
LLNL-PRES-XXXXXX
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Introduction to GPU Parallel Programming
Data Heroes Summer HPC Workshop

Donald Frederick,
Livermore Computing

June 27, 2016

Lawrence Livermore National Laboratory LLNL-PRES-825897 2

§  Why Accelerators, GPUs
§ GPU architecture
§ GPU Programming Models

• CUDA
• OpenCL
• OpenMP
• OpenACC

§ 

Agenda

Lawrence Livermore National Laboratory LLNL-PRES-825897 3

§ Focus on CUDA GPU
Programming Model

§ Simple CUDA Examples
§ device_query
§ Vector sum
§ Compute Pi
§ 

Agenda(continued)

Lawrence Livermore National Laboratory LLNL-PRES-825897 4

§  LC Surface Linux Cluster Architecture
§  LC Surface Linux Cluster node architecture
§  How to compile, link and run simple CUDA

examples on Surface
§  References for further study
§ 

Agenda (continued)

Lawrence Livermore National Laboratory LLNL-PRES-825897 5

Objective
§  Introduction to programming GPUs for general-purpose computing tasks

§  Specific to NVIDIA GPUs
•  CUDA programming abstraction

§  Compare performance to CPU threads
•  OpenMP – could also integrate (not shown)

§  Show integration within clusters
•  Multiple nodes with GPUs

§  Hands-on exercises - : laptop à LC surface Linux cluster

Not covered in this short course:

§  Advanced GPU performance tuning (memory, async. kernels etc.)

§  OpenCL

§  PGI compiler directives for accelerators

Lawrence Livermore National Laboratory LLNL-PRES-825897 6

Why GPU Computing

Lawrence Livermore National Laboratory LLNL-PRES-825897 7

Recap of Important Parallel
Computing Concepts

Single Instruction, Multiple Data (SIMD):

A type of parallel computer

Single Instruction: All processing units execute the same instruction at any given clock cycle

Multiple Data: Each processing unit can operate on a different data element

Best suited for specialized problems characterized by a high degree of regularity, such as graphics/
image processing.

Synchronous (lockstep) and deterministic execution

Two varieties: Processor Arrays and Vector Pipelines

Examples:
Processor Arrays: Thinking Machines CM-2, MasPar MP-1 & MP-2, ILLIAC IV

Vector Pipelines: IBM 9000, Cray X-MP, Y-MP & C90, Fujitsu VP, NEC SX-2, Hitachi S820, ETA10

Most modern computers, particularly those with graphics processor units (GPUs) employ SIMD
instructions and execution units.

Lawrence Livermore National Laboratory LLNL-PRES-825897 8

Recap of Important Parallel
Computing Concepts(continued)

Single Program Multiple Data (SPMD):

SPMD is actually a "high level" programming model that can be built upon any
combination of the previously mentioned parallel programming models.

SINGLE PROGRAM: All tasks execute their copy of the same program
simultaneously. This program can be threads, message passing, data parallel or

hybrid.

MULTIPLE DATA: All tasks may use different data

SPMD programs usually have the necessary logic programmed into them to allow
different tasks to branch or conditionally execute only those parts of the program they
are designed to execute. That is, tasks do not necessarily have to execute the entire

program - perhaps only a portion of it.

The SPMD model, using message passing or hybrid programming, is probably the
most commonly used parallel programming model for multi-node clusters.

Lawrence Livermore National Laboratory LLNL-PRES-825897 9

Recap of Important Parallel
Computing Concepts(continued)

Current Architectures

Lawrence Livermore National Laboratory LLNL-PRES-825897 10

Recap of Important Parallel
Computing Concepts(continued)

Designing Parallel Programs

Understand the Problem and the Program

Before spending time in an attempt to develop a parallel solution for a problem, determine
whether or not the problem is one that can actually be parallelized.

•  Investigate other algorithms if possible. This may be the single most important
consideration when designing a parallel application.

Partitioning

One of the first steps in designing a parallel program is to break the problem into discrete
"chunks" of work that can be distributed to multiple tasks. This is known as decomposition

or partitioning.

There are two basic ways to partition computational work among parallel tasks: domain
decomposition and functional decomposition.

Domain Decomposition:

In this type of partitioning, the data associated with a problem is decomposed. Each
parallel task then works on a portion of the data.

