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Abstract
We present a method for hierarchical data approximation using quadratic simplicial elements for domain de-
composition and field approximation. Higher-order simplicial elements can approximate data better than linear
elements. Thus, fewer quadratic elements are required to achieve similar approximation quality. We use quadratic
basis functions and compute best quadratic simplicial spline approximations that are C0-continuous everywhere.
We adaptively refine a simplicial approximation by identifying and bisecting simplicial elements with largest er-
rors. It is possible to store multiple approximation levels of increasing quality. We have tested the suitability and
efficiency of our hierarchical data approximation scheme by applying it to several data sets.

Categories and Subject Descriptors (according to ACM CCS): I.4.10 [Image Processing and Computer Vision]:
Hierarchical; I.4.2 [Image Processing and Computer Vision]: Approximate Methods

1. Introduction

The trend in science and engineering applications has been
to produce larger data sets since computers and imaging
technology are getting faster and storage space is increas-
ing. Large amounts of data are difficult to visualize and it is
impossible to directly visualize on inexpensive computers.
Many visualization techniques exist that visualize certain
types of large data, however, a general solution does not ex-
ist. A hierarchical method provides the foundation for a so-
lution. Linear and quadratic decomposition elements can be
used to form an approximation hierarchy representing large
data; a user can then visualize this hierarchy on an inexpen-
sive machine.

We only consider quadratic simplicial elements. In the 2D
case, we use quadratic triangles whose edges are straight
line segments; in the 3D case, we use quadratic tetrahedral
elements whose edges are straight line segments and faces
are planar triangles. We use a linear transformation to map

the so-called standard simplex to the corresponding simpli-
cial region in 2D/3D space. Furthermore, we use a quadratic
polynomial defined over each simplicial element to locally
approximate the dependent variable(s).

Our overall goal is the construction of a hierarchical
data approximation over 2D or 3D domains using a best-
approximation approach based on quadratic polynomials de-
fined over the simplices defining the domain. Our approach
belongs to the class of refinement methods. These methods
are based on the principle of refining intermediate data ap-
proximations by inserting additional points or elements until
a certain termination (error) criterion is satisfied. We have
developed our method with a focus on massive scientific data
visualization, see 13. To enable interactive frame rates for
massive data visualization, it is possible to either use low-
resolution best approximations everywhere or to adaptively
“insert” high-resolution approximations locally into an oth-

c
�

The Eurographics Association 2002.



Wiley / Best Quadratic Spline Approximation

erwise relatively coarse approximation. The overall approx-
imation algorithm is based on these steps:� Initial simplicial domain decomposition. We construct

a coarse simplicial decomposition of the domain. (The
linear transformations, mapping the standard simplex de-
fined in parameter space to simplices in physical space,
are defined by specifying corresponding point pairs in the
two spaces such that one obtains a one-to-one, bijective
mapping.)� Best approximation. In the 2D case, each simplicial ele-
ment has six associated knots, one knot per corner and one
knot per edge. Six knots in parameter space are associ-
ated with six points in physical space, and this defines the
needed mapping for a simplex. (Accordingly, the number
of knots is ten in the 3D case.) For simplicity, we consider
only knots that are uniformly distributed along the edges
of the standard simplex. We associate a quadratic poly-
nomial with each simplicial element that approximates
the dependent variable(s) over the corresponding region
in space. We represent each quadratic basis polynomial in
Bernstein-Bézier form, see 6. Assuming that the function
to be approximated, typically a scalar- or vector-valued
function, is known in analytical form, it is possible to
compute the unique best quadratic spline approximation
defined as a linear combination of a set of quadratic basis
functions. The best approximation, understood in a least
squares sense, is the result of solving the normal equa-
tions, see 5.� Adaptive bisection. We compute a local error value for
each simplicial element once a best approximation is com-
puted. We use the L2 norm to compute simplex-specific
error values. The set of simplices is ordered according to
these simplex-specific, local error values. To compute a
“next-level” best quadratic approximation, we determine
a certain percentage of simplices with largest error val-
ues and bisect them by splitting them at the midpoint
of their longest edge. If a simplex’s longest edge is not
unique, we choose the edge randomly. Splitting a simplex
into two simplices induces additional splits for all those
simplices that share the split edge. We update a simpli-
cial domain decomposition by considering all edge bisec-
tions and computing a new best approximation. We repeat
the process of identifying simplices with largest errors,
bisecting these simplices, and computing a new best ap-
proximation until we obtain an approximation for which
a global approximation error is below a user-specified er-
ror threshold, or until a user-specified maximal number of
simplices is reached.� Hierarchical data representation. To support level-of-
detail visualization we can store multiple best approxi-
mations of different resolutions. For each best approxi-
mation, we need to store the polynomial coefficients of
each simplicial element. We store a fixed number of best
approximations such that either the number of simplices
increases in a specified fashion or the maximal simplex-

Figure 1: Correspondence between 2D basis functions B2
i � j

and knots (indicated by bullets and circles) in uv-parameter
space.

specific error decreases in a certain way from one resolu-
tion to the next.

