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§  Why Accelerators, GPUs 
§ GPU architecture 
§ GPU Programming Models 

• CUDA 
• OpenCL 
• OpenMP 
• OpenACC 

§    
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§ Focus on CUDA GPU 
Programming Model 

§ Simple CUDA Examples 
§ device_query 
§ Vector sum 
§ Compute Pi 
§   

Agenda(continued) 
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§  LC Surface Linux Cluster Architecture 
§  LC Surface Linux Cluster  node architecture 
§  How to compile, link and run simple CUDA 

examples on Surface  
§  References for further study 
§    

Agenda (continued) 
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Objective 
§  Introduction to programming GPUs for general-purpose computing tasks 

§  Specific to NVIDIA GPUs 
•  CUDA programming abstraction 

§  Compare performance to CPU threads 
•  OpenMP – could also integrate (not shown) 

§  Show integration within clusters 
•  Multiple nodes with GPUs 

§  Hands-on exercises - : laptop à LC surface Linux cluster 

Not covered in this short course: 

§  Advanced GPU performance tuning (memory, async. kernels etc.) 

§  OpenCL 

§  PGI compiler directives for accelerators 
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Why GPU Computing 
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Recap of Important Parallel 
Computing Concepts 

Single Instruction, Multiple Data (SIMD):  

A type of parallel computer  

Single Instruction: All processing units execute the same instruction at any given clock cycle  

Multiple Data: Each processing unit can operate on a different data element  

Best suited for specialized problems characterized by a high degree of regularity, such as graphics/
image processing.  

Synchronous (lockstep) and deterministic execution  

Two varieties: Processor Arrays and Vector Pipelines  

Examples:  
Processor Arrays: Thinking Machines CM-2, MasPar MP-1 & MP-2, ILLIAC IV  

Vector Pipelines: IBM 9000, Cray X-MP, Y-MP & C90, Fujitsu VP, NEC SX-2, Hitachi S820, ETA10  

Most modern computers, particularly those with graphics processor units (GPUs) employ SIMD 
instructions and execution units.  
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Recap of Important Parallel 
Computing Concepts(continued) 

Single Program Multiple Data (SPMD):  

SPMD is actually a "high level" programming model that can be built upon any 
combination of the previously mentioned parallel programming models.  

SINGLE PROGRAM: All tasks execute their copy of the same program 
simultaneously. This program can be threads, message passing, data parallel or 

hybrid.  

MULTIPLE DATA: All tasks may use different data  

SPMD programs usually have the necessary logic programmed into them to allow 
different tasks to branch or conditionally execute only those parts of the program they 
are designed to execute. That is, tasks do not necessarily have to execute the entire 

program - perhaps only a portion of it.  

The SPMD model, using message passing or hybrid programming, is probably the 
most commonly used parallel programming model for multi-node clusters.  

 



Lawrence Livermore National Laboratory LLNL-PRES-825897 9 

Recap of Important Parallel 
Computing Concepts(continued) 

Current Architectures 
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Recap of Important Parallel 
Computing Concepts(continued) 

Designing Parallel Programs 

Understand the Problem and the Program 

Before spending time in an attempt to develop a parallel solution for a problem, determine 
whether or not the problem is one that can actually be parallelized.  

•  Investigate other algorithms if possible. This may be the single most important 
consideration when designing a parallel application.  

Partitioning 

One of the first steps in designing a parallel program is to break the problem into discrete 
"chunks" of work that can be distributed to multiple tasks. This is known as decomposition 

or partitioning.  

There are two basic ways to partition computational work among parallel tasks: domain 
decomposition and functional decomposition.  

Domain Decomposition:  

In this type of partitioning, the data associated with a problem is decomposed. Each 
parallel task then works on a portion of the data.  
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Recap of Important Parallel 
Computing Concepts(continued) 

Domain Decomposition:  

In this type of partitioning, the data associated with a 
problem is decomposed. Each parallel task then works on 

a portion of the data.  
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GPU CPU 

Add GPUs: Accelerate Science Applications 

© NVIDIA 2013 
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Small Changes, Big Speed-up 
Application Code 

+ 

GPU CPU 

Use GPU to 
Parallelize 

Compute-Intensive 
Functions 

Rest of Sequential 
CPU Code 

© NVIDIA 2013 
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Fastest Performance on Scientific 
Applications 

Tesla K20X Speed-Up over Sandy Bridge CPUs 

CPU results: Dual socket E5-2687w, 3.10 GHz, GPU results: Dual socket E5-2687w + 2 Tesla K20X GPUs 
*MATLAB results comparing one i7-2600K CPU vs with Tesla K20 GPU 
Disclaimer: Non-NVIDIA implementations may not have been fully optimized  

0.0x 5.0x 10.0x 15.0x 20.0x 

AMBER 

SPECFEM3D 

Chroma 

MATLAB (FFT)* Engineering 

Earth  
Science 

Physics 

Molecular 
Dynamics 
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Why Computing Perf/Watt Matters? 