Lawrence Livermore National Laboratory LLNL-PRES-825897 11

Recap of Important Parallel
Computing Concepts(continued)

Domain Decomposition:

In this type of partitioning, the data associated with a
problem is decomposed. Each parallel task then works on

a portion of the data.

Lawrence Livermore National Laboratory LLNL-PRES-825897 12

GPU CPU

Add GPUs: Accelerate Science Applications

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 13

Small Changes, Big Speed-up
Application Code

+

GPU CPU

Use GPU to
Parallelize

Compute-Intensive
Functions

Rest of Sequential
CPU Code

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 14

Fastest Performance on Scientific
Applications

Tesla K20X Speed-Up over Sandy Bridge CPUs

CPU results: Dual socket E5-2687w, 3.10 GHz, GPU results: Dual socket E5-2687w + 2 Tesla K20X GPUs
*MATLAB results comparing one i7-2600K CPU vs with Tesla K20 GPU
Disclaimer: Non-NVIDIA implementations may not have been fully optimized

0.0x 5.0x 10.0x 15.0x 20.0x

AMBER

SPECFEM3D

Chroma

MATLAB (FFT)* Engineering

Earth
Science

Physics

Molecular
Dynamics

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 15

Why Computing Perf/Watt Matters?

Traditional CPUs are
not economically feasible

2.3 PFlops 7000 homes

7.0
Megawatts

7.0
Megawatts

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for Many

Parallel Tasks

10x performance/socket

> 5x energy efficiency

Era of GPU-accelerated
computing is here

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 16

World’s Fastest, Most Energy Efficient
Accelerator

Tesla K20X

Tesla K20

Xeon CPU,
E5-2690

Xeon Phi
225W

0.0

1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

SG
EM

M
 (

TF
LO

PS
)

DGEMM (TFLOPS)

Tesla K20X vs Xeon CPU

8x Faster SGEMM

6x Faster DGEMM

Tesla K20X vs Xeon Phi

90% Faster SGEMM

60% Faster DGEMM

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 17

§  CUDA
•  Developed by NVIDIA
•  Specific to NVIDIA hardware
•  Supports C/C++
—  Adds new syntactic elements to language

•  Often provides faster execution than other APIs
•  NVIDIA and 3-rdparty support for numerical libraries,

infrastructure
—  cuBLAS
—  cuFFT

GPU Programming Models (APIs)

Lawrence Livermore National Laboratory LLNL-PRES-825897 18

§  OpenCL
•  Cross-platform, cross-vendor standard
•  Enables programming of diverse compute resources
—  CPU, GPU, DSP, FPGA

•  One code tree can be executed on CPUs, GPUs,
DSPs and hardware
—  Dynamically interrogate system load and balance across

available processors

•  Supports C/C++
•  More information: https://www.khronos.org/opencl/

GPU Programming Models (APIs)

Lawrence Livermore National Laboratory LLNL-PRES-825897 19

§  OpenMP
•  Multi-platform, shared-memory
•  Supports C/C++ and Fortran
§  Compiler-directive-based

•  Supported by many vendors’ compilers
•  Accelerator support defined in OpenMP 4.0
•  More information: http://openmp.org
—  OpenMP 4.5 latest (Fall 2015)

GPU Programming Models (APIs)

Lawrence Livermore National Laboratory LLNL-PRES-825897 20

§  OpenACC
•  Vendor-neutral API
•  Supports C/C++ and Fortran (similar to OpenMP)
—  Compiler-directive-based

•  More information at: http://www.openacc-standard.org/

GPU Programming Models (APIs)

Lawrence Livermore National Laboratory LLNL-PRES-825897 21

CUDA C/C++ BASICS
NVIDIA Corporation

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 22

What is CUDA?
§  CUDA Architecture

•  Expose GPU parallelism for general-purpose computing
•  Retain performance

§  CUDA C/C++
•  Based on industry-standard C/C++
•  Small set of extensions to enable heterogeneous

programming
•  Straightforward APIs to manage devices, memory etc.

§  This session introduces CUDA C/C++

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 23

Introduction to CUDA C/C++
§  What will you learn in this session?

•  Start from “Hello World!”
•  Write and launch CUDA C/C++ kernels
•  Manage GPU memory
•  Manage communication and synchronization

© NVIDIA 2013

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 25

HELLO WORLD!

