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Summary. Currently, large physics simulations produce 3D discretized field data
whose individual isosurfaces, after conventional extraction processes, contain up-
wards of hundreds of millions of triangles. Detailed interactive viewing of these
surfaces requires (a) powerful compression to minimize storage, and (b) fast view-
dependent optimization of display triangulations to most effectively utilize high-
performance graphics hardware. In this work, we introduce the first end-to-end
multiresolution dataflow strategy that can effectively combine the top performing
subdivision-surface wavelet compression and view-dependent optimization meth-
ods, thus increasing efficiency by several orders of magnitude over conventional
processing pipelines. In addition to the general development and analysis of the
dataflow, we present new algorithms at two steps in the pipeline that provide the
“glue” that makes an integrated large-scale data visualization approach possible.
A shrink-wrapping step converts highly detailed unstructured surfaces of arbitrary
topology to the semi-structured meshes needed for wavelet compression. Remap-
ping to triangle bintrees minimizes disturbing “pops” during realtime display-
triangulation optimization and provides effective selective-transmission compres-
sion for out-of-core and remote access to extremely large surfaces. Overall, this
is the first effort to exploit semi-structured surface representations for a complete
large-data visualization pipeline.

1 Background

Two formerly distinct multi-resolution methods—subdivision-surface wavelet
compression, and realtime display through view-dependent optimization—
must be integrated to achieve a highly scalable and storage-efficient system
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Fig. 1. Shrink-wrap result for .3% of a terascale-simulation isosurface. This conver-
sion from irregular to a semi-regular mesh enables us to apply wavelet compression
and view-dependent optimization.

for visualizing the results of recent large-scale 3D simulations. These semi-
structured methods have been shown individually to have the highest perfor-
mance of other respective approaches, but have required a number of missing
re-mapping and optimization steps to be effectively scaled to huge data sets
and to be linked together. This paper fills in these gaps and demonstrates
the potential of the semi-structured approach.

Terascale physics simulations are now producing tens of terabytes of out-
put for a several-day run on the largest computer systems. For example, the
Gordon Bell Prize-winning simulation of a Richtmyer-Meshkov instability in
a shock-tube experiment [12] produced isosurfaces of the mixing interface
consisting of 460 million unstructured triangles using conventional isosurface
extraction methods. New parallel systems are three times as powerful as the
one used for this run, so billion-triangle surfaces are to be expected. Since we
are interested in user interaction, especially sliding through time, surfaces are
pre-computed; if they were not, the 100 kilotriangle-per-processor rates for
the fastest isosurface extractors would result in several minutes per surface
on 25 processors. Using 32-bit values for coordinates, normals and indices re-
quires 16 gigabytes to store a single surface, and several terabytes for a single
surface tracking through all 274 time steps of the simulation. This already
exceeds the compressed storage of the 3D fields from which the surfaces are
derived, and adding additional isolevels or fields per time step would make
this approach infeasible. With the gigabyte-per-second read rates of current
RAID storage, it would require 16 seconds to read a single surface. A com-
pression factor of 100 with no loss of visual quality would cleanly solve both
the storage and load-rate issues. This may be possible with new finite bicu-
bic subdivision-surface wavelets that we introduced in [1]. Methods based on
non-finite wavelet decomposition filters [10] are not likely to scale well to the
massively parallel co-processing setting that we find critical for the future.