Traditional CPUs are 
not economically feasible 

2.3 PFlops 7000 homes 

7.0 
Megawatts 

7.0 
Megawatts 

CPU 
Optimized for  
Serial Tasks 

GPU Accelerator 
Optimized for Many  

Parallel Tasks 

10x performance/socket 

> 5x energy  efficiency 

Era of GPU-accelerated  
computing is here 

© NVIDIA 2013 
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World’s Fastest, Most Energy Efficient 
Accelerator 

Tesla K20X 

Tesla K20  

Xeon CPU,  
E5-2690 

Xeon Phi 
225W 
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Tesla K20X vs Xeon CPU 

8x Faster SGEMM 

6x Faster DGEMM 
 

Tesla K20X vs Xeon Phi 

90% Faster SGEMM 

60% Faster DGEMM 
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§  CUDA 
•  Developed by NVIDIA 
•  Specific to NVIDIA hardware 
•  Supports C/C++ 
—  Adds new syntactic elements to language 

•  Often provides faster execution than other APIs 
•  NVIDIA and 3-rdparty support for numerical libraries, 

infrastructure 
—  cuBLAS 
—  cuFFT 

GPU Programming Models (APIs) 
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§  OpenCL 
•  Cross-platform, cross-vendor standard  
•  Enables programming of diverse compute resources 
—  CPU, GPU, DSP, FPGA 

•  One code tree can be executed on CPUs, GPUs, 
DSPs and hardware 
—  Dynamically interrogate system load and balance across 

available processors 

•  Supports C/C++ 
•  More information: https://www.khronos.org/opencl/ 

GPU Programming Models (APIs) 
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§  OpenMP 
•  Multi-platform, shared-memory  
•  Supports C/C++ and Fortran 
§  Compiler-directive-based 

•  Supported by many vendors’ compilers 
•  Accelerator support defined in OpenMP 4.0 
•  More information: http://openmp.org 
—  OpenMP 4.5 latest (Fall 2015) 

GPU Programming Models (APIs) 



Lawrence Livermore National Laboratory LLNL-PRES-825897 20 

§  OpenACC 
•  Vendor-neutral API 
•  Supports C/C++ and Fortran (similar to OpenMP) 
—  Compiler-directive-based 

•  More information at: http://www.openacc-standard.org/ 

GPU Programming Models (APIs) 
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CUDA C/C++ BASICS 
NVIDIA Corporation 

© NVIDIA 2013 
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What is CUDA? 
§  CUDA Architecture 

•  Expose GPU parallelism for general-purpose computing 
•  Retain performance 

§  CUDA C/C++ 
•  Based on industry-standard C/C++ 
•  Small set of extensions to enable heterogeneous 

programming 
•  Straightforward APIs to manage devices, memory etc. 

§  This session introduces CUDA C/C++ 

© NVIDIA 2013 
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Introduction to CUDA C/C++ 
§  What will you learn in this session? 

•  Start from “Hello World!” 
•  Write and launch CUDA C/C++ kernels 
•  Manage GPU memory 
•  Manage communication and synchronization 

© NVIDIA 2013 
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HELLO WORLD! 
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Heterogeneous Computing 
§  Terminology: 

§  Host  The CPU and its memory (host memory) 
§  Device  The GPU and its memory (device memory) 

Host Device 

© NVIDIA 2013 
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Heterogeneous Computing 
#include <iostream> 
#include <algorithm> 
 
using namespace std; 
 
#define N          1024 
#define RADIUS     3 
#define BLOCK_SIZE 16 
 
__global__ void stencil_1d(int *in, int *out) { 
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 
 int gindex = threadIdx.x + blockIdx.x * blockDim.x; 
 int lindex = threadIdx.x + RADIUS; 
 
 // Read input elements into shared memory 
 temp[lindex] = in[gindex]; 
 if (threadIdx.x < RADIUS) { 
  temp[lindex - RADIUS] = in[gindex - RADIUS]; 
  temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 
 } 
 
 // Synchronize (ensure all the data is available) 
 __syncthreads(); 
 
 // Apply the stencil 
 int result = 0; 
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 
  result += temp[lindex + offset]; 
 