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

Lawrence Livermore National Laboratory LLNL-PRES-825897 26

Heterogeneous Computing
§  Terminology:

§  Host The CPU and its memory (host memory)
§  Device The GPU and its memory (device memory)

Host Device

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 27

Heterogeneous Computing
#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

void fill_ints(int *x, int n) {
 fill_n(x, n, 1);
}

int main(void) {
 int *in, *out; // host copies of a, b, c
 int *d_in, *d_out; // device copies of a, b, c
 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values
 in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

 // Alloc space for device copies
 cudaMalloc((void **)&d_in, size);
 cudaMalloc((void **)&d_out, size);

 // Copy to device
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

 // Copy result back to host
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(in); free(out);
 cudaFree(d_in); cudaFree(d_out);
 return 0;
}

serial code

parallel code

serial code

parallel fn

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 28

Simple Processing Flow

1.  Copy input data from CPU memory
to GPU memory

PCI Bus

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 29

Simple Processing Flow

1.  Copy input data from CPU memory
to GPU memory

2.  Load GPU program and execute,
caching data on chip for
performance

© NVIDIA 2013

PCI Bus

Lawrence Livermore National Laboratory LLNL-PRES-825897 30

Simple Processing Flow

1.  Copy input data from CPU memory
to GPU memory

2.  Load GPU program and execute,
caching data on chip for
performance

3.  Copy results from GPU memory to
CPU memory

© NVIDIA 2013

PCI Bus

Lawrence Livermore National Laboratory LLNL-PRES-825897 31

Hello World!
 int main(void) {
 printf("Hello World!\n");
 return 0;
 }

  Standard C that runs on the host

  NVIDIA compiler (nvcc) can be used
to compile programs with no device
code

Output:

$ nvcc
hello_world.
cu
$ a.out
Hello World!
$

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 32

Hello World! with Device Code
 __global__ void mykernel(void) {
 }

 int main(void) {
 mykernel<<<1,1>>>();
 printf("Hello World!\n");
 return 0;
 }

§  Two new syntactic elements…

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 33

Hello World! with Device Code
 __global__ void mykernel(void) {

 }

§  CUDA C/C++ keyword __global__ indicates a function that:
•  Runs on the device
•  Is called from host code

§  nvcc separates source code into host and device
components
•  Device functions (e.g. mykernel()) processed by NVIDIA compiler
•  Host functions (e.g. main()) processed by standard host compiler
—  gcc, cl.exe

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 34

Hello World! with Device COde
 mykernel<<<1,1>>>();

§  Triple angle brackets mark a call from host code
to device code
•  Also called a “kernel launch”
•  We’ll return to the parameters (1,1) in a moment

§  That’s all that is required to execute a function
on the GPU

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 35

Hello World! with Device Code
 __global__ void mykernel(void){
 }

 int main(void) {
 mykernel<<<1,1>>>();
 printf("Hello World!\n");
 return 0;
 }

•  mykernel() does nothing,

somewhat anticlimactic!

Output:

$ nvcc
hello.cu
$ a.out
Hello World!
$

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 36

Parallel Programming in CUDA C/C+
+
•  But wait… GPU computing is about

massive parallelism!

•  We need a more interesting example…

•  We’ll start by adding two integers and
build up to vector addition

a b c
© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 37

Addition on the Device
§  A simple kernel to add two integers

 __global__ void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

§  As before __global__ is a CUDA C/C++ keyword

meaning
•  add() will execute on the device
•  add() will be called from the host

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 38

Addition on the Device
§  Note that we use pointers for the variables

 __global__ void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

§  add() runs on the device, so a, b and c must point to
device memory

§  We need to allocate memory on the GPU

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 39

Memory Management
§  Host and device memory are separate entities

•  Device pointers point to GPU memory
May be passed to/from host code
May not be dereferenced in host code

•  Host pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

§  Simple CUDA API for handling device memory
•  cudaMalloc(), cudaFree(), cudaMemcpy()
•  Similar to the C equivalents malloc(), free(), memcpy()

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 40

Addition on the Device: add()
§  Returning to our add() kernel

 __global__ void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

§  Let’s take a look at main()…

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 41

Addition on the Device: main()
 int main(void) {

 int a, b, c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = sizeof(int);

 // Allocate space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Setup input values

 a = 2;

 b = 7;