Another bottleneck occurs with high-performance graphics hardware. The
fastest commercial systems today can effectively draw around 20 million tri-
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angles per second, i.e., around 1 million triangles per frame at 20 frames per
second. Thus around a thousand-fold reduction in triangle count is needed.
This reduction is too aggressive to be done without taking the interactively-
changing viewpoint into account. As the scientist moves close to an area of
interest, that area should immediately and seamlessly be fully resolved while
staying within the interactive triangle budget. This can be formulated as
the optimization of an adaptive triangulation of the surface to minimize a
view-dependent error measure, such as the projected geometric distortion on
the screen. Since the viewpoint changes 20 times per second, and the error
measure changes with the viewpoint, the million-element adaptation must
be re-optimized continuously and quickly. The fastest time in which any al-
gorithm can perform this optimization is O(Aoutput), an amount of time
proportional to the number of element changes in the adaptation per frame.
The Realtime Optimally Adapting Meshes (ROAM) algorithm achieves this
optimal time using adaptations built from triangle bintrees [6], implemented
for height-map surfaces. Using this approach in a flight-simulation example,
it was found that around 3% of the elements change per frame, which re-
sulted in a 30-fold speedup in optimization rates. This is critically important
since the bottleneck in fine-grained view-dependent optimizers is process-
ing time rather than graphics hardware rates. In this work we extend the
ROAM optmizer to work on general surface shapes formulated as a kind of
subdivision-surface.

Wavelet compression and view-dependent optimization are two powerful
tools that are part of the larger dataflow from 3D simulation to interactive
rendering. These are by no means the only challenging components of a teras-
cale visualization system. For example, conversion is required to turn the ir-
regular extracted surfaces into a semi-structured form appropriate for further
processing, see Figure 1. Before turning to our focus on the two remapping
steps that tie together the overall dataflow, we provide an overview of the
complete data pipeline for surface interaction.

2 End-to-end Multiresolution Dataflow

The processing required to go from massive 3D data to the interactive, opti-
mal display triangulations may be decomposed into six steps:

Extract: Obtain unstructured triangles through accelerated isosurface ex-
traction methods or through material-boundary extraction from volume-
fraction data [2]. The extraction for our purposes actually produces two
intermediate results, 1) a signed-distance field near the desired surface,
along with 2) a polygonal mesh of the surface ready for simplification.

Shrink-wrap: Convert the high-resolution triangulation to a similarly de-
tailed surface that has subdivision-surface connectivity (i.e., is semi-
reqular), has high parametric quality, and minimizes the number of struc-
tured blocks. This step has three phases: (1) compute the complete signed-
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distance transform of the surface from the near-distance field obtained
in the Extract step; (2) simplify the surface to a base mesh; and (3) it-
eratively subdivide, smooth and snap the new mesh to the fine-resolution
surface until a specified tolerance is met (see Section 3).

Wavelet compress: For texture storage, geometry archiving, and initial
transmission from the massively-parallel runs, use bicubic wavelets based
on subdivision surfaces for nearly lossless compression [1]. Good shrink-
wrap optimization can make a significant improvement in the wavelet
compression performance of this step.

Triangle bintree remap: Remap the shrink-wrap parameterization to
be optimal for subsequent view-dependent optimization (this is different
than being optimal for high-quality wavelet compression). The bintree hi-
erarchies use piecewise-linear “wavelets” without any vanishing moments,
but where most wavelet coefficients can be a single scalar value in a de-
rived normal direction, and where highly localized changes are supported
during selective refinement (see Section 4).

Selective decompress: Asynchronously feed a stream of compressed de-
tail where the view-dependent adaptation is most likely to find missing
values during selective refinement in the near future. This stream can
be efficiently stored in chunks for efficient I/O or network transmission
(further details are provided later in this Section).

Display-list optimization: Perform the realtime optimization of the adap-
tive display-list triangulation each frame, taking maximal advantage of
frame-to-frame coherence to accelerate frustum culling, element priority
computation, and local refinement and coarsening to achieve the optimum
per-view geometry [6].