 // Store the result 
 out[gindex] = result; 
} 
 
void fill_ints(int *x, int n) { 
 fill_n(x, n, 1); 
} 
 
int main(void) { 
 int *in, *out;              // host copies of a, b, c 
 int *d_in, *d_out;          // device copies of a, b, c 
 int size = (N + 2*RADIUS) * sizeof(int); 
 
 // Alloc space for host copies and setup values 
 in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS); 
 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS); 
  
 // Alloc space for device copies 
 cudaMalloc((void **)&d_in,  size); 
 cudaMalloc((void **)&d_out, size); 
 
 // Copy to device 
 cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice); 
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice); 
 
 // Launch stencil_1d() kernel on GPU 
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS); 
 
 // Copy result back to host 
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost); 
 
 // Cleanup 
 free(in); free(out); 
 cudaFree(d_in); cudaFree(d_out); 
 return 0; 
} 
 

serial code 

parallel code 

serial code 

parallel fn 

© NVIDIA 2013 
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Simple Processing Flow 

1.  Copy input data from CPU memory 
to GPU memory 

PCI Bus 
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Simple Processing Flow 

1.  Copy input data from CPU memory 
to GPU memory 

2.  Load GPU program and execute, 
caching data on chip for 
performance 

© NVIDIA 2013 

PCI Bus 
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Simple Processing Flow 

1.  Copy input data from CPU memory 
to GPU memory 

2.  Load GPU program and execute, 
caching data on chip for 
performance 

3.  Copy results from GPU memory to 
CPU memory 

© NVIDIA 2013 

PCI Bus 
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Hello World! 
 int main(void) { 
  printf("Hello World!\n"); 
  return 0; 
 } 

  Standard C that runs on the host 

  NVIDIA compiler (nvcc) can be used 
to compile programs with no device 
code 

 
 
 
 
 
Output: 
 
$ nvcc 
hello_world.
cu 
$ a.out 
Hello World! 
$ 

© NVIDIA 2013 



Lawrence Livermore National Laboratory LLNL-PRES-825897 32 

Hello World! with Device Code 
 __global__ void mykernel(void) { 
 } 

 
 int main(void) { 
  mykernel<<<1,1>>>(); 
  printf("Hello World!\n"); 
  return 0; 
 } 

 

§  Two new syntactic elements… 
 

© NVIDIA 2013 
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Hello World! with Device Code 
 __global__ void mykernel(void) { 

 } 

 

§  CUDA C/C++ keyword __global__ indicates a function that: 
•  Runs on the device 
•  Is called from host code 

§  nvcc separates source code into host and device 
components 
•  Device functions (e.g. mykernel()) processed by NVIDIA compiler 
•  Host functions (e.g. main()) processed by standard host compiler 
—  gcc, cl.exe 

 

© NVIDIA 2013 
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Hello World! with Device COde 
 mykernel<<<1,1>>>(); 

 

§  Triple angle brackets mark a call from host code 
to device code 
•  Also called a “kernel launch” 
•  We’ll return to the parameters (1,1) in a moment 

§  That’s all that is required to execute a function 
on the GPU 

 

© NVIDIA 2013 



Lawrence Livermore National Laboratory LLNL-PRES-825897 35 

Hello World! with Device Code 
 __global__ void mykernel(void){ 
 } 

 
 int main(void) { 
  mykernel<<<1,1>>>(); 
  printf("Hello World!\n"); 
  return 0; 
 } 

 
•  mykernel() does nothing, 

somewhat anticlimactic! 
 

 
 
 
Output: 
 
$ nvcc 
hello.cu 
$ a.out 
Hello World! 
$ 

© NVIDIA 2013 
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Parallel Programming in CUDA C/C+
+ 
•  But wait… GPU computing is about 

massive parallelism! 

•  We need a more interesting example… 

•  We’ll start by adding two integers and 
build up to vector addition 

a b c 
© NVIDIA 2013 
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Addition on the Device 
§  A simple kernel to add two integers 
 

 __global__ void add(int *a, int *b, int *c) { 

  *c = *a + *b; 

 } 

 
§  As before __global__ is a CUDA C/C++ keyword 

meaning 
•  add() will execute on the device 
•  add() will be called from the host 

 

© NVIDIA 2013 
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Addition on the Device 
§  Note that we use pointers for the variables 
 

 __global__ void add(int *a, int *b, int *c) { 

  *c = *a + *b; 

 } 

 