We discuss these steps in more detail in the following sec-
tions.

2. Previous Work

Related work in the areas of hierarchical data representa-
tion and visualization is discussed in 12 � 17 � 20 � 27. Simplifica-
tion methods (methods that begin with a high resolution of
data and then simplify by removing data) are described in
10 � 14 � 18 � 29 � 30. Wavelet methods, in general, work well for rec-
tilinear 2D and 3D grids and are described in 2 � 3 � 24. Refine-
ment methods (methods that begin with few data and then
refine by adding more data), similar to our method, are de-
scribed in 15 � 16. Data-dependent triangulation schemes, i.e.,
schemes concerned with the construction of piecewise lin-
ear approximations using near-optimally shaped and placed
simplicial elements, are described in 22. From a more general
perspective, our work is also related to grid generation, and
references for this area are 8 � 19 � 28. Finite element methods
are discussed in 31.

3. Mapping the Standard Simplex

In the 2D case, the standard simplex in parameter space is
the triangle with corners � 0 � 0 � , � 1 � 0 � , and � 0 � 1 � . We asso-
ciate a 2D quadratic Bernstein-Bézier polynomial B2

i � j � u � v �
(abbreviated by B2

i � j), defined as

B2
i � j � u � v �
	

2!�
2 � i � j 
 ! i! j! � 1 � u � v � 2 � i � j ui v j �

i � j � 0 � i � j � 2 � (1)

with each corner and midpoint of each edge. The six basis
polynomials correspond to the six knots ui � j 	�� ui � j � vi � j ��	�

i
2 � j

2 � , i � j � 0, i � j � 2 in parameter space, see Figure 1.

In the 3D case, the standard simplex is the tetrahe-
dron with corners � 0 � 0 � 0 � , � 1 � 0 � 0 � , � 0 � 1 � 0 � , and � 0 � 0 � 1 � .
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We associate a 3D quadratic Bernstein-Bézier polynomial
B2

i � j � k � u � v � w � (abbreviated by B2
i � j � k), defined as

B2
i � j � k � u � v � w �
	

2!�
2 � i � j � k 
 ! i! j! k! � 1 � u � v � w � 2 � i � j � k ui v j wk �

i � j � k � 0 � i � j � k � 2 � (2)

with each corner and edge. The ten basis polynomials
correspond to the ten knots ui � j � k 	�� ui � j � k � vi � j � k � wi � j � k ��	�

i
2 � j

2 � k
2 � , i � j � k � 0, i � j � k � 2 in parameter space.

4. Initial Decomposition

The main objective driving the development of our method
is the hierarchical representation of very large scientific data,
where real-time and adaptive data visualization are crucial.
Data sets resulting from computational simulations are typ-
ically defined on a grid, and the dependent variables are as-
sociated with either the vertices, also called nodes in the
finite element literature, or the elements defining the grid.
Either of these types of data can be approximated. Triangu-
lating the convex hull of the original set of data sites with a
coarse triangulation defines an initial decomposition of the
domain. The 3D case requires us to construct a tetrahedral-
ization of the convex hull. We decompose quadrilaterals with
two triangles (2D case) hexahedra with five tetrahedra (3D
case). The elements we use are geometrically linear. How-
ever, there are quadratic polynomials defined “over” them
that approximate the dependent field variable(s).

5. Best Approximation

We assume that the field to be approximated over a domain
is known analytically. Should this not be the case, e.g., in the
case of scattered data (when one is given a set of randomly
distributed points with associated function values without
connectivity information), it is possible to construct an an-
alytical representation by performing a prior data interpola-
tion or approximation step, see 7 � 23. In the case that a data set
is defined on a grid, the required analytical definition is given
by a piecewise linear function for a simplicial (triangular
or tetrahedral) grid and a piecewise bilinear/trilinear func-
tion in the case of quadrilateral/hexahedral grid cells. We
denote the analytical function to be approximated over the
domain by F � x � (abbreviated by F). Based on an initial sim-
plicial domain decomposition, we compute the correspond-
ing best piecewise quadratic approximation of F � x � by solv-
ing the normal equations, see 5. The normal equations deter-
mine the set of coefficients for the desired quadratic spline
representation—a best approximation in the least squares
sense.