These six processing steps occur in the order listed for terascale surface
visualization. The first three steps—extraction, shrink-wrapping and wavelet
compression—typically occur in batch mode either as a co-process of the mas-
sively parallel physics simulation, or in a subsequent parallel post-processing
phase. Given the selective access during interaction, and given the already
existing wavelet hierarchy, the remapping for ROAM interaction can be sup-
ported on demand by modest parallel resources. Because the ROAM remap-
ping works in time O(output) in a coarse-to-fine progression, the amount of
computation per minute of interaction is independent of the size of the physics
grid or the fine-resolution surfaces. The ROAM remapper is envisioned as a
runtime data service residing on a small farm of processors and disks, that
reads, remaps and feeds a highly compact data stream on demand to the
client ROAM display-list optimizer. This server-to-client link could be across
a LAN or over high-speed WAN to provide remote access. The ROAM algo-
rithm works at high speed per frame to optimize the display triangulation,
and thus will reside proximate to the graphics hardware.

The decompression and remapping services can be abstracted into an
asynchronous client-server interface between the ROAM optimizer client run-
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ning at high frame rates, and a loader server performing the reads, remote
transmission, decompression, remapping and local transmission. In the ROAM
algorithm, refinement and coarsening of the displayed geometry occurs on tri-
angle bintrees as depicted in Figure 2. The unit operation is the simple split,
wherein two triangles T' and its base neighbor T are replaced with four
children Ty, Ty, TBo and Tp;. The key change to the ROAM algorithm is
that the simple split operation is allowed to fail in the case that the de-
compressed /remapped information for the four kids, such as geometry and
textures, is not available yet. In that case, the priority of the split becomes
temporarily set to zero until an event handler notes the arrival of the required
information. Similarly, the chains of simple split operations resulting from a
force split (depicted in Figure 3), require that the force split fail if any simple
split in the chain fails.

Fig. 2. Simple split and merge operations on a bintree triangulation. A typical
neighborhood is shown for triangle 7" on the left. Splits can fail if the required
details have not arrived from the loader.

forced split
TB T A

Fig. 3. A chain of simple splits, known as a force split, is required during mesh
optimization to ensure continuity. Any simple split failure results in failure for the
remainder of the chain.
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A cache is kept of the remapped/decompressed information (the geometry
and textures). A hash scheme is used to access the remapped information,
keyed on the unique split-center vertex index. If the required information for
the four kids exists, the split operation will succeed in finding them in the
cache. Else the split-center key is put on the loader’s decompress/remap re-
quest queue and the split fails. After a simple split succeeds, the information
record for the four kids is taken off the re-use queue. On merge, the four-kid
record is placed on the “most recent” end of the re-use queue. To conserve lim-
ited memory or graphics hardware resources, the least-recently-used records
may be re-used.

The loader performs remapping on any awaiting remap requests in the or-
der received. Upon completion, it generates an event to the ROAM optimizer
that the four-kid record should be stored in the cache and made available
for future simple splits. The priority of the associated splits are reset to their
normal values at this time.

In order for the loading scheme to avoid causing delays to the per-frame
processing, the display optimizer does not stop and wait for loads to occur,
but continues to perform splits and merges in response to viewpoint changes.
The delayed (failed) splits will eventually succeed after some frames, result-
ing in brief sub-optimal display accuracy but at full frame rates. However,
due to frame-to-frame coherence these inaccuracies are expected to be minor
and quickly corrected. To avoid the inaccuracies altogether, a form of ea-
ger evaluation is included that anticipates future split requirements. It works
by putting the loader requests associated with the grandkids on the request
queue each time a split occurs. These requests should be given lower priority
than the ones immediately needed by currently-attempted split operations.
Finally, to avoid stale entries in the loader request queue from accumulating,
queue entries may be removed if the request was not repeated on the current
frame.

The remainder of this paper focuses on the two remapping steps in this
dataflow. The first step prepares a surface for wavelet compression, the second
converts the parameterization for ROAM triangle bintree optimization.