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 42

Addition on the Device: main()
 // Copy inputs to device

 cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU

 add<<<1,1>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

© NVIDIA 2013

RUNNING IN
PARALLEL

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 44

Moving to Parallel
§  GPU computing is about massive parallelism

•  So how do we run code in parallel on the device?

 add<<< 1, 1 >>>();

 add<<< N, 1 >>>();

§  Instead of executing add() once, execute N times
in parallel

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 45

Vector Addition on the Device
§  With add() running in parallel we can do vector addition

§  Terminology: each parallel invocation of add() is referred to as
a block
•  The set of blocks is referred to as a grid
•  Each invocation can refer to its block index using blockIdx.x

 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

§  By using blockIdx.x to index into the array, each block handles a
different index

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 46

Vector Addition on the Device
 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

§  On the device, each block can execute in parallel:

c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 47

Vector Addition on the Device: add()
§  Returning to our parallelized add() kernel

 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

§  Let’s take a look at main()…

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 48

Vector Addition on the Device: main()
 #define N 512
 int main(void) {

 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 49

Vector Addition on the Device: main()
 // Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N blocks
 add<<<N,1>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 50

Review (1 of 2)
§  Difference between host and device

•  Host CPU
•  Device GPU

§  Using __global__ to declare a function as device
code
•  Executes on the device
•  Called from the host

§  Passing parameters from host code to a device
function

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 51

Review (2 of 2)
§  Basic device memory management

•  cudaMalloc()
•  cudaMemcpy()
•  cudaFree()

§  Launching parallel kernels
•  Launch N copies of add() with add<<<N,1>>>(…);
•  Use blockIdx.x to access block index

© NVIDIA 2013

INTRODUCING
THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 53

CUDA Threads
§  Terminology: a block can be split into parallel threads

§  Let’s change add() to use parallel threads instead
of parallel blocks

§  We use threadIdx.x instead of blockIdx.x

§  Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {
 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 54

Vector Addition Using Threads:
main()

 #define N 512
 int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);
 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);
 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 55

Vector Addition Using Threads:
main()

 // Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
 // Launch add() kernel on GPU with N threads
 add<<<1,N>>>(d_a, d_b, d_c);
 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

© NVIDIA 2013

COMBINING THREADS
AND BLOCKS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 57

Combining Blocks and Threads
§  We’ve seen parallel vector addition using:

•  Many blocks with one thread each
•  One block with many threads

§  Let’s adapt vector addition to use both blocks and
threads

§  Why? We’ll come to that…

§  First let’s discuss data indexing…

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 58

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and
Threads

§  With M threads/block a unique index for each thread
is given by:

 int index = threadIdx.x + blockIdx.x * M;

§  No longer as simple as using blockIdx.x and
threadIdx.x
•  Consider indexing an array with one element per thread

(8 threads/block)
threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 59

Indexing Arrays: Example
§  Which thread will operate on the red element?

 int index = threadIdx.x + blockIdx.x * M;
 = 5 + 2 * 8;
 = 21;

0 1 7 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 31 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 60

Vector Addition with Blocks and
Threads

§  What changes need to be made in main()?

§  Use the built-in variable blockDim.x for threads per block
 int index = threadIdx.x + blockIdx.x * blockDim.x;

§  Combined version of add() to use parallel threads and
parallel blocks

__global__ void add(int *a, int *b, int *c) {
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 c[index] = a[index] + b[index];
}

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 61

Addition with Blocks and Threads:
main()

 #define N (2048*2048)
 #define THREADS_PER_BLOCK 512
 int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 62

Addition with Blocks and Threads:
main()

 // Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU
 add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 63

Handling Arbitrary Vector Sizes

§  Update the kernel launch:
 add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

§  Typical problems are not friendly multiples of
blockDim.x

§  Avoid accessing beyond the end of the arrays:
__global__ void add(int *a, int *b, int *c, int n) {
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 if (index < n)
 c[index] = a[index] + b[index];
}

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 64

Why Bother with Threads?
§  Threads seem unnecessary

•  They add a level of complexity
•  What do we gain?