Corner vertices of simplicial elements may be shared by
any number of simplices, and we denote the basis function
associated with a corner vertex vi by fi � x � . An edge of a sim-
plicial element may be shared by no more than two simplices

Figure 2: Types of basis functions: basis function associated
with corner (left) and edge (right).

Figure 3: Basis functions associated with the platelet of ver-
tex vi and the edge neighbors of edge e j.

in the 2D case and by an arbitrary number of simplices in the
3D case. We denote a basis function associated with the mid-
point of a simplex edge e j by g j � x � . We refer to the set of
simplices sharing a common corner vertex as the platelet of
this corner, and we call the set of simplices sharing a com-
mon edge edge neighbors. Thus, a set of platelet simplices
defines the region in space over which a basis function as-
sociated with the corresponding corner vertex is non-zero.
Edge neighbors, associated with a particular edge, define the
region in space over which a basis function associated with
this edge is non-zero. Figure 2 shows the two types of ba-
sis functions for the bivariate case. Figure 3 shows the basis
functions associated with the platelet of a vertex and the edge
neighbors of an edge.

We denote a best approximation as a � x � , and we write
it as a linear combination of the basis functions associated
with all distinct simplex corners (“corner basis functions”
fi) and simplex edges (“edge basis functions” gi). Assuming
that there are m distinct corners and n distinct edges, we can
write a best approximation as

a � x ��	 m

∑
i � 1

ci fi � x ��� n

∑
j � 1

d j g j � x ��� (3)
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We must solve the normal equations to obtain the unknown
coefficients ci and d j . In matrix form, the normal equations
are�
���������
 
f1 � f1 ! �"�"�  

f1 � fm !  
f1 � g1 ! �"�"�  

f1 � gn !
...

... 
fm � f1 ! �"�"�  

fm � fm !  
fm � g1 ! �"�"�  

fm � gn ! 
g1 � f1 ! �"�"�  

g1 � fm !  
g1 � g1 ! �"�"�  

g1 � gn !
...

... 
gn � f1 ! �"�"�  

gn � fm !  
gn � g1 ! �"�"�  

gn � gn !
#�$$$$$$$$%�

���������
c1
...

cm
d1
...

dn

#�$$$$$$$$% 	
�
���������
 
F � f1 !

... 
F � fm ! 
F � g1 !

... 
F � gn !

#�$$$$$$$$% �
(4)

where
 
G � H ! denotes the inner product of the functions

G � x � and H � x � , i.e., 
G � H ! 	 &

Common Domain o f G and H

G � x � H � x � dx � (5)

In our construction, we must compute inner products over
the simplices. Since all simplicial elements in physical space
are defined by linear mappings of the standard simplex, we
can simplify integration by making use of the change-of-
variables theorem, see 21, which relates integration in phys-
ical space to integration in parameter space. In the 2D case,
integrals are computed according to the formula'

Physical Simplex
G � x � y � dx dy 	'

Standard Simplex
G
�

x � u � v �(� y � u � v � � J � u � v � du dv � (6)

where J � u � v � denotes the Jacobian associated with the map-
ping of the standard simplex to the corresponding simplex in
physical space. The Jacobian is the determinant

J � u � v �
	*)))))))
∂
∂u x � u � v � ∂

∂v x � u � v �
∂

∂u y � u � v � ∂
∂v y � u � v � )))))))

� (7)

Thus, to effectively compute integrals of functions over
triangles we only need to consider the linear transformation+

x � u � v �
y � u � v �-, 	+

x1 � 0 � x0 � 0 x0 � 1 � x0 � 0
y1 � 0 � y0 � 0 y0 � 1 � y0 � 0 , + u

v , � + x0
y0 , � (8)

This transformation maps the standard triangle with ver-
tices u0 	/. 0 � 0 0 T , u1 	1. 1 � 0 0 T , and u2 	1. 0 � 1 0 T in the uv-
plane to the arbitrary simplex S with corner vertices v0 	