3 Shrink-wrapping Large Isosurfaces

Subdivision surfaces originated with the methods of Catmull-Clark [3] and
Doo-Sabin [4], with greatly renewed research activity in the last few years.
Wavelets for these types of surfaces were first devised by Lounsbery and col-
laborators [11,7,14], with additional work on wavelets for Loop and Butterfly
subdivision surfaces and compression by Khodakovsky et al. [10]. Work on
finite filters with Catmull-Clark subdivision-surface wavelets was performed
by us in Bertram et al. [1], which also introduced an early variant on the
shrink-wrap procedure described in this section, which is applicable to isosur-
faces. The shrink-wrapping method we introduced in [1] was used to demon-
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strate wavelet transforms of complex isosurfaces in a non-parallel, topology-
preserving setting. Here we elaborate on extensions to allow parallel and
topology-simplifying shrink-wrapping. An alternate approach to remapping
for isosurfaces was presented by Wood et al. [15], but appears to be difficult
to parallelize or to extend for topology simplification.

Before subdivision-surface wavelet compression can be applied to an iso-
surface, it must be remapped to a mesh with subdivision-surface connec-
tivity. Minimizing the number of base-mesh elements increases the number
of levels in a wavelet transform, thus increasing the potential for compres-
sion. Because of the extreme size of the surfaces encountered, and the large
number of them, the remapper must be fast, work in parallel, and be en-
tirely automated. The compression using wavelets is improved by generating
high-quality meshes during the remapping step. For this, highly smooth and
nearly square parameterizations result in the smallest magnitude and count
of wavelet coefficient magnitudes, respectively, and yields small outputs after
entropy coding. In addition, we would like to allow the new mesh to optionally
have simplified topology, akin to actual physical shrink-wrapping of complex
3D objects with a few connected sheets of plastic. The strategy pursued here
is to first produce a highly simplified version of the mesh, followed by the
re-introduction of detail in a semi-regular refinement through a coarse-to-fine
iterative optimization process.

The algorithm uses as input a scalar field on a 3D mesh and an isolevel,
and provides as output a surface mesh with subdivision-surface connectivity,
i.e., a collection of logically-square patches of size (2" +1) x (2" +1) connected
on mutual edges. The algorithm, on a high level, is organized in three steps:

Signed distance transform: For each grid point in the 3D mesh, compute
the signed-distance field, i.e., the distance to the closest surface point,
negated if in the region of scalar field less than the isolevel. Starting with
the vertices of the 3D mesh elements containing isosurface components,
the transform is computed using a kind of breadth-first propagation. Data
parallelism is readily achieved by queueing up the propagating values on
the boundary of a block subdomain, and communicating to the block-face
neighbor when no further local propagation is possible.

Determine base mesh: To preserve topology, edge-collapse simplification
is used on the full-resolution isosurface extracted from the distance field
using conventional techniques. This phase is followed by an edge-removal
phase (edges but not vertices are deleted) that improves the vertex and
face degrees to be as close to four as possible. Parallelism for this mode of
simplification is problematic, since edge-collapse methods are inherently
serial using a single priority queue to order collapses.

To allow topology reduction, the 3D distance field is simplified before
the isosurface is extracted. Simplification can be performed by using
wavelet low-pass filtering on regular grids, or after resampling to a regular
grid for curvilinear or unstructured 3D meshes. The use of the signed-



8 Mark Duchaineau et al.

distance field improves simplified-surface quality compared to working
directly from the original scalar field. To achieve the analog of physical
shrink-wrapping, a min operation can be used in place of the wavelet
filtering. For each cell in an octree, the minimum of all the child cells is
recursively computed. Assuming the solid of interest has values greater
than an isolevel, the isosurfaces of the coarse octree levels will form a
topologically-simplified surface that is guaranteed to completely contain
the fully-resolved solid. This form of simplification is easily parallelized in
a distributed setting. It is not clear at this time how to achieve topology
preservation and significant distributed-data parallelism.

