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Fault tolerance

n Fault tolerance comes in different 
flavors
n Mission-critical systems: (eg) air 

traffic control system
n No down-time, fail-over, redundancy

n Computational applications
n Restart after failure
n Minimize expected time to completion



Fault tolerance strategies 
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Our experience/beliefs:

n Message-logging does not work well for 
communication-intensive numerical 
applications
n Many messages, much data

n System-level checkpoint is not as efficient as 
application-level
n IBM’s BlueGene protein folding

n Sufficient to save positions and velocities of bases

n Alegra talk
n App. level restart file only 5% of core size



Our goal
n Develop a preprocessor that will transparently add 

application-level checkpointing to MPI applications
n As easy to use as system-level checkpointing
n As efficient as user-specified application-level checkpointing

MPI source code,
no FT consideration

MPI source code
with app. level FT 

FT MPI application 

our preprocessor native compiler
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Outline

n Introduction
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n Problems in supporting MPI applications
n Approaches to solving these problems
n Status and ongoing work



Sequential application state
n An application’s state consists of

n Program counter
n Call stack
n Globals
n Heap objects

n Similar in technique to PORCH
n Ramkumar, Strumpen (Iowa / MIT)



Example
main()
{

int a;
VDS.push(&a, sizeof a);
if(restart)

load LS;
copy LS to LS.old
jump dequeue(LS.old)

// …
LS.push(2);

label2:
function();
LS.pop();
// …
VDS.pop();

}

function()
{

int b; 
VDS.push(&b, sizeof b);
if(restart)

jump dequeue(LS.old)
// …
LS.push(2);
take_ckpt();

label2:
if(restart)

load VDS;
restore variables;

LS.pop();
// …
VDS.pop();

}



Optimizations

n Where should we checkpoint?
n CATCH

n Li, Fuchs (Illinois)

n Memory exclusion
n Live/Clean/Dead variable analysis

n Plank, Beck, Kingsly (Univ. Tennessee)

n Recomputation vs. restoring
n Protein folding example
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Supporting MPI applications

n It is not sufficient to take a checkpoint of 
each individual process

n We need to account for the following
n In-flight messages
n Inconsistent messages
n Non-blocking communication
n “Hidden” MPI state
n At application level, message send/receive not 

necessarily FIFO
n Process can use tags to receive messages out of order



In-flight and inconsistent messages

n m1 is in-flight (sent but not recvd)
n m2 is inconsistent (recvd but not sent)

P1

P2

m1
m2

recovery line



Non-blocking communication
n MPI allows for non-blocking communication

n Did the send happen before or after P2’s checkpoint was taken?
n If it happened before, it is consistent.  If it happened after, it is 

inconsistent.

I_send

? ?

P1

P2



“Hidden” MPI state
n Need to save and restore the state of 

the MPI library
n This state is hidden from our 

preprocessor
n Two kinds of hidden state

n Persistent - communicators, groups, etc.
n Not correct to take system-level ckpt

n Volatile - request objects (not handles)



Non-FIFO receive order
n Applications may receive messages in non-FIFO order

n Two messages from P2 to P1 will be received in send order only if 
they have the same tag and communicator

n Most protocols assume FIFO

Send(tag = 1) Send(tag = 2)

Recv(tag = 1)Recv(tag = 2)
P1

P2



Outline

n Introduction
n Application-level FT for sequential applications
n Problems in supporting MPI applications
n Approaches to solving these problems
n Status and ongoing work



Beliefs

n Complexity of making program FT may 
vary from program to program
n Not all programs will exhibit all the 

problems described earlier

n FT protocol should be customized to 
complexity of program
n Minimize the overhead of fault tolerance



Degrees of complexity
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Parametric computing
n Parametric computing, i.e. embarrassingly 

parallel
Distribute work
Do work
Collect Results

n No communication in “Do work” area
n Can take uncoordinated checkpoints within 

that area
n Each takes its own checkpoints



Bulk synchronous
n “Phase-step” model of computation

do work 1
barrier
do work 2
barrier
do work 3

n Communication and computation in “do work” areas

n Use blocking coordinated checkpointing, provided
n no messages cross the barrier
n no transient hidden state that crosses the barrier
n àrequires compiler analysis



Analysis problems
If(rank = 0)

send(1)
Else

send(0)

Barrier

If(rank = 0)
recv(1)

Else
recv(0)

If(rank = 0)
I_send(&r)

Else
I_recv(&r)

Barrier

Wait(&r)



Iterative synchronous
n Each process runs the same number of 

iterations of a loop
for(i…)
{

Communicate
Compute

}

n Are there places where barriers can be 
(safely) inserted?
n If so, treat as bulk synchronous



Analysis problem
For()
{
if(rank = 0)

x = 1
else

x = 2
if(x = 1)

Barrier?
}

For()
{
if(rank = 1)

recv

Barrier?

if(rank = 0)
send

}



Task parallel (e.g. producer / 
consumer)
If(rank = 0)
{

while(not done)
send(DATA)

send(DONE)
}
Else
{ 

int x;
while(1)

recv(ANY_TAG)
if(tag = DATA)

x += f(DATA)
else

break
}

n There are no 
interesting (useful) 
places to insert 
barriers
n Can’t use blocking 

protocol
n Must use non-

blocking protocol



Non-blocking protocol
n Chandy-Lamport is a simple, well-known, 

coordinated non-blocking protocol
n Assumes FIFO channels 
n Initiator takes local checkpoint, and sends marker 

to neighbors 
n On receiving marker, process takes checkpoint 

and sends its marker to neighbors
n After taking checkpoint, process P logs all 

messages from process R, until R’s marker arrives
n These are in-flight messages



Example
n Process Q initiated the checkpoint.
n It logs all messages from P until P’s marker arrives
n On restart, Q “receives” from log until empty

In-flight, log Not in-flight

P

Q



Drawbacks of C-L protocol

n Does not work for application-level 
checkpointing
n In C-L, process must checkpoint as soon as 

it receives a marker from a neighbor

n Assumes fixed communication graph
n Assumes FIFO communication
n No notion of collective communication



CL with delayed checkpointing
n Before checkpoint

n log count of all messages from R that arrive after R’s marker 
arrived

n After checkpoint
n Log all messages that arrive from S until S’s marker arrives
n Log all non-deterministic choices made until all markers have 

arrived

Log inconsistent count

Log in-flight

Log non-det



Degrees of complexity

Parametric computing

Bulk Synchronous

Iterative Synchronous

MIMD(eg. Task parallelism)

Non-FIFO MIMD

Increasing
complexity 
of protocol



Outline

n Introduction
n Application-level FT for sequential applications
n Problems in supporting MPI applications
n Approaches to solving these problems
n Status and ongoing work



Status
n Completed

n Preprocessor for saving/restoring sequential state
n No optimizations

n In progress
n Application API
n Determining checkpoint locations
n Support for in-flight/non-FIFO msgs/…..

n Implementing modified CL protocol

n Support for saving volatile hidden MPI state
n Analysis problems