§  Unlike parallel blocks, threads have
mechanisms to:
•  Communicate
•  Synchronize

§  To look closer, we need a new example…

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 65

Review

§  Launching parallel kernels
•  Launch N copies of add() with add<<<N/M,M>>>(…);
•  Use blockIdx.x to access block index
•  Use threadIdx.x to access thread index within block

§  Allocate elements to threads:

 int index = threadIdx.x + blockIdx.x * blockDim.x;

© NVIDIA 2013

COOPERATING
THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 67

1D Stencil
§  Consider applying a 1D stencil to a 1D array of

elements
•  Each output element is the sum of input elements

within a radius

§  If radius is 3, then each output element is the
sum of 7 input elements:

© NVIDIA 2013

radius radius

Lawrence Livermore National Laboratory LLNL-PRES-825897 68

Implementing Within a Block
§  Each thread processes one output element

•  blockDim.x elements per block

§  Input elements are read several times
•  With radius 3, each input element is read seven times

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 69

Sharing Data Between Threads
•  Terminology: within a block, threads share data

via shared memory

•  Extremely fast on-chip memory, user-managed

•  Declare using __shared__, allocated per block

•  Data is not visible to threads in other blocks

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 70

Implementing With Shared Memory
•  Cache data in shared memory

– Read (blockDim.x + 2 * radius) input elements from global
memory to shared memory

– Compute blockDim.x output elements
– Write blockDim.x output elements to global memory

– Each block needs a halo of radius elements at each
boundary

blockDim.x output elements

halo on left halo on right

© NVIDIA 2013

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] =
 in[gindex + BLOCK_SIZE];
 }

© NVIDIA 2013

Stencil	
 Kernel	

Lawrence Livermore National Laboratory LLNL-PRES-825897 72

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

Stencil Kernel

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 73

Data Race!

© NVIDIA 2013

§  The stencil example will not work…

§  Suppose thread 15 reads the halo before thread 0 has
fetched it…

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex – RADIUS = in[gindex – RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 int result = 0;

 result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS

Lawrence Livermore National Laboratory LLNL-PRES-825897 74

__syncthreads()
•  void __syncthreads();

•  Synchronizes all threads within a block
– Used to prevent RAW / WAR / WAW hazards

•  All threads must reach the barrier
– In conditional code, the condition must be uniform

across the block

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 75

Stencil Kernel
__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + radius;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex – RADIUS] = in[gindex – RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 76

Stencil Kernel
 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 77

Review (1 of 2)
§  Launching parallel threads

•  Launch N blocks with M threads per block with
kernel<<<N,M>>>(…);

•  Use blockIdx.x to access block index within grid
•  Use threadIdx.x to access thread index within block

§  Allocate elements to threads:

 int index = threadIdx.x + blockIdx.x * blockDim.x;

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 78

Review (2 of 2)
§  Use __shared__ to declare a variable/array in

shared memory
•  Data is shared between threads in a block
•  Not visible to threads in other blocks

§  Use __syncthreads() as a barrier
•  Use to prevent data hazards

© NVIDIA 2013

MANAGING THE
DEVICE

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 80

Coordinating Host & Device
§  Kernel launches are asynchronous

•  Control returns to the CPU immediately

§  CPU needs to synchronize before consuming the
results

cudaMemcpy() Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls
have completed

cudaMemcpyAsync() Asynchronous, does not block the CPU
cudaDeviceSynchro
nize()

Blocks the CPU until all preceding CUDA calls
have completed

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 81

Reporting Errors
§  All CUDA API calls return an error code (cudaError_t)

•  Error in the API call itself
 OR

•  Error in an earlier asynchronous operation (e.g. kernel)

§  Get the error code for the last error:
 cudaError_t cudaGetLastError(void)

§  Get a string to describe the error:
 char *cudaGetErrorString(cudaError_t)

 printf("%s\n",
cudaGetErrorString(cudaGetLastError()));

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 82

Device Management
§  Application can query and select GPUs

 cudaGetDeviceCount(int *count)

 cudaSetDevice(int device)

 cudaGetDevice(int *device)

 cudaGetDeviceProperties(cudaDeviceProp *prop, int
device)

§  Multiple threads can share a device

§  A single thread can manage multiple devices
 cudaSetDevice(i) to select current device
 cudaMemcpy(…) for peer-to-peer copies✝

✝ requires OS and device support

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 83

Introduction to CUDA C/C++
§  What have we learned?