Subdivide and fit: The base mesh is iteratively fit and the parameteriza-
tion optimized by repeating three phases: (1) subdivide using Catmull-
Clark rules; (2) perform edge-length-weighted Laplacian smoothing; and
(3) snap the mesh vertices onto the original full-resolution surface with
the help of the signed-distance field. Snapping involves a hunt for the
nearest fine-resolution surface position that lies on a line passing through
the mesh point in an estimated normal direction of the shrink-wrap mesh.
The estimated normal is used, instead of (for example) the distance-
field gradient, to help spread the shrink-wrap vertices evenly over high-
curvature regions. The signed-distance field is used to provide Newton-
Raphson-iteration convergence when the snap hunt is close to the original
surface, and to eliminate nearest-position candidates whose gradients are
not facing in the directional hemisphere centered on the estimated nor-
mal. Steps 2 and 3 may be repeated several times after each subdivision
step to improve the quality of the parameterization and fit. In the case
of topology simplification, portions of the shrink-wrap surface with no
appropriate snap target are left at their minimal-energy position deter-
mined by the smoothing and the boundary conditions of those points that
do snap. Distributed computation is straightforward since all operations
are local and independent for a given resolution.

The distance-field computation uses a regular cubic grid (for unstructured
finite element input, a fast 3D variant of triangle scan conversion is used to
resample to a regular cubic grid). Each vertex in the 3D grid contains the
field value and the coordinates and distance to the closest point found so far,
where the distances are initialized to a very large number. There is also a
circular array of queued vertex indices (a single integer per vertex), of size no
larger than the number of vertices in the 3D grid. This circular array is used
as a simple first-in, first-out queue used to order the propagation of distance
values through the domain. It is initialized to be empty.

The propagation is started at the isosurface of interest. For the purposes
of this paper, material-fraction boundaries are treated one material at a time,
using the same formulation as for isosurfaces by considering that material’s
volume fraction as a field and thresholding it at 50%. All the vertices of all the
cells containing the surface are put onto the queue, and their closest points
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and distances are determined directly from the field values of their cell. These
nearest points are computed by approximating the field as a linear function
in the neighborhood of the cubic-grid vertex v:

f(v) = f(vo) + Vf(vo) - (v = v0)
where we define the gradient at a vertex using central differences:

(f(vo +dz) = f(vo — dy))/2
Vf(wo) = | (f(vo +dy) — fvo —dy))/2
(f(vo +dz) — f(vo — dz))/2

for d, =[1,0,0]7, d, =[0,1,0]T and d, = [0,0,1]7. The closest point in the
local linear approximation will be

Vf(UO)‘
IV £ (vo) I3

where f(v) if the trilinearly-interpolated field for the cubic grid, and fo is the
desired isolevel. Optionally, the precise distance to the trilinear field isosurface
is obtained by performing Newton-Raphson iterations starting at v., using
the gradient and field values from the trilinear interpolant.

The distance-field propagation now proceeds by repeatedly processing the
output end of the queue until no queue entries are left. The vertex index 4
is removed from the queue, and its 26 vertex neighbors are examined. If the
current closest point v, (i) to vertex i is closer to neighbor v(j) than j’s current
closest point v.(j), then we set v.(j) < v.(i), update the current distance
d(j), and put j on the input end of the queue if it is not already on the queue.
Overall our tests show that a vertex will be updated between about 1.2 and
1.8 times during the propagation, meaning that the algorithm is observed
empirically to run in time O(N) for N vertices. The distance transform on
the 256 x 256 x 384 volume used for the large example in Figure 1 took 63
seconds to compute on a 1.8GHz Pentium 4 processor with 1GB of 800MHz
RDRAM memory.

