but has so far not been conclusively linked to ailments
SLURM = simple, scalable, and flexible tool for resource management

- What is SLURM?
 - Simple Linux Utility for Resource Management
 - Simple cluster manager that manages system resources and user jobs
 - Provides efficient and reliable execution environment for parallel jobs
 - Not a sophisticated job scheduler
 - Low-level scheduler for external meta-batch system

- Main SLURM design objectives – simple, scalable, flexible, fault-tolerant, secure, portable (open source)
The performance of SLURM

- Launched *hostname* on 950 nodes (1900 processors) of MCR cluster
- Launch performance
 - LoadLeveler: 9.8 sec (for 16 nodes)
 - RMS: 4.8 sec
 - SLURM: 4.7 sec
- SLURM will scale well on BG/L
 - Major components only have to scale to 1,024 IO nodes
 - Launch will be based on broadcast of binary from single IO node
Structure of resource management system for BG/L

CMCS APIs for resource usage snapshot, job management and partition management

Job launch mechanism: ciorun
Core Monitoring and Control System (CMCS)

- Database (DB2)
 - Partition Manager
 - Resource Manager
 - Job Manager

CMCS

APIs

I/O Nodes

+ Compute Nodes
Job scheduling in BG/L

- Job scheduling determines when (*scheduling*) and where (*allocation*) to execute user jobs.
- Job scheduling strategies can significantly impact the utilization of large computer systems.
 - Machines like BG/L with toroidal topology (as opposed to all-to-all switch) are particularly sensitive.
 - Utilization in the 50-70% range was observed in previous research.
- Two scheduling techniques investigated for BG/L:
 - Backfilling
 - Task migration
Backfilling and task migration

backfilling
queue = \{6,3,9,5,4\}, 10 nodes

migration
Results for job scheduling on BG/L
Job scheduling strategy for BG/L

- **Backfilling** technique will be used to improve machine utilization
- Scheduling of user jobs will be performed by the Distributed Production Control System (DPCS)
- The DPCS currently achieves high system utilization (90+%%) with backfilling for the machines it manages
- Expect to achieve high system utilization and low job response time for BG/L
Allocation (or system partitioning) strategy

- Part of scheduling process
- Finds free compute nodes
- Partition management is handled by Core Monitoring and Control System (CMCS)
- Base partition (BP) – a basic scheduling unit (8x8x8 3D grid)
- A separate development/debug environment with smaller base partition
Allocation algorithm for 2D mesh

Incoming job size = 3 x 2

Coverage for S_2

Base block B_1

Reject area

Coverage for S_1

Base block B_2
Processor allocation for BG/L

- An existing allocation algorithm for meshes will be used - first-fit, best-fit, worst-fit, and buddy system
- To be extended to handle 3D torus topology
- For BG/L, the availability of wires and switches needs to be checked to make sure all the nodes are connected
Fault Management in BG/L

- The components are monitored by control and monitoring subsystem and their status is recorded in the CMCS database (DB2)
- CMCS handles low-level fault management
- SLURM relies on the CMCS database to maintain machine status information
- Easy to checkpoint
- When a fault occurs, an attempt to restart the interrupted job will be made
Normal execution of a job on BG/L

CMCS

slurmctld

Scheduler

slurmd

Node Allocator

Will run? Node list

Job submission (srun)

Job completion

Run job

Run job request

Start job

Job completion

Create partition

Remove partition

Add job

Remove partition

Status request

Node list

Job ID

Job ID

Job completion

Initiate tasks

Task completion

Job completion

User script completion

Call

Completion

Start parallel job

Destroy partition

Snap shot

Delete job

CMCS

ciod

ciod

ciod

. . .

iorun

DPCS

Shell

User script
Abnormal termination of a job on BG/L

- **slurmd**: Node Allocator
- **Scheduler**: Will run? Node list
- **CMCS**: Status request, snapshot, Initiate tasks
- **slurmd**: Add job, Remove old partition, Create new partition
- **Shell**: Start job, Call
- **User script**: User notification, Job status report, Run job request, Error Code
- **DPCS**: Job completion (with Error Code)
- **ciorun**: Start parallel job
- **cio**: Retry, Error Code

11/7/03
Cancellation of a job on BG/L

slurmd

Node Allocator

Scheduler

slurmd

DPCS

Job cancellation (scancel)

Job terminated

Cancel job

Cancel request

Job termination

Signal

Job termination

CMCS

Terminate tasks

ciod
ciod
ciod
Current status of SLURM for BG/L development

- SLURM is currently operational on ASCI Linux Cluster (ALC)
- Design of SLURM for BG/L is complete
- Logic changes in SLURM and the APIs needed are identified.
- Currently in implementation phase
- Preliminary version of SLURM ported to BGLsim
- Successfully cross-compiled a “hello, world” program and ran via SLURM on the BGLsim under single- and multi-node configurations
Future work

- Design and implementation of allocation algorithm (on simulator)
- Development and evaluation of backfilling and other innovative scheduling schemes
- Interactive job handling
Conclusions

- Highly scalable resource management system
- Fast and reliable job management operations through SLURM and CMCS
- High system utilization through efficient scheduling and allocation techniques
- Simple and easy-to-use job execution environment
This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Backup Slides
Allocation algorithm

1. Read current base partition status and construct coverages
2. Read the current state of wires and switches
3. While (there exists an unexploited coverage) do
 1. Find an available subsystem using allocation algorithm
 2. If (the subsystem meets connectivity test) then
 return the subsystem
 else
 mark the subsystem unavailable
SLURM for BG/L functionalities

- Job scheduling and node allocation
- Machine/Job status monitoring
- Provides 5 simple commands for users: `srun`, `scancel`, `squeue`, `sinfo`, `scontrol`
- Allows users to specify the size and type of job partition
- Supports task-to-processor mapping for application performance improvement
Normal execution of a job on BG/L

1. Job submission (srun)
2. Run job
3. Will run?
4. Node list
5. Status request
6. Snapshot
7. Node list
8. Add job
9. Job ID
10. Create partition
11. Run job request
12. Start job
13. Call
14. Start parallel job
15. Initiate tasks
16. Task completion
17. Job completion
18. Completion
19. User script completion
20. Job completion
21. Job completion
22. Job completion
23. Job completion

CMCS

slurmd

node allocator

Scheduler

DPCS

slurmd

Shell

User script

Ciorun

ciod . . . ciod
Abnormal termination of a job on BG/L

1. Node failure

2. Job completion (with Error Code)

3. Error Code

4. Error Code

5. Error Code

6. Destroy old partition

7. Remove old partition

8. Retry

9. Create new partition

10. Restart

11. Job status report

12. User notification

CMCS

slurmd

slurmd

Node Allocator

Scheduler

CMCS

Slurmctld

Shell

User script

ciorun

Node list

Add job

Will run?

Node list

Status request

Initiate tasks

cio d

cio d

. . .

ciod

Call

Start parallel job

Start job

Run job request

DPCS

Run job request

Run job request

Cancellation of a job on BG/L

1. Job cancellation (scancel)
2. Cancel job
3. Cancel request
4. Signal
5. Terminate Job
6. Terminate tasks
7. Termination
8. Job termination
9. Job termination
10. Destroy partition
11. Remove partition
12. Job termination
13. Job terminated