§  add() runs on the device, so a, b and c must point to 
device memory 

§  We need to allocate memory on the GPU 

 
© NVIDIA 2013 



Lawrence Livermore National Laboratory LLNL-PRES-825897 39 

Memory Management 
§  Host and device memory are separate entities 

•  Device pointers point to GPU memory 
May be passed to/from host code 
May not be dereferenced in host code 

•  Host pointers point to CPU memory 
May be passed to/from device code 
May not be dereferenced in device code 

§  Simple CUDA API for handling device memory 
•  cudaMalloc(), cudaFree(), cudaMemcpy() 
•  Similar to the C equivalents malloc(), free(), memcpy() 

 

© NVIDIA 2013 
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Addition on the Device: add() 
§  Returning to our add() kernel 
 

 __global__ void add(int *a, int *b, int *c) { 

  *c = *a + *b; 

 } 

 

§  Let’s take a look at main()… 
 

© NVIDIA 2013 
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Addition on the Device: main() 
 int main(void) { 

  int a, b, c;              // host copies of a, b, c 

  int *d_a, *d_b, *d_c;       // device copies of a, b, c 

  int size = sizeof(int); 

  // Allocate space for device copies of a, b, c 

  cudaMalloc((void **)&d_a, size); 

  cudaMalloc((void **)&d_b, size); 

  cudaMalloc((void **)&d_c, size); 

  // Setup input values 

  a = 2; 

  b = 7; 

 

© NVIDIA 2013 
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Addition on the Device: main() 
  // Copy inputs to device 

  cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice); 

  cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice); 

  // Launch add() kernel on GPU 

  add<<<1,1>>>(d_a, d_b, d_c); 

  // Copy result back to host 

  cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost); 

  // Cleanup 

  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 

  return 0; 

 } 

© NVIDIA 2013 
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Moving to Parallel 
§  GPU computing is about massive parallelism 

•  So how do we run code in parallel on the device? 

  add<<< 1, 1 >>>(); 

 

  add<<< N, 1 >>>(); 

§  Instead of executing add() once, execute N times 
in parallel 

 

© NVIDIA 2013 
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Vector Addition on the Device 
§  With add() running in parallel we can do vector addition 

§  Terminology: each parallel invocation of add() is referred to as 
a block 
•  The set of blocks is referred to as a grid 
•  Each invocation can refer to its block index using blockIdx.x 

 

 __global__ void add(int *a, int *b, int *c) { 

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

 } 

§  By using blockIdx.x to index into the array, each block handles a 
different index 

 

© NVIDIA 2013 
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Vector Addition on the Device 
 __global__ void add(int *a, int *b, int *c) { 

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

 } 

 

§  On the device, each block can execute in parallel: 
 

c[0]  = a[0] + b[0]; c[1]  = a[1] + b[1]; c[2]  = a[2] + b[2]; c[3]  = a[3] + b[3]; 

Block 0 Block 1 Block 2 Block 3 

© NVIDIA 2013 
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Vector Addition on the Device: add() 
§  Returning to our parallelized add() kernel 
 

 __global__ void add(int *a, int *b, int *c) { 

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

 } 

 

§  Let’s take a look at main()… 
 

© NVIDIA 2013 
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Vector Addition on the Device: main() 
    #define N 512 
    int main(void) { 

 int *a, *b, *c;   // host copies of a, b, c 
 int *d_a, *d_b, *d_c;  // device copies of a, b, c 
 int size = N * sizeof(int); 
   
 // Alloc space for device copies of a, b, c 
 cudaMalloc((void **)&d_a, size); 
 cudaMalloc((void **)&d_b, size); 
 cudaMalloc((void **)&d_c, size); 

 
 // Alloc space for host copies of a, b, c and setup input values 
 a = (int *)malloc(size); random_ints(a, N); 
 b = (int *)malloc(size); random_ints(b, N); 
 c = (int *)malloc(size); 

© NVIDIA 2013 
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Vector Addition on the Device: main() 
        // Copy inputs to device 
        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); 
        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice); 
 
        // Launch add() kernel on GPU with N blocks 
        add<<<N,1>>>(d_a, d_b, d_c); 
 
        // Copy result back to host 
        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost); 
 
        // Cleanup 
        free(a); free(b); free(c); 
        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 
        return 0; 
    } 

© NVIDIA 2013 
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Review (1 of 2) 
§  Difference between host and device 

•  Host  CPU 
•  Device  GPU 

§  Using __global__ to declare a function as device 
code 
•  Executes on the device 
•  Called from the host 

§  Passing parameters from host code to a device 
function 

© NVIDIA 2013 
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Review (2 of 2) 
§  Basic device memory management 