Note that closest points by definition travel perpendicular to the isosurface
in straight lines. This, combined with the fact that the propagation updates
are highly localized, leads to a simple and effective means of parallelization.
Each processor is assigned a random subset of small blocks (e.g. 643 cells)
as a passive load-balancing mechanism. Each processor initializes the queue
for the vertices near the isosurface on all its blocks. The processing then pro-
ceeds as follows. The processor chooses a block with a nonempty queue. It
processes all entries of the queue until the queue is empty, and accumulates
a list of updated vertices on each of the six block faces. For each face that
has updates, a message containing the list of updates is sent to the processor
that owns the neighboring block. The processor receives any available update
messages, puts the updated vertices on the indicated block queue, and sends
an acknowledgement reply message. Also the processor receives any available

v = vo + (fo — f(vo))
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acknowledgements to its previous update transmissions. If at any time the
processor transitions to having all empty block queues and no pending ac-
knowledgements to receive, then it increments a global completion counter.
If it transitions out of the completion state (by receipt of further updates),
then it decrements the global counter before sending acknowledgements. The
entire distance-transform computation is complete when the global counter
equals the number of processors. The processor continues with another block
if available, otherwise it waits idle for acknowledgements, update messages
or global completion.

Once the signed distance field has been computed, a coarse base mesh can
be constructed using the octree minima values obtained through a simple,
parallelizable, coarse-to-fine recursion on the octree cells. The octree adapta-
tion is determined by the average deviation from the trilinear approximation
that the full-resolution data takes on over an octree cell. For example, in a
top-down recursive splitting, any octree cell where the average deviation is
more than 0.2 times the cell width is split further. Octree cell neighbors are
recursively split if they are more than one level coarser than the current cell.
After the recursion completes, the faces from the leaf octree cell boundaries
form the base mesh. In the case of edges that are on the boundary of octree
leaves of different resolutions, the mutual refinement of the edge is used, lead-
ing faces to have between four and eight edges (each edge may be split if any
edge-neighbor is at finer resolution; neighbors are, by construction, at most
one level finer). This base mesh is now ready for the iterative application of
smoothing, snapping and refinement to create an optimized fit of the detailed
surface.

Smoothing is defined by a simple edge-weighted local averaging procedure,
with an optional correction to improve processing in high-curvature regions.
The simple weighting formula to update a vertex p is

pP=(1-ap+ap
where p is the old vertex position, a = 0.2 (approximately), and

_ Zi TiPi

P DT
where p; are the edge-neighbor vertices of p, and r; = ||p; — p||, are the edge
lengths to them. The smoothing neighborhood is depicted in Figure 4.

This smoothing tends to shrink spherical shapes progressively to a point,
which can lead to stability and quality problems in high-curvature regions.
An option to correct for this is to project p’ in the normal direction n onto a
local least-squares-optimal quadratic height map. This map is computed with
respect to the estimated normal at p and its tangent plane, passing through
p, and otherwise minimizing the least-squares error with respect to the p;’s.

Snapping involves tracing a ray from the current vertex position p, in the
normal direction n estimated from the current shrink-wrap mesh neighbor-
hood, and updating the vertex position if a suitable intersection is found on
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Fig. 4. A neighborhood of vertex p undergoing smoothing. The simple version of
smoothing involves edge-weighted averaging with neighbors. An optional correction
projects to a local quadratic height map where the height direction is given by the
local normal n.

the high-resolution isosurface. As with the smoothing procedure, the normal
estimate is computed by averaging the set of cross products of successive
edges neighboring p, and normalizing to unit length. Intersections are found
in two stages, first by using binary search for zeros of the signed distance
field, and later by using Newton-Raphson iterations that again use the dis-
tance field. The transition to the Newton-Raphson procedure is attempted
at each step of the binary search, and if it fails to converge in five steps then
the binary search is continued.
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Fig. 5. Shrink wrapping steps (left to right): full-resolution isosurface, base mesh
constructed from edge collapses, and final shrink-wrap with subdivision-surface
connectivity.

The shrink-wrap process is depicted in Figure 5 for approximately .016%
of the 460 million-triangle Richtmyer-Meshkov mixing interface in topology-
preserving mode. The original isosurface fragment contains 37,335 vertices,
the base mesh 93 vertices, and the shrink-wrap result 75,777 vertices. A
larger portion of the same isosurface is shown in Figure 1. The extracted,
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full resolution unstructured mesh contains 976,321 vertices, the base mesh
19,527 vertices, and the fine-resolution shrink-wrap mesh 1,187,277 vertices.
The shrink-wrap refinement process in both cases was continued until the fit
was accurate to a tiny fraction of a cell width. Indeed, the fit surface takes on
the artifacts of the isosurface extraction process, slight “staircase” patterns
at the grid resolution.

