Commodity-based Scalable Visualization: Graphics Cluster Components

Randall Frank

Lawrence Livermore National Laboratory

UCRL-VG-143528
Scalable Rendering Clusters

What makes a scalable rendering cluster unique?

- **Generation of graphical primitives**
 - Graphics computation: primitive extraction/computation
 - Multiple rendering engines

- **Video displays**
 - Routing of video tiles
 - Aggregation of multiple rendering engines

- **Interactivity (not a render-farm!)**
 - Real-time imagery
 - Interaction devices, human in the loop

- **Unique I/O requirements**
 - Access patterns/performance
Start with a basic computational cluster

- COTS computational nodes
- High-speed interconnect
 - GigE, Myrinet, ServerNet II, Quadrics, InfiniBand...
Graphics Cluster Anatomy: Rendering

Add multiple rendering resources

- Software rendering (Mesa, custom, ...)
- Hardware rendering cards
 - nVidia, ATI, 3dfx, intense3d, ...
Graphics Cluster Anatomy: Displays

Attach one or more displays

- Direct display monitors
- Tiled displays (PowerWalls)
- Composite displays: M renderers, N displays
Graphics Cluster Anatomy: Displays

Advanced layouts

• Combinations of tiling and compositing

IBM T220 “Bertha” (3840x2400)

LLNL PowerWall (6400x3072)
PC Graphics Cards: What are they?

PCI and AGP commodity graphics cards

- Cluster-capable PC architectures
 - Intel CPUs + AGP + independent PCI 64/66 (e.g. i840 chipset)
 - Common 3D Graphics APIs: OpenGL/DirectX

Why are we interested?

- Large numbers of cards - low cost
- Games + fast PC hardware - speed
- Graphics “innovation” leadership

Broad categories

- Consumer - Games, Media playback
- Professional - CAD, Media generation
PC Cards: Consumer

Consumer: nVidia, ATI, 3Dfx, Matrox

- **Pros**
 - High fill rates (600-2000Mpixels)
 - Hardware T&L (8-25Mtris) in most recent versions
 - Innovations: cube maps, texture combiners, vertex programs
 - Cheap (<$400), price sensitive/competitive market

- **Cons**
 - Driven by games
 - OpenGL can be a secondary consideration
 - Poor line drawing rates/quality
 - Windowing issues
 - Readback and buffer access issues
 - Difficult to achieve “ultimate” performance
 - Bit depth issues - good enough quality
 - Screen and pipeline (e.g. Texture compression)
PC Cards: Professional

Professional: HP, IBM, 3DLabs/Intense3D, nVidia?

• Pros
 • Full accelerated OpenGL 1.2: 3D texture support
 • Finer attention to OpenGL detail
 • Deeper intermediate computations
 • Non-game features
 – Higher line drawing performance/quality
 – Larger memory
 – Concurrent multi-bit depth/screen support
 – Enhanced video output options (e.g. genlock)

• Cons
 • Lower fill rates (100-400Mpixels, application market bias)
 • Fewer “innovative” extensions: Cube mapping
 • (More) Expensive
PC Cards: What should you expect?

- Are they really Infinite Reality™ pipes?
 - Basic rendering and raw speed: for most measures, yes
 - Image quality/integrity: no, improving
 - Flexible output options: no + DVI, improving, but no DG5-8s
 - System bandwidths: maybe

- Easily rival present desktop workstation graphics
 - Vendors are shipping them as options

- System stability issues (Read the game torture test reviews)

- High fill rates (Not high enough, thank the BSP tree)

- Future feature sets
 - Exceed the IR in many ways, can be raw and complex
 - Extensions: increase the difficulty in writing portable code
Graphics Cluster Anatomy: Issues

- **System bus contention**
 - Simultaneous graphics AGP bandwidth and interconnect PCI bandwidth
 - Careful selection of motherboards (e.g. i840)

- **CPU options (number/speed)**
 - System overhead (e.g. TCP/IP stacks)

- **Core system interconnect**
 - Bandwidth/latency

- **Operating system selection**
 - Drivers/cluster management software
Aggregation: Tiling Vs Compositing

Goal: aggregate multiple rendering engines, combining their outputs on a single display to scale rendering “performance”

- **2D - “screen space”**
 - “Sort-first” rendering model
 - Targets display scalability, higher frame rates

- **3D - “data space”**
 - “Sort-last” rendering model
 - Targets large data scalability, higher polygon counts
Aggregation: Tiling

Tiling (2D decomposition in screen space)

Route portions of a final aggregate display to their final destination with no overlap

- Order independent
- Destination determines bandwidth
- Graphics primitives may be moved, replicated or sorted for load balancing
- RGB data
Aggregation: Compositing

Compositing (3D decomposition in data space)

3D blocks that are combined using classic graphics operators (e.g. Z-buffering, alpha blending, etc)

- Z, α, stencil enhanced pixels
- Fixed 3D data decompositions (data need not move)
- Bandwidth exceeds that of output display (3D vs 2D)
- Hierarchy trades bandwidth for latency
- Ordering may be critical
Implementing Aggregation

Composition datapaths are targets for specialized parallel and asynchronous interconnects

- **Basic operation**
 - Access the rendered imagery in digital form
 - Route image fragments to composition mechanism
 - Composite the fragments
 - Display the results

- **Approaches**
 - Reuse the cluster interconnect
 - Utilize digital video interface (DVI) output
 - Use a dedicated interconnect
Reuse Core Cluster Interconnect

Compositing/tiling directly on the nodes

- Image or primitive exchange over the interconnect
- Readback of graphics card buffers (RGB, z, α, stencil)
- Flexible computation of aggregate imagery by host CPU

Current solutions

- Quadrics, Myrinet, ServerNet, GigE
- MPI, VIA, TCP/IP, GM

Issues

- Processor overhead (second CPU?)
- Available bandwidth and latency
- Framebuffer readback performance
Digital Video Interface Interconnect

Video based solutions

- Ideally suited to tiling, DVI inputs/outputs
- Asynchronous operation, Avoids readback

Examples

Issues

- Synchronization issues
 - Tagged imagery
 - Auxiliary signals
- DVI signal and pixel format limits
- Limited compositing functions/ordering options
- Scalability of mesh architectures
Dedicated Compositing Interconnect

Secondary interconnect dedicated to compositing

- Need not be fully connected (data decomposition)
- Offload operation from host onto custom chips (FPGA)
- General pixel formats, programmable composition functions
- Interconnect switch for ordering

Examples

- Compaq: Sepia, IBM: SGE

Issues

- Framebuffer readback
- Additional host bus demand
- Bandwidth-pixel count/format
Composition and Interconnects: Issues

- Multi-pass rendering algorithms
- Framebuffer readback
 - Performance and availability of graphics APIs
 - Limitations of DVI: distance, pixel formats, bandwidth
- Graphics card bit depth limitations (e.g. global Z)
- Latency and ultimate framerate issues
- Protocol/API inefficiencies
 - TCP/IP: High overhead, Jumbo frames (M-VIA over gigE?)
 - MPI: Design issues for streaming transport
- Flexible/scalable software interfaces
 - Data partitioning: The “zoom” problem
 - Anisotropic rendering environments