•  cudaMalloc() 
•  cudaMemcpy() 
•  cudaFree() 

§  Launching parallel kernels 
•  Launch N copies of add() with add<<<N,1>>>(…); 
•  Use blockIdx.x to access block index 

© NVIDIA 2013 
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CUDA Threads 
§  Terminology: a block can be split into parallel threads 

§  Let’s change add() to use parallel threads instead 
of parallel blocks 

 

§  We use threadIdx.x instead of blockIdx.x 

§  Need to make one change in main()… 

__global__ void add(int *a, int *b, int *c) { 
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x]; 
} 

© NVIDIA 2013 
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Vector Addition Using Threads: 
main() 

    #define N 512 
    int main(void) { 
        int *a, *b, *c;    // host copies of a, b, c 
        int *d_a, *d_b, *d_c;  // device copies of a, b, c 
        int size = N * sizeof(int); 
        // Alloc space for device copies of a, b, c 
        cudaMalloc((void **)&d_a, size); 
        cudaMalloc((void **)&d_b, size); 
        cudaMalloc((void **)&d_c, size); 
        // Alloc space for host copies of a, b, c and setup input values 
        a = (int *)malloc(size); random_ints(a, N); 
        b = (int *)malloc(size); random_ints(b, N); 
        c = (int *)malloc(size); 

© NVIDIA 2013 
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Vector Addition Using Threads: 
main() 

         // Copy inputs to device 
        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); 
        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice); 
        // Launch add() kernel on GPU with N threads 
        add<<<1,N>>>(d_a, d_b, d_c); 
        // Copy result back to host 
        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost); 
        // Cleanup 
        free(a); free(b); free(c); 
        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 
        return 0; 
    } 

© NVIDIA 2013 
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Combining Blocks and Threads 
§  We’ve seen parallel vector addition using: 

•  Many blocks with one thread each 
•  One block with many threads 

§  Let’s adapt vector addition to use both blocks and 
threads 

§  Why? We’ll come to that… 

§  First let’s discuss data indexing… 

© NVIDIA 2013 
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0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and 
Threads 

§  With M threads/block a unique index for each thread 
is given by: 

 int index = threadIdx.x + blockIdx.x * M; 

 

§  No longer as simple as using blockIdx.x and 
threadIdx.x 
•  Consider indexing an array with one element per thread 

(8 threads/block) 
threadIdx.x threadIdx.x threadIdx.x threadIdx.x 

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3 

© NVIDIA 2013 
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Indexing Arrays: Example 
§  Which thread will operate on the red element? 

 int index = threadIdx.x + blockIdx.x * M; 
           =      5      +     2      * 8; 
           = 21; 

 

0 1 7 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5 

blockIdx.x = 2 

0 1 31 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

M = 8 
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Vector Addition with Blocks and 
Threads 

§  What changes need to be made in main()? 

§  Use the built-in variable blockDim.x for threads per block 
 int index = threadIdx.x + blockIdx.x * blockDim.x; 

 

§  Combined version of add() to use parallel threads and 
parallel blocks 

__global__ void add(int *a, int *b, int *c) { 
    int index = threadIdx.x + blockIdx.x * blockDim.x; 
    c[index] = a[index] + b[index]; 
} 
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Addition with Blocks and Threads: 
main() 

    #define N (2048*2048) 
    #define THREADS_PER_BLOCK 512 
    int main(void) { 
        int *a, *b, *c;    // host copies of a, b, c 
        int *d_a, *d_b, *d_c;  // device copies of a, b, c 
        int size = N * sizeof(int); 

  
        // Alloc space for device copies of a, b, c 
        cudaMalloc((void **)&d_a, size); 
        cudaMalloc((void **)&d_b, size); 
        cudaMalloc((void **)&d_c, size); 
 
        // Alloc space for host copies of a, b, c and setup input values 
        a = (int *)malloc(size); random_ints(a, N); 
        b = (int *)malloc(size); random_ints(b, N); 
        c = (int *)malloc(size); 
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Addition with Blocks and Threads: 
main() 

        // Copy inputs to device 
        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); 
        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice); 
 
        // Launch add() kernel on GPU 
        add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c); 
 
        // Copy result back to host 
        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost); 
 
        // Cleanup 
        free(a); free(b); free(c); 
        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 
        return 0; 
    } 
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Handling Arbitrary Vector Sizes 

§  Update the kernel launch: 
 add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N); 

 

§  Typical problems are not friendly multiples of 
blockDim.x 

 

§  Avoid accessing beyond the end of the arrays: 
__global__ void add(int *a, int *b, int *c, int n) { 
    int index = threadIdx.x + blockIdx.x * blockDim.x; 
    if (index < n) 
        c[index] = a[index] + b[index]; 
} 
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Why Bother with Threads? 
§  Threads seem unnecessary 

•  They add a level of complexity 
•  What do we gain? 

