Our research projects vary in size, scope, and duration, but they share a focus on developing tools and methods that help LLNL deliver on its missions to the nation and, more broadly, advance the state of the art in scientific HPC. Projects are organized here in three ways: Active projects are those currently funded and regularly updated. Legacy projects are no longer actively developed. The A-Z option sorts all projects alphabetically, both active and legacy.

Active | A-Z | Legacy

Spindle

Scalable Shared Library Loading

Spindle improves the library-loading performance of dynamically linked HPC applications by plugging into the system’s dynamic linker and intercepting its file operations.

Caliper

Application Introspection System

Caliper enables users to build customized performance measurement and analysis solutions by connecting independent context annotations, measurement services, and data processing services.

Application-Level Resilience

Efficient Algorithmic Fault Tolerance

Application-level resilience is emerging as an alternative to traditional fault tolerance approaches because it provides fault tolerance at a lower cost than traditional approaches.

LMAT

Livermore Metagenomics Analysis Toolkit

This genome sequencing technology helps accelerate the comparison of genetic fragments with reference genomes and improve the accuracy of the results as compared to previous technologies.

Memory-Centric Architectures

Exploiting Emerging Persistent Memory

A new, complex memory/storage hierarchy is emerging, with persistent memories offering greatly expanded capacity, and augmented by DRAM/SRAM cache and scratchpads to mitigate latency.

BLAST

High-Order Finite Element Hydrodynamics

BLAST is a high-order finite element hydrodynamics research code that improves the accuracy of simulations and provides a path to extreme parallel computing and exascale architectures.

SCR

Scalable Checkpoint/Restart for MPI

With SCR, jobs run more efficiently, recover more work upon failure, and reduce load on critical shared resources.

XBraid

Parallel Time Integration with Multigrid

This project constructs coarse time grids and uses each solution to improve the next finer-scale solution, simultaneously updating a solution guess over the entire space-time domain.