The shrink-wrap processing succeeded in our goal of creating a parameter-
ization that results in high compression rates. With only 1.6% of the wavelet
coefficients, the root mean squared error is a fraction of the width of a finite
element in the grid, implying effective compression even before considering
improvements through quantization and entropy coding.

4 Remapping for ROAM

The ROAM algorithm typically exploits a piecewise block-structured surface
grid to provide efficient selective refinement for view-dependent optimization.
A triangle bintree structure is used, with split and merge operations for se-
lective refinement and coarsening respectively, as described in Section 2 (see
Figures 2-3). In this section we introduce a second re-mapping procedure
that solves the problem of tangential motion that arises when performing
selective refinement on the “curvy” parameterizations that result from the
shrink-wrapping algorithm.

A simple demonstration of the problem is shown in Figure 6. Note that
even for a perfectly planar region, significant “pops” will occur during selec-
tive refinement due to the nonlinear parameterization. A natural choice for
remapping is to project the original surface geometry in an estimated normal
direction onto the coarse bintree triangles acting as the new domain. Occa-
sionally the projection causes excessive distortions or folds, but typically it
can be applied without problems. When projection can be applied, it reduces
the new split-point updates to all be in the local “height” or normal direction,
and can thus completely avoid tangential motion. Indeed, this can be seen
as a form of compression, since only a single scalar A-height need be stored
instead of a 3-component vector.

Although it would be simpler to have a single type of mapping, the local-
heightmap scheme for triangle bintrees is not optimal for bicubic subdivision-
surface wavelet compression, and so we choose to keep two distinct remap-
pings. The curved parameterizations are ideal for the higher-order wavelet
compression. The ROAM-optimized mappings often appear jagged and less
pleasing to a human observer who is looking at the mesh lines, but neverthe-
less are much better performing for actual use during view-dependent display,
where the mesh lines are not shown.

Several lines of previous research serve as a backdrop for the methods
we have devised. The earliest known local hierarchical displacement frames
were introduced by Forsey and Bartels in the context of hierarchical B-spline
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Fig. 6. The highly curved parameterization from shrink-wrapping is shown in black,
whereas the natural parameterization for triangle bintrees is shown in gray. Without
remapping, the large tangential motion (arrow) will occur when splitting.

editing [8]. A more general method, including integration with wavelets, was
introduced in [5]. The recent work of Guskov et al. [9] has many similarities
to our approach, but in the context of geometric modeling and compression
rather than view-dependent display optimization.

The ROAM remapping works from coarse to fine resolutions, following the
simple split operations in whatever order they appear during selective refine-
ment. The vertices of the base mesh are left fixed at their original positions,
and are stored as full three-component coordinates. For every edge-bisection
vertex formed in one simple split step, estimated normals are computed by
averaging the normals of the two triangles whose common edge is being bi-
sected, and making the averaged normal unit length. All vertices carry with
them a reference to the 2™ 4+ 1-squared patch that they reside in, along with
the two parameter coordinates [u,v] within that patch. During edge bisec-
tion, the parametric midpoint is computed by “topologically gluing” at most
two patches together from the original mesh, computing the mid-parameter
values in this glued space, then converting those parameters back to unglued
parameters. The gluing and remapping is depicted in Figure 7.

Given the constraints on our procedure, it is not possible for bisecting-edge
endpoints to cross more than one patch boundary. A ray-trace intersection
is performed from the midpoint of the line segment being bisected, in the
estimated normal direction. Since we expect the intersection to be near the
parametric midpoint in most cases, it is efficient to begin ray intersection
tests there for early candidates.