§  Unlike parallel blocks, threads have 
mechanisms to: 
•  Communicate 
•  Synchronize 

§  To look closer, we need a new example… 
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Review 

§  Launching parallel kernels 
•  Launch N copies of add() with add<<<N/M,M>>>(…); 
•  Use blockIdx.x to access block index 
•  Use threadIdx.x to access thread index within block 

§  Allocate elements to threads: 
 

  int index = threadIdx.x + blockIdx.x * blockDim.x; 
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1D Stencil 
§  Consider applying a 1D stencil to a 1D array of 

elements 
•  Each output element is the sum of input elements 

within a radius 

§  If radius is 3, then each output element is the 
sum of 7 input elements: 

© NVIDIA 2013 
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Implementing Within a Block 
§  Each thread processes one output element 

•  blockDim.x elements per block 

§  Input elements are read several times 
•  With radius 3, each input element is read seven times 
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Sharing Data Between Threads 
•  Terminology: within a block, threads share data 

via shared memory 

•  Extremely fast on-chip memory, user-managed 

•  Declare using __shared__, allocated per block 

•  Data is not visible to threads in other blocks 
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Implementing With Shared Memory 
•  Cache data in shared memory 

– Read (blockDim.x + 2 * radius) input elements from global 
memory to shared memory 

– Compute blockDim.x output elements 
– Write blockDim.x output elements to global memory 

– Each block needs a halo of radius elements at each 
boundary 

blockDim.x output elements 

halo on left halo on right 
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__global__ void stencil_1d(int *in, int *out) { 
  __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 
  int gindex = threadIdx.x + blockIdx.x * blockDim.x; 
  int lindex = threadIdx.x + RADIUS; 
 
  // Read input elements into shared memory 
  temp[lindex] = in[gindex]; 
  if (threadIdx.x < RADIUS) { 
    temp[lindex - RADIUS] = in[gindex - RADIUS]; 
    temp[lindex + BLOCK_SIZE] =  
      in[gindex + BLOCK_SIZE]; 
  } 
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  // Apply the stencil 
  int result = 0; 
  for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 
    result += temp[lindex + offset]; 
 
  // Store the result 
  out[gindex] = result; 
} 

Stencil Kernel 
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Data Race! 

© NVIDIA 2013 

§  The stencil example will not work… 

§  Suppose thread 15 reads the halo before thread 0 has 
fetched it… 

 

 

  temp[lindex] = in[gindex]; 

  if (threadIdx.x < RADIUS) { 

    temp[lindex – RADIUS = in[gindex – RADIUS]; 

    temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 

  } 

   

  int result = 0; 

  result += temp[lindex + 1]; 

 

Store at temp[18] 

Load from temp[19] 

Skipped, threadIdx > RADIUS 
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__syncthreads() 
•  void __syncthreads(); 

•  Synchronizes all threads within a block 
– Used to prevent RAW / WAR / WAW hazards 

•  All threads must reach the barrier 
– In conditional code, the condition must be uniform 

across the block 
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Stencil Kernel 
__global__ void stencil_1d(int *in, int *out) { 
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 
    int gindex = threadIdx.x + blockIdx.x * blockDim.x; 
    int lindex = threadIdx.x + radius; 
 
    // Read input elements into shared memory 
    temp[lindex] = in[gindex]; 
    if (threadIdx.x < RADIUS) { 
        temp[lindex – RADIUS] = in[gindex – RADIUS]; 
        temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 
    } 
 
    // Synchronize (ensure all the data is available) 
    __syncthreads(); 
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Stencil Kernel 
    // Apply the stencil 
    int result = 0; 
    for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 
        result += temp[lindex + offset]; 
 
    // Store the result 
    out[gindex] = result; 
} 
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Review (1 of 2) 
§  Launching parallel threads 

•  Launch N blocks with M threads per block with 
kernel<<<N,M>>>(…); 

•  Use blockIdx.x to access block index within grid 
•  Use threadIdx.x to access thread index within block 

§  Allocate elements to threads: 
 

 int index = threadIdx.x + blockIdx.x * blockDim.x; 
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Review (2 of 2) 
§  Use __shared__ to declare a variable/array in 

shared memory 
•  Data is shared between threads in a block 
•  Not visible to threads in other blocks 