. x0 � 0 � y0 � 0 0 T , v1 	2. x1 � 0 � y1 � 0 0 T , and v2 	2. x0 � 1 � y0 � 1 0 T in the xy-
plane. (Both triangles must be oriented counterclockwise).
For this linear mapping, the change-of-variables theorem
yields&

S
G � x � y � dxdy 	 J & 1

v � 0
& 1 � v

u � 0
G � x � u � v �(� y � u � v �3� dudv�

(9)
where the Jacobian J is given by

J 	 det
+

x1 � 0 � x0 � 0 x0 � 1 � x0 � 0
y1 � 0 � y0 � 0 y0 � 1 � y0 � 0 , � (10)

The 3D case is a straightforward extension; here, the Jaco-
bian is given by

J 	
det 45 x1 � 0 � 0 � x0 � 0 � 0 x0 � 1 � 0 � x0 � 0 � 0 x0 � 0 � 1 � x0 � 0 � 0

y1 � 0 � 0 � y0 � 0 � 0 y0 � 1 � 0 � y0 � 0 � 0 y0 � 0 � 1 � y0 � 0 � 0
z1 � 0 � 0 � z0 � 0 � 0 z0 � 1 � 0 � z0 � 0 � 0 z0 � 0 � 1 � z0 � 0 � 0 67 �

(11)

The matrices involved in the best-approximation step are
sparse because all basis functions have local support. Sev-
eral methods exist for bandwidth reduction, efficient factor-
ization, and inversion of such sparse matrices, see 4 � 9 � 11 � 25 � 26.
We use an efficient sparse matrix representation and system
solver to compute the coefficients in linear time.

The computation of the inner products appearing in
the normal equations requires multi-dimensional integration
over simplicial elements. While the change-of-variables the-
orem reduces this integration to integration over the stan-
dard simplex, we still need to perform relatively expensive
numerical integration for the calculation of the inner prod-
ucts appearing on the right-hand side of the normal equa-
tions, i.e., the integrals of the types

 
F � fi ! and

 
F � g j ! . Since

F � x � can, in general, be any analytically defined function,
numerical integration can potentially become expensive. We
use Romberg integration for the computation of these right-
hand-side inner products, see 1 � 16.

Once we have computed a best approximation for a partic-
ular simplicial domain decomposition, we analyze the local
approximation quality to identify simplices that should be
refined (bisected) to further improve approximation quality.
In the following section, we discuss the principle we use for
adaptive bisection.

6. Adaptive Bisection

For each simplicial element Si in a particular domain decom-
position, we compute a local approximation error ei. We de-
fine this error as

ei 	 � &
Si

�
F � x �8� a � x � � 2

dx � 1
2 � (12)
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Figure 4: Bisection of simplices in bivariate and trivariate
cases. Darker simplex is the one selected for bisection.

Selecting and bisecting simplices of maximal error are the
steps used to refine the mesh. In general, we choose a certain
percentage of the simplices to be refined.

We refine a simplicial element by bisecting at the mid-
point of its longest edge. All simplices sharing the split edge
are bisected to avoid “hanging nodes” and, therefore, to pre-
serve a conforming mesh. The bisection step is shown in Fig-
ure 4. Bisection steps lead to new simplicial domain decom-
positions, and we must compute new best quadratic spline
approximations for each one.

We continue to bisect a certain percentage of simplices
in the intermediate approximations until either the num-
ber of simplices in a decomposition exceeds some user-
specified maximal number or until an approximation is ob-
tained whose global error is less than a user-specified toler-
ance. (We defined the global error of an approximation as
the sum of all local simplex errors).

The final result of our method is a set of independent best
quadratic spline approximations that can be used for the pur-
poses of interactive and/or adaptive level-of-detail visualiza-
tion.

7. Results

We have tested our method for several test data. In general,
we compare a piecewise quadratic approximation to a piece-
wise linear approximation. We visualize quadratic simplices
by tessellating them using many linear elements.

Figure 5 shows a quadratic and linear spline approxi-
mation for comparison. The quadratic approximation can,
in theory, approximate this function exactly. (Numerical
floating-point error is introduced in practice. For the shown
example, this numerical floating-point error is on the order
of 10 � 14). The linear approximation must use a relatively
large number of elements to represent this quadratic function
with small error. The global error for the quadratic spline is
3 � 6x10 � 14 and the global error for the linear approximation
error is 1 � 6x10 � 6 . The linear approximation was computed
using the method described in 16.

