NAME

- PAPI_presets - PAPI predefined named events

Synopsis

```
#include <papi.h>
```

Description

The PAPI library names a number of predefined, or preset events. This set is a collection of events typically found in many CPUs that provide performance counters. A PAPI preset event name is mapped onto one or more of the countable native events on each hardware platform. On any particular platform, the preset can either be directly available as a single counter, derived using a combination of counters or unavailable.

The PAPI preset events can be broken loosely into several categories, as shown in the table below: PAPI Preset Event Definitions by Category:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPI_BR_CN</td>
<td>Conditional branch instructions</td>
</tr>
</tbody>
</table>

Contents

- 1 NAME
- 2 Synopsis
- 3 Description
 - 3.1 Conditional Branching
 - 3.2 Cache Requests:
 - 3.3 Conditional Store:
 - 3.4 Floating Point Operations:
 - 3.5 Instruction Counting:
 - 3.6 Cache Access:
 - 3.7 Data Access:
 - 3.8 TLB Operations:
- 4 Bugs
- 5 AUTHORS
- 6 See Also
PAPI_BR_INS Branch instructions
PAPI_BR_MSP Conditional branch instructions mispredicted
PAPI_BR_NTK Conditional branch instructions not taken
PAPI_BR_PRC Conditional branch instructions correctly predicted
PAPI_BR_TKN Conditional branch instructions taken
PAPI_BR_UCN Unconditional branch instructions
PAPI_BRU_IDL Cycles branch units are idle
PAPI_BTAC_M Branch target address cache misses

Cache Requests:

PAPI_CA_CLN Requests for exclusive access to clean cache line
PAPI_CA_INV Requests for cache line invalidation
PAPI_CA_ITV Requests for cache line intervention
PAPI_CA_SHR Requests for exclusive access to shared cache line
PAPI_CA_SNP Requests for a snoop

Conditional Store:

PAPI_CSR_FAL Failed store conditional instructions
PAPI_CSR_SUC Successful store conditional instructions
PAPI_CSR_TOT Total store conditional instructions

Floating Point Operations:

PAPI_FAD_INS Floating point add instructions
PAPI_FDV_INS Floating point divide instructions
PAPI_FMA_INS FMA instructions completed
PAPI_FML_INS Floating point multiply instructions
PAPI_FNV_INS Floating point inverse instructions
PAPI_FP_INS Floating point instructions
PAPI_FP_OPS Floating point operations
PAPI_FP_STAL Cycles the FP unit
PAPI_FPU_IDL Cycles floating point units are idle
PAPI FSQ_INS Floating point square root instructions

Instruction Counting:

PAPI_FUL_CCY Cycles with maximum instructions completed
PAPI_FUL_ICY Cycles with maximum instruction issue
PAPI_FXU_IDL Cycles integer units are idle
PAPI_HW_INT Hardware interrupts
PAPI_INT_INS Integer instructions
PAPI_TOT_CYC Total cycles
PAPI_TOT_IIS Instructions issued
PAPI_TOT_INS Instructions completed
PAPI_VEC_INS Vector/SIMD instructions
Cache Access:

- \texttt{PAPI_L1_DCA} L1 data cache accesses
- \texttt{PAPI_L1_DCH} L1 data cache hits
- \texttt{PAPI_L1_DCM} L1 data cache misses
- \texttt{PAPI_L1_DCR} L1 data cache reads
- \texttt{PAPI_L1_DCW} L1 data cache writes
- \texttt{PAPI_L1_ICA} L1 instruction cache accesses
- \texttt{PAPI_L1_ICH} L1 instruction cache hits
- \texttt{PAPI_L1_ICM} L1 instruction cache misses
- \texttt{PAPI_L1_ICR} L1 instruction cache reads
- \texttt{PAPI_L1_ICW} L1 instruction cache writes
- \texttt{PAPI_L1_LDM} L1 load misses
- \texttt{PAPI_L1_STM} L1 store misses
- \texttt{PAPI_L1_TCA} L1 total cache accesses
- \texttt{PAPI_L1_TCH} L1 total cache hits
- \texttt{PAPI_L1_TCM} L1 total cache misses
- \texttt{PAPI_L1_TCR} L1 total cache reads
- \texttt{PAPI_L1_TCW} L1 total cache writes
- \texttt{PAPI_L2_DCA} L2 data cache accesses
- \texttt{PAPI_L2_DCH} L2 data cache hits
- \texttt{PAPI_L2_DCM} L2 data cache misses
- \texttt{PAPI_L2_DCR} L2 data cache reads
- \texttt{PAPI_L2_DCW} L2 data cache writes
- \texttt{PAPI_L2_ICA} L2 instruction cache accesses
- \texttt{PAPI_L2_ICH} L2 instruction cache hits
- \texttt{PAPI_L2_ICM} L2 instruction cache misses
- \texttt{PAPI_L2_ICR} L2 instruction cache reads
- \texttt{PAPI_L2_ICW} L2 instruction cache writes
- \texttt{PAPI_L2_LDM} L2 load misses
- \texttt{PAPI_L2_STM} L2 store misses
- \texttt{PAPI_L2_TCA} L2 total cache accesses
- \texttt{PAPI_L2_TCH} L2 total cache hits
- \texttt{PAPI_L2_TCM} L2 total cache misses
- \texttt{PAPI_L2_TCR} L2 total cache reads
- \texttt{PAPI_L2_TCW} L2 total cache writes
- \texttt{PAPI_L3_DCA} L3 data cache accesses
- \texttt{PAPI_L3_DCH} L3 Data Cache Hits
- \texttt{PAPI_L3_DCM} L3 data cache misses
- \texttt{PAPI_L3_DCR} L3 data cache reads
- \texttt{PAPI_L3_DCW} L3 data cache writes
- \texttt{PAPI_L3_ICA} L3 instruction cache accesses
- \texttt{PAPI_L3_ICH} L3 instruction cache hits
- \texttt{PAPI_L3_ICM} L3 instruction cache misses
- \texttt{PAPI_L3_ICR} L3 instruction cache reads
- \texttt{PAPI_L3_ICW} L3 instruction cache writes
- \texttt{PAPI_L3_LDM} L3 load misses
PAPI_L3_STM L3 store misses
PAPI_L3_TCA L3 total cache accesses
PAPI_L3_TCH L3 total cache hits
PAPI_L3_TCM L3 cache misses
PAPI_L3_TCR L3 total cache reads
PAPI_L3_TCW L3 total cache writes

Data Access:

PAPI_LD_INS Load instructions
PAPI_LST_INS Load/store instructions completed
PAPI_LSU_IDL Cycles load/store units are idle
PAPI_MEM_RCY Cycles Stalled Waiting for memory Reads
PAPI_MEM_SCY Cycles Stalled Waiting for memory accesses
PAPI_MEM_WCY Cycles Stalled Waiting for memory writes
PAPI_PRF_DM Data prefetch cache misses
PAPI_RES_STL Cycles stalled on any resource
PAPI_SR_INS Store instructions
PAPI_STL_CCY Cycles with no instructions completed
PAPI_STL_ICY Cycles with no instruction issue
PAPI_SYC_INS Synchronization instructions completed

TLB Operations:

PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside buffer misses
PAPI_TLB_SD Translation lookaside buffer shootdowns
PAPI_TLB_TL Total translation lookaside buffer misses

Bugs

The exact semantics of an event counter are platform dependent. PAPI preset names are mapped onto available events in a way so as to count as similar types of events as possible on different platforms. Due to hardware implementation differences it is not necessarily possible to directly compare the counts of a particular PAPI event obtained on different hardware platforms.

AUTHORS

Nils Smeds <smeds@cs.utk.edu>

See Also

PAPI_event_code_to_name(3), PAPI_event_name_to_code(3), PAPI(3), PAPI_native(3), PAPI_enum_event(3), PAPI_get_event_info(3)

Category: PAPI Component Manual
This page was last modified on 17 October 2008, at 00:51.
This page has been accessed 308 times.

Jan 26, 2010