§  Use __syncthreads() as a barrier 
•  Use to prevent data hazards 
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Coordinating Host & Device 
§  Kernel launches are asynchronous 

•  Control returns to the CPU immediately 

§  CPU needs to synchronize before consuming the 
results 

cudaMemcpy() Blocks the CPU until the copy is complete 
Copy begins when all preceding CUDA calls 
have completed 

cudaMemcpyAsync() Asynchronous, does not block the CPU 
cudaDeviceSynchro
nize() 

Blocks the CPU until all preceding CUDA calls 
have completed 
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Reporting Errors 
§  All CUDA API calls return an error code (cudaError_t) 

•  Error in the API call itself 
 OR 

•  Error in an earlier asynchronous operation (e.g. kernel) 

§  Get the error code for the last error: 
 cudaError_t cudaGetLastError(void) 

§  Get a string to describe the error: 
 char *cudaGetErrorString(cudaError_t) 

 printf("%s\n", 
cudaGetErrorString(cudaGetLastError())); 
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Device Management 
§  Application can query and select GPUs 

 cudaGetDeviceCount(int *count) 

 cudaSetDevice(int device) 

 cudaGetDevice(int *device) 

 cudaGetDeviceProperties(cudaDeviceProp *prop, int 
device) 

§  Multiple threads can share a device 

§  A single thread can manage multiple devices 
 cudaSetDevice(i) to select current device 
 cudaMemcpy(…) for peer-to-peer copies✝ 

✝ requires OS and device support 
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Introduction to CUDA C/C++ 
§  What have we learned? 

•  Write and launch CUDA C/C++ kernels 
—  __global__,  blockIdx.x,  threadIdx.x,  <<<>>> 

•  Manage GPU memory 
—  cudaMalloc(),  cudaMemcpy(),  cudaFree() 

•  Manage communication and synchronization 
—  __shared__,  __syncthreads() 
—  cudaMemcpy() vs cudaMemcpyAsync(),  cudaDeviceSynchronize() 
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Compute Capability 
§  The compute capability of a device describes its architecture, e.g. 

•  Number of registers 
•  Sizes of memories 
•  Features & capabilities 

Compute 
Capability 

Selected Features 
(see CUDA C Programming Guide for 

complete list) 

Tesla 
models 

1.0 Fundamental CUDA support 870 

1.3 Double precision, improved memory accesses, 
atomics 

10-series 

2.0 Caches, fused multiply-add, 3D grids, surfaces, 
ECC, P2P, 
concurrent kernels/copies, function pointers, 
recursion 

20-series 
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Compute Capability 
§  The compute capability of a device describes its architecture, e.g. 

•  Number of registers 
•  Sizes of memories 
•  Features & capabilities 

Compute 
Capability 

Selected Features 
(see CUDA C Programming Guide for 

complete list) 

Tesla 
models 

1.0 Fundamental CUDA support 870 

1.3 Double precision, improved memory accesses, 
atomics 

10-series 

2.0 Caches, fused multiply-add, 3D grids, surfaces, 
ECC, P2P, 
concurrent kernels/copies, function pointers, 
recursion 

20-series 
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Compute Capability (continued) 
§  The compute capability of a device describes its architecture, e.g. 

•  Number of registers 
•  Sizes of memories 
•  Features & capabilities Compute 

Capability 
Selected Features 

(see CUDA C Programming Guide for complete 
list) 

Tesla 
models 

1.0 Fundamental CUDA support 870 

1.3 Double precision, improved memory accesses, 
atomics 

10-series 

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC, 
P2P, 
concurrent kernels/copies, function pointers, recursion 

20-series 
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IDs and Dimensions 

•  A kernel is launched as a 
grid of blocks of threads 
—  blockIdx and threadIdx 

are 3D 
—  We showed only one 

dimension (x) 

§  Built-in variables: 
•  threadIdx 
•  blockIdx 
•  blockDim 
•  gridDim 

Device 

Grid 1 
Bloc
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Textures 
§  Read-only object 

•  Dedicated cache 

§  Dedicated filtering hardware 
(Linear, bilinear, trilinear) 

§  Addressable as 1D, 2D or 3D 

§  Out-of-bounds address handling 
(Wrap, clamp) 

0 1 2 3 
0 

1 

2 

4 

(2.5, 0.5) 

(1.0, 1.0) 
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Topics we skipped 
§  We skipped some details, you can learn more: 