•  Write and launch CUDA C/C++ kernels
—  __global__, blockIdx.x, threadIdx.x, <<<>>>

•  Manage GPU memory
—  cudaMalloc(), cudaMemcpy(), cudaFree()

•  Manage communication and synchronization
—  __shared__, __syncthreads()
—  cudaMemcpy() vs cudaMemcpyAsync(), cudaDeviceSynchronize()

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 84

Compute Capability
§  The compute capability of a device describes its architecture, e.g.

•  Number of registers
•  Sizes of memories
•  Features & capabilities

Compute
Capability

Selected Features
(see CUDA C Programming Guide for

complete list)

Tesla
models

1.0 Fundamental CUDA support 870

1.3 Double precision, improved memory accesses,
atomics

10-series

2.0 Caches, fused multiply-add, 3D grids, surfaces,
ECC, P2P,
concurrent kernels/copies, function pointers,
recursion

20-series

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 85

Compute Capability
§  The compute capability of a device describes its architecture, e.g.

•  Number of registers
•  Sizes of memories
•  Features & capabilities

Compute
Capability

Selected Features
(see CUDA C Programming Guide for

complete list)

Tesla
models

1.0 Fundamental CUDA support 870

1.3 Double precision, improved memory accesses,
atomics

10-series

2.0 Caches, fused multiply-add, 3D grids, surfaces,
ECC, P2P,
concurrent kernels/copies, function pointers,
recursion

20-series

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 86

Compute Capability (continued)
§  The compute capability of a device describes its architecture, e.g.

•  Number of registers
•  Sizes of memories
•  Features & capabilities Compute

Capability
Selected Features

(see CUDA C Programming Guide for complete
list)

Tesla
models

1.0 Fundamental CUDA support 870

1.3 Double precision, improved memory accesses,
atomics

10-series

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC,
P2P,
concurrent kernels/copies, function pointers, recursion

20-series

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 87

IDs and Dimensions

•  A kernel is launched as a
grid of blocks of threads
—  blockIdx and threadIdx

are 3D
—  We showed only one

dimension (x)

§  Built-in variables:
•  threadIdx
•  blockIdx
•  blockDim
•  gridDim

Device

Grid 1
Bloc

k
(0,0,
0)

Bloc
k

(1,0,
0)

Bloc
k

(2,0,
0)

Bloc
k

(1,1,
0)

Bloc
k

(2,1,
0)

Bloc
k

(0,1,
0)

Block (1,1,0)
Thre
ad

(0,0,0
)

Thre
ad

(1,0,0
)

Thre
ad

(2,0,0
)

Thre
ad

(3,0,0
)

Thre
ad

(4,0,0
)

Thre
ad

(0,1,0
)

Thre
ad

(1,1,0
)

Thre
ad

(2,1,0
)

Thre
ad

(3,1,0
)

Thre
ad

(4,1,0
)

Thre
ad

(0,2,0
)

Thre
ad

(1,2,0
)

Thre
ad

(2,2,0
)

Thre
ad

(3,2,0
)

Thre
ad

(4,2,0
) © NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 88

Textures
§  Read-only object

•  Dedicated cache

§  Dedicated filtering hardware
(Linear, bilinear, trilinear)

§  Addressable as 1D, 2D or 3D

§  Out-of-bounds address handling
(Wrap, clamp)

0 1 2 3
0

1

2

4

(2.5, 0.5)

(1.0, 1.0)

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 89

Topics we skipped
§  We skipped some details, you can learn more:

•  CUDA Programming Guide
•  CUDA Zone – tools, training, webinars and more

developer.nvidia.com/cuda

§  Need a quick primer for later:
•  Multi-dimensional indexing
•  Textures

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 90

LC Surface Linux
ClusterArchitecture
§  LC Linux Cluster – CPUs + GPUs

•  158 compute (batch) nodes , 1 login node
•  2 Sockets, 8 cores each, Intel Xeon E5-2670 @ 2.6

GHz; 2 GPUs/node – Tesla K40m

§  Workshop will be using 20 reserved nodes
•  xxx
•  xxx

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 91

LC Surface Linux
ClusterArchitecture

© NVIDIA 2013

Lawrence Livermore National Laboratory LLNL-PRES-825897 92

Hands-on Exercises: Computing π
(Pi)
§  Running Example: compute Pi with increasing

parallelism

§  Description of Numerical approach

1. C

2. C + CUDA
1.  Simple kernel (1 thread)
2.  1 Block (512 threads)
3.  Shared memory
4.  Grid of blocks (32k threads)
5.  GPU reduction