Since the surface being ray-traced stays fixed throughout the remapping,
the construction of typical ray-surface intersection-acceleration structures can
be amortized and overall offer time savings. However, we have found that,
overall, the hunt using the parametric midpoint as a starting point is very
fast in practice and further acceleration methods are not needed. For the
final precise intersection evaluation, we use interval-Newton iterations [13].
Intersections are rejected if they are not within a parametric window defined
by the four remapped vertices of the two triangles being split, shrunk by
some factor (e.g., reduced by 50%) around the parametric midpoint. The
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Fig. 7. Two patches parameterized by [ua,va] and [up,vB] are glued to form a
single patch parameterized by [u, v]. A ray-tracing procedure finds the intersection
of the ray through midpoint p in the estimated normal direction n. The [u, v] of the
intersection is acceptable if it appears in the image of the safe region of [s, t]-space
in the glued space.

closest acceptable intersection is chosen (closest with respect to the distance
from p in world space). If an acceptable intersection exists, then the single
scalar value is given specifying the distance from p along the normal ray n. If
no intersections exist or are acceptable, then parametric midpoint is chosen
and is specified with a three-component vector of the displacement from edge
midpoint p to the parametric midpoint.

The result of remapping is shown in Figure 8 for a test object produced by
Catmull-Clark subdivision with semi-sharp features. The original parameter-
ization on the left is optimal for compression by bicubic subdivision-surface
wavelets, but produces extreme and unnecessary tangential motions during
triangle-bintree refinement. The remapped surface, shown on the right, has
bisection-midpoint displacements (“poor man’s wavelets”) of length zero in
the flat regions of the disk, and displacements of minimized length elsewhere.
We note that while the main motivation for this procedure is to increase ac-
curacy and reduce the “pops” during realtime display-mesh optimization, the
typical reduction to a single scalar value of the displacement vectors (wavelet
coefficients) gives a fair amount of compression. This is desirable when the
remap from high-quality wavelet parameterization and compression is too
time-consuming to allow some clients to perform it themselves, so that a
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]

Fig. 8. Before (left) and after remapping for triangle bintree hierarchies. Tangential
motion during subdivision is eliminated.

more capable server performs the remap yet there is still a fair amount of
compression over the server-to-client communications link.

Generally the ROAM remapping decreases the error for a given level of
approximation. However, tiny discrepancies exist in the finest resolution mesh
due to remapping. It is certainly possible to continue remapping beyond the
resolution of the input mesh, in effect fully resolving the exact artifacts and
other details of the original mesh. In most applications this is not necessary.

The ROAM algorithm naturally requires only a tiny fraction of the current
optimal display mesh to be updated each frame. Combined with caching and
the compression potential of remapping, this promises to provide an effec-
tive mechanism for out-of-core and remote access to the surfaces on demand
during interaction.

5 Future Work

We have demonstrated, for the first time, the end-to-end use of semi-structured
representations for large-data compression and view-dependent display. The
primary lesson learned is that two remapping steps are needed for best per-
formance, rather than one, and that a runtime on-demand caching scheme
is needed to best perform the second remapping. Overall the software is still
very much a research prototype with many challenges remaining to create a
production-ready system:

1. For topology-preserving simplification, the inherently serial nature of the
queue-based schemes must be overcome to harness parallelism.

2. Means such as transparent textures must be devised to handle the non-
snapping shink-wrap regions that result from topology simplification.

3. The shrink-wrapping procedure can fail to produce one-to-one, onto map-
pings in some cases even when such mappings exist. Perhaps it is possible
to revert to expensive simplification schemes that carry one-to-one, onto
mappings only in problematic neighborhoods.

4. Shrink-wrapping needs to be extended to produce time-coherent map-
pings for time-dependent surfaces. This is a great challenge due to the
complex evolution that surfaces undergo in time-dependent physics sim-
ulations.
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