•  CUDA Programming Guide 
•  CUDA Zone – tools, training, webinars and more 

developer.nvidia.com/cuda 

§  Need a quick primer for later: 
•  Multi-dimensional indexing 
•  Textures 

 

© NVIDIA 2013 
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LC Surface Linux 
ClusterArchitecture 
§  LC Linux Cluster – CPUs + GPUs 

•  158 compute (batch) nodes , 1 login node 
•  2 Sockets, 8 cores each, Intel Xeon E5-2670  @ 2.6 

GHz; 2 GPUs/node – Tesla K40m 

§  Workshop will be using 20 reserved nodes 
•  xxx 
•  xxx 
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LC Surface Linux 
ClusterArchitecture 
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Hands-on Exercises: Computing π 
(Pi) 
§  Running Example: compute Pi with increasing 

parallelism 

§  Description of Numerical approach 

1. C 

2. C + CUDA 
1.  Simple kernel (1 thread) 
2.  1 Block (512 threads) 
3.  Shared memory 
4.  Grid of blocks (32k threads) 
5.  GPU reduction 
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Login on LC SurfaceCluster 
§  On Linux/OS X/Windows systems, use: 

•  Putty / any ssh client 
•  Connect to surface.llnl.gov 
•   ssh –X –l username surface.llnl.gov 

§  Copy exercise file into $HOME directory 
•  mkdir GPU 
•  cp /usr/global/docs/training/blaise/gpu/C/* ~/GPU 
•  cd GPU 
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Getting Information on GPU 
Environment 
§  In terminal session  

deviceQuery 
•  What is output? 
•   Now try mxterm 1 1 90 –q gpgpu, then when new X-

window opens - 
 deviceQuery 

§  Examine output – what information is provided? 
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Setting up User Software 
Environment 
§  Set up CUDA environment 

•  module load cudatoolkit/7.5 

§  Set up Compiler environment 
•  use gcc-4.4.6 
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Approximation of Pi by Monte Carlo 
§  The value of PI can be calculated in a 

number of ways. Consider the following 
method of approximating PI Inscribe a circle 
in a square  

§  Randomly generate points in the square  

§  Determine the number of points in the 
square that are also in the circle  

§  Let r be the number of points in the circle 
divided by the number of points in the 
square  

§  PI ~ 4 r  

§  Note that the more points generated, the 
better the approximation  
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Approximation of Pi  - Monte Carlo 
§  Serial pseudo code for this procedure:  
npoints = 10000 circle_count = 0  

do j = 1,npoints  

  generate 2 random numbers between 0 and 1      

  xcoordinate = random1  

  ycoordinate = random2  

  If (xcoordinate, ycoordinate) inside circle then circle_count =        
circle_count + 1  

end do  

PI = 4.0*circle_count/npoints  
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Approximation of Pi by Monte Carlo 
– Parallel Version 

§  Another problem that's easy to parallelize: 
All point calculations are independent; no 
data dependencies  

§  Work can be evenly divided; no load 
balance concerns  

§  No need for communication or 
synchronization between tasks  

§  Parallel strategy: Divide the loop into equal 
portions that can be executed by the pool of 
tasks  

§  Each task independently performs its work  

§  A SPMD model is used  

§  One task acts as the master to collect 
results and compute the value of PI  
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Approximation of Pi by Monte Carlo 
– Parallel Version 
§  Pseudo code solution: red highlights changes for parallelism.  

npoints = numthreads 

circle_count = 0  

p = number of tasks  

num = npoints/p 

do j = 1,num  

generate 2 random numbers between 0 and 1  

xcoordinate = random1 [for each thread] 

ycoordinate = random2 [for each thread] 

if (xcoordinate, ycoordinate) inside circle then circle_count = circle_count + 1 [ for each thraed] 

end do 
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Make Examples 
§  VectorAdd 

 make vectorAdd 

§  Compute Pi – pure C 
•  make pi-serial 

§  Compute Pi – C, CUDA 
•  make cuda-pi 
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Running Examples 
§  Vector Add 

•  ./vectorAdd 

§  Compute Pi – pure C 
•  ./pi-serial 

§  Compute Pi – CUDA 
•  ./cuda-pi 
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References for Additional Reading 
    

•  NVIDIA Training - https://developer.nvidia.com/accelerated-computing-
training 

•  NVIDIA CUDA Developers Blog  
https://devblogs.nvidia.com/parallelforall/ 
•  Oak Ridge Leadership Computing facility (OLCF) - 

https://www.olcf.ornl.gov/tutorials/cuda-monte-carlo-pi/#serial 

•  “Programming Massively Parallel Processers”, by Kirk and Hwu 
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