Lawrence Livermore National Laboratory LLNL-PRES-825897 93

Login on LC SurfaceCluster
§  On Linux/OS X/Windows systems, use:

•  Putty / any ssh client
•  Connect to surface.llnl.gov
•  ssh –X –l username surface.llnl.gov

§  Copy exercise file into $HOME directory
•  mkdir GPU
•  cp /usr/global/docs/training/blaise/gpu/C/* ~/GPU
•  cd GPU

Lawrence Livermore National Laboratory LLNL-PRES-825897 94

Getting Information on GPU
Environment
§  In terminal session

deviceQuery
•  What is output?
•  Now try mxterm 1 1 90 –q gpgpu, then when new X-

window opens -
 deviceQuery

§  Examine output – what information is provided?

Lawrence Livermore National Laboratory LLNL-PRES-825897 95

Setting up User Software
Environment
§  Set up CUDA environment

•  module load cudatoolkit/7.5

§  Set up Compiler environment
•  use gcc-4.4.6

Lawrence Livermore National Laboratory LLNL-PRES-825897 96

Approximation of Pi by Monte Carlo
§  The value of PI can be calculated in a

number of ways. Consider the following
method of approximating PI Inscribe a circle
in a square

§  Randomly generate points in the square

§  Determine the number of points in the
square that are also in the circle

§  Let r be the number of points in the circle
divided by the number of points in the
square

§  PI ~ 4 r

§  Note that the more points generated, the
better the approximation

Lawrence Livermore National Laboratory LLNL-PRES-825897 97

Approximation of Pi - Monte Carlo
§  Serial pseudo code for this procedure:
npoints = 10000 circle_count = 0

do j = 1,npoints

 generate 2 random numbers between 0 and 1

 xcoordinate = random1

 ycoordinate = random2

 If (xcoordinate, ycoordinate) inside circle then circle_count =
circle_count + 1

end do

PI = 4.0*circle_count/npoints

Lawrence Livermore National Laboratory LLNL-PRES-825897 98

Approximation of Pi by Monte Carlo
– Parallel Version

§  Another problem that's easy to parallelize:
All point calculations are independent; no
data dependencies

§  Work can be evenly divided; no load
balance concerns

§  No need for communication or
synchronization between tasks

§  Parallel strategy: Divide the loop into equal
portions that can be executed by the pool of
tasks

§  Each task independently performs its work

§  A SPMD model is used

§  One task acts as the master to collect
results and compute the value of PI

Lawrence Livermore National Laboratory LLNL-PRES-825897 99

Approximation of Pi by Monte Carlo
– Parallel Version
§  Pseudo code solution: red highlights changes for parallelism.

npoints = numthreads

circle_count = 0

p = number of tasks

num = npoints/p

do j = 1,num

generate 2 random numbers between 0 and 1

xcoordinate = random1 [for each thread]

ycoordinate = random2 [for each thread]

if (xcoordinate, ycoordinate) inside circle then circle_count = circle_count + 1 [for each thraed]

end do

Lawrence Livermore National Laboratory LLNL-PRES-825897 100

Make Examples
§  VectorAdd

 make vectorAdd

§  Compute Pi – pure C
•  make pi-serial

§  Compute Pi – C, CUDA
•  make cuda-pi

Lawrence Livermore National Laboratory LLNL-PRES-825897 101

Running Examples
§  Vector Add

•  ./vectorAdd

§  Compute Pi – pure C
•  ./pi-serial

§  Compute Pi – CUDA
•  ./cuda-pi

Lawrence Livermore National Laboratory LLNL-PRES-825897 102

References for Additional Reading

•  NVIDIA Training - https://developer.nvidia.com/accelerated-computing-
training

•  NVIDIA CUDA Developers Blog
https://devblogs.nvidia.com/parallelforall/
•  Oak Ridge Leadership Computing facility (OLCF) -

https://www.olcf.ornl.gov/tutorials/cuda-monte-carlo-pi/#serial

•  “Programming Massively Parallel Processers”, by Kirk and Hwu

Lawrence Livermore National Laboratory LLNL-PRES-825897 103

Acknowledgements
§  Steven Rennich, NIDIA
§  NVIDIA Corporation
§  Oak Ridge National laboratory Leadership Computing facility

(LCF)