A comparison of a quadratic and a linear spline approx-

Figure 5: Comparison between quadratic spline approxi-
mation (left) and linear spline approximation (right). Un-
der each approximation, we show the corresponding do-
main decomposition. The quadratic approximation uses 9
knots and 2 simplices. The linear approximation uses 111
knots and 187 simplices. The function being approximated
is F � x � y �9	 x2 � y2 � x � y :<;=� 1

2 � 1
2 > .

imation is shown in Figure 6. The original image consists
of 1536x1024 pixels. The quadratic spline approximation—
consisting of 2989 quadratic simplices—required 158 sec-
onds of computation time while the linear approximation—
consisting of 11482 linear simplices—required 536 seconds.

A sample hierarchy of 2D quadratic spline approxima-
tions is shown in Figure 7. The original image consists of
121x121 pixels. Global errors for the six approximations are
329.11, 106.22, 45.53, 12.85, 3.08, and 0.40. Computations
times ranged from two to 200 seconds for the six approxi-
mations.

A sample hierarchy of 2D quadratic spline approxima-
tions is shown in Figure 8. The original image consists of
211x144 pixels. Global errors for the four approximations
are 37.05, 9.70, 1.86, and 0.45. Computations times ranged
from six to 200 seconds for the six approximations.

A comparison of a quadratic and a linear spline approx-
imation of a 3D skull data set is shown in Figure 9. The
original data set consists of 278528 data sites. We visual-
ize the quadratic spline approximation by tessellating each
quadratic simplex with 512 linear elements and then extract-
ing an isosurface from the linear elements. The same iso-
surface for the linear spline approximation was extracted
directly from the linear simplices. The quadratic spline ap-
proximation has a global error of 2 � 15x10 � 6 , and the linear
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Figure 6: Comparison between quadratic approximation
(left) and linear approximation (right). Original image is
shown at the top. The quadratic approximation uses 6076
knots and 2989 simplices. The linear approximation uses
5816 knots and 11482 simplices.

Figure 7: Hierarchical approximations of digital image data
set. Original image is shown at the top. Six approximations
are shown, 8, 20, 38, 90, 225, and 633 simplices, respec-
tively.

Figure 8: Hierarchical approximations of digital image data
set. Original image is shown at the top. Four approximations
are shown, 16, 48, 191, and 790 simplices, respectively.

Figure 9: Comparison between quadratic approximation
(left) and linear approximation (right). The quadratic ap-
proximation uses 7487 knots and 5348 simplices. The linear
approximation uses 14667 knots and 78530 simplices.

spline approximation has a global error of 1 � 65x10 � 2 . The
quadratic spline approximation required about 20 hours of
computation time while the linear approximation required
less than three.

A sample hierarchy of 3D quadratic spline approxima-
tions for a 3D skull data set is shown in Figure 10. Global
errors for the six approximations are 1 � 0x10 � 3 , 4 � 7x10 � 4 ,
3 � 9x10 � 5, and 2 � 1x10 � 6 .

All of the approximations were computed on a 1.8GHz
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Figure 10: Hierarchical approximations of skull data set.
Four approximations are shown, 62, 125, 741, and 5348 sim-
plices, respectively.

Pentium IV graphics workstation with 512MB of main
memory.

Linear 2D and 3D approximations were rendered at in-
teractive frame rates. Quadratic 2D approximations required
just a few seconds to render per frame. Tessellation of 3D
quadratic approximations required several seconds for the
highest resolutions. Once tessellated, computing and render-
ing a contour was at interactive frame rates.

8. Conclusions

Quadratic simplicial elements can be used to more com-
pactly approximate data than linear simplicial elements. In
general, the use of higher-order simplices should be consid-
ered as they can produce better-quality approximations, us-
ing a smaller number of simplices.

Additional research incorporating geometrically curved
simplices can further improve the quality of approximations
by allowing the simplices to decompose more complicated-
shaped domains. A decomposition of a domain having
curved boundaries would require fewer curved simplices to
represent the domain well.

The generated meshes are C0 continuous, it is also pos-
sible to produce C1 approximations. We plan to investigate
this enhancement in the future.

Higher-order simplices are growing in importance in visu-
alization as researchers are also using them more frequently
for domain decomposition in numerical simulations. Thus,
visualization of these simplices is also important because

of their increasing popularity. Direct higher-order visual-
ization techniques such as contouring and volume visual-
ization techniques, must be developed to take advantage of
higher-order elements. We are currently working on such
techniques.
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